1
|
Narang K, Nath A, Hemstrom W, Chu SKS. HaloClass: Salt-Tolerant Protein Classification with Protein Language Models. Protein J 2024:10.1007/s10930-024-10236-7. [PMID: 39432175 DOI: 10.1007/s10930-024-10236-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Salt-tolerant proteins, also known as halophilic proteins, have unique adaptations to function in high-salinity environments. These proteins have naturally evolved in extremophilic organisms, and more recently, are being increasingly applied as enzymes in industrial processes. Due to an abundance of salt-tolerant sequences and a simultaneous lack of experimental structures, most computational methods to predict stability are sequence-based only. These approaches, however, are hindered by a lack of structural understanding of these proteins. Here, we present HaloClass, an SVM classifier that leverages ESM-2 protein language model embeddings to accurately identify salt-tolerant proteins. On a newer and larger test dataset, HaloClass outperforms existing approaches when predicting the stability of never-before-seen proteins that are distal to its training set. Finally, on a mutation study that evaluated changes in salt tolerance based on single- and multiple-point mutants, HaloClass outperforms existing approaches, suggesting applications in the guided design of salt-tolerant enzymes.
Collapse
Affiliation(s)
- Kush Narang
- College of Biological Sciences, University of California, Davis, USA.
| | - Abhigyan Nath
- Department of Biochemistry, Pt. Jawahar Lal Nehru Memorial Medical College, Raipur, India
| | - William Hemstrom
- Department of Biological Sciences, Purdue University, West Lafayette, USA
| | - Simon K S Chu
- Biophysics Graduate Program, University of California, Davis, USA
| |
Collapse
|
2
|
Arthi R, Parameswari E, Dhevagi P, Janaki P, Parimaladevi R. Microbial alchemists: unveiling the hidden potentials of halophilic organisms for soil restoration. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33949-9. [PMID: 38877191 DOI: 10.1007/s11356-024-33949-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Salinity, resulting from various contaminants, is a major concern to global crop cultivation. Soil salinity results in increased osmotic stress, oxidative stress, specific ion toxicity, nutrient deficiency in plants, groundwater contamination, and negative impacts on biogeochemical cycles. Leaching, the prevailing remediation method, is expensive, energy-intensive, demands more fresh water, and also causes nutrient loss which leads to infertile cropland and eutrophication of water bodies. Moreover, in soils co-contaminated with persistent organic pollutants, heavy metals, and textile dyes, leaching techniques may not be effective. It promotes the adoption of microbial remediation as an effective and eco-friendly method. Common microbes such as Pseudomonas, Trichoderma, and Bacillus often struggle to survive in high-saline conditions due to osmotic stress, ion imbalance, and protein denaturation. Halophiles, capable of withstanding high-saline conditions, exhibit a remarkable ability to utilize a broad spectrum of organic pollutants as carbon sources and restore the polluted environment. Furthermore, halophiles can enhance plant growth under stress conditions and produce vital bio-enzymes. Halophilic microorganisms can contribute to increasing soil microbial diversity, pollutant degradation, stabilizing soil structure, participating in nutrient dynamics, bio-geochemical cycles, enhancing soil fertility, and crop growth. This review provides an in-depth analysis of pollutant degradation, salt-tolerating mechanisms, and plant-soil-microbe interaction and offers a holistic perspective on their potential for soil restoration.
Collapse
Affiliation(s)
- Ravichandran Arthi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Periyasamy Dhevagi
- Department of Environmental Science, Tamil Nadu Agricultural University, Coimbatore, India
| | - Ponnusamy Janaki
- Nammazhvar Organic Farming Research Centre, Tamil Nadu Agricultural University, Coimbatore, India
| | - Rathinasamy Parimaladevi
- Department of Bioenergy, Agrl. Engineering College & Research Institute, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
3
|
Matarredona L, García-Bonete MJ, Guío J, Camacho M, Fillat MF, Esclapez J, Bonete MJ. Global Lrp regulator protein from Haloferax mediterranei: Transcriptional analysis and structural characterization. Int J Biol Macromol 2024; 260:129541. [PMID: 38244746 DOI: 10.1016/j.ijbiomac.2024.129541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/22/2024]
Abstract
Haloferax mediterranei, an extreme halophilic archaeon thriving in hypersaline environments, has acquired significant attention in biotechnological and biochemical research due to its remarkable ability to flourish in extreme salinity conditions. Transcription factors, essential in regulating diverse cellular processes, have become focal points in understanding its adaptability. This study delves into the role of the Lrp transcription factor, exploring its modulation of glnA, nasABC, and lrp gene promoters in vivo through β-galactosidase assays. Remarkably, our findings propose Lrp as the pioneering transcriptional regulator of nitrogen metabolism identified in a haloarchaeon. This study suggests its potential role in activating or repressing assimilatory pathway enzymes (GlnA and NasA). The interaction between Lrp and these promoters is analyzed using Electrophoretic Mobility Shift Assay and Differential Scanning Fluorimetry, highlighting l-glutamine's indispensable role in stabilizing the Lrp-DNA complex. Our research uncovers that halophilic Lrp forms octameric structures in the presence of l-glutamine. The study reveals the three-dimensional structure of the Lrp as a homodimer using X-ray crystallography, confirming this state in solution by Small-Angle X-ray Scattering. These findings illuminate the complex molecular mechanisms driving Hfx. mediterranei's nitrogen metabolism, offering valuable insights about its gene expression regulation and enriching our comprehension of extremophile biology.
Collapse
Affiliation(s)
- Laura Matarredona
- Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Grupo Biotecnología de Extremófilos, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| | - María-José García-Bonete
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine. University of Gothenburg, Sweden
| | - Jorge Guío
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Mónica Camacho
- Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Grupo Biotecnología de Extremófilos, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain
| | - María F Fillat
- Departamento de Bioquímica y Biología Molecular y Celular, Institute for Biocomputation and Physics of Complex Systems, Universidad de Zaragoza, Zaragoza, Spain
| | - Julia Esclapez
- Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Grupo Biotecnología de Extremófilos, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain.
| | - María-José Bonete
- Departamento de Bioquímica y Biología Molecular y Edafología y Química Agrícola, Grupo Biotecnología de Extremófilos, Universidad de Alicante, San Vicente del Raspeig, Alicante, Spain.
| |
Collapse
|
4
|
Payá G, Bautista V, Pastor-Soler S, Camacho M, Esclapez J, Bonete MJ. Analysis of Lsm Protein-Mediated Regulation in the Haloarchaeon Haloferax mediterranei. Int J Mol Sci 2024; 25:580. [PMID: 38203750 PMCID: PMC10779274 DOI: 10.3390/ijms25010580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq found in the Eukarya, Archaea, and Bacteria domains. Archaeal Lsm proteins have been shown to bind sRNAs and are probably involved in various cellular processes, suggesting a similar function in regulating sRNAs by Hfq in bacteria. Moreover, archaeal Lsm proteins probably represent the ancestral Lsm domain from which eukaryotic Sm proteins have evolved. In this work, Haloferax mediterranei was used as a model organism because it has been widely used to investigate the nitrogen cycle and its regulation in Haloarchaea. Predicting this protein's secondary and tertiary structures has resulted in a three-dimensional model like the solved Lsm protein structure of Archaeoglobus fulgidus. To obtain information on the oligomerization state of the protein, homologous overexpression and purification by means of molecular exclusion chromatography have been performed. The results show that this protein can form hexameric complexes, which can aggregate into 6 or 12 hexameric rings depending on the NaCl concentration and without RNA. In addition, the study of transcriptional expression via microarrays has allowed us to obtain the target genes regulated by the Lsm protein under nutritional stress conditions: nitrogen or carbon starvation. Microarray analysis has shown the first universal stress proteins (USP) in this microorganism that mediate survival in situations of nitrogen deficiency.
Collapse
Affiliation(s)
| | | | | | | | | | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain; (G.P.); (V.B.); (S.P.-S.); (M.C.); (J.E.)
| |
Collapse
|
5
|
Yao H, Liu S, Liu T, Ren D, Zhou Z, Yang Q, Mao J. Microbial-derived salt-tolerant proteases and their applications in high-salt traditional soybean fermented foods: a review. BIORESOUR BIOPROCESS 2023; 10:82. [PMID: 38647906 PMCID: PMC10992980 DOI: 10.1186/s40643-023-00704-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/31/2023] [Indexed: 04/25/2024] Open
Abstract
Different microorganisms can produce different proteases, which can adapt to different industrial requirements such as pH, temperature, and pressure. Salt-tolerant proteases (STPs) from microorganisms exhibit higher salt tolerance, wider adaptability, and more efficient catalytic ability under extreme conditions compared to conventional proteases. These unique enzymes hold great promise for applications in various industries including food, medicine, environmental protection, agriculture, detergents, dyes, and others. Scientific studies on microbial-derived STPs have been widely reported, but there has been little systematic review of microbial-derived STPs and their application in high-salt conventional soybean fermentable foods. This review presents the STP-producing microbial species and their selection methods, and summarizes and analyzes the salt tolerance mechanisms of the microorganisms. It also outlines various techniques for the isolation and purification of STPs from microorganisms and discusses the salt tolerance mechanisms of STPs. Furthermore, this review demonstrates the contribution of modern biotechnology in the screening of novel microbial-derived STPs and their improvement in salt tolerance. It highlights the potential applications and commercial value of salt-tolerant microorganisms and STPs in high-salt traditional soy fermented foods. The review ends with concluding remarks on the challenges and future directions for microbial-derived STPs. This review provides valuable insights into the separation, purification, performance enhancement, and application of microbial-derived STPs in traditional fermented foods.
Collapse
Affiliation(s)
- Hongli Yao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Department of Biology and Food Engineering, Bozhou University, Bozhou, 236800, Anhui, China
| | - Shuangping Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Tiantian Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Dongliang Ren
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhilei Zhou
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China
| | - Qilin Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jian Mao
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, Guangdong, China.
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
- Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, 31200, Zhejiang, China.
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine CO., LTD, Shaoxing, 646000, Zhejiang, China.
| |
Collapse
|
6
|
Payá G, Bautista V, Camacho M, Esclapez J, Bonete MJ. Comprehensive Bioinformatics Analysis of the Biodiversity of Lsm Proteins in the Archaea Domain. Microorganisms 2023; 11:1196. [PMID: 37317170 DOI: 10.3390/microorganisms11051196] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The Sm protein superfamily includes Sm, like-Sm (Lsm), and Hfq proteins. Sm and Lsm proteins are found in the Eukarya and Archaea domains, respectively, while Hfq proteins exist in the Bacteria domain. Even though Sm and Hfq proteins have been extensively studied, archaeal Lsm proteins still require further exploration. In this work, different bioinformatics tools are used to understand the diversity and distribution of 168 Lsm proteins in 109 archaeal species to increase the global understanding of these proteins. All 109 archaeal species analyzed encode one to three Lsm proteins in their genome. Lsm proteins can be classified into two groups based on molecular weight. Regarding the gene environment of lsm genes, many of these genes are located adjacent to transcriptional regulators of the Lrp/AsnC and MarR families, RNA-binding proteins, and ribosomal protein L37e. Notably, only proteins from species of the class Halobacteria conserved the internal and external residues of the RNA-binding site identified in Pyrococcus abyssi, despite belonging to different taxonomic orders. In most species, the Lsm genes show associations with 11 genes: rpl7ae, rpl37e, fusA, flpA, purF, rrp4, rrp41, hel308, rpoD, rpoH, and rpoN. We propose that most archaeal Lsm proteins are related to the RNA metabolism, and the larger Lsm proteins could perform different functions and/or act through other mechanisms of action.
Collapse
Affiliation(s)
- Gloria Payá
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Vanesa Bautista
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Ap 99, 03080 Alicante, Spain
| |
Collapse
|
7
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
8
|
Laye VJ, Solieva S, Voelz VA, DasSarma S. Effects of Salinity and Temperature on the Flexibility and Function of a Polyextremophilic Enzyme. Int J Mol Sci 2022; 23:15620. [PMID: 36555259 PMCID: PMC9779221 DOI: 10.3390/ijms232415620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
The polyextremophilic β-galactosidase enzyme of the haloarchaeon Halorubrum lacusprofundi functions in extremely cold and hypersaline conditions. To better understand the basis of polyextremophilic activity, the enzyme was studied using steady-state kinetics and molecular dynamics at temperatures ranging from 10 °C to 50 °C and salt concentrations from 1 M to 4 M KCl. Kinetic analysis showed that while catalytic efficiency (kcat/Km) improves with increasing temperature and salinity, Km is reduced with decreasing temperatures and increasing salinity, consistent with improved substrate binding at low temperatures. In contrast, kcat was similar from 2-4 M KCl across the temperature range, with the calculated enthalpic and entropic components indicating a threshold of 2 M KCl to lower the activation barrier for catalysis. With molecular dynamics simulations, the increase in per-residue root-mean-square fluctuation (RMSF) was observed with higher temperature and salinity, with trends like those seen with the catalytic efficiency, consistent with the enzyme's function being related to its flexibility. Domain A had the smallest change in flexibility across the conditions tested, suggesting the adaptation to extreme conditions occurs via regions distant to the active site and surface accessible residues. Increased flexibility was most apparent in the distal active sites, indicating their importance in conferring salinity and temperature-dependent effects.
Collapse
Affiliation(s)
- Victoria J. Laye
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| | - Shahlo Solieva
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Vincent A. Voelz
- Department of Chemistry, Temple University, Philadelphia, PA 19122, USA
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, MD 21202, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
9
|
Vaz BMC, Kholany M, Pinto DCGA, Macário IPE, Veloso T, Caetano T, Pereira JL, Coutinho JAP, Ventura SPM. Recovery of bacterioruberin and proteins using aqueous solutions of surface-active compounds. RSC Adv 2022; 12:30278-30286. [PMID: 36337967 PMCID: PMC9590249 DOI: 10.1039/d2ra02581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/02/2022] [Indexed: 11/30/2022] Open
Abstract
Haloarchaea microorganisms are little explored marine resources that can be a promising source of valuable compounds with unique characteristics, due to their adaptation to extreme environments. In this work, the extraction of bacterioruberin and proteins from Haloferax mediterranei ATCC 33500 was investigated using aqueous solutions of ionic liquids and surfactants, which were further compared with ethanol. Despite the good performance of ethanol in the extraction of bacterioruberin, the use of aqueous solutions of surface-active compounds allowed the simultaneous release of bacterioruberin and proteins in a multi-product process, with the non-ionic surfactants being identified as the most promising. The optimum operational conditions allowed a maximum extraction yield of 0.37 ± 0.01 mgbacterioruberin gwet biomass -1 and 352 ± 9 mgprotein gwet biomass -1 with an aqueous solution of Tween® 20 (at 182.4 mM) as the extraction solvent. In addition, high purities of bacterioruberin were obtained, after performing a simple induced precipitation using ethanol as an antisolvent to recover the proteins present in the initial extract. Finally, a step for polishing the bacterioruberin was performed, to enable solvent recycling, further closing the process to maximize its circularity.
Collapse
Affiliation(s)
- Bárbara M C Vaz
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Mariam Kholany
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Diana C G A Pinto
- LAQV - REQUIMTE, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
| | - Inês P E Macário
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Telma Veloso
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Tânia Caetano
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - João A P Coutinho
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| | - Sónia P M Ventura
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
10
|
Rationally tailoring the halophilicity of an amylolytic enzyme for application in dehydrating conditions. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Salt- and pH-Dependent Thermal Stability of Photocomplexes from Extremophilic Bacteriochlorophyll b-Containing Halo-rhodospira Species. Microorganisms 2022; 10:microorganisms10050959. [PMID: 35630403 PMCID: PMC9146400 DOI: 10.3390/microorganisms10050959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/22/2022] Open
Abstract
Halorhodospira (Hlr.) species are the most halophilic and alkaliphilic of all purple bacteria. Hlr. halochloris exhibits the lowest LH1 Qy transition energy among phototrophic organisms and is the only known triply extremophilic anoxygenic phototroph, displaying a thermophilic, halophilic, and alkaliphilic phenotype. Recently, we reported that electrostatic charges are responsible for the unusual spectroscopic properties of the Hlr. halochloris LH1 complex. In the present work, we examined the effects of salt and pH on the spectroscopic properties and thermal stability of LH1-RCs from Hlr. halochloris compared with its mesophilic counterpart, Hlr. abdelmalekii. Experiments in which the photocomplexes were subjected to different levels of salt or variable pH revealed that the thermal stability of LH1-RCs from both species was largely retained in the presence of high salt concentrations and/or at alkaline pH but was markedly reduced by lowering the salt concentration and/or pH. Based on the amino acid sequences of LH1 polypeptides and their composition of acidic/basic residues and the Hofmeister series for cation/anion species, we discuss the importance of electrostatic charge in stabilizing the Hlr. halochloris LH1-RC complex to allow it to perform photosynthesis in its warm, hypersaline, and alkaline habitat.
Collapse
|
12
|
Obruča S, Dvořák P, Sedláček P, Koller M, Sedlář K, Pernicová I, Šafránek D. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics. Biotechnol Adv 2022; 58:107906. [DOI: 10.1016/j.biotechadv.2022.107906] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
|
13
|
Piszkin L, Bowman J. Extremophile enzyme optimization for low temperature and high salinity are fundamentally incompatible. Extremophiles 2021; 26:5. [PMID: 34940913 DOI: 10.1007/s00792-021-01254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The evolutionary mechanisms behind cold and high-saline co-adaptation of proteins are not thoroughly understood. To explore how enzymes evolve in response to multiple environmental pressures we developed a novel in silico method to model the directed evolution of proteins, the Protein Evolution Parameter Calculator (PEPC). PEPC carries out single amino acid substitutions that lead to improvements in the selected user-defined parameters. To investigate the evolutionary relationship between increased flexibility and decreased isoelectric point, which are presumed indicators of cold and saline adaptation in proteins, we applied PEPC to a subset of core haloarchaea orthologous group (cHOG) proteins from the mesophilic Halobacterium salinarum NRC-1 and cold-tolerant Halorubrum lacusprofundi strain ATCC 49239. The results suggest that mutations that increase flexibility will also generally increase isoelectric point. These findings suggest that enzyme adaptation to low temperature and high salinity might be evolutionarily counterposed based on the structural characteristics of probable amino acid mutations. This may help to explain the apparent lack of truly psychrophilic halophiles in nature, and why microbes adapted to polar hypersaline environments typically have mesophilic temperature optima. A better understanding of protein evolution to extremely cold and salty conditions will aid in our understanding of where and how life is distributed on Earth and in our solar system.
Collapse
Affiliation(s)
- Luke Piszkin
- Department of Physics, UC San Diego, La Jolla, CA, USA.
| | - Jeff Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Carré L, Girard É, Franzetti B. Experimental study of proteome halophilicity using nanoDSF: a proof of concept. Extremophiles 2021; 26:1. [PMID: 34878593 DOI: 10.1007/s00792-021-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/30/2021] [Indexed: 10/19/2022]
Abstract
Adaption to environmental conditions is reflected by protein adaptation. In particular, proteins of extremophiles display distinctive traits ensuring functional, structural and dynamical properties under permanently extreme physical and chemical conditions. While it has mostly been studied with approaches focusing on specific proteins, biophysical approaches have also confirmed this link between environmental and protein adaptation at the more complex and diverse scale of the proteome. However, studies of this type remain challenging and often require large amounts of biological material. We report here the use of nanoDSF as a tool to study proteome stability and solubility in cell lysates of the model halophilic archaeon Haloarcula marismortui. Notably, our results show that, as with single halophilic protein studies, proteome stability was correlated to the concentration of NaCl or KCl under which the cells were lysed and hence the proteome exposed. This work highlights that adaptation to environmental conditions can be experimentally observed at the scale of the proteome. Still, we show that the biochemical properties of single halophilic proteins can only be partially extrapolated to the whole proteome.
Collapse
Affiliation(s)
- Lorenzo Carré
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | - Éric Girard
- Univ Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | |
Collapse
|
15
|
Fuentes-Ugarte N, Herrera SM, Maturana P, Castro-Fernandez V, Guixé V. Structural and Kinetic Insights Into the Molecular Basis of Salt Tolerance of the Short-Chain Glucose-6-Phosphate Dehydrogenase From Haloferax volcanii. Front Microbiol 2021; 12:730429. [PMID: 34650535 PMCID: PMC8506132 DOI: 10.3389/fmicb.2021.730429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Halophilic enzymes need high salt concentrations for activity and stability and are considered a promising source for biotechnological applications. The model study for haloadaptation has been proteins from the Halobacteria class of Archaea, where common structural characteristics have been found. However, the effect of salt on enzyme function and conformational dynamics has been much less explored. Here we report the structural and kinetic characteristics of glucose-6-phosphate dehydrogenase from Haloferax volcanii (HvG6PDH) belonging to the short-chain dehydrogenases/reductases (SDR) superfamily. The enzyme was expressed in Escherichia coli and successfully solubilized and refolded from inclusion bodies. The enzyme is active in the presence of several salts, though the maximum activity is achieved in the presence of KCl, mainly by an increment in the kcat value, that correlates with a diminution of its flexibility according to molecular dynamics simulations. The high KM for glucose-6-phosphate and its promiscuous activity for glucose restrict the use of HvG6PDH as an auxiliary enzyme for the determination of halophilic glucokinase activity. Phylogenetic analysis indicates that SDR-G6PDH enzymes are exclusively present in Halobacteria, with HvG6PDH being the only enzyme characterized. Homology modeling and molecular dynamics simulations of HvG6PDH identified a conserved NLTX2H motif involved in glucose-6-phosphate interaction at high salt concentrations, whose residues could be crucial for substrate specificity. Structural differences in its conformational dynamics, potentially related to the haloadaptation strategy, were also determined.
Collapse
Affiliation(s)
- Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sixto M Herrera
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo Maturana
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
16
|
Analysis of Haloferax mediterranei Lrp Transcriptional Regulator. Genes (Basel) 2021; 12:genes12060802. [PMID: 34070366 PMCID: PMC8229911 DOI: 10.3390/genes12060802] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/26/2022] Open
Abstract
Haloferax mediterranei is an extremely halophilic archaeon, able to live in hypersaline environments with versatile nutritional requirements, whose study represents an excellent basis in the field of biotechnology. The transcriptional machinery in Archaea combines the eukaryotic basal apparatus and the bacterial regulation mechanisms. However, little is known about molecular mechanisms of gene expression regulation compared with Bacteria, particularly in Haloarchaea. The genome of Hfx. mediterranei contains a gene, lrp (HFX_RS01210), which encodes a transcriptional factor belonging to Lrp/AsnC family. It is located downstream of the glutamine synthetase gene (HFX_RS01205), an enzyme involved in ammonium assimilation and amino acid metabolism. To study this transcriptional factor more deeply, the lrp gene has been homologously overexpressed and purified under native conditions by two chromatographic steps, namely nickel affinity and gel filtration chromatography, showing that Lrp behaves asa tetrameric protein of approximately 67 kDa. Its promoter region has been characterized under different growth conditions using bgaH as a reporter gene. The amount of Lrp protein was also analyzed by Western blotting in different nitrogen sources and under various stress conditions. To sum up, regarding its involvement in the nitrogen cycle, it has been shown that its expression profile does not change in response to the nitrogen sources tested. Differences in its expression pattern have been observed under different stress conditions, such as in the presence of hydrogen peroxide or heavy metals. According to these results, the Lrp seems to be involved in a general response against stress factors, acting as a first-line transcriptional regulator.
Collapse
|
17
|
Payá G, Bautista V, Camacho M, Bonete MJ, Esclapez J. Functional analysis of Lsm protein under multiple stress conditions in the extreme haloarchaeon Haloferax mediterranei. Biochimie 2021; 187:33-47. [PMID: 33992715 DOI: 10.1016/j.biochi.2021.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/24/2023]
Abstract
The Sm, like-Sm, and Hfq proteins belonging to the Sm superfamily of proteins are represented in all domains of life. These proteins are involved in several RNA metabolism pathways. The functions of bacterial Hfq and eukaryotic Sm proteins have been described, but knowledge about the in vivo functions of archaeal Sm proteins remains limited. This study aims to improve the understanding of Lsm proteins and their role using the haloarchaeon Haloferax mediterranei as a model microorganism. The Haloferax mediterranei genome contains one lsm gene that overlaps with the rpl37e gene. To determine the expression of lsm and rpl37e genes and the co-transcription of both, reverse transcription-polymerase chain reaction (RT-PCR) analyses were performed under different standard and stress conditions. The results suggest that the expression of lsm and rpl37e is constitutive. Co-transcription occurs at sub-optimal salt concentrations and temperatures, depending on the growth phase. The halophilic Lsm protein contains two Sm motifs, Sm1 and Sm2, and the sequence encoding the Sm2 motif also constitutes the promoter of the rpl37e gene. To investigate their biological functions, the lsm deletion mutant and the Sm1 motif deletion mutant, where the Sm2 motif remained intact, were generated and characterised. Comparison of the lsm deletion mutant, Sm1 deletion mutant, and the parental strain HM26 under standard and stress growth conditions revealed growth differences. Finally, swarming assays in complex and defined media showed greater swarming capacity in the deletion mutants.
Collapse
Affiliation(s)
- Gloria Payá
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Vanesa Bautista
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Mónica Camacho
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - María-José Bonete
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| | - Julia Esclapez
- Agrochemistry and Biochemistry Department, Biochemistry and Molecular Biology Area, Faculty of Science, University of Alicante, Ap 99, 03080, Alicante, Spain.
| |
Collapse
|
18
|
Li Q, Li M, Li C, Li X, Lu C, Tu X, Zhang Z, Zhang X. Halophilic to mesophilic adaptation of ubiquitin-like proteins. FEBS Lett 2020; 595:521-531. [PMID: 33301612 DOI: 10.1002/1873-3468.14023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/15/2020] [Accepted: 12/06/2020] [Indexed: 11/11/2022]
Abstract
Elucidating how proteins adapt from halophilic to mesophilic environments will enable a better understanding of protein evolution and folding. In this study, by directed evolution and site-directed mutagenesis of the halophilic ubiquitin-like protein (ULP) Samp2, we find that substitution of the prebiotic amino acid Asp31 by Gly is uniquely effective in the mesophilic adaptation of ULP. Sequence analysis shows that substitution of Asp/Glu in halophilic ULPs by Gly in mesophilic ULPs has higher occurrence than other substitutions, supporting the unique role of the substitution in the mesophilic adaptation of ULP. Molecular dynamic simulations indicate that the mesophilic adaptation might result from the effect of the substitution on the conformational flexibility of ULP.
Collapse
Affiliation(s)
- Quan Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Mengqing Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Cong Li
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xinxin Li
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Chenghui Lu
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| | - Xiaoming Tu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhiyong Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xuecheng Zhang
- School of Life Sciences, Anhui University, Hefei, China.,Anhui Provincial Engineering Technology Research Center of Microorganisms and Biocatalysis, Hefei, China
| |
Collapse
|
19
|
Chauhan AK, Choudhury B. Suitability of organic solvent and cholinium based ionic liquid activated novel lignolytic enzymes of H. aswanensis for enhanced Kalson lignin degradation. Int J Biol Macromol 2020; 165:107-117. [DOI: 10.1016/j.ijbiomac.2020.09.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022]
|
20
|
Oyewusi HA, Wahab RA, Huyop F. Dehalogenase-producing halophiles and their potential role in bioremediation. MARINE POLLUTION BULLETIN 2020; 160:111603. [PMID: 32919122 DOI: 10.1016/j.marpolbul.2020.111603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/21/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
This review aims to briefly describe the potential role of dehalogenase-producing halophilic bacteria in decontamination of organohalide pollutants. Hypersaline habitats pose challenges to life because of low water activity (water content) and is considered as the largest and ultimate sink for pollutants due to naturally and anthropogenic activities in which a substantial amount of ecological contaminants are organohalides. Several such environments appear to host and support substantial diversity of extremely halophilic and halotolerant bacteria as well as halophilic archaea. Biodegradation of several toxic inorganic and organic compounds in both aerobic and anaerobic conditions are carried out by halophilic microbes. Therefore, remediation of polluted marine/hypersaline environments are the main scorching issues in the field of biotechnology. Although many microbial species are reported as effective pollutants degrader, but little has been isolated from marine/hypersaline environments. Therefore, more novel microbial species with dehalogenase-producing ability are still desired.
Collapse
Affiliation(s)
- Habeebat Adekilekun Oyewusi
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Department of Biochemistry, School of Science and Computer Studies, Federal Polytechnic Ado Ekiti, PMB, 5351, Ekiti State, Nigeria
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Fahrul Huyop
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
21
|
Karan R, Mathew S, Muhammad R, Bautista DB, Vogler M, Eppinger J, Oliva R, Cavallo L, Arold ST, Rueping M. Understanding High-Salt and Cold Adaptation of a Polyextremophilic Enzyme. Microorganisms 2020; 8:microorganisms8101594. [PMID: 33081237 PMCID: PMC7602713 DOI: 10.3390/microorganisms8101594] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022] Open
Abstract
The haloarchaeon Halorubrum lacusprofundi is among the few polyextremophilic organisms capable of surviving in one of the most extreme aquatic environments on Earth, the Deep Lake of Antarctica (−18 °C to +11.5 °C and 21–28%, w/v salt content). Hence, H. lacusprofundi has been proposed as a model for biotechnology and astrobiology to investigate potential life beyond Earth. To understand the mechanisms that allow proteins to adapt to both salinity and cold, we structurally (including X-ray crystallography and molecular dynamics simulations) and functionally characterized the β-galactosidase from H. lacusprofundi (hla_bga). Recombinant hla_bga (produced in Haloferax volcanii) revealed exceptional stability, tolerating up to 4 M NaCl and up to 20% (v/v) of organic solvents. Despite being cold-adapted, hla_bga was also stable up to 60 °C. Structural analysis showed that hla_bga combined increased surface acidity (associated with halophily) with increased structural flexibility, fine-tuned on a residue level, for sustaining activity at low temperatures. The resulting blend enhanced structural flexibility at low temperatures but also limited protein movements at higher temperatures relative to mesophilic homologs. Collectively, these observations help in understanding the molecular basis of a dual psychrophilic and halophilic adaptation and suggest that such enzymes may be intrinsically stable and functional over an exceptionally large temperature range.
Collapse
Affiliation(s)
- Ram Karan
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| | - Sam Mathew
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Reyhan Muhammad
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia;
| | - Didier B. Bautista
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Malvina Vogler
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Jorg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Romina Oliva
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy
| | - Luigi Cavallo
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Biological and Environmental Science and Engineering (BESE), Thuwal 23955-6900, Saudi Arabia;
- Centre de Biochimie Structurale, CNRS, INSERM, Université de Montpellier, 34090 Montpellier, France
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (S.M.); (D.B.B.); (M.V.); (J.E.); (R.O.); (L.C.)
- Correspondence: (R.K.); (S.T.A.); (M.R.)
| |
Collapse
|
22
|
Akanbi TO, Ji D, Agyei D. Revisiting the scope and applications of food enzymes from extremophiles. J Food Biochem 2020; 44:e13475. [PMID: 32996180 DOI: 10.1111/jfbc.13475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Microorganisms from extreme environments tend to undergo various adaptations due to environmental conditions such as extreme pH, temperature, salinity, heavy metals, and solvents. Thus, they produce enzymes with unique properties and high specificity, making them useful industrially, particularly in the food industries. Despite these enzymes' remarkable properties, only a few instances can be reported for actual exploitation in the food industry. This review's objectives are to highlight the properties of these enzymes and their prospects in the food industry. First, an introduction to extremophilic organisms is presented, followed by the categories and application of food enzymes from extremophiles. Then, the unique structural features of extremozymes are shown. This review also covers the prospective applications of extremozymes in the food industry in a broader sense, including degradation of toxins, deconstruction of polymers into monomers, and catalysis of multistep processes. Finally, the challenges in bioprocessing of extremozymes and applications in food are presented. PRACTICAL APPLICATIONS: Enzymes are important players in food processing and preservation. Extremozymes, by their nature, are ideal for a broad range of food processing applications, particularly those that require process conditions of extreme pH, temperature, and salinity. As the global food industry grows, so too will grow the need to research and develop food products that are diverse, safe, healthy, and nutritious. There is also the need to produce food in a sustainable way that generates less waste or maximizes waste valorization. We anticipate that extremozymes can meet some of the research and development needs of the food industry.
Collapse
Affiliation(s)
- Taiwo O Akanbi
- Faculty of Science, School of Environmental and Life Sciences, University of Newcastle, Ourimbah, NSW, Australia
| | - Dawei Ji
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
23
|
Matarredona L, Camacho M, Zafrilla B, Bonete MJ, Esclapez J. The Role of Stress Proteins in Haloarchaea and Their Adaptive Response to Environmental Shifts. Biomolecules 2020; 10:biom10101390. [PMID: 33003558 PMCID: PMC7601130 DOI: 10.3390/biom10101390] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022] Open
Abstract
Over the years, in order to survive in their natural environment, microbial communities have acquired adaptations to nonoptimal growth conditions. These shifts are usually related to stress conditions such as low/high solar radiation, extreme temperatures, oxidative stress, pH variations, changes in salinity, or a high concentration of heavy metals. In addition, climate change is resulting in these stress conditions becoming more significant due to the frequency and intensity of extreme weather events. The most relevant damaging effect of these stressors is protein denaturation. To cope with this effect, organisms have developed different mechanisms, wherein the stress genes play an important role in deciding which of them survive. Each organism has different responses that involve the activation of many genes and molecules as well as downregulation of other genes and pathways. Focused on salinity stress, the archaeal domain encompasses the most significant extremophiles living in high-salinity environments. To have the capacity to withstand this high salinity without losing protein structure and function, the microorganisms have distinct adaptations. The haloarchaeal stress response protects cells against abiotic stressors through the synthesis of stress proteins. This includes other heat shock stress proteins (Hsp), thermoprotectants, survival proteins, universal stress proteins, and multicellular structures. Gene and family stress proteins are highly conserved among members of the halophilic archaea and their study should continue in order to develop means to improve for biotechnological purposes. In this review, all the mechanisms to cope with stress response by haloarchaea are discussed from a global perspective, specifically focusing on the role played by universal stress proteins.
Collapse
|
24
|
Vogler M, Karan R, Renn D, Vancea A, Vielberg MT, Grötzinger SW, DasSarma P, DasSarma S, Eppinger J, Groll M, Rueping M. Crystal Structure and Active Site Engineering of a Halophilic γ-Carbonic Anhydrase. Front Microbiol 2020; 11:742. [PMID: 32411108 PMCID: PMC7199487 DOI: 10.3389/fmicb.2020.00742] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 11/27/2022] Open
Abstract
Environments previously thought to be uninhabitable offer a tremendous wealth of unexplored microorganisms and enzymes. In this paper, we present the discovery and characterization of a novel γ-carbonic anhydrase (γ-CA) from the polyextreme Red Sea brine pool Discovery Deep (2141 m depth, 44.8°C, 26.2% salt) by single-cell genome sequencing. The extensive analysis of the selected gene helps demonstrate the potential of this culture-independent method. The enzyme was expressed in the bioengineered haloarchaeon Halobacterium sp. NRC-1 and characterized by X-ray crystallography and mutagenesis. The 2.6 Å crystal structure of the protein shows a trimeric arrangement. Within the γ-CA, several possible structural determinants responsible for the enzyme's salt stability could be highlighted. Moreover, the amino acid composition on the protein surface and the intra- and intermolecular interactions within the protein differ significantly from those of its close homologs. To gain further insights into the catalytic residues of the γ-CA enzyme, we created a library of variants around the active site residues and successfully improved the enzyme activity by 17-fold. As several γ-CAs have been reported without measurable activity, this provides further clues as to critical residues. Our study reveals insights into the halophilic γ-CA activity and its unique adaptations. The study of the polyextremophilic carbonic anhydrase provides a basis for outlining insights into strategies for salt adaptation, yielding enzymes with industrially valuable properties, and the underlying mechanisms of protein evolution.
Collapse
Affiliation(s)
- Malvina Vogler
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Ram Karan
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Dominik Renn
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandra Vancea
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Marie-Theres Vielberg
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Stefan W. Grötzinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Priya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Department of Microbiology and Immunology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jörg Eppinger
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Michael Groll
- Center for Integrated Protein Science Munich, Department of Chemistry, Technische Universität München, Garching, Germany
| | - Magnus Rueping
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
25
|
Abstract
Cellular function is generally depicted at the level of functional pathways and detailed structural mechanisms, based on the identification of specific protein–protein interactions. For an individual protein searching for its partner, however, the perspective is quite different: The functional task is challenged by a dense crowd of nonpartners obstructing the way. Adding to the challenge, there is little information about how to navigate the search, since the encountered surrounding is composed of protein surfaces that are predominantly “nonconserved” or, at least, highly variable across organisms. In this study, we demonstrate from a colloidal standpoint that such a blindfolded intracellular search is indeed favored and has more fundamental impact on the cellular organization than previously anticipated. Basically, the unique polyion composition of cellular systems renders the electrostatic interactions different from those in physiological buffer, leading to a situation where the protein net-charge density balances the attractive dispersion force and surface heterogeneity at close range. Inspection of naturally occurring proteomes and in-cell NMR data show further that the “nonconserved” protein surfaces are by no means passive but chemically biased to varying degree of net-negative repulsion across organisms. Finally, this electrostatic control explains how protein crowding is spontaneously maintained at a constant level through the intracellular osmotic pressure and leads to the prediction that the “extreme” in halophilic adaptation is not the ionic-liquid conditions per se but the evolutionary barrier of crossing its physicochemical boundaries.
Collapse
|
26
|
Abstract
Type I Baeyer–Villiger monooxygenases (BVMOs) are flavin-dependent monooxygenases that catalyze the oxidation of ketones to esters or lactones, a reaction otherwise performed in chemical processes by employing hazardous and toxic peracids. Even though various BVMOs are extensively studied for their promising role in industrial biotechnology, there is still a demand for enzymes that are able to retain activity at high saline concentrations. To this aim, and based on comparative in silico analyses, we cloned HtBVMO from the extremely halophilic archaeon Haloterrigena turkmenica DSM 5511. When expressed in standard mesophilic cell factories, proteins adapted to hypersaline environments often behave similarly to intrinsically disordered polypeptides. Nevertheless, we managed to express HtBVMO in Escherichia coli and could purify it as active enzyme. The enzyme was characterized in terms of its salt-dependent activity and resistance to some water–organic-solvent mixtures. Although HtBVMO does not seem suitable for industrial applications, it provides a peculiar example of an alkalophilic and halophilic BVMO characterized by an extremely negative charge. Insights into the behavior and structural properties of such salt-requiring may contribute to more efficient strategies for engineering the tuned stability and solubility of existing BVMOs.
Collapse
|
27
|
Martínez-Espinosa RM. Heterologous and Homologous Expression of Proteins from Haloarchaea: Denitrification as Case of Study. Int J Mol Sci 2019; 21:E82. [PMID: 31877629 PMCID: PMC6981372 DOI: 10.3390/ijms21010082] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/18/2019] [Indexed: 12/23/2022] Open
Abstract
Haloarchaea (halophilic microbes belonging to the Archaea domain) are microorganisms requiring mid or even high salt concentrations to be alive. The molecular machinery of these organisms is adapted to such conditions, which are stressful for most life forms. Among their molecular adaptations, halophilic proteins are characterized by their high content of acidic amino acids (Aspartate (Asp) and glumate (Glu)), being only stable in solutions containing high salt concentration (between 1 and 4 M total salt concentration). Recent knowledge about haloarchaeal peptides, proteins, and enzymes have revealed that many haloarchaeal species produce proteins of interest due to their potential applications in biotechnology-based industries. Although proteins of interest are usually overproduced in recombinant prokaryotic or eukaryotic expression systems, these procedures do not accurately work for halophilic proteins, mainly if such proteins contain metallocofactors in their structures. This work summarizes the main challenges of heterologous and homologous expression of enzymes from haloarchaea, paying special attention to the metalloenzymes involved in the pathway of denitrification (anaerobic reduction of nitrate to dinitrogen), a pathway with significant implications in wastewater treatment, climate change, and biosensor design.
Collapse
Affiliation(s)
- Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology Division, Agrochemistry and Biochemistry Department, Faculty of Sciences and Multidisciplinary Institute for Environmental Studies (IMEM), University of Alicante, Ap. 99, E-03080 Alicante, Spain
| |
Collapse
|
28
|
Edbeib MF, Aksoy HM, Kaya Y, Wahab RA, Huyop F. Haloadaptation: insights from comparative modeling studies between halotolerant and non-halotolerant dehalogenases. J Biomol Struct Dyn 2019; 38:3452-3461. [PMID: 31422756 DOI: 10.1080/07391102.2019.1657498] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Halophiles are extremophilic microorganisms that grow optimally at high salt concentrations by producing a myriad of equally halotolerant enzymes. Structural haloadaptation of these enzymes adept to thriving under high-salt environments, though are not fully understood. Herein, the study attempts an in silico investigation to identify and comprehend the evolutionary structural adaptation of a halotolerant dehalogenase, DehHX (GenBank accession number: KR297065) of the halotolerant Pseudomonas halophila, over its non-halotolerant counterpart, DehMX1 (GenBank accession number KY129692) produced by Pseudomonas aeruginosa. GC content of the halotolerant DehHX DNA sequence was distinctively higher (58.9%) than the non-halotolerant dehalogenases (55% average GC). Its acidic residues, Asp and Glu were 8.27% and 12.06%, respectively, compared to an average 5.5% Asp and 7% Glu, in the latter; but lower contents of basic and hydrophobic residues in the DehHX. The secondary structure of DehHX interestingly revealed a lower incidence of α-helix forming regions (29%) and a higher percentage of coils (57%), compared to 49% and 29% in the non-halotolerant homologues, respectively. Simulation models showed the DehHX is stable under a highly saline environment (25% w/v) by adopting a highly negative-charged surface with a concomitant weakly interacting hydrophobic core. The study thus, established that a halotolerant dehalogenase undergoes notable evolutionary structural changes related to GC content over its non-halotolerant counterpart, in order to adapt and thrive under highly saline environments.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed Faraj Edbeib
- Department of Animal Production, Faculty of Agriculture, Baniwalid University, Baniwalid, Libya.,Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Hasan Murat Aksoy
- Department of Plant Protection, Agricultural Faculty, Ondokuz Mayis University, Samsun, Turkey
| | - Yilmaz Kaya
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Biology, Faculty of Science, Kyrgyz-Turkish Manas University, Bishkek, Kyrgyzstan
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Fahrul Huyop
- Department of Agricultural Biotechnology, Faculty of Agriculture, Ondokuz Mayis University, Samsun, Turkey.,Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| |
Collapse
|
29
|
DasSarma S, DasSarma P, Laye VJ, Schwieterman EW. Extremophilic models for astrobiology: haloarchaeal survival strategies and pigments for remote sensing. Extremophiles 2019; 24:31-41. [PMID: 31463573 DOI: 10.1007/s00792-019-01126-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Recent progress in extremophile biology, exploration of planetary bodies in the solar system, and the detection and characterization of extrasolar planets are leading to new insights in the field of astrobiology and possible distribution of life in the universe. Among the many extremophiles on Earth, the halophilic Archaea (Haloarchaea) are especially attractive models for astrobiology, being evolutionarily ancient and physiologically versatile, potentially surviving in a variety of planetary environments and with relevance for in situ life detection. Haloarchaea are polyextremophilic with tolerance of saturating salinity, anaerobic conditions, high levels of ultraviolet and ionizing radiation, subzero temperatures, desiccation, and toxic ions. Haloarchaea survive launches into Earth's stratosphere encountering conditions similar to those found on the surface of Mars. Studies of their unique proteins are revealing mechanisms permitting activity and function in high ionic strength, perchlorates, and subzero temperatures. Haloarchaea also produce spectacular blooms visible from space due to synthesis of red-orange isoprenoid carotenoids used for photoprotection and photorepair processes and purple retinal chromoproteins for phototrophy and phototaxis. Remote sensing using visible and infrared spectroscopy has shown that haloarchaeal pigments exhibit both a discernable peak of absorption and a reflective "green edge". Since the pigments produce remotely detectable features, they may influence the spectrum from an inhabited exoplanet imaged by a future large space-based telescope. In this review, we focus primarily on studies of two Haloarchaea, Halobacterium sp. NRC-1 and Halorubrum lacusprofundi.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Victoria J Laye
- Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Edward W Schwieterman
- Department of Earth and Planetary Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
30
|
Kim S, Sung J, Yeon J, Choi SH, Jin MS. Crystal Structure of a Highly Thermostable α-Carbonic Anhydrase from Persephonella marina EX-H1. Mol Cells 2019; 42:460-469. [PMID: 31250619 PMCID: PMC6602146 DOI: 10.14348/molcells.2019.0029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/12/2022] Open
Abstract
Bacterial α-type carbonic anhydrase (α-CA) is a zinc metalloenzyme that catalyzes the reversible and extremely rapid interconversion of carbon dioxide to bicarbonate. In this study, we report the first crystal structure of a hyperthermostable α-CA from Persephonella marina EXH1 (pm CA) in the absence and presence of competitive inhibitor, acetazolamide. The structure reveals a compactly folded pm CA homodimer in which each monomer consists of a 10-stranded β-sheet in the center. The catalytic zinc ion is coordinated by three highly conserved histidine residues with an exchangeable fourth ligand (a water molecule, a bicarbonate anion, or the sulfonamide group of acetazolamide). Together with an intramolecular disulfide bond, extensive interfacial networks of hydrogen bonds, ionic and hydrophobic interactions stabilize the dimeric structure and are likely responsible for the high thermal stability. We also identified novel binding sites for calcium ions at the crystallographic interface, which serve as molecular glue linking negatively charged and otherwise repulsive surfaces. Furthermore, this large negatively charged patch appears to further increase the thermostability at alkaline pH range via favorable charge-charge interactions between pm CA and solvent molecules. These findings may assist development of novel α-CAs with improved thermal and/or alkaline stability for applications such as CO2 capture and sequestration.
Collapse
Affiliation(s)
- Subin Kim
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Jongmin Sung
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Jungyoon Yeon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Seung Hun Choi
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| | - Mi Sun Jin
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005,
Korea
| |
Collapse
|
31
|
Jiang Y, Li Z, Wang C, Zhou YJ, Xu H, Li S. Biochemical characterization of three new α-olefin-producing P450 fatty acid decarboxylases with a halophilic property. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:79. [PMID: 30996734 PMCID: PMC6452516 DOI: 10.1186/s13068-019-1419-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/27/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND The CYP152 family member OleTJE from Jeotgalicoccus sp. ATCC 8456 has been well-known to catalyze the unusual one-step decarboxylation of free fatty acids towards the formation of terminal alkenes. Efforts to tune up its decarboxylation activity for better production of biological alkenes have been extensively explored via approaches such as site-directed mutagenesis and electron source engineering, but with limited success. To gain more insights into the decarboxylation mechanism and reaction bifurcation (decarboxylation versus hydroxylation), we turned to an alternative approach to explore the natural CYP152 resources for a better variety of enzyme candidates. RESULTS We biochemically characterized three new P450 fatty acid decarboxylases including OleTJH, OleTSQ and OleTSA, with respect to their substrate specificity, steady-state kinetics, and salt effects. These enzymes all act as an OleTJE-like fatty acid decarboxylase being able to decarboxylate a range of straight-chain saturated fatty acids (C8-C20) to various degrees. Site-directed mutagenesis analysis to the lower activity P450 enzyme OleTSA revealed a number of key amino acid residues within the substrate-binding pocket (T47F, I177L, V319A and L405I) that are important for delicate substrate positioning of different chain-length fatty acids and thus the decarboxylation versus hydroxylation chemoselectivity, in particular for the mid-chain fatty acids (C8-C12). In addition, the three new decarboxylases exhibited optimal catalytic activity and stability at a salt concentration of 0.5 M, and were thus classified as moderate halophilic enzymes. CONCLUSION The P450 fatty acid decarboxylases OleTJE, OleTJH, OleTSQ and OleTSA belong to a novel group of moderate halophilic P450 enzymes. OleTJH from Jeotgalicoccus halophilus shows the decarboxylation activity, kinetic parameters, as well as salt tolerance and stability that are comparable to OleTJE. Site-directed mutagenesis of several key amino acid residues near substrate-binding pocket provides important guidance for further engineering of these P450 fatty acid decarboxylases that hold promising application potential for production of α-olefin biohydrocarbons.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Cong Wang
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Huifang Xu
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
| | - Shengying Li
- Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101 Shandong China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 Shandong China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong China
| |
Collapse
|
32
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
33
|
Aouad M, Taib N, Oudart A, Lecocq M, Gouy M, Brochier-Armanet C. Extreme halophilic archaea derive from two distinct methanogen Class II lineages. Mol Phylogenet Evol 2018; 127:46-54. [DOI: 10.1016/j.ympev.2018.04.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/12/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
|
34
|
The 3-D structure of VNG0258H/RosR - A haloarchaeal DNA-binding protein in its ionic shell. J Struct Biol 2018; 204:191-198. [PMID: 30110657 DOI: 10.1016/j.jsb.2018.08.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/05/2018] [Accepted: 08/09/2018] [Indexed: 11/21/2022]
Abstract
Protein-DNA interactions are highly dependent on salt concentration. To gain insight into how such interactions are maintained in the highly saline cytoplasm of halophilic archaea, we determined the 3-D structure of VNG0258H/RosR, the first haloarchaeal DNA-binding protein from the extreme halophilic archaeon Halobactrium salinarum. It is a dimeric winged-helix-turn-helix (wHTH) protein with unique features due to adaptation to the halophilic environment. As ions are major players in DNA binding processes, particularly in halophilic environments, we investigated the solution structure of the ionic envelope and located anions in the first shell around the protein in the crystal using anomalous scattering. Anions that were found to be tightly bound to residues in the positively charged DNA-binding site would probably be released upon DNA binding and will thus make significant contribution to the driving force of the binding process. Unexpectedly, ions were also found in a buried internal cavity connected to the external medium by a tunnel. Our structure lays a solid groundwork for future structural, computational and biochemical studies on complexes of the protein with cognate DNA sequences, with implications to protein-DNA interactions in hyper-saline environments.
Collapse
|
35
|
Gonzalez-Ordenes F, Cea PA, Fuentes-Ugarte N, Muñoz SM, Zamora RA, Leonardo D, Garratt RC, Castro-Fernandez V, Guixé V. ADP-Dependent Kinases From the Archaeal Order Methanosarcinales Adapt to Salt by a Non-canonical Evolutionarily Conserved Strategy. Front Microbiol 2018; 9:1305. [PMID: 29997580 PMCID: PMC6028617 DOI: 10.3389/fmicb.2018.01305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/29/2018] [Indexed: 11/13/2022] Open
Abstract
Halophilic organisms inhabit hypersaline environments where the extreme ionic conditions and osmotic pressure have driven the evolution of molecular adaptation mechanisms. Understanding such mechanisms is limited by the common difficulties encountered in cultivating such organisms. Within the Euryarchaeota, for example, only the Halobacteria and the order Methanosarcinales include readily cultivable halophilic species. Furthermore, only the former have been extensively studied in terms of their component proteins. Here, in order to redress this imbalance, we investigate the halophilic adaptation of glycolytic enzymes from the ADP-dependent phosphofructokinase/glucokinase family (ADP-PFK/GK) derived from organisms of the order Methanosarcinales. Structural analysis of proteins from non-halophilic and halophilic Methanosarcinales shows an almost identical composition and distribution of amino acids on both the surface and within the core. However, these differ from those observed in Halobacteria or Eukarya. Proteins from Methanosarcinales display a remarkable increase in surface lysine content and have no reduction to the hydrophobic core, contrary to the features ubiquitously observed in Halobacteria and which are thought to be the main features responsible for their halophilic properties. Biochemical characterization of recombinant ADP-PFK/GK from M. evestigatum (halophilic) and M. mazei (non-halophilic) shows the activity of both these extant enzymes to be only moderately inhibited by salt. Nonetheless, its activity over time is notoriously stabilized by salt. Furthermore, glycine betaine has a protective effect against KCl inhibition and enhances the thermal stability of both enzymes. The resurrection of the last common ancestor of ADP-PFK/GK from Methanosarcinales shows that the ancestral enzyme displays an extremely high salt tolerance and thermal stability. Structure determination of the ancestral protein reveals unique traits such as an increase in the Lys and Glu content at the protein surface and yet no reduction to the volume of the hydrophobic core. Our results suggest that the halophilic character is an ancient trait in the evolution of this protein family and that proteins from Methanosarcinales have adapted to highly saline environments by a non-canonical strategy, different from that currently proposed for Halobacteria. These results open up new avenues for the search and development of novel salt tolerant biocatalysts.
Collapse
Affiliation(s)
- Felipe Gonzalez-Ordenes
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Pablo A Cea
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Nicolás Fuentes-Ugarte
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián M Muñoz
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Ricardo A Zamora
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Diego Leonardo
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Richard C Garratt
- São Carlos Institute of Physics, University of São Paulo at São Carlos, São Paulo, Brazil
| | - Victor Castro-Fernandez
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Victoria Guixé
- Laboratorio de Bioquímica y Biología Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
36
|
Gunde-Cimerman N, Plemenitaš A, Oren A. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol Rev 2018. [DOI: 10.1093/femsre/fuy009] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Ana Plemenitaš
- Institute of Biochemistry, Medical Faculty, University of Ljubljana, Vrazov trg 1, SI-1000 Ljubljana, Slovenia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| |
Collapse
|
37
|
Zhou HX, Pang X. Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chem Rev 2018; 118:1691-1741. [PMID: 29319301 DOI: 10.1021/acs.chemrev.7b00305] [Citation(s) in RCA: 498] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Charged and polar groups, through forming ion pairs, hydrogen bonds, and other less specific electrostatic interactions, impart important properties to proteins. Modulation of the charges on the amino acids, e.g., by pH and by phosphorylation and dephosphorylation, have significant effects such as protein denaturation and switch-like response of signal transduction networks. This review aims to present a unifying theme among the various effects of protein charges and polar groups. Simple models will be used to illustrate basic ideas about electrostatic interactions in proteins, and these ideas in turn will be used to elucidate the roles of electrostatic interactions in protein structure, folding, binding, condensation, and related biological functions. In particular, we will examine how charged side chains are spatially distributed in various types of proteins and how electrostatic interactions affect thermodynamic and kinetic properties of proteins. Our hope is to capture both important historical developments and recent experimental and theoretical advances in quantifying electrostatic contributions of proteins.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry and Department of Physics, University of Illinois at Chicago , Chicago, Illinois 60607, United States.,Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| | - Xiaodong Pang
- Department of Physics and Institute of Molecular Biophysics, Florida State University , Tallahassee, Florida 32306, United States
| |
Collapse
|
38
|
Khan M, Sathya TA. Extremozymes from metagenome: Potential applications in food processing. Crit Rev Food Sci Nutr 2017; 58:2017-2025. [PMID: 28605203 DOI: 10.1080/10408398.2017.1296408] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The long-established use of enzymes for food processing and product formulation has resulted in an increased enzyme market compounding to 7.0% annual growth rate. Advancements in molecular biology and recognition that enzymes with specific properties have application for industrial production of infant, baby and functional foods boosted research toward sourcing the genes of microorganisms for enzymes with distinctive properties. In this regard, functional metagenomics for extremozymes has gained attention on the premise that such enzymes can catalyze specific reactions. Hence, metagenomics that can isolate functional genes of unculturable extremophilic microorganisms has expanded attention as a promising tool. Developments in this field of research in relation to food sector are reviewed.
Collapse
Affiliation(s)
- Mahejibin Khan
- a CSIR-Central Food Technological Research Institute-Resource Centre Lucknow , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| | - T A Sathya
- b CSIR-Central Food Technological Research Institute , Mysore , India.,c Academy of Scientific and Innovative Research , New Delhi , India
| |
Collapse
|
39
|
In silico characterization of a novel dehalogenase (DehHX) from the halophile Pseudomonas halophila HX isolated from Tuz Gölü Lake, Turkey: insights into a hypersaline-adapted dehalogenase. ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1266-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
40
|
Ferrer J, San-Fabián E. Competition for water between protein (from Haloferax mediterranei) and cations $$\hbox {Na}^+$$ Na + and $$\hbox {K}^+$$ K + : a quantum approach to problem. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1983-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
AglM and VNG1048G, Two Haloarchaeal UDP-Glucose Dehydrogenases, Show Different Salt-Related Behaviors. Life (Basel) 2016; 6:life6030031. [PMID: 27527219 PMCID: PMC5041007 DOI: 10.3390/life6030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/27/2016] [Accepted: 07/29/2016] [Indexed: 11/16/2022] Open
|
42
|
Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase. J Bacteriol 2016; 198:2251-62. [PMID: 27297879 DOI: 10.1128/jb.00286-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The halophilic archaeon Haloferax volcanii has been proposed to degrade glucose via the semiphosphorylative Entner-Doudoroff (spED) pathway. So far, the key enzymes of this pathway, glucose dehydrogenase (GDH), gluconate dehydratase (GAD), and 2-keto-3-deoxy-6-phosphogluconate (KDPG) aldolase (KDPGA), have not been characterized, and their functional involvement in glucose degradation has not been demonstrated. Here we report that the genes HVO_1083 and HVO_0950 encode GDH and KDPGA, respectively. The recombinant enzymes show high specificity for glucose and KDPG and did not convert the corresponding C4 epimers galactose and 2-keto-3-deoxy-6-phosphogalactonate at significant rates. Growth studies of knockout mutants indicate the functional involvement of both GDH and KDPGA in glucose degradation. GAD was purified from H. volcanii, and the encoding gene, gad, was identified as HVO_1488. GAD catalyzed the specific dehydration of gluconate and did not utilize galactonate at significant rates. A knockout mutant of GAD lost the ability to grow on glucose, indicating the essential involvement of GAD in glucose degradation. However, following a prolonged incubation period, growth of the Δgad mutant on glucose was recovered. Evidence is presented that under these conditions, GAD was functionally replaced by xylonate dehydratase (XAD), which uses both xylonate and gluconate as substrates. Together, the characterization of key enzymes and analyses of the respective knockout mutants present conclusive evidence for the in vivo operation of the spED pathway for glucose degradation in H. volcanii IMPORTANCE The work presented here describes the identification and characterization of the key enzymes glucose dehydrogenase, gluconate dehydratase, and 2-keto-3-deoxy-6-phosphogluconate aldolase and their encoding genes of the proposed semiphosphorylative Entner-Doudoroff pathway in the haloarchaeon Haloferax volcanii The functional involvement of the three enzymes was proven by analyses of the corresponding knockout mutants. These results provide evidence for the in vivo operation of the semiphosphorylative Entner-Doudoroff pathway in haloarchaea and thus expand our understanding of the unusual sugar degradation pathways in the domain Archaea.
Collapse
|
43
|
Halophiles: biology, adaptation, and their role in decontamination of hypersaline environments. World J Microbiol Biotechnol 2016; 32:135. [PMID: 27344438 DOI: 10.1007/s11274-016-2081-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
The unique cellular enzymatic machinery of halophilic microbes allows them to thrive in extreme saline environments. That these microorganisms can prosper in hypersaline environments has been correlated with the elevated acidic amino acid content in their proteins, which increase the negative protein surface potential. Because these microorganisms effectively use hydrocarbons as their sole carbon and energy sources, they may prove to be valuable bioremediation agents for the treatment of saline effluents and hypersaline waters contaminated with toxic compounds that are resistant to degradation. This review highlights the various strategies adopted by halophiles to compensate for their saline surroundings and includes descriptions of recent studies that have used these microorganisms for bioremediation of environments contaminated by petroleum hydrocarbons. The known halotolerant dehalogenase-producing microbes, their dehalogenation mechanisms, and how their proteins are stabilized is also reviewed. In view of their robustness in saline environments, efforts to document their full potential regarding remediation of contaminated hypersaline ecosystems merits further exploration.
Collapse
|
44
|
Lenton S, Walsh DL, Rhys NH, Soper AK, Dougan L. Structural evidence for solvent-stabilisation by aspartic acid as a mechanism for halophilic protein stability in high salt concentrations. Phys Chem Chem Phys 2016; 18:18054-62. [PMID: 27327567 DOI: 10.1039/c6cp02684b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Halophilic organisms have adapted to survive in high salt environments, where mesophilic organisms would perish. One of the biggest challenges faced by halophilic proteins is the ability to maintain both the structure and function at molar concentrations of salt. A distinct adaptation of halophilic proteins, compared to mesophilic homologues, is the abundance of aspartic acid on the protein surface. Mutagenesis and crystallographic studies of halophilic proteins suggest an important role for solvent interactions with the surface aspartic acid residues. This interaction, between the regions of the acidic protein surface and the solvent, is thought to maintain a hydration layer around the protein at molar salt concentrations thereby allowing halophilic proteins to retain their functional state. Here we present neutron diffraction data of the monomeric zwitterionic form of aspartic acid solutions at physiological pH in 0.25 M and 2.5 M concentration of potassium chloride, to mimic mesophilic and halophilic-like environmental conditions. We have used isotopic substitution in combination with empirical potential structure refinement to extract atomic-scale information from the data. Our study provides structural insights that support the hypothesis that carboxyl groups on acidic residues bind water more tightly under high salt conditions, in support of the residue-ion interaction model of halophilic protein stabilisation. Furthermore our data show that in the presence of high salt the self-association between the zwitterionic form of aspartic acid molecules is reduced, suggesting a possible mechanism through which protein aggregation is prevented.
Collapse
Affiliation(s)
- Samuel Lenton
- School of Physics and Astronomy, University of Leeds, Leeds, UK.
| | | | | | | | | |
Collapse
|
45
|
DasSarma S, DasSarma P. Halophiles and their enzymes: negativity put to good use. Curr Opin Microbiol 2015; 25:120-6. [PMID: 26066288 PMCID: PMC4729366 DOI: 10.1016/j.mib.2015.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/20/2015] [Accepted: 05/15/2015] [Indexed: 12/24/2022]
Abstract
Halophilic microorganisms possess stable enzymes that function in very high salinity, an extreme condition that leads to denaturation, aggregation, and precipitation of most other proteins. Genomic and structural analyses have established that the enzymes of halophilic Archaea and many halophilic Bacteria are negatively charged due to an excess of acidic over basic residues, and altered hydrophobicity, which enhance solubility and promote function in low water activity conditions. Here, we provide an update on recent bioinformatic analysis of predicted halophilic proteomes as well as experimental molecular studies on individual halophilic enzymes. Recent efforts on discovery and utilization of halophiles and their enzymes for biotechnology, including biofuel applications are also considered.
Collapse
Affiliation(s)
- Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 East Pratt Street, Columbus Center, Baltimore, MD 21202, USA.
| | - Priya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, 701 East Pratt Street, Columbus Center, Baltimore, MD 21202, USA
| |
Collapse
|
46
|
Carbohydrate metabolism in Archaea: current insights into unusual enzymes and pathways and their regulation. Microbiol Mol Biol Rev 2014; 78:89-175. [PMID: 24600042 DOI: 10.1128/mmbr.00041-13] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many "classical" pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of "new," unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented.
Collapse
|
47
|
Palanca C, Pedro-Roig L, Llácer JL, Camacho M, Bonete MJ, Rubio V. The structure of a PII signaling protein from a halophilic archaeon reveals novel traits and high-salt adaptations. FEBS J 2014; 281:3299-314. [PMID: 24946894 DOI: 10.1111/febs.12881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 06/06/2014] [Accepted: 06/17/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED To obtain insights into archaeal nitrogen signaling and haloadaptation of the nitrogen/carbon/energy-signaling protein PII, we determined crystal structures of recombinantly produced GlnK2 from the extreme halophilic archaeon Haloferax mediterranei, complexed with AMP or with the PII effectors ADP or ATP, at respective resolutions of 1.49 Å, 1.45 Å, and 2.60 Å. A unique trait of these structures was a three-tongued crown protruding from the trimer body convex side, formed by an 11-residue, N-terminal, highly acidic extension that is absent from structurally studied PII proteins. This extension substantially contributed to the very low pI value, which is a haloadaptive trait of H. mediterranei GlnK2, and participated in hexamer-forming contacts in one crystal. Similar acidic N-extensions are shown here to be common among PII proteins from halophilic organisms. Additional haloadaptive traits prominently represented in H. mediterranei GlnK2 are a very high ratio of small residues to large hydrophobic aliphatic residues, and the highest ratio of polar to nonpolar exposed surface for any structurally characterized PII protein. The presence of a dense hydration layer in the region between the three T-loops might also be a haloadaptation. Other unique findings revealed by the GlnK2 structure that might have functional relevance are: the adoption by its T-loop of a three-turn α-helical conformation, perhaps related to the ability of GlnK2 to directly interact with glutamine synthetase; and the firm binding of AMP, confirmed by biochemical binding studies with ATP, ADP, and AMP, raising the possibility that AMP could be an important PII effector, at least in archaea. DATABASE The atomic coordinates and structure factors have been deposited in the Protein Data Bank under the accession numbers 4OZL (hmGlnK2-AMP), 4OZJ (hmGlnK2-ADP), and 4OZN (hmGlnK2-ATP). STRUCTURED DIGITAL ABSTRACT hmGlnK2 and hmGlnK2 bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Carles Palanca
- Instituto de Biomedicina de Valencia of the CSIC (IBV-CSIC), Spain
| | | | | | | | | | | |
Collapse
|
48
|
Kanoh Y, Uehara S, Iwata H, Yoneda K, Ohshima T, Sakuraba H. Structural insight into glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium. ACTA ACUST UNITED AC 2014; 70:1271-80. [PMID: 24816096 DOI: 10.1107/s1399004714002363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 02/01/2014] [Indexed: 11/10/2022]
Abstract
Glucose dehydrogenase from the thermoacidophilic archaeon Thermoplasma volcanium (tvGlcDH) is highly active towards D-glucose and D-galactose, but does not utilize aldopentoses such as D-xylose as substrates. In the present study, the crystal structures of substrate/cofactor-free tvGlcDH and of a tvGlcDH T277F mutant in a binary complex with NADP and in a ternary complex with D-glucose and nicotinic acid adenine dinucleotide phosphate, an NADP analogue, were determined at resolutions of 2.6, 2.25 and 2.33 Å, respectively. The overall structure of each monomer showed notable similarity to that of the enzyme from Sulfolobus solfataricus (ssGlcDH-1), which accepts a broad range of C5 and C6 sugars as substrates. However, the amino-acid residues of tvGlcDH involved in substrate binding markedly differed from those of ssGlcDH-1. Structural comparison revealed that a decreased number of interactions between the C3-hydroxyl group of the sugar and the enzyme are likely to be responsible for the lack of reactivity of tvGlcDH towards D-xylose.
Collapse
Affiliation(s)
- Yoshitaka Kanoh
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Seiichiroh Uehara
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| | - Hideyuki Iwata
- Thermostable Enzyme Laboratory, 5-5-2 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Kazunari Yoneda
- Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto 869-1404, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535-8585, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0795, Japan
| |
Collapse
|
49
|
Nayek A, Sen Gupta PS, Banerjee S, Mondal B, Bandyopadhyay AK. Salt-bridge energetics in halophilic proteins. PLoS One 2014; 9:e93862. [PMID: 24743799 PMCID: PMC3990605 DOI: 10.1371/journal.pone.0093862] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/07/2014] [Indexed: 11/19/2022] Open
Abstract
Halophilic proteins have greater abundance of acidic over basic and very low bulky hydrophobic residues. Classical electrostatic stabilization was suggested as the key determinant for halophilic adaptation of protein. However, contribution of specific electrostatic interactions (i.e. salt-bridges) to overall stability of halophilic proteins is yet to be understood. To understand this, we use Adaptive-Poison-Boltzmann-Solver Methods along with our home-built automation to workout net as well as associated component energy terms such as desolvation energy, bridge energy and background energy for 275 salt-bridges from 20 extremely halophilic proteins. We then perform extensive statistical analysis on general and energetic attributes on these salt-bridges. On average, 8 salt-bridges per 150 residues protein were observed which is almost twice than earlier report. Overall contributions of salt-bridges are −3.0 kcal mol−1. Majority (78%) of salt-bridges in our dataset are stable and conserved in nature. Although, average contributions of component energy terms are equal, their individual details vary greatly from one another indicating their sensitivity to local micro-environment. Notably, 35% of salt-bridges in our database are buried and stable. Greater desolvation penalty of these buried salt-bridges are counteracted by stable network salt-bridges apart from favorable equal contributions of bridge and background terms. Recruitment of extensive network salt-bridges (46%) with a net contribution of −5.0 kcal mol−1 per salt-bridge, seems to be a halophilic design wherein favorable average contribution of background term (−10 kcal mol−1) exceeds than that of bridge term (−7 kcal mol−1). Interiors of proteins from halophiles are seen to possess relatively higher abundance of charge and polar side chains than that of mesophiles which seems to be satisfied by cooperative network salt-bridges. Overall, our theoretical analyses provide insight into halophilic signature in its specific electrostatic interactions which we hope would help in protein engineering and bioinformatics studies.
Collapse
Affiliation(s)
- Arnab Nayek
- The Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Shyamashree Banerjee
- The Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
| | - Buddhadev Mondal
- Department of Zoology, Burdwan Raj College, The University of Burdwan, Burdwan, West Bengal, India
| | - Amal K. Bandyopadhyay
- The Department of Biotechnology, The University of Burdwan, Burdwan, West Bengal, India
- * E-mail:
| |
Collapse
|
50
|
Talon R, Coquelle N, Madern D, Girard E. An experimental point of view on hydration/solvation in halophilic proteins. Front Microbiol 2014; 5:66. [PMID: 24600446 PMCID: PMC3930881 DOI: 10.3389/fmicb.2014.00066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 02/04/2014] [Indexed: 11/23/2022] Open
Abstract
Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution
Collapse
Affiliation(s)
- Romain Talon
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Nicolas Coquelle
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Dominique Madern
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| | - Eric Girard
- Institut de Biologie Structurale, Université Grenoble Alpes Grenoble, France ; CEA, DSV, Institut de Biologie Structurale Grenoble, France ; Institut de Biologie Structurale, Centre National de la Recherche Scientifique Grenoble, France
| |
Collapse
|