1
|
Wang B, Tieleman DP. The structure, self-assembly and dynamics of lipid nanodiscs revealed by computational approaches. Biophys Chem 2024; 309:107231. [PMID: 38569455 DOI: 10.1016/j.bpc.2024.107231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
Nanodisc technology is increasingly being used in structural, biochemical and biophysical studies of membrane proteins. The computational approaches have revealed many important features of nanodisc assembly, structures and dynamics. Therefore, we reviewed the application of computational approaches, especially molecular modeling and molecular dyncamics (MD) simulations, to characterize nanodiscs, including the structural models, assembly and disassembly, protocols for modeling, structural properties and dynamics, and protein-lipid interactions in nanodiscs. More amazing computational studies about nanodiscs are looked forward to in the future.
Collapse
Affiliation(s)
- Beibei Wang
- Centre for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary, Calgary T2N 1N4, Canada.
| |
Collapse
|
2
|
Sharma A, Sharma C, Sharma L, Wal P, Mishra P, Sachdeva N, Yadav S, Vargas De-La Cruz C, Arora S, Subramaniyan V, Rawat R, Behl T, Nandave M. Targeting the vivid facets of apolipoproteins as a cardiovascular risk factor in rheumatoid arthritis. Can J Physiol Pharmacol 2024; 102:305-317. [PMID: 38334084 DOI: 10.1139/cjpp-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Mostly, cardiovascular diseases are blamed for casualties in rheumatoid arthritis (RA) patients. Customarily, dyslipidemia is probably the most prevalent underlying cause of untimely demise in people suffering from RA as it hastens the expansion of atherosclerosis. The engagement of inflammatory cytokines like tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1), interleukin-6 (IL-6), etc., is crucial in the progression and proliferation of both RA and abnormal lipid parameters. Thus, lipid abnormalities should be monitored frequently in patients with both primary and advanced RA stages. An advanced lipid profile examination, i.e., direct role of apolipoproteins associated with various lipid molecules is a more dependable approach for better understanding of the disease and selecting suitable therapeutic targets. Therefore, studying their apolipoproteins is more relevant than assessing RA patients' altered lipid profile levels. Among the various apolipoprotein classes, Apo A1 and Apo B are primarily being focused. In addition, it also addresses how calculating Apo B:Apo A1 ratio can aid in analyzing the disease's risk. The marketed therapies available to control lipid abnormalities are associated with many other risk factors. Hence, directly targeting Apo A1 and Apo B would provide a better and safer option.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Chakshu Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | - Preeti Mishra
- Raja Balwant Singh Engineering Technical Campus, Bichpuri, Agra, India
| | - Nitin Sachdeva
- Department of Anesthesia, Mediclinic Aljowhara Hospital, Al Ain, United Arab Emirates
| | - Shivam Yadav
- School of Pharmacy, Babu Banarasi Das University, Lucknow, Uttar Pradesh, India
| | - Celia Vargas De-La Cruz
- Department of Pharmacology, Bromatology and Toxicology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru
- E-Health Research Center, Universidad de Ciencias y Humanidades, Lima 15001, Peru
| | - Sandeep Arora
- Amity Institute of Pharmacy, Amity University, Noida, Uttar Pradesh, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 600077, India
| | - Ravi Rawat
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar, Delhi, India
| |
Collapse
|
3
|
Zhong X, Jiao H, Zhao D, Teng J, Yang M. Case-Control Study to Investigate the Association Between Serum Apolipoprotein B/A1 Ratio and Atrial Fibrillation by Sex in 920 Patients from China. Med Sci Monit 2022; 28:e936425. [PMID: 35567295 PMCID: PMC9116146 DOI: 10.12659/msm.936425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The serum apolipoprotein B/A1 ratio (APOB/APOA1) has been shown to predict cardiovascular events, whereas the effect of the APOB/APOA1 ratio on atrial fibrillation (AF) is less known. We investigated the association between the APOB/APOA1 ratio and AF by sex in 920 patients from China. MATERIAL AND METHODS We reviewed clinical data on 1840 hospitalized patients, including 920 patients with AF (male/female: 460/460, age: 68.62±10.36 years) and 920 age- and sex-matched patients without AF with sinus rhythm in China between January 2019 and September 2021. Pearson correlation analysis was performed to investigate the correlation between APOB/APOA1 ratio and AF-related metabolic factors. Logistic regression analysis was used to determine the odds ratios (ORs) and 95% confidence intervals (CIs). RESULTS Low serum APOB/APOA1 ratios in male and female patients were significantly associated with AF after adjusting for confounding factors (OR 0.159, 95% CI 0.058-0.432, P<0.05). Serum APOB/APOA1 ratio was positively correlated with triglyceride (TG) (r=0.146, P<0.05) and total cholesterol (TC) (r=0.227, P<0.05) and was negatively correlated with albumin (ALB) (r=-0.128, P<0.05) and prealbumin (PAB) (r=-0.107, P<0.05). There was no significant difference of APOB/APOA1 ratio in different subtypes, complications, and statin use in patients with AF (P>0.05). CONCLUSIONS A low serum APOB/APOA1 ratio in male and female patients from China was significantly related to AF. This finding implies that a low serum APOB/APOA1 ratio may be associated with the causes of AF. Further studies are needed to determine causalities.
Collapse
Affiliation(s)
- Xia Zhong
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Huachen Jiao
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Dongsheng Zhao
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Jing Teng
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| | - Mengqi Yang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, PR China
| |
Collapse
|
4
|
Nasr ML. Large nanodiscs going viral. Curr Opin Struct Biol 2020; 60:150-156. [PMID: 32066086 PMCID: PMC10712563 DOI: 10.1016/j.sbi.2020.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 12/29/2022]
Abstract
Covalently circularized and DNA-corralled nanodisc technologies have enabled engineering of large-sized bilayer nanodiscs up to 90nm. These large nanodiscs have the potential to extend the applicability of nanodisc technology from studying small and medium-sized membrane proteins to acting as surrogate membranes to investigate functional and structural aspects of viral entry. Here, we discuss the recent technical developments leading to construction of large circularized and DNA-corralled nanodiscs and examine their application in viral entry.
Collapse
Affiliation(s)
- Mahmoud L Nasr
- Division of Renal Medicine, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Karan S, Mohapatra A, Sahoo PK, Garg LC, Dixit A. Structural-functional characterization of recombinant Apolipoprotein A-I fromLabeo rohitademonstrates heat-resistant antimicrobial activity. Appl Microbiol Biotechnol 2019; 104:145-159. [DOI: 10.1007/s00253-019-10204-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/09/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
6
|
Kopeć K, Pędziwiatr M, Gront D, Sztatelman O, Sławski J, Łazicka M, Worch R, Zawada K, Makarova K, Nyk M, Grzyb J. Comparison of α-Helix and β-Sheet Structure Adaptation to a Quantum Dot Geometry: Toward the Identification of an Optimal Motif for a Protein Nanoparticle Cover. ACS OMEGA 2019; 4:13086-13099. [PMID: 31460436 PMCID: PMC6705085 DOI: 10.1021/acsomega.9b00505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/23/2019] [Indexed: 05/31/2023]
Abstract
While quantum dots (QDs) are useful as fluorescent labels, their application in biosciences is limited due to the stability and hydrophobicity of their surface. In this study, we tested two types of proteins for use as a cover for spherical QDs, composed of cadmium selenide. Pumilio homology domain (Puf), which is mostly α-helical, and leucine-rich repeat (LRR) domain, which is rich in β-sheets, were selected to determine if there is a preference for one of these secondary structure types for nanoparticle covers. The protein sequences were optimized to improve their interaction with the surface of QDs. The solubilization of the apoproteins and their assembly with nanoparticles required the application of a detergent, which was removed in subsequent steps. Finally, only the Puf-based cover was successful enough as a QD hydrophilic cover. We showed that a single polypeptide dimer of Puf, PufPuf, can form a cover. We characterized the size and fluorescent properties of the obtained QD:protein assemblies. We showed that the secondary structure of the Puf proteins was not destroyed upon contact with the QDs. We demonstrated that these assemblies do not promote the formation of reactive oxygen species during illumination of the nanoparticles. The data represent advances in the effort to obtain a stable biocompatible cover for QDs.
Collapse
Affiliation(s)
- Katarzyna Kopeć
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Marta Pędziwiatr
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL02093 Warsaw, Poland
| | - Olga Sztatelman
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, PL02106 Warsaw, Poland
| | - Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| | - Magdalena Łazicka
- Department
of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL02096 Warsaw, Poland
| | - Remigiusz Worch
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Katarzyna Zawada
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Katerina Makarova
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Marcin Nyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, PL50370 Wrocław, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| |
Collapse
|
7
|
Hydrogen-deuterium exchange mass spectrometry of membrane proteins in lipid nanodiscs. Chem Phys Lipids 2019; 220:14-22. [PMID: 30802434 DOI: 10.1016/j.chemphyslip.2019.02.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Abstract
Hydrogen deuterium exchange mass spectrometry (H/DX MS) provides a quantitative comparison of the relative rates of exchange of amide protons for solvent deuterons. In turn, the rate of amide exchange depends on a complex combination of the stability of local secondary structure, solvent accessibility, and dynamics. H/DX MS has, therefore, been widely used to probe structure and function of soluble proteins, but its application to membrane proteins was limited previously to detergent solubilized samples. The large excess of lipids from model membranes, or from membrane fractions derived from in vivo samples, presents challenges with mass spectrometry. The lipid nanodisc platform, consisting of apolipoprotein A-derived membrane scaffold proteins, provides a native like membrane environment in which to capture analyte membrane proteins with a well defined, and low, ratio of lipid to protein. Membrane proteins in lipid nanodiscs are amenable to H/DX MS, and this is expected to lead to a rapid increase in the number of membrane proteins subjected to this analysis. Here we review the few literature examples of the application of H/DX MS to membrane proteins in nanodiscs. The incremental improvements in the experimental workflow of the H/DX MS are described and potential applications of this approach to study membrane proteins are described.
Collapse
|
8
|
Magro M, Baratella D, Bonaiuto E, de Almeida Roger J, Chemello G, Pasquaroli S, Mancini L, Olivotto I, Zoppellaro G, Ugolotti J, Aparicio C, Fifi AP, Cozza G, Miotto G, Radaelli G, Bertotto D, Zboril R, Vianello F. Stealth Iron Oxide Nanoparticles for Organotropic Drug Targeting. Biomacromolecules 2019; 20:1375-1384. [PMID: 30694655 DOI: 10.1021/acs.biomac.8b01750] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The ability of peculiar iron oxide nanoparticles (IONPs) to evade the immune system was investigated in vivo. The nanomaterial was provided directly into the farming water of zebrafish ( Danio rerio) and the distribution of IONPs and the delivery of oxytetracycline (OTC) was studied evidencing the successful overcoming of the intestinal barrier and the specific and prolonged (28 days) organotropic delivery of OTC to the fish ovary. Noteworthy, no sign of adverse effects was observed. In fish blood, IONPs were able to specifically bind apolipoprotein A1 (Apo A1) and molecular modeling showed the structural analogy between the IONP@Apo A1 nanoconjugate and high-density lipoprotein (HDL). Thus, the preservation of the biological identity of the protein suggests a plausible explanation of the observed overcoming of the intestinal barrier, of the great biocompatibity of the nanomaterial, and of the prolonged drug delivery (benefiting of the lipoprotein transport route). The present study promises novel and unexpected stealth materials in nanomedicine.
Collapse
Affiliation(s)
- Massimiliano Magro
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Davide Baratella
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Emanuela Bonaiuto
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Jessica de Almeida Roger
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Giulia Chemello
- Department of Life and Environmental Sciences , Marche Polytechnic University , via Brecce Bianche , Ancona , 60131 , Italy
| | - Sonia Pasquaroli
- Department of Life and Environmental Sciences , Marche Polytechnic University , via Brecce Bianche , Ancona , 60131 , Italy
| | - Leonardo Mancini
- Department of Life and Environmental Sciences , Marche Polytechnic University , via Brecce Bianche , Ancona , 60131 , Italy
| | - Ike Olivotto
- Department of Life and Environmental Sciences , Marche Polytechnic University , via Brecce Bianche , Ancona , 60131 , Italy
| | - Giorgio Zoppellaro
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials , Palacky University in Olomouc , Šlechtitelů , Olomouc 78371 , Czech Republic
| | - Juri Ugolotti
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials , Palacky University in Olomouc , Šlechtitelů , Olomouc 78371 , Czech Republic
| | - Claudia Aparicio
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials , Palacky University in Olomouc , Šlechtitelů , Olomouc 78371 , Czech Republic
| | - Anna P Fifi
- BioTecnologie BT S.r.l. , Agrifood Technology Park of Umbria , Frazione Pantalla , Pantalla , 06059 , Italy
| | - Giorgio Cozza
- Department of Molecular Medicine , University of Padua , Viale G. Colombo , Padova , 35121 , Italy
| | - Giovanni Miotto
- Department of Molecular Medicine , University of Padua , Viale G. Colombo , Padova , 35121 , Italy
| | - Giuseppe Radaelli
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Daniela Bertotto
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| | - Radek Zboril
- Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials , Palacky University in Olomouc , Šlechtitelů , Olomouc 78371 , Czech Republic
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science , University of Padua , Viale dell'Università , Legnaro , 35020 , Italy
| |
Collapse
|
9
|
Liu D, Ji L, Zhao M, Wang Y, Guo Y, Li L, Zhang D, Xu L, Pan B, Su J, Xiang S, Pennathur S, Li J, Gao J, Liu P, Willard B, Zheng L. Lysine glycation of apolipoprotein A-I impairs its anti-inflammatory function in type 2 diabetes mellitus. J Mol Cell Cardiol 2018; 122:47-57. [PMID: 30092227 DOI: 10.1016/j.yjmcc.2018.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/22/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein A-I (apoA-I), the major protein compontent of high-density lipoprotein (HDL), exerts many anti-atherogenic functions. This study aimed to reveal whether nonenzymatic glycation of specific sites of apoA-I impaired its anti-inflammatory effects in type 2 diabetes mellitus (T2DM). LC-MS/MS was used to analyze the specific sites and the extent of apoA-I glycation either modified by glucose in vitro or isolated from T2DM patients. Cytokine release in THP-1 monocyte-derived macrophages was tested by ELISA. Activation of NF-kappa B pathway was detected by western blot. The binding affinity of apoA-I to THP-1 cells was measured using 125I-labeled apoA-I. We identified seven specific lysine (Lys, K) residues of apoA-I (K12, K23, K40, K96, K106, K107 and K238) that were susceptible to be glycated either in vitro or in vivo. Glycation of apoA-I impaired its abilities to inhibit the release of TNF-α and IL-1β against lipopolysaccharide (LPS) in THP-1 cells. Besides, the glycation levels of these seven K sites in apoA-I were inversely correlated with its anti-inflammatory abilities. Furthermore, glycated apoA-I had a lower affinity to THP-1 cells than native apoA-I had. We generated mutant apoA-I (K107E, M-apoA-I) with a substitution of glutamic acid (Glu, E) for lysine at the 107th site, and found that compared to wild type apoA-I (WT-apoA-I), M-apoA-I decreased its anti-inflammatory effects in THP-1 cells. We also modeled the location of these seven K residues on apoA-I which allowed us to infer the conformational alteration of glycated apoA-I and HDL. In summary, glycation of these seven K residues altered the conformation of apoA-I and consequently impaired the protective effects of apoA-I, which may partly account for the increased risk of cardiovascular disease (CVD) in diabetic subjects.
Collapse
Affiliation(s)
- Donghui Liu
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China; Department of Cardiology, the Affiliated Cardiovascular Hospital of Xiamen University, Medical College of Xiamen University, Xiamen, Fujian 361004, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Mingming Zhao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Yang Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yansong Guo
- Department of Cardiovascular Medicine, Fujian Provincial Hospital, Fuzhou, China
| | - Ling Li
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dongmei Zhang
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Liang Xu
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jinzi Su
- Department of Cardiology, the First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Song Xiang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, 294 Taiyuan Road, Shanghai 200031, China
| | | | - Jingxuan Li
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China
| | - Pingsheng Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Belinda Willard
- Proteomics Laboratory, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences, Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Health Science Center, 100191 Beijing, China.
| |
Collapse
|
10
|
Covalently circularized nanodiscs; challenges and applications. Curr Opin Struct Biol 2018; 51:129-134. [PMID: 29677570 DOI: 10.1016/j.sbi.2018.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 03/11/2018] [Accepted: 03/15/2018] [Indexed: 12/20/2022]
Abstract
Covalently circularized nanodiscs (cNDs) represent a significant advance in the durability and applicability of nanodisc technology. The new cNDs demonstrate higher size homogeneity and improved stability compared with that of non-circularized forms. Moreover, cNDs can be prepared at various defined sizes up to 80-nm diameter. The large cNDs can house much larger membrane proteins and their complexes than was previously possible with the conventional nanodiscs. In order to experience the full advantages of covalent circularization, high quality circularized scaffold protein and nanodisc samples are needed. Here, we give a concise overview and discuss the technical challenges that needed to be overcome in order to obtain high quality preparations. Furthermore, we review some potential new applications for the cNDs.
Collapse
|
11
|
Dogan S, Paulus M, Forov Y, Weis C, Kampmann M, Cewe C, Kiesel I, Degen P, Salmen P, Rehage H, Tolan M. Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces. J Phys Chem B 2018; 122:3953-3960. [PMID: 29488751 DOI: 10.1021/acs.jpcb.7b12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An X-ray reflectivity study on the adsorption behavior of human apolipoprotein A1 (apoA1) at hydrophilic and hydrophobic interfaces is presented. It is shown that the protein interacts via electrostatic and hydrophobic interactions with the interfaces, resulting in the absorption of the protein. pH dependent measurements at the solid/liquid interface between silicon dioxide and aqueous protein solution show that in a small pH range between pH 4 and 6, adsorption is increased due to electrostatic attraction. Here, the native shape of the protein seems to be conserved. In contrast, the adsorption at the liquid/gas interface is mainly driven by hydrophobic effects, presumably by extending the hydrophobic regions of the amphipathic helices, and results in a conformational change of the protein during adsorption. However, the addition of differently charged membrane-forming lipids at the liquid/gas interface illustrates the ability of apoA1 to include lipids, resulting in a depletion of the lipids from the interface.
Collapse
|
12
|
Čopič A, Antoine-Bally S, Giménez-Andrés M, La Torre Garay C, Antonny B, Manni MM, Pagnotta S, Guihot J, Jackson CL. A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nat Commun 2018; 9:1332. [PMID: 29626194 PMCID: PMC5889406 DOI: 10.1038/s41467-018-03717-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/05/2018] [Indexed: 11/21/2022] Open
Abstract
How proteins are targeted to lipid droplets (LDs) and distinguish the LD surface from the surfaces of other organelles is poorly understood, but many contain predicted amphipathic helices (AHs) that are involved in targeting. We have focused on human perilipin 4 (Plin4), which contains an AH that is exceptional in terms of length and repetitiveness. Using model cellular systems, we show that AH length, hydrophobicity, and charge are important for AH targeting to LDs and that these properties can compensate for one another, albeit at a loss of targeting specificity. Using synthetic lipids, we show that purified Plin4 AH binds poorly to lipid bilayers but strongly interacts with pure triglycerides, acting as a coat and forming small oil droplets. Because Plin4 overexpression alleviates LD instability under conditions where their coverage by phospholipids is limiting, we propose that the Plin4 AH replaces the LD lipid monolayer, for example during LD growth. Lipid droplets are cellular organelles important for cellular homeostasis and their disruption has been implicated in many diseases. Here the authors use a large amphipathic helix from perilipin 4 to uncover parameters important for specific lipid droplet targeting and stabilization of the oil core.
Collapse
Affiliation(s)
- Alenka Čopič
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France.
| | - Sandra Antoine-Bally
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Manuel Giménez-Andrés
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France.,Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - César La Torre Garay
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Bruno Antonny
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | - Marco M Manni
- Université Côte d'Azur, CNRS, IPMC, 06560, Valbonne, France
| | | | - Jeanne Guihot
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| | - Catherine L Jackson
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 75013, Paris, France
| |
Collapse
|
13
|
Yu LL, Yu HH, Liang XF, Li N, Wang X, Li FH, Wu XF, Zheng YH, Xue M, Liang XF. Dietary butylated hydroxytoluene improves lipid metabolism, antioxidant and anti-apoptotic response of largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2018; 72:220-229. [PMID: 29108969 DOI: 10.1016/j.fsi.2017.10.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/18/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
A 10-week growth trail was conducted to investigate the efficacy and tolerance of dietary butylated hydroxytoluene (BHT) by evaluating inflammation, apoptosis and hepatic disease related to oxidative stress in largemouth bass (Micropterus salmoides). Four experimental diets were prepared with BHT supplement levels of 0 (B0), 150 (B150), 300 (B300) and 1500 (B1500) mg/kg, in which B150 was at the maximum recommended level established by European Union Regulation, and the B300 and B1500 levels were 2 and 10-fold of B150, respectively. Each diet was fed to 6 replicates with 30 largemouth bass (initial body weight, IBW = 6.20 ± 0.01 g) in each tank. The BHT inclusion level did not affect the specific growth rate, but fish in the B150 group showed the lowest feed conversion rate (P < 0.05). BHT inclusion significantly decreased the levels of plasma TC, TG, LDL, ALT and AKP, and increased the (HDL-C)/TC ratio (P < 0.05). Plasma MDA was significantly decreased in the B150 group and GSH-Px was extremely enhanced in each BHT inclusion group (P < 0.05). Hepatic T-AOC was significantly enhanced and O2- was significantly decreased in each BHT inclusion group compared to the B0 group (P < 0.05), as well as hepatic MDA was significantly decreased in B1500 group (P < 0.05). Dietary BHT inclusion down-regulated the hepatic mRNA levels of inflammation, apoptosis and fibrosis related genes, including TNFα, TGF-β1, α-SMA, IL8, IL11β and caspase-9. Moreover, BHT could improve hepatic lipid metabolism via up-regulating the mRNA levels of APOA1, CYP7A1, CYP8B1, and down-regulating the mRNA levels of PPAR-γ and APOB. Histological examination of the liver morphology with H&E and Sirius Red staining showed that BHT inclusion decreased necrotic degenerative changes and collagen deposition in largemouth bass. An immunofluorescence examination revealed significantly decreased cleaved caspase-3 signals in the BHT groups. In conclusion, the results demonstrated that ROS induces hepatic cell apoptosis and fibrosis via the intrinsic pathway of apoptosis by activating caspase-9 in the mitochondria and then initiates apoptosis by activating caspase-3. Consuming 2.32-23.80 mg/kg·bw/d (150-1500 mg/kg in diet) of BHT effectively improved the plasma and hepatic lipid metabolism, antioxidant response as well as reduced ROS production, protecting hepatic cells from injury. It is implied that even a 10-fold increase of the maximum level of BHT (150 mg/kg) is safe for the largemouth bass.
Collapse
Affiliation(s)
- L L Yu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - H H Yu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X F Liang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - N Li
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - X Wang
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - F H Li
- Beijing General Station of Animal Husbandry Senior Veterinary, 100107, China
| | - X F Wu
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Y H Zheng
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - M Xue
- National Aquafeed Safety Assessment Center, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Feed Biotechnology of Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China.
| | - X F Liang
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, China; College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
14
|
Zheng YZ, DeMarco ML. Manipulating trypsin digestion conditions to accelerate proteolysis and simplify digestion workflows in development of protein mass spectrometric assays for the clinical laboratory. CLINICAL MASS SPECTROMETRY (DEL MAR, CALIF.) 2017; 6:1-12. [PMID: 39193414 PMCID: PMC11322774 DOI: 10.1016/j.clinms.2017.10.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 10/09/2017] [Accepted: 10/17/2017] [Indexed: 01/15/2023]
Abstract
For ease of measurement and accurate identification of proteins by mass spectrometry, protein targets are commonly cleaved into peptides. Protein digestion is a critical step in sample preparation, yielding peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity; however, it can yield highly variable digestion profiles and is dependent on several factors including digestion buffer, denaturant, trypsin quality selected, and composition/complexity of the sample matrix. Historically, trypsin digestion protocols have relied on lengthy digestion times-which are unsuitable for many clinical applications-to ensure effective proteolysis. Here, we performed an iterative and comprehensive evaluation of digestion conditions for five structurally diverse proteins in plasma and serum: apolipoprotein A-1, retinol-binding protein 4, transthyretin, complement component 9 and C-reactive protein. Conditions were monitored for improvements in signal intensity, reproducibility of digestion profile, and rate of release of proteolytic peptides. This approach yielded an optimized digestion protocol for detection of all five proteins in a single workflow requiring a brief 20 min digestion, without the use of chemical denaturants or reduction/alkylation steps, and only 1 μl of plasma. It is our hope that this data can accelerate the development phase of targeted mass spectrometric protein assays by identifying practical approaches to accelerate and simplify digestion protocols for clinical applications and assist with the selection of tryptic peptides for protein quantitation.
Collapse
Affiliation(s)
- Yu Zi Zheng
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
| | - Mari L. DeMarco
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, St. Paul’s Hospital, Providence Health Care, Vancouver, Canada
| |
Collapse
|
15
|
Vanags LZ, Tan JTM, Santos M, Michael PS, Ali Z, Bilek MMM, Wise SG, Bursill CA. Plasma activated coating immobilizes apolipoprotein A-I to stainless steel surfaces in its bioactive form and enhances biocompatibility. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:2141-2150. [PMID: 28668625 DOI: 10.1016/j.nano.2017.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 11/29/2022]
Abstract
We utilized a plasma activated coating (PAC) to covalently bind the active component of high density lipoproteins (HDL), apolipoprotein (apo) A-I, to stainless steel (SS) surfaces. ApoA-I suppresses restenosis and thrombosis and may therefore improve SS stent biocompatibility. PAC-coated SS significantly increased the covalent attachment of apoA-I, compared to SS alone. In static and dynamic flow thrombosis assays, PAC+apoA-I inhibited thrombosis and reduced platelet activation marker p-selectin. PAC+apoA-I reduced smooth muscle cell attachment and proliferation, and augmented EC attachment to PAC. We then coated PAC onto murine SS stents and found it did not peel or delaminate following crimping/expansion. ApoA-I was immobilized onto PAC-SS stents and was retained as a monolayer when exposed to pulsatile flow in vivo in a murine stent model. In conclusion, ApoA-I immobilized on PAC withstands pulsatile flow in vivo and retains its bioactivity, exhibiting anti-thrombotic and anti-restenotic properties, demonstrating the potential to improve stent biocompatibility.
Collapse
Affiliation(s)
- Laura Z Vanags
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Joanne T M Tan
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Miguel Santos
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; School of Physics, University of Sydney, Sydney, New South Wales, Australia.
| | - Praveesuda S Michael
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Ziad Ali
- Translational Medicine, University of Columbia, NY, New York, USA.
| | - Marcela M M Bilek
- School of Physics, University of Sydney, Sydney, New South Wales, Australia.
| | - Steven G Wise
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia; School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia.
| | - Christina A Bursill
- The Heart Research Institute, Sydney, New South Wales, Australia; Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
16
|
Lessons from making the Structural Classification of Proteins (SCOP) and their implications for protein structure modelling. Biochem Soc Trans 2017; 44:937-43. [PMID: 27284063 PMCID: PMC5011417 DOI: 10.1042/bst20160053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 12/04/2022]
Abstract
The Structural Classification of Proteins (SCOP) database has facilitated the development of many tools and algorithms and it has been successfully used in protein structure prediction and large-scale genome annotations. During the development of SCOP, numerous exceptions were found to topological rules, along with complex evolutionary scenarios and peculiarities in proteins including the ability to fold into alternative structures. This article reviews cases of structural variations observed for individual proteins and among groups of homologues, knowledge of which is essential for protein structure modelling.
Collapse
|
17
|
Raghavendra AJ, Alsaleh N, Brown JM, Podila R. Charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona. Biointerphases 2017; 12:02D402. [PMID: 28269991 PMCID: PMC5346100 DOI: 10.1116/1.4977064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/18/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022] Open
Abstract
Upon introduction into a biological system, engineered nanomaterials (ENMs) rapidly associate with a variety of biomolecules such as proteins and lipids to form a biocorona. The presence of "biocorona" influences nano-bio interactions considerably, and could ultimately result in altered biological responses. Apolipoprotein A-I (ApoA-I), the major constituent of high-density lipoprotein (HDL), is one of the most prevalent proteins found in ENM-biocorona irrespective of ENM nature, size, and shape. Given the importance of ApoA-I in HDL and cholesterol transport, it is necessary to understand the mechanisms of ApoA-I adsorption and the associated structural changes for assessing consequences of ENM exposure. Here, the authors used a comprehensive array of microscopic and spectroscopic tools to elucidate the interactions between ApoA-I and 100 nm Ag nanoparticles (AgNPs) with four different surface functional groups. The authors found that the protein adsorption and secondary structural changes are highly dependent on the surface functionality. Our electrochemical studies provided new evidence for charge transfer interactions that influence ApoA-I unfolding. While the unfolding of ApoA-I on AgNPs did not significantly change their uptake and short-term cytotoxicity, the authors observed that it strongly altered the ability of only some AgNPs to generate of reactive oxygen species. Our results shed new light on the importance of surface functionality and charge transfer interactions in biocorona formation.
Collapse
Affiliation(s)
- Achyut J Raghavendra
- Laboratory of Nano-Biophysics, Clemson Nanomaterials Center, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634
| | - Nasser Alsaleh
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Science, University of Colorado-Anschutz Medical Campus, Aurora, Colorado 80045
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Science, University of Colorado-Anschutz Medical Campus, Aurora, Colorado 80045
| | - Ramakrishna Podila
- Laboratory of Nano-Biophysics, Clemson Nanomaterials Center, Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 and Center for Optical Materials Science and Engineering Technologies (COMSET), Clemson, South Carolina 29625
| |
Collapse
|
18
|
Colombo G, Clerici M, Altomare A, Rusconi F, Giustarini D, Portinaro N, Garavaglia ML, Rossi R, Dalle-Donne I, Milzani A. Thiol oxidation and di-tyrosine formation in human plasma proteins induced by inflammatory concentrations of hypochlorous acid. J Proteomics 2017; 152:22-32. [DOI: 10.1016/j.jprot.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 02/09/2023]
|
19
|
The power, pitfalls and potential of the nanodisc system for NMR-based studies. Biol Chem 2016; 397:1335-1354. [DOI: 10.1515/hsz-2016-0224] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022]
Abstract
Abstract
The choice of a suitable membrane mimicking environment is of fundamental importance for the characterization of structure and function of membrane proteins. In this respect, usage of the lipid bilayer nanodisc technology provides a unique potential for nuclear magnetic resonance (NMR)-based studies. This review summarizes the recent advances in this field, focusing on (i) the strengths of the system, (ii) the bottlenecks that may be faced, and (iii) promising capabilities that may be explored in future studies.
Collapse
|
20
|
Mo ZC, Ren K, Liu X, Tang ZL, Yi GH. A high-density lipoprotein-mediated drug delivery system. Adv Drug Deliv Rev 2016; 106:132-147. [PMID: 27208399 DOI: 10.1016/j.addr.2016.04.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 04/13/2016] [Accepted: 04/27/2016] [Indexed: 01/08/2023]
Abstract
High-density lipoprotein (HDL) is a comparatively dense and small lipoprotein that can carry lipids as a multifunctional aggregate in plasma. Several studies have shown that increasing the levels or improving the functionality of HDL is a promising target for treating a wide variety of diseases. Among lipoproteins, HDL particles possess unique physicochemical properties, including naturally synthesized physiological components, amphipathic apolipoproteins, lipid-loading and hydrophobic agent-incorporating characteristics, specific protein-protein interactions, heterogeneity, nanoparticles, and smaller size. Recently, the feasibility and superiority of using HDL particles as drug delivery vehicles have been of great interest. In this review, we summarize the structure, constituents, biogenesis, remodeling, and reconstitution of HDL drug delivery systems, focusing on their delivery capability, characteristics, applications, manufacturing, and drug-loading and drug-targeting characteristics. Finally, the future prospects are presented regarding the clinical application and challenges of using HDL as a pharmacodelivery carrier.
Collapse
Affiliation(s)
- Zhong-Cheng Mo
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China; Department of Histology and Embryology, University of South China, Hengyang, Hunan 421001, China
| | - Kun Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Xing Liu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, 100005 Beijing, China
| | - Zhen-Li Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China
| | - Guang-Hui Yi
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, University of South China, Hengyang City 421001, Hunan Province, China.
| |
Collapse
|
21
|
Xiao S, Liu R, Wei Y, Feng L, Lv X, Tang F. Air pollution and blood lipid markers levels: Estimating short and long-term effects on elderly hypertension inpatients complicated with or without type 2 diabetes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 215:135-140. [PMID: 27180144 DOI: 10.1016/j.envpol.2016.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/09/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
With the development of society and the economy, many Chinese cities are shrouded in pollution haze for much of the year. Scientific studies have identified various adverse effects of air pollutants on human beings. However, the relationships between air pollution and blood lipid levels are still unclear. The objective of this study is to explore the short and long-term effects of air pollution on eight blood lipid markers among elderly hypertension inpatients complicated with or without type 2 diabetes (T2D). Blood lipid markers which met the pre-established inclusion criteria were exported from the medical record system. Air pollution data were acquired from the official environmental protection website. Associations between the air quality index and the blood lipid indexes were analyzed by one-way ANOVA and further Bonferroni correction. In an exposure time of 7 days or longer, blood lipid markers were somewhat affected by poor air quality. However, the results could not predict whether atherosclerosis would be promoted or inhibited by poorer air condition. Changes of blood lipid markers of hypertension inpatients with or without T2D were not completely the same, but no blood lipid markers had an opposite trend between the two populations. The air quality index was associated with changes to blood lipid markers to some extent in a population of hypertension inpatients with or without T2D. Further studies are needed to investigate the potential mechanism by which air pollutants induce blood lipids changes.
Collapse
Affiliation(s)
- Sanhua Xiao
- Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ranran Liu
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Youxiu Wei
- Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Lin Feng
- Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xuemin Lv
- Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Tang
- Institute of Environmental Medicine, MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
22
|
Zhang L, Kondo H, Kamikubo H, Kataoka M, Sakamoto W. VIPP1 Has a Disordered C-Terminal Tail Necessary for Protecting Photosynthetic Membranes against Stress. PLANT PHYSIOLOGY 2016; 171:1983-95. [PMID: 27208228 PMCID: PMC4936581 DOI: 10.1104/pp.16.00532] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 05/09/2016] [Indexed: 05/19/2023]
Abstract
Integrity of biomembranes is vital to living organisms. In bacteria, PspA is considered to act as repairing damaged membrane by forming large supercomplexes in Arabidopsis (Arabidopsis thaliana). Vulnerable to oxidative stress, photosynthetic organisms also contain a PspA ortholog called VIPP1, which has an additional C-terminal tail (Vc). In this study, Vc was shown to coincide with an intrinsically disordered region, and the role of VIPP1 in membrane protection against stress was investigated. We visualized VIPP1 by fusing it to GFP (VIPP1-GFP that fully complemented lethal vipp1 mutations), and investigated its behavior in vivo with live imaging. The intrinsically disordered nature of Vc enabled VIPP1 to form what appeared to be functional particles along envelopes, whereas the deletion of Vc caused excessive association of the VIPP1 particles, preventing their active movement for membrane protection. Expression of VIPP1 lacking Vc complemented vipp1 mutation, but exhibited sensitivity to heat shock stress. Conversely, transgenic plants over-expressing VIPP1 showed enhanced tolerance against heat shock, suggesting that Vc negatively regulates VIPP1 particle association and acts in maintaining membrane integrity. Our data thus indicate that VIPP1 is involved in the maintenance of photosynthetic membranes. During evolution, chloroplasts have acquired enhanced tolerance against membrane stress by incorporating a disordered C-terminal tail into VIPP1.
Collapse
Affiliation(s)
- Lingang Zhang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Hideki Kondo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Hironari Kamikubo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Mikio Kataoka
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan (L.Z., H.Ko., W.S.); School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China (L.Z.); and Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan (H.Ka., M.K.)
| |
Collapse
|
23
|
Lipoprotein interactions with a polyurethane and a polyethylene oxide-modified polyurethane at the plasma–material interface. Biointerphases 2016; 11:029810. [PMID: 27306077 DOI: 10.1116/1.4953867] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Lee J, Im W. Implementation and application of helix-helix distance and crossing angle restraint potentials. J Comput Chem 2016; 28:669-80. [PMID: 17195157 DOI: 10.1002/jcc.20614] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on the definition of helix-helix distance and crossing angle introduced by Chothia et al. (J Mol Biol 1981, 145, 215), we have developed the restraint potentials by which the distance and crossing angle of two selected helices can be maintained around target values during molecular dynamics simulations. A series of assessments show that calculated restraint forces are numerically accurate. Since the restraint forces are only exerted on atoms which define the helical principal axes, each helix can rotate along its helical axis, depending on the helix-helix intermolecular interactions. Such a restraint potential enables us to characterize the helix-helix interactions at atomic details by sampling their conformational space around specific distance and crossing angle with (restraint) force-dependent fluctuations. Its efficacy is illustrated by calculating the potential of mean force as a function of helix-helix distance between two transmembrane helical peptides in an implicit membrane model.
Collapse
Affiliation(s)
- Jinhyuk Lee
- Department of Molecular Biosciences, Center for Bioinformatics, The University of Kansas, 2030 Becker Drive, Lawrence, Kansas 66047, USA
| | | |
Collapse
|
25
|
Pan L, Segrest JP. Computational studies of plasma lipoprotein lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2401-2420. [PMID: 26969087 DOI: 10.1016/j.bbamem.2016.03.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/04/2016] [Indexed: 12/27/2022]
Abstract
Plasma lipoproteins are macromolecular assemblies of proteins and lipids found in the blood. The lipid components of lipoproteins are amphipathic lipids such as phospholipids (PLs), and unesterified cholesterols (UCs) and hydrophobic lipids such as cholesteryl esters (CEs) and triglycerides (TGs). Since lipoproteins are soft matter supramolecular assemblies easily deformable by thermal fluctuations and they also exist in varying densities and protein/lipid components, a detailed understanding of their structure/function is experimentally difficult. Molecular dynamics (MD) simulation has emerged as a particularly promising way to explore the structure and dynamics of lipoproteins. The purpose of this review is to survey the current status of computational studies of the lipid components of the lipoproteins. Computational studies aim to explore three levels of complexity for the 3-dimensional structural dynamics of lipoproteins at various metabolic stages: (i) lipoprotein particles consist of protein with minimal lipid; (ii) lipoprotein particles consist of PL-rich discoidal bilayer-like lipid particles; (iii) mature circulating lipoprotein particles consist of CE-rich or TG-rich spheroidal lipid-droplet-like particles. Due to energy barriers involved in conversion between these species, other biomolecules also participate in lipoprotein biological assembly. For example: (i) lipid-poor apolipoprotein A-I (apoA-I) interacts with ATP-binding cassette transporter A1 (ABCA1) to produce nascent discoidal high density lipoprotein (dHDL) particles; (ii) lecithin-cholesterol acyltransferase (LCAT) mediates the conversion of UC to CE in dHDL, driving spheroidal HDL (sHDL) formation; (iii) transfer proteins, cholesterol ester transfer protein (CETP) and phospholipid transfer protein (PLTP), transfer both CE and TG and PL, respectively, between lipoprotein particles. Computational studies have the potential to explore different lipoprotein particles at each metabolic stage in atomistic detail. This review discusses the current status of computational methods including all-atom MD (AAMD), coarse-grain MD (CGMD), and MD-simulated annealing (MDSA) and their applications in lipoprotein structural dynamics and biological assemblies. Results from MD simulations are discussed and compared across studies in order to identify key findings, controversies, issues and future directions. This article is part of a Special Issue entitled: Biosimulations edited by Ilpo Vattulainen and Tomasz Róg.
Collapse
Affiliation(s)
- Lurong Pan
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jere P Segrest
- Division of Gerontology, Geriatrics, & Palliative Care, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
26
|
Membrane lipid compositional sensing by the inducible amphipathic helix of CCT. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:847-861. [PMID: 26747646 DOI: 10.1016/j.bbalip.2015.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/29/2015] [Indexed: 11/21/2022]
Abstract
The amphipathic helical (AH) membrane binding motif is recognized as a major device for lipid compositional sensing. We explore the function and mechanism of sensing by the lipid biosynthetic enzyme, CTP:phosphocholine cytidylyltransferase (CCT). As the regulatory enzyme in phosphatidylcholine (PC) synthesis, CCT contributes to membrane PC homeostasis. CCT directly binds and inserts into the surface of bilayers that are deficient in PC and therefore enriched in lipids that enhance surface charge and/or create lipid packing voids. These two membrane physical properties induce the folding of the CCT M domain into a ≥60 residue AH. Membrane binding activates catalysis by a mechanism that has been partially deciphered. We review the evidence for CCT compositional sensing, and the membrane and protein determinants for lipid selective membrane-interactions. We consider the factors that promote the binding of CCT isoforms to the membranes of the ER, nuclear envelope, or lipid droplets, but exclude CCT from other organelles and the plasma membrane. The CCT sensing mechanism is compared with several other proteins that use an AH motif for membrane compositional sensing. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon.
Collapse
|
27
|
Cornelius RM, Macri J, Cornelius KM, Brash JL. Interactions of Apolipoproteins AI, AII, B and HDL, LDL, VLDL with Polyurethane and Polyurethane-PEO Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:12087-12095. [PMID: 26513526 DOI: 10.1021/acs.langmuir.5b02688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The lipoproteins (HDL, LDL, VLDL) are important components of blood present in high concentration. Surprisingly, their role in blood-biomaterial interactions has been largely ignored. In previous work apolipoprotein AI (the main protein component of HDL) was identified as a major constituent of protein layers adsorbed from plasma to biomaterials having a wide range of surface properties, and quantitative data on the adsorption of apo AI to a biomedical grade polyurethane were reported. In the present communication quantitative data on the adsorption of apo AI, apo AII and apoB (the latter being a constituent of LDL and VLDL), as well as the lipoprotein particles themselves (HDL, LDL, VLDL), to a biomedical segmented polyurethane (PU) with and without an additive containing poly(ethylene oxide) (material referred to as PEO) are reported. Using radiolabeled apo AI, apo AII, and apoB, adsorption levels on PU from buffer at a protein concentration of 50 μg/mL were found to be 0.34, 0.40, and 0.14 μg/cm(2) (12, 23, and 0.25 nmol/cm(2)) respectively. Adsorption to the PEO surface was <0.02 μg/cm(2) for all three apolipoproteins demonstrating the strong protein resistance of this material. In contrast to the apolipoproteins, significant amounts of the lipoproteins were found to adsorb to the PEO as well as to the PU surface. X-ray photoelectron spectra, following exposure of the surfaces to the lipoproteins, showed a strong phosphorus signal, confirming that adsorption had occurred. It therefore appears that a PEO-containing surface that is resistant to apolipoproteins may be less resistant to the corresponding lipoproteins.
Collapse
Affiliation(s)
- R M Cornelius
- Department of Chemical Engineering ‡Department of Pathology & Molecular Medicine §Department of Biology ∥School of Biomedical Engineering McMaster University Hamilton, Ontario Canada
| | - J Macri
- Department of Chemical Engineering ‡Department of Pathology & Molecular Medicine §Department of Biology ∥School of Biomedical Engineering McMaster University Hamilton, Ontario Canada
| | - K M Cornelius
- Department of Chemical Engineering ‡Department of Pathology & Molecular Medicine §Department of Biology ∥School of Biomedical Engineering McMaster University Hamilton, Ontario Canada
| | - J L Brash
- Department of Chemical Engineering ‡Department of Pathology & Molecular Medicine §Department of Biology ∥School of Biomedical Engineering McMaster University Hamilton, Ontario Canada
| |
Collapse
|
28
|
Affiliation(s)
- Iwona Siuda
- Department of Biological
Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| | - D. Peter Tieleman
- Department of Biological
Sciences and Centre for Molecular Simulation, University of Calgary, 2500 University Drive North West, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
29
|
Pagano S, Gaertner H, Cerini F, Mannic T, Satta N, Teixeira PC, Cutler P, Mach F, Vuilleumier N, Hartley O. The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease? PLoS One 2015; 10:e0132780. [PMID: 26177543 PMCID: PMC4503694 DOI: 10.1371/journal.pone.0132780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death worldwide and new approaches for both diagnosis and treatment are required. Autoantibodies directed against apolipoprotein A-I (ApoA-I) represent promising biomarkers for use in risk stratification of CVD and may also play a direct role in pathogenesis. Methodology To characterize the anti-ApoA-I autoantibody response, we measured the immunoreactivity to engineered peptides corresponding to the different alpha-helical regions of ApoA-I, using plasma from acute chest pain cohort patients known to be positive for anti-ApoA-I autoantibodies. Principal Findings Our results indicate that the anti-ApoA-I autoantibody response is strongly biased towards the C-terminal alpha-helix of the protein, with an optimized mimetic peptide corresponding to this part of the protein recapitulating the diagnostic accuracy for an acute ischemic coronary etiology (non-ST segment elevation myocardial infarction and unstable angina) obtainable using intact endogenous ApoA-I in immunoassay. Furthermore, the optimized mimetic peptide strongly inhibits the pathology-associated capacity of anti-ApoA-I antibodies to elicit proinflammatory cytokine release from cultured human macrophages. Conclusions In addition to providing a rationale for the development of new approaches for the diagnosis and therapy of CVD, our observations may contribute to the elucidation of how anti-ApoA-I autoantibodies are elicited in individuals without autoimmune disease.
Collapse
Affiliation(s)
- Sabrina Pagano
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Hubert Gaertner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tiphaine Mannic
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Satta
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Priscila Camillo Teixeira
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - Paul Cutler
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- * E-mail: (OH); (NV)
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail: (OH); (NV)
| |
Collapse
|
30
|
Mizrachi D, Chen Y, Liu J, Peng HM, Ke A, Pollack L, Turner RJ, Auchus RJ, DeLisa MP. Making water-soluble integral membrane proteins in vivo using an amphipathic protein fusion strategy. Nat Commun 2015; 6:6826. [PMID: 25851941 PMCID: PMC4403311 DOI: 10.1038/ncomms7826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Integral membrane proteins (IMPs) play crucial roles in all cells and represent attractive pharmacological targets. However, functional and structural studies of IMPs are hindered by their hydrophobic nature and the fact that they are generally unstable following extraction from their native membrane environment using detergents. Here we devise a general strategy for in vivo solubilization of IMPs in structurally relevant conformations without the need for detergents or mutations to the IMP itself, as an alternative to extraction and in vitro solubilization. This technique, called SIMPLEx (solubilization of IMPs with high levels of expression), allows the direct expression of soluble products in living cells by simply fusing an IMP target with truncated apolipoprotein A-I, which serves as an amphipathic proteic ‘shield' that sequesters the IMP from water and promotes its solubilization. The study of integral membrane proteins (IMPs) is hampered by yields and the difficulty in retaining activity once they have been solubilized. Here Mizrachi et al. develop a strategy for in vivo expression and solubilization of IMPs in functionally relevant states by fusing them to truncated apolipoprotein A-I.
Collapse
Affiliation(s)
- Dario Mizrachi
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yujie Chen
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Jiayan Liu
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hwei-Ming Peng
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ailong Ke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Richard J Auchus
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Matthew P DeLisa
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
31
|
Castelletto V, Hamley IW, Reza M, Ruokolainen J. Interactions between lipid-free apolipoprotein-AI and a lipopeptide incorporating the RGDS cell adhesion motif. NANOSCALE 2015; 7:171-178. [PMID: 25406726 DOI: 10.1039/c4nr05072j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interaction of a designed bioactive lipopeptide C16-GGGRGDS, comprising a hexadecyl lipid chain attached to a functional heptapeptide, with the lipid-free apoliprotein, Apo-AI, is examined. This apolipoprotein is a major component of high density lipoprotein and it is involved in lipid metabolism and may serve as a biomarker for cardiovascular disease and Alzheimers' disease. We find via isothermal titration calorimetry that binding between the lipopeptide and Apo-AI occurs up to a saturation condition, just above equimolar for a 10.7 μM concentration of Apo-AI. A similar value is obtained from circular dichroism spectroscopy, which probes the reduction in α-helical secondary structure of Apo-AI upon addition of C16-GGGRGDS. Electron microscopy images show a persistence of fibrillar structures due to self-assembly of C16-GGGRGDS in mixtures with Apo-AI above the saturation binding condition. A small fraction of spheroidal or possibly "nanodisc" structures was observed. Small-angle X-ray scattering (SAXS) data for Apo-AI can be fitted using a published crystal structure of the Apo-AI dimer. The SAXS data for the lipopeptide/Apo-AI mixtures above the saturation binding conditions can be fitted to the contribution from fibrillar structures coexisting with flat discs corresponding to Apo-AI/lipopeptide aggregates.
Collapse
Affiliation(s)
- V Castelletto
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK.
| | | | | | | |
Collapse
|
32
|
Najt CP, Lwande JS, McIntosh AL, Senthivinayagam S, Gupta S, Kuhn LA, Atshaves BP. Structural and functional assessment of perilipin 2 lipid binding domain(s). Biochemistry 2014; 53:7051-66. [PMID: 25338003 PMCID: PMC4238800 DOI: 10.1021/bi500918m] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/22/2014] [Indexed: 12/18/2022]
Abstract
Although perilipin 2 (Plin2) has been shown to bind lipids with high affinity, the Plin2 lipid binding site has yet to be defined. This is of interest since Plin2's affinity for lipids has been suggested to be important for lipid droplet biogenesis and intracellular triacylglycerol accumulation. To define these regions, mouse Plin2 and several deletion mutants expressed as recombinant proteins and in mammalian cells were assessed by molecular modeling, fluorescence binding, circular dichroic, and fluorescence resonance energy transfer techniques to identify the structural and functional requirements for lipid binding. Major findings of this study indicate (1) the N-terminal PAT domain does not bind cholesterol or stearic acid; (2) Plin2 residues 119-251, containing helix α4, the α-β domain, and part of helix α6 form a Plin3-like cleft found to be important for highest affinity lipid binding; (3) both stearic acid and cholesterol interact favorably with the Plin2 cleft formed by conserved residues in helix α6 and adjacent strands, which is common to all the active lipid-binding constructs; and (4) discrete targeting of the Plin2 mutants to lipid droplets supports Plin2 containing two independent, nonoverlapping lipid droplet targeting domains in its central and C-terminal sequences. Thus, the current work reveals specific domains responsible for Plin2-lipid interactions that involves the protein's lipid binding and targeting functions.
Collapse
Affiliation(s)
- Charles P. Najt
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Joel S. Lwande
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Avery L. McIntosh
- Physiology and Pharmacology, Texas A&M
University, TVMC College Station, Texas 77843-4466, United States
| | - Subramanian Senthivinayagam
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Shipra Gupta
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Leslie A. Kuhn
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Barbara P. Atshaves
- Department
of Biochemistry and Molecular Biology and Department of Computer Science
and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
33
|
Abstract
Cardiovascular disease (CVD) is the leading cause of death globally. For close to four decades, we have known that high density lipoprotein (HDL) levels are inversely correlated with the risk of CVD. HDL is a complex particle that consists of proteins, phospholipids, and cholesterol and has the ability to carry micro-RNAs. HDL is constantly undergoing remodelling throughout its life-span and carries out many functions. This review summarizes many of the different aspects of HDL from its assembly, the receptors it interacts with, along with the functions it performs and how it can be altered in disease. While HDL is a key cholesterol efflux particle, this review highlights the many other important functions of HDL in the innate immune system and details the potential therapeutic uses of HDL outside of CVD.
Collapse
|
34
|
Leman LJ, Maryanoff BE, Ghadiri MR. Molecules that mimic apolipoprotein A-I: potential agents for treating atherosclerosis. J Med Chem 2013; 57:2169-96. [PMID: 24168751 DOI: 10.1021/jm4005847] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.
Collapse
Affiliation(s)
- Luke J Leman
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | | |
Collapse
|
35
|
ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity. J Biomed Res 2013; 25:266-73. [PMID: 23554700 PMCID: PMC3597070 DOI: 10.1016/s1674-8301(11)60036-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/18/2011] [Accepted: 05/18/2011] [Indexed: 01/09/2023] Open
Abstract
We investigated the relationship of apoB/apoA1 ratio and coronary heart disease (CHD) in persons who were overweight or obese. The subjects were divided by the body mass indexes (BMI) into the normal weight group (n=397, BMI<24 kg/m(2)) and the overweight group (n=400, BMI>24 kg/m(2)). Our results showed that the over-weight group had higher blood pressure [(130.15±19.01) mmHg vs (123.66±18.70) mmHg] and higher levels of blood sugar [(7.09±2.89) mmol/L vs (6.21±2.59) mmol/L], triglyceride [(1.93±1.19) mmol/L vs (1.44±0.85) mmol/L], total cholesterol [(4.26±1.06) mmol/L vs (4.09±0.99) mmol/L], low-density lipoprotein cholesterol (LDL-C) [(2.56±0.75) mmol/L vs (2.39±0.72) mmol/L], and apoB [(0.83±0.27) mg/L vs (0.78±0.23) mg/L], and a higher apoB/apoA1 ratio (0.83±0.27 vs 0.75±0.25) and lower levels high-density lipoprotein cholesterol [(1.10±0.26) mmol/L vs (1.21±0.31) mmol/L] and apoA1 [(1.04±0.20) mg/L vs (1.08±0.22) mg/L] than those of the normal weight group (all P < 0.05). The prevalence of CHD in the over-weight group in the lowest LDL quartile was almost twice greater than that of the highest apoB/apoA1 quartile, compared with the subjects in the lowest apoB/apoA1 quartile. The higher apoB/apoA1 quartile was in agreement with the higher prevalence of CHD. In the overweight and obesity group, the area under ROC curve (AUC) was the highest for apoB/apoA1 (0.655). The cut-off point of apoB/apoA1 for optimal sensitivity and specificity was at 0.80, with a sensitivity of 57.19% and a specificity of 71.72%. In conclusion, apoB and apoA1 were simple clinical indicators, and the apoB/apoA1 ratio was closely related with CHD in overweight and obese patients. The apoB/apoA1 ratio may provide some useful information in the differential diagnosis.
Collapse
|
36
|
Comparative proteomic analysis of peritoneal dialysate from chronic glomerulonephritis patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:863860. [PMID: 23762862 PMCID: PMC3666394 DOI: 10.1155/2013/863860] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/14/2013] [Indexed: 11/17/2022]
Abstract
Peritoneal dialysis (PD) frequently contributes to peritoneal damage which cannot be easily identified without invasive techniques, implying the urgent need for biomarkers and revealing mechanisms. Chronic glomerulonephritis (CGN) is one of the leading causes of receiving dialysis treatment. Here, we attempted to analyze the peritoneal dialysate collected from CGN patients when they receive continuous ambulatory peritoneal dialysis (CAPD) treatment for the first time and after a year to reveal the protein changes that resulted from PD. Proteins were displayed by two-dimensional gel electrophoresis (2DE). Altered gel spots were digested followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for protein identification. Eight proteins were found to have differential expression levels between two groups. Their differential expressions were validated by Western blots in other sets of peritoneal dialysates. Proteins identified with higher levels in the first-time dialysate suggested their dominant appearance in CGN patients, while those that showed higher levels in peritoneal dialysate collected after one year may result from initial peritoneal inflammation or changes in the permeability of the peritoneum to middle-sized proteins. All the identified proteins may provide a perceptiveness of peritoneal changes caused by PD and may function as potential biomarkers or drug targets.
Collapse
|
37
|
Yuan Y, Wang W, Wang B, Zhu H, Zhang B, Feng M. Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier. J Drug Target 2013; 21:367-74. [PMID: 23600747 DOI: 10.3109/1061186x.2012.757769] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
High-density lipoprotein (HDL) particles can deliver cholesterol from peripheral tissues to the liver through apolipoprotein A1 (Apo A1), which specifically binds to the scavenger receptor class B type 1 (SR-B1) receptor on the surface of hepatocytes. Therefore, ApoA1 can be potentially used to target drugs to the liver. In this study, we successfully loaded doxorubicin hydrochloride (Dox or Dox-HCl), which is a hydrophilic drug used in a wide variety of clinical applications, into the core of reconstituted HDL (rHDL prepared by apoAI and egg phospholipids) to form a doxorubicin-HDL complex (rHDL-Dox). The MTT assays showed that rHDL-Dox particles also had higher cytotoxicity against several cells lines compared to free drug or Dox encapsulated into liposomes. A cellular uptake assay demonstrated that rHDL-Dox had higher absorption in SR-BI receptor positive liver cells. Importantly, in vivo experiments showed that rHDL-Dox can reduce tumor growth more effectively than liposomes. In addition, an in vitro hemolysis assay showed that rHDL-Dox caused only limited hemolysis in the case of high doses. Taken together, our findings indicate that rHDL is a safe and effective drug delivery system for targeting liver.
Collapse
Affiliation(s)
- Yuan Yuan
- School of Pharmacy, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
38
|
Zhang T, Xie N, He W, Liu R, Lei Y, Chen Y, Tang H, Liu B, Huang C, Wei Y. An integrated proteomics and bioinformatics analyses of hepatitis B virus X interacting proteins and identification of a novel interactor apoA-I. J Proteomics 2013; 84:92-105. [PMID: 23568022 DOI: 10.1016/j.jprot.2013.03.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 03/01/2013] [Accepted: 03/12/2013] [Indexed: 02/05/2023]
Abstract
UNLABELLED HBx is well-known to be a multifunctional protein encoded by HBV and its biological functions are mainly dependent on pleiotropic protein-protein interactions (PPIs); however, the global mapping of HBx-interactome has not been established so far. Thus, in this study, we have identified 127 HBx-interacting proteins by a profound GST pull-down assay coupled with mass spectrometry, and constructed an HBx-interactome network and core apoA-I pathways with a series of bioinformatics approaches. One of the identified HBx-binding partners is apolipoprotein A-I (apoA-I), which has a specific role in lipid and cholesterol metabolism. The HBx-apoA-I protein interaction was confirmed by both GST pull-down and co-immunoprecipitation. The ectopic overexpression of apoA-I can lead to a significant inhibition on HBV secretion concomitant with the reduction of cellular cholesterol level. In addition, HBV can modulate the function of apoA-I through HBx which might interact with the 44-189 residues of apoA-I and result in dysfunction of apoA-I such as decreased self-association ability, increased carbonyl level and impaired lipid-binding ability. Our results demonstrate an integrated physical association of HBx and host proteins, especially a novel interactor apoA-I that may influence the HBV secretion, which would shed new light on exploring the complicated mechanisms of HBV manipulation on host cellular functions. BIOLOGICAL SIGNIFICANCE HBx is well-known to be a multifunctional protein encoded by HBV and its biological functions are mainly dependent on pleiotropic protein-protein interactions. Although a series of HBx-interacting proteins have been identified, a global characterization of HBx interactome has not been reported. In this study, we have identified a total of 127 HBx-interacting proteins by a profound GST pull-down assay coupled with mass spectrometry, and constructed an HBx-interactome network with a series of bioinformatics approaches. Our results demonstrate an integrated physical association of HBx and host proteins which may help us explore the complicated mechanisms of HBV manipulation on host cellular functions. In addition, we validated one of the identified HBx-binding partners, apolipoprotein A-I (apoA-I), which played a significant inhibitory effect on HBV secretion, indicating a crucial role of the HBx-apoA-I axis in HBV life cycle.
Collapse
Affiliation(s)
- Tao Zhang
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang S, Gulshan K, Brubaker G, Hazen SL, Smith JD. ABCA1 mediates unfolding of apolipoprotein AI N terminus on the cell surface before lipidation and release of nascent high-density lipoprotein. Arterioscler Thromb Vasc Biol 2013; 33:1197-205. [PMID: 23559627 DOI: 10.1161/atvbaha.112.301195] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To gain insight into the mechanism by which ABCA1 generates nascent high-density lipoprotein. APPROACH AND RESULTS HEK293 cells were stably transfected with ABCA1 vectors, encoding wild type, and the W590S and C1477R Tangier disease mutation isoforms, along with the K939M ATP-binding domain mutant. Apolipoprotein AI (ApoAI) binding, plasma membrane remodeling, cholesterol efflux, apoAI cell surface unfolding, and apoAI cell surface lipidation were determined, the latter 2 measured using novel fluorescent apoAI indicators. The W590S isoform had decreased plasma membrane remodeling and lipid efflux activities, and the C1477R isoform had decreased apoAI binding, and lipid efflux activities, whereas the K939M isoform did not bind apoAI, remodel the membrane, or efflux cholesterol. However, all ABCA1 isoforms led to apoAI unfolding at the cell surface, which was higher for the isoforms that increased apoAI binding. ApoAI lipidation was not detected on ABCA1-expressing cells, only in the conditioned medium, consistent with rapid release of nascent high-density lipoprotein from ABCA1-expressing cells. CONCLUSIONS We identified a third activity of ABCA1, the ability to unfold the N terminus of apoAI on the cell surface. Our results support a model in which unfolded apoAI on the cell surface is an intermediate in its lipidation and that, once apoAI is lipidated, it forms an unstable structure that is rapidly released from the cells to generate high-density lipoprotein.
Collapse
Affiliation(s)
- Shuhui Wang
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
40
|
Mendoza-Barberá E, Julve J, Nilsson SK, Lookene A, Martín-Campos JM, Roig R, Lechuga-Sancho AM, Sloan JH, Fuentes-Prior P, Blanco-Vaca F. Structural and functional analysis of APOA5 mutations identified in patients with severe hypertriglyceridemia. J Lipid Res 2013; 54:649-661. [PMID: 23307945 DOI: 10.1194/jlr.m031195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the diagnosis of three unrelated patients with severe hypertriglyceridemia, three APOA5 mutations [p.(Ser232_Leu235)del, p.Leu253Pro, and p.Asp332ValfsX4] were found without evidence of concomitant LPL, APOC2, or GPIHBP1 mutations. The molecular mechanisms by which APOA5 mutations result in severe hypertriglyceridemia remain poorly understood, and the functional impairment/s induced by these specific mutations was not obvious. Therefore, we performed a thorough structural and functional analysis that included follow-up of patients and their closest relatives, measurement of apoA-V serum concentrations, and sequencing of the APOA5 gene in 200 nonhyperlipidemic controls. Further, we cloned, overexpressed, and purified both wild-type and mutant apoA-V variants and characterized their capacity to activate LPL. The interactions of recombinant wild-type and mutated apoA-V variants with liposomes of different composition, heparin, LRP1, sortilin, and SorLA/LR11 were also analyzed. Finally, to explore the possible structural consequences of these mutations, we developed a three-dimensional model of full-length, lipid-free human apoA-V. A complex, wide array of impairments was found in each of the three mutants, suggesting that the specific residues affected are critical structural determinants for apoA-V function in lipoprotein metabolism and, therefore, that these APOA5 mutations are a direct cause of hypertriglyceridemia.
Collapse
Affiliation(s)
| | - Josep Julve
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, 08017 Barcelona, Spain
| | - Stefan K Nilsson
- Department of Medical Biosciences/Physiological Chemistry, Umeå University, SE90187, Sweden
| | - Aivar Lookene
- Department of Chemistry, Tallinn Technical University, Tallinn 12618, Estonia
| | | | - Rosa Roig
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain
| | | | | | | | - Francisco Blanco-Vaca
- Institute for Biomedical Research (IIB) Sant Pau, 08025 Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, 08017 Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08025 Barcelona, Spain
| |
Collapse
|
41
|
Abstract
Engineered nanoparticles (NPs) have found widespread application in technology and medicine. Whenever they come in contact with a living organism, interactions take place between the surfaces of the NPs and biomatter, in particular proteins, which are currently not well understood. We have introduced fluorescence correlation spectroscopy (FCS) and dual-focus FCS (2fFCS) to measure protein adsorption onto small NPs (~10-30 nm diameter). FCS allows us to measure, with subnanometer precision and as a function of protein concentration, the increase in hydrodynamic radius of the NPs due to protein adsorption. Investigations of the adsorption of a number of important serum proteins onto negatively charged, carboxyl-functionalized NPs revealed a stepwise increase of the NP size due to protein binding, clearly indicating that a protein monolayer enshrouds the NP. Structure-based calculations of the protein surface potentials reveal positively charged patches through which the proteins interact electrostatically with the negatively charged NP surfaces; the observed protein layer thickness is correlated with the molecular dimensions of the proteins binding in suitable orientations.
Collapse
Affiliation(s)
- G Ulrich Nienhaus
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| | | | | |
Collapse
|
42
|
Phillips MC. New insights into the determination of HDL structure by apolipoproteins: Thematic review series: high density lipoprotein structure, function, and metabolism. J Lipid Res 2012; 54:2034-2048. [PMID: 23230082 DOI: 10.1194/jlr.r034025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein (apo)A-I is the principal protein component of HDL, and because of its conformational adaptability, it can stabilize all HDL subclasses. The amphipathic α-helix is the structural motif that enables apoA-I to achieve this functionality. In the lipid-free state, the helical segments unfold and refold in seconds and are located in the N-terminal two thirds of the molecule where they are loosely packed as a dynamic, four-helix bundle. The C-terminal third of the protein forms an intrinsically disordered domain that mediates initial binding to phospholipid surfaces, which occurs with coupled α-helix formation. The lipid affinity of apoA-I confers detergent-like properties; it can solubilize vesicular phospholipids to create discoidal HDL particles with diameters of approximately 10 nm. Such particles contain a segment of phospholipid bilayer and are stabilized by two apoA-I molecules that are arranged in an anti-parallel, double-belt conformation around the edge of the disc, shielding the hydrophobic phospholipid acyl chains from exposure to water. The apoA-I molecules are in a highly dynamic state, and they stabilize discoidal particles of different sizes by certain segments forming loops that detach reversibly from the particle surface. The flexible apoA-I molecule adapts to the surface of spherical HDL particles by bending and forming a stabilizing trefoil scaffold structure. The above characteristics of apoA-I enable it to partner with ABCA1 in mediating efflux of cellular phospholipid and cholesterol and formation of a heterogeneous population of nascent HDL particles. Novel insights into the structure-function relationships of apoA-I should help reveal mechanisms by which HDL subclass distribution can be manipulated.
Collapse
Affiliation(s)
- Michael C Phillips
- Lipid Research Group, Division of Gastroenterology, Hepatology and Nutrition, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
43
|
Identification of sites in apolipoprotein A-I susceptible to chymase and carboxypeptidase A digestion. Biosci Rep 2012; 33:49-56. [PMID: 23072735 PMCID: PMC3522476 DOI: 10.1042/bsr20120094] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MCs (mast cells) adversely affect atherosclerosis by promoting the progression of lesions and plaque destabilization. MC chymase cleaves apoA-I (apolipoprotein A-I), the main protein component of HDL (high-density lipoprotein). We previously showed that C-terminally truncated apoA-I (cleaved at the carboxyl side of Phe225) is present in normal human serum using a newly developed specific mAb (monoclonal antibody). In the present study, we aimed to identify chymase-induced cleavage sites in both lipid-free and lipid-bound (HDL3) forms of apoA-I. Lipid-free apoA-I was preferentially digested by chymase, at the C-terminus rather than the N-terminus. Phe229 and Tyr192 residues were the main cleavage sites. Interestingly, the Phe225 residue was a minor cleavage site. In contrast, the same concentration of chymase failed to digest apoA-I in HDL3; however, a 100-fold higher concentration of chymase modestly digested apoA-I in HDL3 at only the N-terminus, especially at Phe33. CPA (carboxypeptidase A) is another MC protease, co-localized with chymase in severe atherosclerotic lesions. CPA, in vitro, further cleaved C-terminal Phe225 and Phe229 residues newly exposed by chymase, but did not cleave Tyr192. These results indicate that several forms of C-terminally and N-terminally truncated apoA-I could exist in the circulation. They may be useful as new biomarkers to assess the risk of CVD (cardiovascular disease).
Collapse
|
44
|
Abstract
SIGNIFICANCE The understanding of physiological and pathological processes involving protein oxidation, particularly under conditions of aging and oxidative stress, can be aided by proteomic identification of proteins that accumulate oxidative post-translational modifications only if these detected modifications are connected to functional consequences. The modification of tyrosine (Tyr) residues can elicit significant changes in protein structure and function, which, in some cases, may contribute to biological aging and age-related pathologies, such as atherosclerosis, neurodegeneration, and cataracts. RECENT ADVANCES Studies characterizing proteins in which Tyr has been modified to 3-nitrotyrosine, 3,4-dihydroxyphenylalanine, 3,3'-dityrosine and other cross-links, or 3-chlorotyrosine are reviewed, with an emphasis on structural and functional consequences. CRITICAL ISSUES Distinguishing between inconsequential modifications and functionally significant ones requires careful biochemical and biophysical analysis of target proteins, as well as innovative methods for isolating the effects of the multiple modifications that often occur under oxidizing conditions. FUTURE DIRECTIONS The labor-intensive task of isolating and characterizing individual modified proteins must continue, especially given the expanding list of known modifications. Emerging approaches, such as genetic and metabolic incorporation of unnatural amino acids, hold promise for additional focused studies of this kind.
Collapse
Affiliation(s)
- Maria B Feeney
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS 66047, USA
| | | |
Collapse
|
45
|
Zhang L, Tong H, Garewal M, Ren G. Optimized negative-staining electron microscopy for lipoprotein studies. Biochim Biophys Acta Gen Subj 2012; 1830:2150-9. [PMID: 23032862 DOI: 10.1016/j.bbagen.2012.09.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND Negative-staining (NS), a rapid, simple and conventional technique of electron microscopy (EM), has been commonly used to initially study the morphology and structure of proteins for half a century. Certain NS protocols however can cause artifacts, especially for structurally flexible or lipid-related proteins, such as lipoproteins. Lipoproteins were often observed in the form of rouleau as lipoprotein particles appeared to be stacked together by conventional NS protocols. The flexible components of lipoproteins, i.e. lipids and amphipathic apolipoproteins, resulted in the lipoprotein structure being sensitive to the NS sample preparation parameters, such as operational procedures, salt concentrations, and the staining reagents. SCOPE OF REVIEW The most popular NS protocols that have been used to examine lipoprotein morphology and structure were reviewed. MAJOR CONCLUSIONS The comparisons show that an optimized NS (OpNS) protocol can eliminate the rouleau artifacts of lipoproteins, and that the lipoproteins are similar in size and shape as statistically measured from two EM methods, OpNS and cryo-electron microscopy (cryo-EM). OpNS is a high-throughput, high-contrast and high-resolution (near 1nm, but rarely better than 1nm) method which has been used to discover the mechanics of a small protein, 53kDa cholesterol ester transfer protein (CETP), and the structure of an individual particle of a single protein by individual-particle electron tomography (IPET), i.e. a 14Å-resolution IgG antibody three-dimensional map. GENERAL SIGNIFICANCE It is suggested that OpNS can be used as a general protocol to study the structure of proteins, especially highly dynamic proteins with equilibrium-fluctuating structures.
Collapse
Affiliation(s)
- Lei Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | | | | |
Collapse
|
46
|
Yur'eva EA, Sukhorukov VS, Murashov AN, Pimenov MS, Ilyushina IA, Dreval AA. Biochemical indicators of atherogenic and protective activity of xydiphone in experimental animals. Bull Exp Biol Med 2012; 153:459-62. [PMID: 22977844 DOI: 10.1007/s10517-012-1740-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atherosclerotic plaque formation and vascular calcinosis were modeled in a subchronic experiment. Reduced HDL and elevated LDL concentrations, increased atherogenic index and albumin toxicity index, and high blood levels of triglycerides and uric acid were early markers of pathology. Xydiphone in combination with vitamin D effectively reduced these changes and the degree of vascular calcinosis.
Collapse
Affiliation(s)
- E A Yur'eva
- Moscow Research Institute of Pediatrics and Pediatric Surgery, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
47
|
Gaillard G, Trezzi JP, Betsou F. Validation of free flow electrophoresis as a novel plasma and serum processing and fractionation method in biobanking. Biopreserv Biobank 2012; 10:349-56. [PMID: 24849883 DOI: 10.1089/bio.2012.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free flow electrophoresis (FFE) is a fractionation method, based on isoelectric focusing (IEF). We validate the reproducibility of the method and show that it can be applied by biobanks in order to fractionate fluid biospecimens efficiently and reproducibly and to facilitate downstream proteomic applications. We also propose a simple method allowing researchers to assess the reproducibility of each FFE run.
Collapse
|
48
|
Niedziela-Majka A, Lad L, Chisholm JW, Lagpacan L, Schwartz K, Hung M, Jin D, Fung W, Brendza KM, Liu X, Pagratis N, Sakowicz R. Lipid-sensing high-throughput ApoA-I assays. ACTA ACUST UNITED AC 2012; 17:1050-61. [PMID: 22811478 DOI: 10.1177/1087057112451923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Apolipoprotein A-I (ApoA-I), a primary protein component of high-density lipoprotein (HDL), plays an important role in cholesterol metabolism mediating the formation of HDL and the efflux of cellular cholesterol from macrophage foam cells in arterial walls. Lipidation of ApoA-I is mediated by adenosine triphosphate (ATP) binding cassette A1 (ABCA1). Insufficient ABCA1 activity may lead to increased risk of atherosclerosis due to reduced HDL formation and cholesterol efflux. The standard radioactive assay for measuring cholesterol transport to ApoA-I has low throughput and poor dynamic range, and it fails to measure phospholipid transfer. We describe the development of two sensitive, nonradioactive high-throughput assays that report on the lipidation of ApoA-I: a homogeneous assay based on time-resolved fluorescence resonance energy transfer (TR-FRET) and a discontinuous assay that uses the label-free Epic platform. The TR-FRET assay employs HiLyte Fluor 647-labeled ApoA-I with N-terminal biotin bound to streptavidin-terbium. When fluorescent ApoA-I was incorporated into HDL, TR-FRET decreased proportionally to the increase in the ratio of lipids to ApoA-I, demonstrating that the assay was sensitive to the amount of lipid bound to ApoA-I. In the Epic assay, biotinylated ApoA-I was captured on a streptavidin-coated biosensor. Measured resonant wavelength shift was proportional to the amount of lipids associated with ApoA-I, indicating that the assay senses ApoA-I lipidation.
Collapse
|
49
|
Segrest JP, Jones MK, Catte A, Thirumuruganandham SP. Validation of previous computer models and MD simulations of discoidal HDL by a recent crystal structure of apoA-I. J Lipid Res 2012; 53:1851-63. [PMID: 22773698 DOI: 10.1194/jlr.m026229] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HDL is a population of apoA-I-containing particles inversely correlated with heart disease. Because HDL is a soft form of matter deformable by thermal fluctuations, structure determination has been difficult. Here, we compare the recently published crystal structure of lipid-free (Δ185-243)apoA-I with apoA-I structure from models and molecular dynamics (MD) simulations of discoidal HDL. These analyses validate four of our previous structural findings for apoA-I: i) a baseline double belt diameter of 105 Å ii) central α helixes with an 11/3 pitch; iii) a "presentation tunnel" gap between pairwise helix 5 repeats hypothesized to move acyl chains and unesterified cholesterol from the lipid bilayer to the active sites of LCAT; and iv) interchain salt bridges hypothesized to stabilize the LL5/5 chain registry. These analyses are also consistent with our finding that multiple salt bridge-forming residues in the N-terminus of apoA-I render that conserved domain "sticky." Additionally, our crystal MD comparisons led to two new hypotheses: i) the interchain leucine-zippers previously reported between the pair-wise helix 5 repeats drive lipid-free apoA-I registration; ii) lipidation induces rotations of helix 5 to allow formation of interchain salt bridges, creating the LCAT presentation tunnel and "zip-locking" apoA-I into its full LL5/5 registration.
Collapse
Affiliation(s)
- Jere P Segrest
- Department of Medicine, Atherosclerosis Research Unit, and Center for Computational and Structural Dynamics, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | | | |
Collapse
|
50
|
|