1
|
Copley RR, Buttin J, Arguel MJ, Williaume G, Lebrigand K, Barbry P, Hudson C, Yasuo H. Early transcriptional similarities between two distinct neural lineages during ascidian embryogenesis. Dev Biol 2024; 514:1-11. [PMID: 38878991 DOI: 10.1016/j.ydbio.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
In chordates, the central nervous system arises from precursors that have distinct developmental and transcriptional trajectories. Anterior nervous systems are ontogenically associated with ectodermal lineages while posterior nervous systems are associated with mesoderm. Taking advantage of the well-documented cell lineage of ascidian embryos, we asked to what extent the transcriptional states of the different neural lineages become similar during the course of progressive lineage restriction. We performed single-cell RNA sequencing (scRNA-seq) analyses on hand-dissected neural precursor cells of the two distinct lineages, together with those of their sister cell lineages, with a high temporal resolution covering five successive cell cycles from the 16-cell to neural plate stages. A transcription factor binding site enrichment analysis of neural specific genes at the neural plate stage revealed limited evidence for shared transcriptional control between the two neural lineages, consistent with their different ontogenies. Nevertheless, PCA analysis and hierarchical clustering showed that, by neural plate stages, the two neural lineages cluster together. Consistent with this, we identified a set of genes enriched in both neural lineages at the neural plate stage, including miR-124, Celf3.a, Zic.r-b, and Ets1/2. Altogether, the current study has revealed genome-wide transcriptional dynamics of neural progenitor cells of two distinct developmental origins. Our scRNA-seq dataset is unique and provides a valuable resource for future analyses, enabling a precise temporal resolution of cell types not previously described from dissociated embryos.
Collapse
Affiliation(s)
- Richard R Copley
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France.
| | - Julia Buttin
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Marie-Jeanne Arguel
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Géraldine Williaume
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Kevin Lebrigand
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Pascal Barbry
- Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, CNRS UMR 7275, 06560, Sophia Antipolis, France
| | - Clare Hudson
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS UMR7009, 06230, Villefranche-sur-mer, France.
| |
Collapse
|
2
|
Mandlbauer A, Sun Q, Popitsch N, Schwickert T, Spanova M, Wang J, Ameres SL, Busslinger M, Cochella L. Mime-seq 2.0: a method to sequence microRNAs from specific mouse cell types. EMBO J 2024; 43:2506-2525. [PMID: 38689024 PMCID: PMC11183118 DOI: 10.1038/s44318-024-00102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Many microRNAs (miRNAs) are expressed with high spatiotemporal specificity during organismal development, with some being limited to rare cell types, often embedded in complex tissues. Yet, most miRNA profiling efforts remain at the tissue and organ levels. To overcome challenges in accessing the microRNomes from tissue-embedded cells, we had previously developed mime-seq (miRNome by methylation-dependent sequencing), a technique in which cell-specific miRNA methylation in C. elegans and Drosophila enabled chemo-selective sequencing without the need for cell sorting or biochemical purification. Here, we present mime-seq 2.0 for profiling miRNAs from specific mouse cell types. We engineered a chimeric RNA methyltransferase that is tethered to Argonaute protein and efficiently methylates miRNAs at their 3'-terminal 2'-OH in mouse and human cell lines. We also generated a transgenic mouse for conditional expression of this methyltransferase, which can be used to direct methylation of miRNAs in a cell type of choice. We validated the use of this mouse model by profiling miRNAs from B cells and bone marrow plasma cells.
Collapse
Affiliation(s)
- Ariane Mandlbauer
- School of Medicine, John Hopkins University, Baltimore, MD, USA
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Qiong Sun
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Niko Popitsch
- Max Perutz Labs (MPL), Vienna BioCenter (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Tanja Schwickert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Miroslava Spanova
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Stefan L Ameres
- Max Perutz Labs (MPL), Vienna BioCenter (VBC), Vienna, Austria.
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria.
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| | - Luisa Cochella
- School of Medicine, John Hopkins University, Baltimore, MD, USA.
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.
| |
Collapse
|
3
|
Tian S, Asano Y, Banerjee TD, Wee JLQ, Lamb A, Wang Y, Murugesan SN, Ui-Tei K, Wittkopp PJ, Monteiro A. A micro-RNA is the effector gene of a classic evolutionary hotspot locus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579741. [PMID: 38659873 PMCID: PMC11042203 DOI: 10.1101/2024.02.09.579741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In Lepidoptera (butterflies and moths), the genomic region around the gene cortex is a 'hotspot' locus, repeatedly used to generate intraspecific melanic wing color polymorphisms across 100-million-years of evolution. However, the identity of the effector gene regulating melanic wing color within this locus remains unknown. Here, we show that none of the four candidate protein-coding genes within this locus, including cortex, serve as major effectors. Instead, a micro-RNA (miRNA), mir-193, serves as the major effector across three deeply diverged lineages of butterflies, and its function is conserved in Drosophila. In Lepidoptera, mir-193 is derived from a gigantic long non-coding RNA, ivory, and it functions by directly repressing multiple pigmentation genes. We show that a miRNA can drive repeated instances of adaptive evolution in animals.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Yoshimasa Asano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
| | - Tirtha Das Banerjee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Jocelyn Liang Qi Wee
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Abigail Lamb
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Yehan Wang
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Suriya Narayanan Murugesan
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo; Tokyo, 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo; Chiba, 277-8561, Japan
| | - Patricia J. Wittkopp
- Department of Molecular, Cellular, and Developmental Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
- Department of Ecology and Evolutionary Biology, College of Literature, Science, and the Arts, The University of Michigan; Ann Arbor, MI 48109-1085, USA
| | - Antónia Monteiro
- Department of Biological Sciences, Faculty of Science, National University of Singapore; Singapore, 117543, Singapore
| |
Collapse
|
4
|
Wang Y, Tang X, Lu J. Convergent and divergent evolution of microRNA-mediated regulation in metazoans. Biol Rev Camb Philos Soc 2024; 99:525-545. [PMID: 37987240 DOI: 10.1111/brv.13033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The evolution of microRNAs (miRNAs) has been studied extensively to understand their roles in gene regulation and evolutionary processes. This review focuses on how miRNA-mediated regulation has evolved in bilaterian animals, highlighting both convergent and divergent evolution. Since animals and plants display significant differences in miRNA biogenesis and target recognition, the 'independent origin' hypothesis proposes that miRNA pathways in these groups independently evolved from the RNA interference (RNAi) pathway, leading to modern miRNA repertoires through convergent evolution. However, recent evidence raises the alternative possibility that the miRNA pathway might have already existed in the last common ancestor of eukaryotes, and that the differences in miRNA pathway and miRNA repertoires among animal and plant lineages arise from lineage-specific innovations and losses of miRNA pathways, miRNA acquisition, and loss of miRNAs after eukaryotic divergence. The repertoire of miRNAs has considerably expanded during bilaterian evolution, primarily through de novo creation and duplication processes, generating new miRNAs. Although ancient functionally established miRNAs are rarely lost, many newly emerged miRNAs are transient and lineage specific, following a birth-death evolutionary pattern aligning with the 'out-of-the-testis' and 'transcriptional control' hypotheses. Our focus then shifts to the convergent molecular evolution of miRNAs. We summarize how miRNA clustering and seed mimicry contribute to this phenomenon, and we review how miRNAs from different sources converge to degrade maternal messenger RNAs (mRNAs) during animal development. Additionally, we describe how miRNAs evolve across species due to changes in sequence, seed shifting, arm switching, and spatiotemporal expression patterns, which can result in variations in target sites among orthologous miRNAs across distant strains or species. We also provide a summary of the current understanding regarding how the target sites of orthologous miRNAs can vary across strains or distantly related species. Although many paralogous miRNAs retain their seed or mature sequences after duplication, alterations can occur in the seed or mature sequences or expression patterns of paralogous miRNAs, leading to functional diversification. We discuss our current understanding of the functional divergence between duplicated miRNAs, and illustrate how the functional diversification of duplicated miRNAs impacts target site evolution. By investigating these topics, we aim to enhance our current understanding of the functions and evolutionary dynamics of miRNAs. Additionally, we shed light on the existing challenges in miRNA evolutionary studies, particularly the complexity of deciphering the role of miRNA-mediated regulatory network evolution in shaping gene expression divergence and phenotypic differences among species.
Collapse
Affiliation(s)
- Yirong Wang
- Bioinformatics Center, College of Biology, Hunan University, Changsha, 410082, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Xu W, Liu J, Qi H, Si R, Zhao Z, Tao Z, Bai Y, Hu S, Sun X, Cong Y, Zhang H, Fan D, Xiao L, Wang Y, Li Y, Du Z. A lineage-resolved cartography of microRNA promoter activity in C. elegans empowers multidimensional developmental analysis. Nat Commun 2024; 15:2783. [PMID: 38555276 PMCID: PMC10981687 DOI: 10.1038/s41467-024-47055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Elucidating the expression of microRNAs in developing single cells is critical for functional discovery. Here, we construct scCAMERA (single-cell cartography of microRNA expression based on reporter assay), utilizing promoter-driven fluorescent reporters in conjunction with imaging and lineage tracing. The cartography delineates the transcriptional activity of 54 conserved microRNAs in lineage-resolved single cells throughout C. elegans embryogenesis. The combinatorial expression of microRNAs partitions cells into fine clusters reflecting their function and anatomy. Notably, the expression of individual microRNAs exhibits high cell specificity and divergence among family members. Guided by cellular expression patterns, we identify developmental functions of specific microRNAs, including miR-1 in pharynx development and physiology, miR-232 in excretory canal morphogenesis by repressing NHR-25/NR5A, and a functional synergy between miR-232 and miR-234 in canal development, demonstrating the broad utility of scCAMERA. Furthermore, integrative analysis reveals that tissue-specific fate determinants activate microRNAs to repress protein production from leaky transcripts associated with alternative, especially neuronal, fates, thereby enhancing the fidelity of developmental fate differentiation. Collectively, our study offers rich opportunities for multidimensional expression-informed analysis of microRNA biology in metazoans.
Collapse
Affiliation(s)
- Weina Xu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyi Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Qi
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Ruolin Si
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhiguang Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhiju Tao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Yuchuan Bai
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Shipeng Hu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xiaohan Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yulin Cong
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haoye Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Duchangjiang Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Long Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yongbin Li
- College of Life Sciences, Capital Normal University, Beijing, China.
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Seyhan AA. Trials and Tribulations of MicroRNA Therapeutics. Int J Mol Sci 2024; 25:1469. [PMID: 38338746 PMCID: PMC10855871 DOI: 10.3390/ijms25031469] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024] Open
Abstract
The discovery of the link between microRNAs (miRNAs) and a myriad of human diseases, particularly various cancer types, has generated significant interest in exploring their potential as a novel class of drugs. This has led to substantial investments in interdisciplinary research fields such as biology, chemistry, and medical science for the development of miRNA-based therapies. Furthermore, the recent global success of SARS-CoV-2 mRNA vaccines against the COVID-19 pandemic has further revitalized interest in RNA-based immunotherapies, including miRNA-based approaches to cancer treatment. Consequently, RNA therapeutics have emerged as highly adaptable and modular options for cancer therapy. Moreover, advancements in RNA chemistry and delivery methods have been pivotal in shaping the landscape of RNA-based immunotherapy, including miRNA-based approaches. Consequently, the biotechnology and pharmaceutical industry has witnessed a resurgence of interest in incorporating RNA-based immunotherapies and miRNA therapeutics into their development programs. Despite substantial progress in preclinical research, the field of miRNA-based therapeutics remains in its early stages, with only a few progressing to clinical development, none reaching phase III clinical trials or being approved by the US Food and Drug Administration (FDA), and several facing termination due to toxicity issues. These setbacks highlight existing challenges that must be addressed for the broad clinical application of miRNA-based therapeutics. Key challenges include establishing miRNA sensitivity, specificity, and selectivity towards their intended targets, mitigating immunogenic reactions and off-target effects, developing enhanced methods for targeted delivery, and determining optimal dosing for therapeutic efficacy while minimizing side effects. Additionally, the limited understanding of the precise functions of miRNAs limits their clinical utilization. Moreover, for miRNAs to be viable for cancer treatment, they must be technically and economically feasible for the widespread adoption of RNA therapies. As a result, a thorough risk evaluation of miRNA therapeutics is crucial to minimize off-target effects, prevent overdosing, and address various other issues. Nevertheless, the therapeutic potential of miRNAs for various diseases is evident, and future investigations are essential to determine their applicability in clinical settings.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Seyhan AA. Circulating microRNAs as Potential Biomarkers in Pancreatic Cancer-Advances and Challenges. Int J Mol Sci 2023; 24:13340. [PMID: 37686149 PMCID: PMC10488102 DOI: 10.3390/ijms241713340] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
There is an urgent unmet need for robust and reliable biomarkers for early diagnosis, prognosis, and prediction of response to specific treatments of many aggressive and deadly cancers, such as pancreatic cancer, and liquid biopsy-based miRNA profiling has the potential for this. MiRNAs are a subset of non-coding RNAs that regulate the expression of a multitude of genes post-transcriptionally and thus are potential diagnostic, prognostic, and predictive biomarkers and have also emerged as potential therapeutics. Because miRNAs are involved in the post-transcriptional regulation of their target mRNAs via repressing gene expression, defects in miRNA biogenesis pathway and miRNA expression perturb the expression of a multitude of oncogenic or tumor-suppressive genes that are involved in the pathogenesis of various cancers. As such, numerous miRNAs have been identified to be downregulated or upregulated in many cancers, functioning as either oncomes or oncosuppressor miRs. Moreover, dysregulation of miRNA biogenesis pathways can also change miRNA expression and function in cancer. Profiling of dysregulated miRNAs in pancreatic cancer has been shown to correlate with disease diagnosis, indicate optimal treatment options and predict response to a specific therapy. Specific miRNA signatures can track the stages of pancreatic cancer and hold potential as diagnostic, prognostic, and predictive markers, as well as therapeutics such as miRNA mimics and miRNA inhibitors (antagomirs). Furthermore, identified specific miRNAs and genes they regulate in pancreatic cancer along with downstream pathways can be used as potential therapeutic targets. However, a limited understanding and validation of the specific roles of miRNAs, lack of tissue specificity, methodological, technical, or analytical reproducibility, harmonization of miRNA isolation and quantification methods, the use of standard operating procedures, and the availability of automated and standardized assays to improve reproducibility between independent studies limit bench-to-bedside translation of the miRNA biomarkers for clinical applications. Here I review recent findings on miRNAs in pancreatic cancer pathogenesis and their potential as diagnostic, prognostic, and predictive markers.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
8
|
Li Q, Wang L, Cao Y, Wang X, Tang C, Zheng L. Stable Expression of dmiR-283 in the Brain Promises Positive Effects in Endurance Exercise on Sleep-Wake Behavior in Aging Drosophila. Int J Mol Sci 2023; 24:ijms24044180. [PMID: 36835595 PMCID: PMC9966282 DOI: 10.3390/ijms24044180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Sleep-wake stability is imbalanced with natural aging, and microRNAs (miRNAs) play important roles in cell proliferation, apoptosis, and aging; however, the biological functions of miRNAs in regulating aging-related sleep-wake behavior remain unexplored. This study varied the expression pattern of dmiR-283 in Drosophila and the result showed that the aging decline in sleep-wake behavior was caused by the accumulation of brain dmiR-283 expression, whereas the core clock genes cwo and Notch signaling pathway might be suppressed, which regulate the aging process. In addition, to identify exercise intervention programs of Drosophila that promote healthy aging, mir-283SP/+ and Pdf > mir-283SP flies were driven to perform endurance exercise for a duration of 3 weeks starting at 10 and 30 days, respectively. The results showed that exercise starting in youth leads to an enhanced amplitude of sleep-wake rhythms, stable periods, increased activity frequency upon awakening, and the suppression of aging brain dmiR-283 expression in mir-283SP/+ middle-aged flies. Conversely, exercise performed when the brain dmiR-283 reached a certain accumulation level showed ineffective or negative effects. In conclusion, the accumulation of dmiR-283 expression in the brain induced an age-dependent decline in sleep-wake behavior. Endurance exercise commencing in youth counteracts the increase in dmiR-283 in the aging brain, which ameliorates the deterioration of sleep-wake behavior during aging.
Collapse
Affiliation(s)
- Qiufang Li
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lingxiao Wang
- The Center for Heart Development, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yurou Cao
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Xiaoya Wang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Chao Tang
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
| | - Lan Zheng
- Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, Hunan Normal University, Changsha 410012, China
- Correspondence: ; Tel.: +86-731-88631-351
| |
Collapse
|
9
|
Zhang R, Zhang S, Li T, Li H, Zhang H, Zheng W. RNA sequencing identifies an ovary-enriched microRNA, miR-311-3p, involved in ovarian development and fecundity by targeting Endophilin B1 in Bactrocera dorsalis. PEST MANAGEMENT SCIENCE 2023; 79:688-700. [PMID: 36239581 DOI: 10.1002/ps.7236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The oriental fruit fly, Bactrocera dorsalis, is a highly invasive pest in East Asia and the Pacific. With the development of pesticides resistance, environment-friendly pesticides are urgently needed. MicroRNAs (miRNAs) are critical regulators of numerous biological processes, including reproduction. Thus, it is significant to identify reproductive-related miRNAs in this notorious pest to facilitate its control, such as RNAi-based biopesticides targeting essential miRNAs. RESULTS A high-throughput sequencing was carried out to identify miRNAs involved in reproduction from the ovary and fat body at four developmental stages [1 day (d), 5, 9, and 13 days post-eclosion] in female B. dorsalis. Results showed that 98 and 74 miRNAs were differentially expressed in ovary and fat body, respectively, during sexual maturation. Gene ontology analysis showed that target genes involved in oogenesis and lipid particle accounted for 33% and 15% of the total targets, respectively. Among these differentially expressed miRNAs, we found by qPCR that miR-311-3p was enriched in the ovary and down-regulated during sexual maturation. Injection of agomir-miR-311-3p resulted in arrested ovarian development, reduced egg deposition and progeny viability. Endophilin B1 was confirmed to be the target of miR-311-3p, via dual-luciferase assay and expression profiling. Knockdown of Endophilin B1 resulted in reproductive defects similar to those caused by injection of miR-311-3p agomir. Thus, miR-311-3p might play a critical role in female reproduction by targeting Endophilin B1. CONCLUSION Our data not only provides knowledge on the abundance of reproductive-related miRNAs and target genes, but also promotes new control strategies for this pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shengfeng Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Tianran Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Haozhe Li
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weiwei Zheng
- Key Laboratory of Horticultural Plant Biology (MOE), Hubei Key Laboratory of Insect Resource Application and Sustainable Pest Control, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Sun S, Chen Q, Chen G, Chen Z, Wang K, Wang H. Toxicity of nitenpyram to silkworm (Bombyx mori L.) and its potential mechanisms. CHEMOSPHERE 2023; 311:137026. [PMID: 36419271 DOI: 10.1016/j.chemosphere.2022.137026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/05/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Silkworm (Bombyx mori L.), as an economic insect, occupies a certain position in the development of China's economy. The neonicotinoid insecticide nitenpyram is commonly used in farmland to control planthoppers and aphids. In China, mulberry orchards are often planted adjacent to fields or commercial crops, and mist drifts occur during application, which may affect the production safety of Bombyx mori. In this study, a risk assessment of nitenpyram was carried out, and the results showed that there were risks in spraying nitenpyram around the periphery and subperipheries of mulberry fields. However, few studies have reported the mechanism underlying nitenpyram's toxic effect on silkworms. Here, we validated 25 differentially expressed (DE) miRNAs in the nitenpyram treatment group of silkworms, and the significantly enriched mTOR signaling pathway, oxidative phosphorylation and FoxO signaling pathway were verified. Among them, bmo-miR-2766-5P was up-regulated by 2.122-fold, and the expression of its regulated target gene 101,741,287 was up-regulated. After the injection of bmo-miR-2766-5P inhibitor, the Log2FC value of 101,741,287 was changed from 1.26 to -2.19. Bmo-miR-3326, bmo-miR-3378-5P and bmo-miR-2761-3P were down-regulated by 2.386-fold, 1.158-fold and 2.359-fold, respectively. After injecting miRNA mimics into silkworms, the Log2FC values of the target genes 100,302,609, 101,740,730 and 101,746,319 were changed from 1.24 to -11.94, -1.12 changed to 2.84 and 1.93 changed to -0.37, respectively. In addition, nitenpyram induced oxidative damage in silkworms, and the degree of DNA damage increased with the increase of concentration and time. Meanwhile Imd was significantly up-regulated in IMD-related pathways (38.7-fold, p < 0.01). The results indicated that nitenpyram could affect the growth and development process of silkworms, and these DE-miRNAs may have an important impact on the stress response of silkworms to nitenpyram.
Collapse
Affiliation(s)
- Shoumin Sun
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Qiqi Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Gang Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Zhenzhen Chen
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Kaiyun Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China
| | - Hongyan Wang
- Department of Plant Protection, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
11
|
Hjelmen CE, Yuan Y, Parrott JJ, McGuane AS, Srivastav SP, Purcell AC, Pimsler ML, Sze SH, Tarone AM. Identification and Characterization of Small RNA Markers of Age in the Blow Fly Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae). INSECTS 2022; 13:948. [PMID: 36292896 PMCID: PMC9603907 DOI: 10.3390/insects13100948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Blow fly development is important in decomposition ecology, agriculture, and forensics. Much of the impact of these species is from immature samples, thus knowledge of their development is important to enhance or ameliorate their effects. One application of this information is the estimation of immature insect age to provide temporal information for death investigations. While traditional markers of age such as stage and size are generally accurate, they lack precision in later developmental stages. We used miRNA sequencing to measure miRNA expression, throughout development, of the secondary screwworm, Cochliomyia macellaria (Fabricius) (Diptera: Calliphoridae) and identified 217 miRNAs present across the samples. Ten were identified to be significantly differentially expressed in larval samples and seventeen were found to be significantly differentially expressed in intrapuparial samples. Twenty-eight miRNAs were identified to be differentially expressed between sexes. Expression patterns of two miRNAs, miR-92b and bantam, were qPCR-validated in intrapuparial samples; these and likely food-derived miRNAs appear to be stable markers of age in C. macellaria. Our results support the use of miRNAs for developmental markers of age and suggest further investigations across species and under a range of abiotic and biotic conditions.
Collapse
Affiliation(s)
- Carl E. Hjelmen
- Department of Biology, Utah Valley University, Orem, UT 84058, USA
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Ye Yuan
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan J. Parrott
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | | | - Satyam P. Srivastav
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Amanda C. Purcell
- Centre for Forensic Science, Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, UK
| | - Meaghan L. Pimsler
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Sing-Hoi Sze
- Department of Computer Science and Engineering, Texas A&M University, College Station, TX 77843, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
12
|
Bidari F, Fathipour Y, Asgari S, Mehrabadi M. Targeting the microRNA pathway core genes, Dicer 1 and Argonaute 1, negatively affects the survival and fecundity of Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4234-4239. [PMID: 35708473 DOI: 10.1002/ps.7041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small regulatory non-coding RNAs that are involved in a variety of biological processes such as immunity, cell signaling and development by regulating gene expression. The whitefly Bemisia tabaci is a polyphagous vector that transmits many plant viruses causing economic damage to crops worldwide. In this study, we characterized and analyzed the expression of the miRNA core genes Argonaute-1 (Ago1) and Dicer-1 (Dcr1) in B. tabaci and explored the effect of their silencing on the insect's fitness. RESULTS Our results showed that Ago1 and Dcr1 are differentially expressed in different tissues and developmental stages of B. tabaci. To determine the function of the miRNA pathway in B. tabaci, we silenced Ago1 and Dcr1 using specific double-stranded RNAs to the genes. RNA interference (RNAi) of Ago1 and Dcr1 decreased the expression level of the core genes and reduced the abundance of Let-7 and miR-184 miRNAs. Silencing of the miRNA pathway core gene also negatively affected the biology of B. tabaci by reducing fertility, fecundity and survival of this insect pest. CONCLUSIONS Together, our results showed that silencing the miRNA pathway core genes reduced the miRNA levels followed by reduced fecundity and survival of B. tabaci, which highlighted the importance of the miRNA pathway in this insect. The miRNA core genes are attractive targets for developing an RNAi-based strategy for targeting this notorious insect pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farzad Bidari
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
13
|
Han Y, Zhou Y. Comprehensive Identification of Human Cell Type Chromatin Activity-Specific and Cell Type Expression-Specific MicroRNAs. Int J Mol Sci 2022; 23:ijms23137324. [PMID: 35806329 PMCID: PMC9266980 DOI: 10.3390/ijms23137324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/23/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
MicroRNAs (miRNAs) regulate multiple transcripts and thus shape the expression landscape of a cell. Information about miRNA expression and distribution across cell types is crucial for the understanding of miRNAs’ functions and their translational applications as biomarkers or therapeutic targets. In this study, we identify cell-type-specific miRNAs by combining multiple correspondence analysis and Gini coefficients to dissect miRNAs’ expression profiles and chromatin activity score profiles, which results in collections of chromatin activity-specific miRNAs in 91 cell types and expression-specific miRNAs in 124 cell types. Moreover, we find that cell-type-specific miRNAs are closely associated with disease miRNAs, such as T-cell-specific miRNAs, which are closely associated with cancer prognosis. Finally, we constructed mirCellType, an online tool based on cell-type-specific miRNA signatures, to dissect the cell type composition of complex samples with miRNA expression profiles.
Collapse
|
14
|
Tian S, Monteiro A. A transcriptomic atlas underlying developmental plasticity of seasonal forms of Bicyclus anynana butterflies. Mol Biol Evol 2022; 39:msac126. [PMID: 35679434 PMCID: PMC9218548 DOI: 10.1093/molbev/msac126] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/31/2022] [Indexed: 11/12/2022] Open
Abstract
Organisms residing in regions with alternating seasons often develop different phenotypes, or forms, in each season. These forms are often adaptations to each season and result from an altered developmental response to specific environmental cues such as temperature. While multiple studies have examined form-specific gene expression profiles in a diversity of species, little is known about how environments and developmental transitions, cued by hormone pulses, alter post-transcriptional patterns. In this study, we examine how gene expression, alternative splicing, and miRNA-mediated gene silencing in Bicyclus anynana butterfly hindwing tissue, varies across two rearing temperatures at four developmental timepoints. These timepoints flank two temperature-sensitive periods that coincide with two pulses of the insect hormone 20E. Our results suggest that developmental transitions, coincident with 20E pulses, elicit a greater impact on all these transcriptomic patterns than rearing temperatures per se. More similar transcriptomic patterns are observed pre-20E pulses than those observed post-20E pulses. We also found functionally distinct sets of differentially expressed and differentially spliced genes in the seasonal forms. Furthermore, around 10% of differentially expressed genes are predicted to be direct targets of, and regulated by, differentially expressed miRNAs between the seasonal forms. Many differentially expressed genes, miRNAs, or differentially spliced genes potentially regulate eyespot size plasticity, and we validated the differential splicing pattern of one such gene, daughterless. We present a comprehensive and interactive transcriptomic atlas of the hindwing tissue of both seasonal forms of B. anynana throughout development, a model organism of seasonal plasticity.
Collapse
Affiliation(s)
- Shen Tian
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
15
|
Yildirim E, Curtis R, Hwangbo DS. Roles of peripheral clocks: lessons from the fly. FEBS Lett 2022; 596:263-293. [PMID: 34862983 PMCID: PMC8844272 DOI: 10.1002/1873-3468.14251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023]
Abstract
To adapt to and anticipate rhythmic changes in the environment such as daily light-dark and temperature cycles, internal timekeeping mechanisms called biological clocks evolved in a diverse set of organisms, from unicellular bacteria to humans. These biological clocks play critical roles in organisms' fitness and survival by temporally aligning physiological and behavioral processes to the external cues. The central clock is located in a small subset of neurons in the brain and drives daily activity rhythms, whereas most peripheral tissues harbor their own clock systems, which generate metabolic and physiological rhythms. Since the discovery of Drosophila melanogaster clock mutants in the early 1970s, the fruit fly has become an extensively studied model organism to investigate the mechanism and functions of circadian clocks. In this review, we primarily focus on D. melanogaster to survey key discoveries and progresses made over the past two decades in our understanding of peripheral clocks. We discuss physiological roles and molecular mechanisms of peripheral clocks in several different peripheral tissues of the fly.
Collapse
Affiliation(s)
| | - Rachel Curtis
- Department of Biology, University of Louisville, Louisville, KY, USA
| | - Dae-Sung Hwangbo
- Department of Biology, University of Louisville, Louisville, KY, USA
| |
Collapse
|
16
|
Mukherjee S, Sokol N. Resources and Methods for the Analysis of MicroRNA Function in Drosophila. Methods Mol Biol 2022; 2540:79-92. [PMID: 35980573 DOI: 10.1007/978-1-0716-2541-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Since the widespread discovery of microRNAs (miRNAs) 20 years ago, the Drosophila melanogaster model system has made important contributions to understanding the biology of this class of noncoding RNAs. These contributions are based on the amenability of this model system not only for biochemical analysis but molecular, genetic, and cell biological analyses as well. Nevertheless, while the Drosophila genome is now known to encode 258 miRNA precursors, the function of only a small minority of these have been well characterized. In this review, we summarize the current resources and methods that are available to study miRNA function in Drosophila with a particular focus on the large-scale resources that enable systematic analysis. Application of these methods will accelerate the discovery of ways that miRNAs are embedded into genetic networks that control basic features of metazoan cells.
Collapse
Affiliation(s)
| | - Nicholas Sokol
- Department of Biology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
17
|
Tan GG, Xu C, Zhong WK, Wang CY. miR-184 delays cell proliferation, migration and invasion in prostate cancer by directly suppressing DLX1. Exp Ther Med 2021; 22:1163. [PMID: 34504608 PMCID: PMC8393589 DOI: 10.3892/etm.2021.10597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 09/04/2019] [Indexed: 11/25/2022] Open
Abstract
A number of previous studies have reported that dysregulated miR-184 expression is associated with the development of cancer. The aim of the present study was to investigate the role of miR-184 in prostate cancer (PC) and the mechanism underlying its effects. Data from human tumor tissue samples were collected from The CEancer Genome Atlas to determine the expression levels of miR-184 and DLX1. The miR-184 mimic and pcDNA3.1-DLX1 plasmid were utilized to induce overexpression of miR-184 and DLX1 in Du145 cells, respectively. Cell Counting Kit-8, wound healing and Transwell assays were performed to examine the effects of miR-184 on the aggressiveness of PC cells. Dual-luciferase reporter gene assay was used to investigate the association between miR-184 and DLX1, and reverse transcription-quantitative PCR and western blot analyses were utilized to determine the mRNA and protein levels. miR-184 expression was found to be downregulated whereas DLX1 was upregulated in PC tissues compared with normal prostate tissues. Cell propagation, migration and invasion were all inhibited by miR-184 upregulation in Du145 cells. Dual luciferase reporter assay confirmed the association between miR-184 and DLX1. The inhibitory effect of miR-184 mimic on cell behaviors was reversed by upregulation of DLX1. These findings suggest that miR-184 plays a beneficial role in suppressing the tumorigenesis of PC by directly targeting DLX1, and it may represent a potential therapeutic strategy for PC.
Collapse
Affiliation(s)
- Gui-Geng Tan
- Department of Urology, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Chang Xu
- Department of Urology, Yanzhou People's Hospital, Jining, Shandong 272100, P.R. China
| | - Wei-Kang Zhong
- Operating Room Department, Affiliated Hospital of Jining Medical University, Jining, Shandong 272100, P.R. China
| | - Chuan-Yun Wang
- Department of Urinary Surgery, Jining No. 1 People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
18
|
Yu D, Peng Z, Wu H, Zhang X, Ji C, Peng X. Stress responses in expressions of microRNAs in mussel Mytilus galloprovincialis exposed to cadmium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111927. [PMID: 33508712 DOI: 10.1016/j.ecoenv.2021.111927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/06/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
MicroRNAs (miRNAs) are known to have complicated functions in aquatic species, but little is known about the role of miRNAs in mollusk species under environmental stress. In this study, we performed small RNA sequencing to characterize the differentially expressed miRNAs in different tissues (whole tissues, digestive glands, gills, and gonads) of blue mussels (Mytilus galloprovincialis) exposed to cadmium (Cd). In summary, 107 known miRNAs and 32 novel miRNAs were significantly (p < 0.01) differentially expressed after Cd exposure. The peak size of miRNAs was 22 nucleotides. Target genes of these differentially expressions of miRNAs related to immune defense, apoptosis, lipid and xenobiotic metabolism showed significant changes under Cd stress. These findings provide the first characterization of miRNAs in mussel M. galloprovincialis and expressions of many target genes in response to Cd stress.
Collapse
Affiliation(s)
- Deliang Yu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China
| | - Zheng Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, PR China
| | - Chenglong Ji
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China; Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Xiao Peng
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
19
|
Gallicchio L, Griffiths-Jones S, Ronshaugen M. Single-cell visualization of mir-9a and Senseless co-expression during Drosophila melanogaster embryonic and larval peripheral nervous system development. G3-GENES GENOMES GENETICS 2021; 11:6044132. [PMID: 33561238 PMCID: PMC7849905 DOI: 10.1093/g3journal/jkaa010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
The Drosophila melanogaster peripheral nervous system (PNS) comprises the sensory organs that allow the fly to detect environmental factors such as temperature and pressure. PNS development is a highly specified process where each sensilla originates from a single sensory organ precursor (SOP) cell. One of the major genetic orchestrators of PNS development is Senseless, which encodes a zinc finger transcription factor (Sens). Sens is both necessary and sufficient for SOP differentiation. Senseless expression and SOP number are regulated by the microRNA miR-9a. However, the reciprocal dynamics of Senseless and miR-9a are still obscure. By coupling single-molecule FISH with immunofluorescence, we are able to visualize transcription of the mir-9a locus and expression of Sens simultaneously. During embryogenesis, we show that the expression of mir-9a in SOP cells is rapidly lost as Senseless expression increases. However, this mutually exclusive expression pattern is not observed in the third instar imaginal wing disc, where some Senseless-expressing cells show active sites of mir-9a transcription. These data challenge and extend previous models of Senseless regulation and show complex co-expression dynamics between mir-9a and Senseless. The differences in this dynamic relationship between embryonic and larval PNS development suggest a possible switch in miR-9a function. Our work brings single-cell resolution to the understanding of dynamic regulation of PNS development by Senseless and miR-9a.
Collapse
Affiliation(s)
- Lorenzo Gallicchio
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sam Griffiths-Jones
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Matthew Ronshaugen
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| |
Collapse
|
20
|
Huang S, Yoshitake K, Asaduzzaman M, Kinoshita S, Watabe S, Asakawa S. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol 2021; 18:1702-1715. [PMID: 33356816 DOI: 10.1080/15476286.2020.1867798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small non-coding RNAs play a pivotal role in gene regulation, repression of transposable element and viral activity in various organisms. Among the various categories of these small non-coding RNAs, microRNAs (miRNAs) guide post-translational gene regulation in cellular development, proliferation, apoptosis, oncogenesis, and differentiation. Here, we performed a genome-wide computational prediction of miRNAs to improve the understanding of miRNA observation and function in molluscs. As an initial step, hundreds of conserved miRNAs were predicted in 35 species of molluscs through genome scanning. Afterwards, the miRNAs' population, isoforms, organization, and function were characterized in detail. Furthermore, the key miRNA biogenesis factors, including AGO2, DGCR8, DICER, DROSHA, TRABP2, RAN, and XPO5, were elucidated based on homologue sequence searching. We also summarized the miRNAs' function in biomineralization, immune and stress response, as well as growth and development in molluscs. Because miRNAs play a vital role in various lifeforms, this study will provide insight into miRNA biogenesis and function in molluscs, as well as other invertebrates.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Asaduzzaman
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Mojtahedi S, Shabkhiz F, Ravasi AA, Rosenkranz S, Soori R, Soleimani M, Tavakoli R. Voluntary wheel running promotes improvements in biomarkers associated with neurogenic activity in adult male rats. Biochem Biophys Res Commun 2020; 533:1505-1511. [PMID: 33139016 DOI: 10.1016/j.bbrc.2020.09.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/24/2020] [Indexed: 01/01/2023]
Abstract
In rodents, hippocampal neurogenesis and synaptogenesis phenomena are affected by exercise. However, the role of exercise parameters such as intensity, duration, and mode on molecular mechanisms involved in these processes has not been elucidated. In this study, we evaluated the effects of different intensities and modes of running on the expression of genes contributing to neuronal differentiation and synapse formation in the hippocampus of adult male rats. Adult male Wistar rats (n = 24) were randomly divided into control, low-intensity running (LIR), high-intensity running (HIR), and the voluntary wheel running (WR) conditions. Changes in the expression of microRNA-124 (miR-124), microRNA-132 (miR-132), and their respective targets, were analyzed using quantitative RT-PCR and Western blotting techniques. Our results showed that WR compared to treadmill running increased miR-124 and miR-132 expression, while reducing the expression of their respective targets, glucocorticoid receptor (GR), SRY-Box 9 (SOX9), and GTP-activated protein P250 (P250GAP). Differences in expression levels were statistically significant (ps < 0.05), except for the expression of GR in HIR (P = 0.09). Moreover, the expression level of gene coding for the transcription factor cAMP-response element binding protein (CREB) was significantly higher in the WR group compared to the treadmill running groups (P = 0.001). Western blotting techniques indicated that the level of the CREB protein was higher in WR compared to the other groups qualitatively. These findings demonstrated a more dramatic effect for voluntary running on biomarkers that are associated with stimulating neurogenesis and synapse formation in the hippocampus of male rats compared with forced treadmill running. In addition, greater positive effects were observed for lower-intensity treadmill running as compared with high-intensity running.
Collapse
Affiliation(s)
- Shima Mojtahedi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.
| | - Fatemeh Shabkhiz
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Ali Asghar Ravasi
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Sara Rosenkranz
- School of Science and Health, University of Western Sydney, Sydney, Australia; Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA
| | - Rahman Soori
- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | | | - Rezvan Tavakoli
- Molecular Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
22
|
Thirumaran SMK, Panigrahi M, Ahmad SF, Dutt T, Bhushan B. Identification of important miRNAs in bubaline mammary gland at heifer stage - An in-silico approach. Anim Biotechnol 2020; 33:835-841. [PMID: 33148095 DOI: 10.1080/10495398.2020.1840386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The present study was undertaken to identify the microRNAs (miRNAs) expressed in the mammary tissue of a bubaline heifer. Small RNAs were isolated from the mammary gland tissue and enriched for miRNA fraction. The linker-ligated small RNAs were reverse transcribed to synthesize cDNA and amplified by PCR. The PCR products were ligated to the pGEM-T Easy vector; cloned into DH5 alpha cells and sequenced. Sequencing of 40 clones, randomly chosen from this library, produced 115 concatemerized short sequences. The short sequences were checked for their matches with the help of refseq_rna database, EST database (NCBI) and Ensembl. The analysis was performed for more than 90% identity with miRNAs across different species in miRBase. Alignment of putative small RNA sequences with the bovine genome was attempted in GenBank (NCBI) and Ensembl using BLAST. The small RNA sequences with a partial matches within the bovine genome and/or with flanking sequences (upstream or downstream) were analyzed for hairpin structures using the Mfold web server. Reverse complements were also assessed for the homology search. miRNA sequences showing only a partial match with already reported sequences were considered as a putative bubaline miRNAs. Six developmentally important putative miRNA precursors were identified from this study using cloning and sequencing followed by the Bioinformatics approach. This study will help in the elucidation of pathways involving miRNAs in bubaline species at the heifer stage.
Collapse
Affiliation(s)
- S M K Thirumaran
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Triveni Dutt
- Joint Director (Academic)-Deemed University, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, India
| |
Collapse
|
23
|
Zhang Y, Jiao Y, Li Y, Tian Q, Du X, Deng Y. Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110508. [PMID: 32992005 DOI: 10.1016/j.cbpb.2020.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA molecules with post-transcriptional regulatory activity in various biological processes. Pearl oyster Pinctada fucata martensii is one of the main species cultured for marine pearl production in China and Japan. In this study, we constructed two small RNA libraries of mantle central (MC) and mantle edge (ME) from P. f. martensii and obtained 24,175,537 and 21,593,898 clean reads, respectively. A total of 258 miRNAs of P. f. martensii (Pm-miRNA) were identified, and 93 differentially expressed miRNAs (DEMs) including 49 known Pm-miRNAs and 44 novel Pm-miRNAs were obtained from the MC and ME. The target transcripts of these DEMs were obviously enriched in neuroactive ligand-receptor interaction pathway, and others. After over-expression of Pm-miR-124 and Pm-miR-9a-5p in the MC by mimic injection into the muscle of P. f. martensii, nacre exhibited a disorderly growth as detected by scanning electron microscopy. Pm-nicotinic acetylcholine receptor alpha subunit, Pm-neuropeptide Y and Pm-chitin synthase were investigated as the targets of Pm-miR-124; and Pm-tumor necrosis factor receptor associated factor 2 and Pm-chitin synthase were investigated as the targets of Pm-miR-9a-5p. These predicted target transcripts were down-regulated after the over-expression of Pm-miR-124 and Pm-miR-9a-5p in MC. This study comprehensively analyzed the miRNAs in mantle tissues to enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yiping Li
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qunli Tian
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China.
| |
Collapse
|
24
|
Yáñez Feliú G, Vidal G, Muñoz Silva M, Rudge TJ. Novel Tunable Spatio-Temporal Patterns From a Simple Genetic Oscillator Circuit. Front Bioeng Biotechnol 2020; 8:893. [PMID: 33014996 PMCID: PMC7509427 DOI: 10.3389/fbioe.2020.00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Multicellularity, the coordinated collective behavior of cell populations, gives rise to the emergence of self-organized phenomena at many different spatio-temporal scales. At the genetic scale, oscillators are ubiquitous in regulation of multicellular systems, including during their development and regeneration. Synthetic biologists have successfully created simple synthetic genetic circuits that produce oscillations in single cells. Studying and engineering synthetic oscillators in a multicellular chassis can therefore give us valuable insights into how simple genetic circuits can encode complex multicellular behaviors at different scales. Here we develop a study of the coupling between the repressilator synthetic genetic ring oscillator and constraints on cell growth in colonies. We show in silico how mechanical constraints generate characteristic patterns of growth rate inhomogeneity in growing cell colonies. Next, we develop a simple one-dimensional model which predicts that coupling the repressilator to this pattern of growth rate via protein dilution generates traveling waves of gene expression. We show that the dynamics of these spatio-temporal patterns are determined by two parameters; the protein degradation and maximum expression rates of the repressors. We derive simple relations between these parameters and the key characteristics of the traveling wave patterns: firstly, wave speed is determined by protein degradation and secondly, wavelength is determined by maximum gene expression rate. Our analytical predictions and numerical results were in close quantitative agreement with detailed individual based simulations of growing cell colonies. Confirming published experimental results we also found that static ring patterns occur when protein stability is high. Our results show that this pattern can be induced simply by growth rate dilution and does not require transition to stationary phase as previously suggested. Our method generalizes easily to other genetic circuit architectures thus providing a framework for multi-scale rational design of spatio-temporal patterns from genetic circuits. We use this method to generate testable predictions for the synthetic biology design-build-test-learn cycle.
Collapse
Affiliation(s)
- Guillermo Yáñez Feliú
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Gonzalo Vidal
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Muñoz Silva
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Timothy J. Rudge
- Department of Chemical and Bioprocess Engineering, School of Engineering, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Biology and Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
25
|
Antunes J, Lee O, Alizadeh AH, LaMarre J, Koch TG. Why the hype - What are microRNAs and why do they provide unique investigative, diagnostic, and therapeutic opportunities in veterinary medicine? THE CANADIAN VETERINARY JOURNAL = LA REVUE VETERINAIRE CANADIENNE 2020; 61:845-852. [PMID: 32741990 PMCID: PMC7350063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression by inhibiting translation or inducing transcript degradation. MiRNAs act as fine-tuning factors that affect the expression of up to 60% of all mammalian protein coding genes. In contrast to proteins, there is widespread conservation of miRNA sequences across species. This conservation strongly suggests that miRNAs appeared early in evolution and have retained their functional importance. Cross-species conservation provides advantages when compiling candidate markers for health and disease compared to protein-based discoveries. This broad utility is accompanied by the emergence of inexpensive sequencing protocols for the identification of all RNAs in a sample (including miRNAs). With the use of miRNA mimics and antagonists, unique research questions can be answered in biological systems with 'cause and effect' methodology. MiRNAs are readily detectable in blood making them attractive candidates as biomarkers for disease. Here, we review their utility as biomarkers and their potential as therapeutic agents or targets to combat disease.
Collapse
Affiliation(s)
- Joshua Antunes
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Olivia Lee
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Amir Hamed Alizadeh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| | - Thomas Gadegaard Koch
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1
| |
Collapse
|
26
|
Yu D, Wu H, Peng X, Ji C, Zhang X, Song J, Qu J. Profiling of microRNAs and mRNAs in marine mussel Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2020; 230:108697. [PMID: 31891766 DOI: 10.1016/j.cbpc.2019.108697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNA molecules containing 18-24 nucleotides, and those with conserved structures are able to regulate the expression of eukaryotic genes by inhibition or enhancement of mRNA translation. However, miRNAs of the blue mussel, Mytilus galloprovincialis have not been reported. M. galloprovincialis is a primary species distributed along coastal zones worldwide. To reveal the repertoire of miRNAs in M. galloprovincialis, we constructed small RNA libraries prepared from three different mussels, which were then sequenced by Solexa deep sequencing technology. A total of 32,836,817, 33,359,113 and 33,093,562 clean reads from the tissues of the three M. galloprovincialis were obtained. Based on sequence similarities and hairpin structure predictions, 137 M. galloprovincialis miRNAs (mg-miRNA) were identified. Among the mg-miRNAs, 104 were conserved across species, whereas 33 might be novel and specific for M. galloprovincialis. Some of the mg-miRNAs, such as let-7 and the miR-100 family are playing key roles in many metabolic pathways and are worthy of further study. By performing a whole genome-scale characterization of mg-miRNAs and proposing their potential functions, these results provide a foundation for understanding the biological processes of the blue mussel, M. galloprovincialis.
Collapse
Affiliation(s)
- Deliang Yu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiao Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Chenglong Ji
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai 264003, PR China
| | - Xiaoying Zhang
- AstraZeneca-Shenzhen University Joint Institute of Nephrology, Department of Physiology, Shenzhen University Health Science Center, Shenzhen University, 518060, PR China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China
| |
Collapse
|
27
|
You Q, Gong Q, Han YQ, Pi R, Du YJ, Dong SZ. Role of miR-124 in the regulation of retinoic acid-induced Neuro-2A cell differentiation. Neural Regen Res 2020; 15:1133-1139. [PMID: 31823894 PMCID: PMC7034285 DOI: 10.4103/1673-5374.270417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Retinoic acid can cause many types of cells, including mouse neuroblastoma Neuro-2A cells, to differentiate into neurons. However, it is still unknown whether microRNAs (miRNAs) play a role in this neuronal differentiation. To address this issue, real-time polymerase chain reaction assays were used to detect the expression of several differentiation-related miRNAs during the differentiation of retinoic acid-treated Neuro-2A cells. The results revealed that miR-124 and miR-9 were upregulated, while miR-125b was downregulated in retinoic acid-treated Neuro-2A cells. To identify the miRNA that may play a key role, miR-124 expression was regulated by transfection of miRNA mimics or inhibitors. Morphological analysis results showed that inhibition of miR-124 expression reversed the effects of retinoic acid on neurite outgrowth. Moreover, miR-124 overexpression alone caused Neuro-2A cells to differentiate into neurons, and its inhibitor could block this effect. These results suggest that miR-124 plays an important role in retinoic acid-induced differentiation of Neuro-2A cells.
Collapse
Affiliation(s)
- Qun You
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Qiang Gong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yu-Qiao Han
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Rou Pi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi-Jie Du
- Department of Integrative Medicine, Huashan Hospital; Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Su-Zhen Dong
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| |
Collapse
|
28
|
Malik MI, Nawaz M, Wang Y, Zhang H, Cao J, Zhou Y, Hassan IA, Islam MN, Anwar MN, Zhou J. Localized expression and inhibition effect of miR-184 on blood digestion and oviposition in Haemaphysalis longicornis (Acari: Ixodidae). Parasit Vectors 2019; 12:500. [PMID: 31653232 PMCID: PMC6814974 DOI: 10.1186/s13071-019-3754-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The hard tick Haemaphysalis longicornis (Ixodidae) is widely distributed in East Asia, China, Australia and New Zealand. It can transmit many infectious pathogens, including the causative agents of human rickettsiosis, bovine theileriosis, bovine babesiosis and canine babesiosis. Therefore, a greater understanding of H. longicornis biology might aid in the development of more effective control measures against the tick and tick-borne pathogens. METHODS We analyzed the expression of miR-184 in different developmental stages and various tissues of H. longicornis using real-time PCR (qRT-PCR). Antagomir (Ant-184) was used to knock-down miR-184, whilst Ms-Ant and non-injected ticks were used as the negative and blank controls, respectively. We used online software tools (RNAhybrid and TargetScan) to predict the putative target genes of miR-184. RESULTS The expression of miR-184 was highest in unfed nymphs and lowest in unfed larvae. The tissue distribution of miR-184 showed abundant expression in the midgut. To investigate the probable roles of miR-184, antagomir (Ant-184) was used to knock-down miR-184 (t(4) = 12.32, P = 0.0002). After inhibiting miR-184, other biological factors were examined in each group. The engorged body weight was significantly reduced in the treated group (Ant-184) in contrast to control groups (t(22) = 2.19, P = 0.0388). The mean duration of the egg-laying days was significantly increased (33.5 ± 1.91) and the number of eggs (t(10) = 3.147, P = 0.0137), and egg mass (t(10) = 3.4472, P = 0.0063) were significantly reduced in the treated group. During oviposition, eggs were monitored and in half of the ticks of the Ant-184 group the eggs were completely desiccated, lacked embryo development and did not hatch. We analyzed the expression of Vg proteins (Vg1, Vg2, Vg3) in semi-engorged ticks, engorged ticks, ticks at day 2 after engorgement and egg stage in Ant-184, non-injected and Ms-Ant groups, and found significant variation. CONCLUSIONS This study provides information on the role of miR-184 in H. longicornis ticks. The data suggest that miR-184 targets Vg proteins and affects blood digestion and oviposition.
Collapse
Affiliation(s)
- Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Yanan Wang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Ibrahim A. Hassan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Md. Nazrul Islam
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Muhammad Naveed Anwar
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241 China
| |
Collapse
|
29
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
30
|
Rahimpour H, Moharramipour S, Asgari S, Mehrabadi M. The microRNA pathway core genes are differentially expressed during the development of Helicoverpa armigera and contribute in the insect's development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:121-127. [PMID: 31121322 DOI: 10.1016/j.ibmb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nt) that are produced by all animals and plants as well as some viruses. Their roles have been revealed in many physiological processes including development, cancer, immunity, apoptosis and, host-microbe interactions through post-transcriptional regulation of gene expression. In this study, we predicted, characterized and transcriptionally analyzed the core miRNA pathway genes in Helicoverpa armigera. Our results showed that the canonical miRNA biogenesis pathway genes including Pasha, Drosha, Loquacious, Exportin-5, Dicer-1 and Argonaute-1 are differentially expressed in different tissues and during the development of this insect. Considering the essential role of Dicer-1 in this pathway, we used RNA interference to silence the expression of this gene in H. armigera. Silencing of Dicer-1 decreased the levels of cellular miRNAs, let-7 and miR-184. Together, our results showed that the miRNA pathway functions during the development of H. armigera, and silencing of Dicer-1 resulted in the miRNA pathway blockage and depletion of the miRNA contents leading to mortalities in the immature stage and abnormalities in the mature stage. Blockage of this pathway can therefore be considered in future attempts for interrupting/suppressing populations of this important crop pest.
Collapse
Affiliation(s)
- Hamed Rahimpour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
31
|
Minogue AL, Arur S. In Situ Hybridization for Detecting Mature MicroRNAs In Vivo at Single-Cell Resolution. ACTA ACUST UNITED AC 2019; 127:e93. [PMID: 31237425 DOI: 10.1002/cpmb.93] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of cell and tissue development. However, spatial resolution of miRNA heterogeneity and accumulation patterns in vivo remains uncharted. Next-generation sequencing methods assay miRNA abundance in tissues, yet these analyses do not provide spatial resolution. A method to assay miRNA expression at single-cell resolution in vivo should clarify the cell-autonomous functions of miRNAs, their roles in influencing the cellular microenvironment, and their perdurance and turnover rate. We present an in situ hybridization protocol to map miRNA subcellular expression in single cells in vivo in four days. Using this protocol, we mapped distinct miRNAs that accumulate in the cytoplasm of one sibling oocyte but not another, dependent on the oocyte developmental stage. Thus, this method provides spatial and temporal resolution of the heterogeneity in expression of miRNAs during Caenorhabditis elegans oogenesis. This protocol can generally be adapted to any tissue amenable to dissection and fixation. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Amanda L Minogue
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Swathi Arur
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas.,Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Zhong L, Xiao W, Wang F, Liu J, Zhi L. miR‐21‐5p inhibits neuropathic pain development via directly targeting C‐C motif ligand 1 and tissue inhibitor of metalloproteinase‐3. J Cell Biochem 2019; 120:16614-16623. [PMID: 31161659 DOI: 10.1002/jcb.28920] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/03/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Liang Zhong
- Department of Anesthesiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College Huazhong University of Science & Technology Wuhan China
| | - Weimin Xiao
- The Department of Anesthesiology, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Fang Wang
- School of Medicine Tongji University Shanghai China
| | - Juan Liu
- Xuzhou Medical University Huai'an China
| | - Li‐Jun Zhi
- Department of Anesthesiology, Huai'an Second People' Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical University Huai'an Jiangsu China
| |
Collapse
|
33
|
Global identification of functional microRNA-mRNA interactions in Drosophila. Nat Commun 2019; 10:1626. [PMID: 30967537 PMCID: PMC6456604 DOI: 10.1038/s41467-019-09586-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 03/11/2019] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are key mediators of post-transcriptional gene expression silencing. So far, no comprehensive experimental annotation of functional miRNA target sites exists in Drosophila. Here, we generated a transcriptome-wide in vivo map of miRNA-mRNA interactions in Drosophila melanogaster, making use of single nucleotide resolution in Argonaute1 (AGO1) crosslinking and immunoprecipitation (CLIP) data. Absolute quantification of cellular miRNA levels presents the miRNA pool in Drosophila cell lines to be more diverse than previously reported. Benchmarking two CLIP approaches, we identify a similar predictive potential to unambiguously assign thousands of miRNA-mRNA pairs from AGO1 interaction data at unprecedented depth, achieving higher signal-to-noise ratios than with computational methods alone. Quantitative RNA-seq and sub-codon resolution ribosomal footprinting data upon AGO1 depletion enabled the determination of miRNA-mediated effects on target expression and translation. We thus provide the first comprehensive resource of miRNA target sites and their quantitative functional impact in Drosophila.
Collapse
|
34
|
Hanyu-Nakamura K, Matsuda K, Cohen SM, Nakamura A. Pgc suppresses the zygotically acting RNA decay pathway to protect germ plasm RNAs in the Drosophila embryo. Development 2019; 146:dev.167056. [PMID: 30890569 DOI: 10.1242/dev.167056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 03/11/2019] [Indexed: 11/20/2022]
Abstract
Specification of germ cells is pivotal to ensure continuation of animal species. In many animal embryos, germ cell specification depends on maternally supplied determinants in the germ plasm. Drosophila polar granule component (pgc) mRNA is a component of the germ plasm. pgc encodes a small protein that is transiently expressed in newly formed pole cells, the germline progenitors, where it globally represses mRNA transcription. pgc is also required for pole cell survival, but the mechanism linking transcriptional repression to pole cell survival remains elusive. We report that pole cells lacking pgc show premature loss of germ plasm mRNAs, including the germ cell survival factor nanos, and undergo apoptosis. We found that pgc- pole cells misexpress multiple miRNA genes. Reduction of miRNA pathway activity in pgc- embryos partially suppressed germ plasm mRNA degradation and pole cell death, suggesting that Pgc represses zygotic miRNA transcription in pole cells to protect germ plasm mRNAs. Interestingly, germ plasm mRNAs are protected from miRNA-mediated degradation in vertebrates, albeit by a different mechanism. Thus, independently evolved mechanisms are used to silence miRNAs during germ cell specification.
Collapse
Affiliation(s)
- Kazuko Hanyu-Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.,Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Kazuki Matsuda
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200N Copenhagen, Denmark
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan .,Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.,Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
35
|
Weigelt CM, Hahn O, Arlt K, Gruhn M, Jahn AJ, Eßer J, Werner JA, Klein C, Büschges A, Grönke S, Partridge L. Loss of miR-210 leads to progressive retinal degeneration in Drosophila melanogaster. Life Sci Alliance 2019; 2:2/1/e201800149. [PMID: 30670478 PMCID: PMC6343102 DOI: 10.26508/lsa.201800149] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
Depletion of miRNA-210 disrupts photoreceptor integrity and visual function in Drosophila melanogaster. miRNAs are small, non-coding RNAs that regulate gene expression post-transcriptionally. We used small RNA sequencing to identify tissue-specific miRNAs in the adult brain, thorax, gut, and fat body of Drosophila melanogaster. One of the most brain-specific miRNAs that we identified was miR-210, an evolutionarily highly conserved miRNA implicated in the regulation of hypoxia in mammals. In Drosophila, we show that miR-210 is specifically expressed in sensory organs, including photoreceptors. miR-210 knockout mutants are not sensitive toward hypoxia but show progressive degradation of photoreceptor cells, accompanied by decreased photoreceptor potential, demonstrating an important function of miR-210 in photoreceptor maintenance and survival.
Collapse
Affiliation(s)
| | - Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Katharina Arlt
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Matthias Gruhn
- Department for Animal Physiology, Biocenter Cologne, Institute of Zoology, Cologne, Germany
| | - Annika J Jahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Jacqueline Eßer
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Corinna Klein
- Cluster of Excellence-Cellular Stress Responses in Aging-Associated Diseases Research Centre, University of Cologne, Cologne, Germany
| | - Ansgar Büschges
- Department for Animal Physiology, Biocenter Cologne, Institute of Zoology, Cologne, Germany
| | | | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany .,Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, London, UK
| |
Collapse
|
36
|
Menzel P, McCorkindale AL, Stefanov SR, Zinzen RP, Meyer IM. Transcriptional dynamics of microRNAs and their targets during Drosophila neurogenesis. RNA Biol 2019; 16:69-81. [PMID: 30582411 PMCID: PMC6380339 DOI: 10.1080/15476286.2018.1558907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 01/20/2023] Open
Abstract
During Drosophila melanogaster embryogenesis, tight regulation of gene expression in time and space is required for the orderly emergence of specific cell types. While the general importance of microRNAs in regulating eukaryotic gene expression has been well-established, their role in early neurogenesis remains to be addressed. In this survey, we investigate the transcriptional dynamics of microRNAs and their target transcripts during neurogenesis of Drosophila melanogaster. To this end, we use the recently developed DIV-MARIS protocol, a method for enriching specific cell types from the Drosophila embryo in vivo, to sequence cell type-specific transcriptomes. We generate dedicated small and total RNA-seq libraries for neuroblasts, neurons and glia cells at early (6-8 h after egg laying (AEL)) and late (18-22 h AEL) stage. This allows us to directly compare these transcriptomes and investigate the potential functional roles of individual microRNAs with spatiotemporal resolution genome-wide, which is beyond the capabilities of existing in situ hybridization methods. Overall, we identify 74 microRNAs that are significantly differentially expressed between the three cell types and the two developmental stages. In all cell types, predicted target genes of down-regulated microRNAs show a significant enrichment of Gene Ontology terms related to neurogenesis. We also investigate how microRNAs regulate the transcriptome by targeting transcription factors and find many candidate microRNAs with putative roles in neurogenesis. Our survey highlights the roles of microRNAs as regulators of differentiation and glioneurognesis in the fruit fly and provides distinct starting points for dedicated functional follow-up studies.
Collapse
Affiliation(s)
- Peter Menzel
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra L. McCorkindale
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Stefan R. Stefanov
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| | - Robert P. Zinzen
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Irmtraud M. Meyer
- Berlin Institute for Molecular and Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Institute of Biochemistry, Department of Biology, Chemistry, and Pharmacology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
37
|
microRNAs in Macrobrachium olfersii embryos: Identification, their biogenesis components and potential targets. Comput Biol Chem 2018; 78:205-216. [PMID: 30576966 DOI: 10.1016/j.compbiolchem.2018.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 11/24/2018] [Accepted: 12/11/2018] [Indexed: 12/21/2022]
Abstract
In embryonic development, microRNAs (miRNAs) regulate the complex gene expression associated with the complexity of embryogenesis. Today, few studies have been conducted on the identification of miRNAs and components of miRNA biogenesis on embryonic development in crustaceans, especially in prawns. In this context, the aim of this study was to identify in silico components of miRNA biogenesis, and miRNAs and potential target genes during embryonic development in the prawn Macrobrachium olfersii through small RNAs and transcriptome analyses. Using the miRDeep2 program, we identified 17 miRNA precursors in M. olfersii, which seven (miR-9, miR-10, miR-92, miR-125, miR-305, miR-1175, and miR-2788) were reported in the miRBase database, indicating high evolutionary conservation of these sequences among animals. The other 10 miRNAs of M. olfersii were novel miRNAs and only similar to Macrobrachium niponnense miRNAs, indicating genus-specific miRNAs. In addition, eight key components of miRNA biogenesis (DROSHA, PASHA/DGCR8, XPO5, RAN, DICER, TRBP2, AGO, and PIWI) were identified in M. olfersii embryos unigenes. In the annotation of miRNA targets, 516 genes were similar to known sequences in the GenBank database. Regarding the conserved miRNAs, we verified that they were differentially expressed during embryonic development in M. olfersii. In conclusion, this is the first study that identifies conserved and novel miRNAs in the prawn M. olfersii with some miRNA target genes involved in embryonic development. Our results will allow further studies on the function of these miRNAs and miRNA biogenesis components during embryonic development in M. olfersii and other prawns of commercial interest.
Collapse
|
38
|
Li N, Zhang Y, Li HP, Han L, Yan XM, Li HB, Du W, Zhang JS, Yu QL. Differential expression of mRNA-miRNAs related to intramuscular fat content in the longissimus dorsi in Xinjiang brown cattle. PLoS One 2018; 13:e0206757. [PMID: 30412616 PMCID: PMC6226300 DOI: 10.1371/journal.pone.0206757] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023] Open
Abstract
In this study, we examined the role of mRNAs and miRNAs in variations in intramuscular fat content in the longissimus dorsi muscle in Xinjiang brown cattle. Two groups of Xinjiang brown cattle with extremely different intramuscular fat content in the longissimus dorsi were selected for combined of miRNA and mRNA analysis using an RNA-Seq. In total, 296 mRNAs and 362 miRNAs were significantly differentially expressed, including 155 newly predicted miRNAs, 275 significantly upregulated genes, 252 significantly upregulated miRNAs, 21 significantly downregulated genes and 110 significantly downregulated miRNAs. The combined miRNA and mRNA analysis identified 96 differentially expressed miRNAs and 27 differentially expressed mRNAs. In all, 47 upregulated miRNAs had a regulatory effect on 14 differentially downregulated target genes, and 49 downregulated miRNAs had a regulatory effect on 13 upregulated target genes. To verify the sequencing results, 10 differentially expressed genes (DEGs) and 10 differentially expressed miRNAs were selected for qRT-PCR. The qRT-PCR results confirmed the sequencing results. The results of this study shed light on the molecular regulation of bovine adipose tissue, which might help with the development of new strategies for improving meat quality and animal productivity in beef cattle to provide healthier meat products for consumers.
Collapse
Affiliation(s)
- Na Li
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Yang Zhang
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Hai-Peng Li
- Department of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling Han
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiang-Min Yan
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Hong-Bo Li
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Wei Du
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Jin-Shan Zhang
- Department of Research Livestock, Xinjiang Academy of Animal Science, Urumqi, Xinjiang, China
| | - Qun-Li Yu
- Department of Food Science and Engineering, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
39
|
Identification and characterization of skin color microRNAs in Koi carp (Cyprinus carpio L.) by Illumina sequencing. BMC Genomics 2018; 19:779. [PMID: 30373521 PMCID: PMC6206873 DOI: 10.1186/s12864-018-5189-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/19/2018] [Indexed: 01/19/2023] Open
Abstract
Background MicroRNAs (miRNAs) are endogenous, small (21–25 nucleotide), non-coding RNAs that play important roles in numerous biological processes. Koi carp exhibit diverse color patterns, making it an ideal subject for studying the genetics of pigmentation. However, the influence of miRNAs on skin color regulation and variation in Koi carp is poorly understood. Results Herein, we performed small RNA (sRNA) analysis of the three main skin colors in Koi carp by Illumina sequencing. The results revealed 330, 397, and 335 conserved miRNAs (belonging to 81 families) and 340, 353, and 351 candidate miRNAs in black, red, and white libraries, respectively. A total of 164 differentially expressed miRNAs (DEMs) and 14 overlapping DEMs were identified, including miR-196a, miR-125b, miR-202, miR-205-5p, miR-200b, and etc. Target prediction and functional analysis of color-related miRNAs such as miR-200b, miR-206, and miR-196a highlighted putative target genes, including Mitf, Mc1r, Foxd3, and Sox10 that are potentially related to pigmentation. Determination of reference miRNAs for relative quantification showed that let-7a was the most abundant single reference gene, and let-7a and miR-26b was the most abundant combination. Conclusions The findings provide novel insight into the molecular mechanisms determining skin color differentiation in Koi carp, and serve as a valuable reference for future studies on tissue-specific miRNA abundance in Koi carp. Electronic supplementary material The online version of this article (10.1186/s12864-018-5189-5) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Agarwal V, Subtelny AO, Thiru P, Ulitsky I, Bartel DP. Predicting microRNA targeting efficacy in Drosophila. Genome Biol 2018; 19:152. [PMID: 30286781 PMCID: PMC6172730 DOI: 10.1186/s13059-018-1504-3] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short regulatory RNAs that derive from hairpin precursors. Important for understanding the functional roles of miRNAs is the ability to predict the messenger RNA (mRNA) targets most responsive to each miRNA. Progress towards developing quantitative models of miRNA targeting in Drosophila and other invertebrate species has lagged behind that of mammals due to the paucity of datasets measuring the effects of miRNAs on mRNA levels. Results We acquired datasets suitable for the quantitative study of miRNA targeting in Drosophila. Analyses of these data expanded the types of regulatory sites known to be effective in flies, expanded the mRNA regions with detectable targeting to include 5′ untranslated regions, and identified features of site context that correlate with targeting efficacy in fly cells. Updated evolutionary analyses evaluated the probability of conserved targeting for each predicted site and indicated that more than a third of the Drosophila genes are preferentially conserved targets of miRNAs. Based on these results, a quantitative model was developed to predict targeting efficacy in insects. This model performed better than existing models, and it drives the most recent version, v7, of TargetScanFly. Conclusions Our evolutionary and functional analyses expand the known scope of miRNA targeting in flies and other insects. The existence of a quantitative model that has been developed and trained using Drosophila data will provide a valuable resource for placing miRNAs into gene regulatory networks of this important experimental organism. Electronic supplementary material The online version of this article (10.1186/s13059-018-1504-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vikram Agarwal
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Present address: Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Alexander O Subtelny
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Prathapan Thiru
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot 76100, Israel
| | - David P Bartel
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, 9 Cambridge Center, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
41
|
Cruz L, Romero JAA, Iglesia RP, Lopes MH. Extracellular Vesicles: Decoding a New Language for Cellular Communication in Early Embryonic Development. Front Cell Dev Biol 2018; 6:94. [PMID: 30211159 PMCID: PMC6121069 DOI: 10.3389/fcell.2018.00094] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
The blastocyst inner cell mass (ICM) that gives rise to a whole embryo in vivo can be derived and cultured in vitro as embryonic stem cells (ESCs), which retain full developmental potential. ICM cells receive, from diverse sources, complex molecular and spatiotemporal signals that orchestrate the finely-tuned processes associated with embryogenesis. Those instructions come, continuously, from themselves and from surrounding cells, such as those present in the trophectoderm and primitive endoderm (PrE). A key component of the ICM niche are the extracellular vesicles (EVs), produced by distinct cell types, that carry and transfer key molecules that regulate target cells and modulate cell renewal or cell fate. A growing number of studies have demonstrated the extracellular circulation of morphogens, a group of classical regulators of embryo development, are carried by EVs. miRNAs are also an important cargo of the EVs that have been implicated in tissue morphogenesis and have gained special attention due to their ability to regulate protein expression through post-transcriptional modulation, thereby influencing cell phenotype. This review explores the emerging evidence supporting the role of EVs as an additional mode of intercellular communication in early embryonic and ESCs differentiation.
Collapse
Affiliation(s)
- Lilian Cruz
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jenny A A Romero
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca P Iglesia
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marilene H Lopes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
42
|
Zhou L, Lim MYT, Kaur P, Saj A, Bortolamiol-Becet D, Gopal V, Tolwinski N, Tucker-Kellogg G, Okamura K. Importance of miRNA stability and alternative primary miRNA isoforms in gene regulation during Drosophila development. eLife 2018; 7:e38389. [PMID: 30024380 PMCID: PMC6066331 DOI: 10.7554/elife.38389] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mature microRNAs (miRNAs) are processed from primary transcripts (pri-miRNAs), and their expression is controlled at transcriptional and post-transcriptional levels. However, how regulation at multiple levels achieves precise control remains elusive. Using published and new datasets, we profile a time course of mature and pri-miRNAs in Drosophila embryos and reveal the dynamics of miRNA production and degradation as well as dynamic changes in pri-miRNA isoform selection. We found that 5' nucleotides influence stability of mature miRNAs. Furthermore, distinct half-lives of miRNAs from the mir-309 cluster shape their temporal expression patterns, and the importance of rapid degradation of the miRNAs in gene regulation is detected as distinct evolutionary signatures at the target sites in the transcriptome. Finally, we show that rapid degradation of miR-3/-309 may be important for regulation of the planar cell polarity pathway component Vang. Altogether, the results suggest that complex mechanisms regulate miRNA expression to support normal development.
Collapse
Affiliation(s)
- Li Zhou
- Temasek Life Sciences LaboratorySingaporeSingapore
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Mandy Yu Theng Lim
- Temasek Life Sciences LaboratorySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| | - Prameet Kaur
- Division of ScienceYale-NUS CollegeSingaporeSingapore
| | - Abil Saj
- Cancer Therapeutics and Stratified OncologyGenome Institute of SingaporeSingaporeSingapore
| | | | - Vikneswaran Gopal
- Department of Statistics and Applied Probability, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Nicholas Tolwinski
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
- Division of ScienceYale-NUS CollegeSingaporeSingapore
| | - Greg Tucker-Kellogg
- Department of Biological Sciences, Faculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Katsutomo Okamura
- Temasek Life Sciences LaboratorySingaporeSingapore
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
43
|
Luo J, Wang Y, Yuan J, Zhao Z, Lu J. MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution. RNA (NEW YORK, N.Y.) 2018; 24:787-802. [PMID: 29511046 PMCID: PMC5959248 DOI: 10.1261/rna.062752.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/02/2018] [Indexed: 05/27/2023]
Abstract
The repertoire of miRNAs has considerably expanded during metazoan evolution, and duplication is an important mechanism for generating new functional miRNAs. However, relatively little is known about the functional divergence between paralogous miRNAs and the possible coevolution between duplicated miRNAs and the genomic contexts. By systematically examining small RNA expression profiles across various human tissues and interrogating the publicly available miRNA:mRNA pairing chimeras, we found that changes in expression patterns and targeting preferences are widespread for duplicated miRNAs in vertebrates. Both the empirical interactions and target predictions suggest that evolutionarily conserved homo-seed duplicated miRNAs pair with significantly higher numbers of target sites compared to the single-copy miRNAs. Our birth-and-death evolutionary analysis revealed that the new target sites of miRNAs experienced frequent gains and losses during function development. Our results suggest that a newly emerged target site has a higher probability to be functional and maintained by natural selection if it is paired to a seed shared by multiple paralogous miRNAs rather than being paired to a single-copy miRNA. We experimentally verified the divergence in target repression between two paralogous miRNAs by transfecting let-7a and let-7b mimics into kidney-derived cell lines of four mammalian species and measuring the resulting transcriptome alterations by extensive high-throughput sequencing. Our results also suggest that the gains and losses of let-7 target sites might be associated with the evolution of repressiveness of let-7 across mammalian species.
Collapse
Affiliation(s)
- Junjie Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yirong Wang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jian Yuan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhilei Zhao
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Tarver JE, Taylor RS, Puttick MN, Lloyd GT, Pett W, Fromm B, Schirrmeister BE, Pisani D, Peterson KJ, Donoghue PCJ. Well-Annotated microRNAomes Do Not Evidence Pervasive miRNA Loss. Genome Biol Evol 2018; 10:1457-1470. [PMID: 29788279 PMCID: PMC6007596 DOI: 10.1093/gbe/evy096] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2018] [Indexed: 12/18/2022] Open
Abstract
microRNAs are conserved noncoding regulatory factors implicated in diverse physiological and developmental processes in multicellular organisms, as causal macroevolutionary agents and for phylogeny inference. However, the conservation and phylogenetic utility of microRNAs has been questioned on evidence of pervasive loss. Here, we show that apparent widespread losses are, largely, an artefact of poorly sampled and annotated microRNAomes. Using a curated data set of animal microRNAomes, we reject the view that miRNA families are never lost, but they are rarely lost (92% are never lost). A small number of families account for a majority of losses (1.7% of families account for >45% losses), and losses are associated with lineages exhibiting phenotypic simplification. Phylogenetic analyses based on the presence/absence of microRNA families among animal lineages, and based on microRNA sequences among Osteichthyes, demonstrate the power of these small data sets in phylogenetic inference. Perceptions of widespread evolutionary loss of microRNA families are due to the uncritical use of public archives corrupted by spurious microRNA annotations, and failure to discriminate false absences that occur because of incomplete microRNAome annotation.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Richard S Taylor
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Mark N Puttick
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
- Department of Biology and Biochemistry, University of Bath, United Kingdom
| | - Graeme T Lloyd
- School of Earth and Environment, University of Leeds, United Kingdom
| | - Walker Pett
- Department of Ecology, Evolution and Organismal Biology, Iowa State University
| | - Bastian Fromm
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Norway
| | - Bettina E Schirrmeister
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Davide Pisani
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| | - Kevin J Peterson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire
| | - Philip C J Donoghue
- School of Earth Sciences and School of Biological Sciences, University of Bristol, United Kingdom
| |
Collapse
|
45
|
Alberti C, Manzenreither RA, Sowemimo I, Burkard TR, Wang J, Mahofsky K, Ameres SL, Cochella L. Cell-type specific sequencing of microRNAs from complex animal tissues. Nat Methods 2018; 15:283-289. [PMID: 29481550 PMCID: PMC5886366 DOI: 10.1038/nmeth.4610] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/12/2018] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) play an essential role in the post-transcriptional regulation of animal development and physiology. However, in vivo studies aimed at linking miRNA function to the biology of distinct cell types within complex tissues remain challenging, partly because in vivo miRNA-profiling methods lack cellular resolution. We report microRNome by methylation-dependent sequencing (mime-seq), an in vivo enzymatic small-RNA-tagging approach that enables high-throughput sequencing of tissue- and cell-type-specific miRNAs in animals. The method combines cell-type-specific 3'-terminal 2'-O-methylation of animal miRNAs by a genetically encoded, plant-specific methyltransferase (HEN1), with chemoselective small-RNA cloning and high-throughput sequencing. We show that mime-seq uncovers the miRNomes of specific cells within Caenorhabditis elegans and Drosophila at unprecedented specificity and sensitivity, enabling miRNA profiling with single-cell resolution in whole animals. Mime-seq overcomes current challenges in cell-type-specific small-RNA profiling and provides novel entry points for understanding the function of miRNAs in spatially restricted physiological settings.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| | | | - Ivica Sowemimo
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Thomas R Burkard
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria.,Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Jingkui Wang
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Katharina Mahofsky
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Stefan L Ameres
- Institute of Molecular Biotechnology (IMBA), Vienna Biocenter Campus (VBC), Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter Campus (VBC), Vienna, Austria
| |
Collapse
|
46
|
Cosacak MI, Yiğit H, Kizil C, Akgül B. Re-Arrangements in the Cytoplasmic Distribution of Small RNAs Following the Maternal-to-Zygotic Transition in Drosophila Embryos. Genes (Basel) 2018; 9:genes9020082. [PMID: 29439397 PMCID: PMC5852578 DOI: 10.3390/genes9020082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/31/2018] [Accepted: 02/02/2018] [Indexed: 01/13/2023] Open
Abstract
Small ribonucleic acids (RNAs) are known to regulate gene expression during early development. However, the dynamics of interaction between small RNAs and polysomes during this process is largely unknown. To investigate this phenomenon, 0–1 h and 7–8 h Drosophila melanogaster embryos were fractionated on sucrose density gradients into four fractions based on A254 reading (1) translationally inactive messenger ribonucleoprotein (mRNP), (2) 60S, (3) monosome, and (4) polysome. Comparative analysis of deep-sequencing reads from fractionated and un-fractionated 0–1 h and 7–8 h embryos revealed development-specific co-sedimentation pattern of small RNAs with the cellular translation machinery. Although most micro RNAs (miRNAs) did not have a specific preference for any state of the translational machinery, we detected fraction-specific enrichment of a few miRNAs such as dme-miR-1-3p, -184-3p, 5-5p and 263-5p. More interestingly, we observed changes in the subcellular location of a subset of miRNAs in fractionated embryos despite no measurable difference in their amount in unfractionated embryos. Transposon-derived endo small interfering RNAs (siRNAs) were over-expressed in 7–8 h embryos and associated mainly with the mRNP fraction. In contrast, transposon-derived PIWI-interacting RNAs (piRNA), which were more abundant in 0–1 h embryos, co-sedimented primarily with the polysome fractions. These results suggest that there appears to be a complex interplay among the small RNAs with respect to their polysome-cosedimentation pattern during early development in Drosophila melanogaster.
Collapse
Affiliation(s)
- Mehmet Ilyas Cosacak
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Hatice Yiğit
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| | - Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Arnoldstr. 18, 01307 Dresden, Germany.
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany.
| | - Bünyamin Akgül
- Department of Molecular Biology and Genetics, İzmir Institute of Technology, Gülbahçeköyü, 35430 İzmir, Turkey.
| |
Collapse
|
47
|
Velandia-Huerto CA, Brown FD, Gittenberger A, Stadler PF, Bermúdez-Santana CI. Nonprotein-Coding RNAs as Regulators of Development in Tunicates. Results Probl Cell Differ 2018; 65:197-225. [PMID: 30083922 DOI: 10.1007/978-3-319-92486-1_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tunicates, or urochordates, are a group of small marine organisms that are found widely throughout the seas of the world. As most plausible sister group of the vertebrates, they are of utmost importance for a comprehensive understanding of chordate evolution; hence, they have served as model organisms for many aspects of the developmental biology. Current genomic analysis of tunicates indicates that their genomes evolved with a fast rate not only at the level of nucleotide substitutions but also in terms of genomic organization. The latter involves genome reduction, rearrangements, as well as the loss of some important coding and noncoding RNA (ncRNAs) elements and even entire genomic regions that are otherwise well conserved. These observations are largely based on evidence from comparative genomics resulting from the analysis of well-studied gene families such as the Hox genes and their noncoding elements. In this chapter, the focus lies on the ncRNA complement of tunicates, with a particular emphasis on microRNAs, which have already been studied extensively for other animal clades. MicroRNAs are known as important regulators of key genes in animal development, and they are intimately related to the increase morphological complexity in higher metazoans. Here we review the discovery, evolution, and genome organization of the miRNA repertoire, which has been drastically reduced and restructured in tunicates compared to the chordate ancestor. Known functions of microRNAs as regulators of development in tunicates are a central topic. For instance, we consider the role of miRNAs as regulators of the muscle development and their importance in the regulation of the differential expression during the oral siphon regeneration. Beyond microRNAs, we touch upon the functions of some other ncRNAs such as yellow crescent RNA, moRNAs, RMST lncRNAs, or spliced-leader (SL) RNAs, which have diverse functions associated with the embryonic development, neurogenesis, and mediation of mRNA stability in general.
Collapse
Affiliation(s)
- Cristian A Velandia-Huerto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany.
- Biology Department, Universidad Nacional de Colombia, Bogotá, Colombia.
| | - Federico D Brown
- Departamento de Zoologia, Instituto Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
- Laboratorio de Biología del Desarrollo Evolutiva, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Adriaan Gittenberger
- Institute of Biology, Leiden University, Leiden, Netherlands
- GiMaRIS, BioScience Park Leiden, Leiden, Netherlands
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, Leipzig, Germany
| | | |
Collapse
|
48
|
Differentially Expressed tRNA-Derived Small RNAs Co-Sediment Primarily with Non-Polysomal Fractions in Drosophila. Genes (Basel) 2017; 8:genes8110333. [PMID: 29156628 PMCID: PMC5704246 DOI: 10.3390/genes8110333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 12/17/2022] Open
Abstract
Recent studies point to the existence of poorly characterized small regulatory RNAs generated from mRNAs, rRNAs and tRNAs. To explore the subcellular location of tRNA-derived small RNAs, 0–1 and 7–8 h Drosophila embryos were fractionated on sucrose density gradients. Analysis of 12,553,921 deep-sequencing reads from unfractionated and fractionated Drosophila embryos has revealed that tRFs, which are detected mainly from the 5’ends of tRNAs, co-sediment with the non-polysomal fractions. Interestingly, the expression levels of a subset of tRFs change temporally following the maternal-to-zygotic transition in embryos. We detected non-polysomal association of tRFs in S2 cells as well. Differential tRF expression pattern points to developmental significance at the organismal level. These results suggest that tRFs are associated primarily with the non-polysomal complexes in Drosophila embryos and S2 cells.
Collapse
|
49
|
Sun Y, Ji F, Kumar MR, Zheng X, Xiao Y, Liu N, Shi J, Wong L, Forgues M, Qin LX, Tang ZY, Zhao X, Wang XW, Ji J. Transcriptome integration analysis in hepatocellular carcinoma reveals discordant intronic miRNA-host gene pairs in expression. Int J Biol Sci 2017; 13:1438-1449. [PMID: 29209147 PMCID: PMC5715526 DOI: 10.7150/ijbs.20836] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
Intronic miRNAs, residing in intronic regions of host genes, are thought to be co-transcribed from their host genes and present consistent expression patterns with host genes. Recent studies reported a few intronic miRNAs with discordant expression with their host genes. We therefore aimed to understand the expression pattern of intronic miRNAs and their host genes in hepatocellular carcinoma (HCC) and reveal possible associated molecular mechanisms. Our genome wide integration analysis of miRNA and mRNA transcriptomes, in three dataset from 550 patients with HCC, found that a large amount of miRNA-host gene pairs were discordantly expressed. Consistent results were also revealed in 775 breast cancer patients. Further, most of HCC-related intronic miRNAs were predicted to have distinct upstream regulators and independent proximal promoter signals from host genes. The discordant expression of representative pairs, miR-26s/CTDSPs, was validated experimentally. We have also identified the independent transcriptional start site, promoter signal, and transcriptional factor of miR-26b from its host gene. Collectively, discordant expression of intronic miRNAs and their host genes was relatively ubiquitous and the intronic miRNA “independent transcription” may partially contribute to such a phenotype.
Collapse
Affiliation(s)
- Yulin Sun
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China.,University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.,State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fubo Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Mia R Kumar
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Xin Zheng
- Sinowell Beijing Tech Ltd, Beijing, 100045, China
| | - Yi Xiao
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Niya Liu
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Jiong Shi
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA.,Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Linda Wong
- University of Hawai'i Cancer Center, Honolulu, HI, 96813, USA.,Department of Surgery, John A. Burns School of Medicine, University of Hawai'i, Honolulu, HI, 96813, USA
| | - Marshonna Forgues
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Lun-Xiu Qin
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Zhao-You Tang
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China, 200433
| | - Xiaohang Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute & Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xin Wei Wang
- Liver Carcinogenesis Section, Laboratory of Human Carcinogenesis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Junfang Ji
- Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
50
|
Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Development 2017; 144:2548-2559. [PMID: 28720652 DOI: 10.1242/dev.146613] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) contribute to the progressive changes in gene expression that occur during development. The combined loss of all miRNAs results in embryonic lethality in all animals analyzed, illustrating the crucial role that miRNAs play collectively. However, although the loss of some individual miRNAs also results in severe developmental defects, the roles of many other miRNAs have been challenging to uncover. This has been mostly attributed to their proposed function as tuners of gene expression or providers of robustness. Here, we present a view of miRNAs in the context of development as a hierarchical and canalized series of gene regulatory networks. In this scheme, only a fraction of embryonic miRNAs act at the top of this hierarchy, with their loss resulting in broad developmental defects, whereas most other miRNAs are expressed with high cellular specificity and play roles at the periphery of development, affecting the terminal features of specialized cells. This view could help to shed new light on our understanding of miRNA function in development, disease and evolution.
Collapse
Affiliation(s)
- Chiara Alberti
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Luisa Cochella
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| |
Collapse
|