1
|
Vieira MM, Valadares FL, Velasco J, da Silva SS, Segato F, Chandel AK. Analysis of Aureobasidium pullulans LB83 secretome reveals distinct carbohydrate active enzymes for biomass saccharification. Prep Biochem Biotechnol 2024; 54:729-735. [PMID: 37966162 DOI: 10.1080/10826068.2023.2279109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Aureobasidium pullulans LB83 is a versatile biocatalyst that produces a plethora of bioactive products thriving on a variety of feedstocks under the varying culture conditions. In our last study using this microorganism, we found cellulase activity (FPase, 2.27 U/ml; CMCase, 7.42 U/ml) and other plant cell wall degrading enzyme activities grown on sugarcane bagasse and soybean meal as carbon source and nitrogen, respectively. In the present study, we provide insights on the secretome analysis of this enzymatic cocktail. The secretome analysis of A. pullulans LB83 by Liquid Chromatography coupled to Mass Spectroscopy (LC-MS/MS) revealed 38 classes of Carbohydrate Active enZymes (CAZymes) of a total of 464 identified proteins. These CAZymes consisted of 21 glycoside hydrolases (55.26%), 12 glycoside hydrolases harboring carbohydrate-binding module (31.58%), 4 carbohydrate esterases (10.53%) and one glycosyl transferase (2.63%). To the best of our knowledge, this is the first report on the secretome analysis of A. pullulans LB83.
Collapse
Affiliation(s)
- Matheus Maitan Vieira
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Fernanda Lima Valadares
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Josman Velasco
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Silvio S da Silva
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena- University of São Paulo, Lorena, Brazil
| |
Collapse
|
2
|
Freeman EC, Emilson EJS, Dittmar T, Braga LPP, Emilson CE, Goldhammer T, Martineau C, Singer G, Tanentzap AJ. Universal microbial reworking of dissolved organic matter along environmental gradients. Nat Commun 2024; 15:187. [PMID: 38168076 PMCID: PMC10762207 DOI: 10.1038/s41467-023-44431-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.
Collapse
Affiliation(s)
- Erika C Freeman
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK.
| | - Erik J S Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste, Marie, ON, P6A 2E5, Canada
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| | - Thorsten Dittmar
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg, 26129, Oldenburg, Germany
| | - Lucas P P Braga
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Caroline E Emilson
- Natural Resources Canada, Canadian Forest Service, Great Lakes Forestry Centre, 1219 Queen St. E., Sault Ste, Marie, ON, P6A 2E5, Canada
| | - Tobias Goldhammer
- Department of Ecohydrology and Biogeochemistry, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm, 301, Berlin, Germany
| | - Christine Martineau
- Natural Resources Canada, Laurentian Forestry Centre, 1055 Du P.E.P.S. Street, P.O. Box 10380, Québec, G1V 4C7, Canada
| | - Gabriel Singer
- Department of Ecology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Andrew J Tanentzap
- Ecosystems and Global Change Group, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
- Ecosystems and Global Change Group, School of the Environment, Trent University, Peterborough, ON, K9L 0G2, Canada
| |
Collapse
|
3
|
Kairouani A, Pontier D, Picart C, Mounet F, Martinez Y, Le-Bot L, Fanuel M, Hammann P, Belmudes L, Merret R, Azevedo J, Carpentier MC, Gagliardi D, Couté Y, Sibout R, Bies-Etheve N, Lagrange T. Cell-type-specific control of secondary cell wall formation by Musashi-type translational regulators in Arabidopsis. eLife 2023; 12:RP88207. [PMID: 37773033 PMCID: PMC10541177 DOI: 10.7554/elife.88207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Deciphering the mechanism of secondary cell wall/SCW formation in plants is key to understanding their development and the molecular basis of biomass recalcitrance. Although transcriptional regulation is essential for SCW formation, little is known about the implication of post-transcriptional mechanisms in this process. Here we report that two bonafide RNA-binding proteins homologous to the animal translational regulator Musashi, MSIL2 and MSIL4, function redundantly to control SCW formation in Arabidopsis. MSIL2/4 interactomes are similar and enriched in proteins involved in mRNA binding and translational regulation. MSIL2/4 mutations alter SCW formation in the fibers, leading to a reduction in lignin deposition, and an increase of 4-O-glucuronoxylan methylation. In accordance, quantitative proteomics of stems reveal an overaccumulation of glucuronoxylan biosynthetic machinery, including GXM3, in the msil2/4 mutant stem. We showed that MSIL4 immunoprecipitates GXM mRNAs, suggesting a novel aspect of SCW regulation, linking post-transcriptional control to the regulation of SCW biosynthesis genes.
Collapse
Affiliation(s)
- Alicia Kairouani
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Dominique Pontier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Claire Picart
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, INP, UMR5546Castanet-TolosanFrance
| | - Yves Martinez
- FRAIB-CNRS Plateforme ImagerieCastanet-TolosanFrance
| | - Lucie Le-Bot
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
| | - Mathieu Fanuel
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
- PROBE research infrastructure, BIBS Facility, INRAENantesFrance
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade de CNRS, Université de StrasbourgStrasbourgFrance
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, UA13 BGE, CNRS, CEA, FR2048GrenobleFrance
| | - Remy Merret
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Jacinthe Azevedo
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Marie-Christine Carpentier
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Dominique Gagliardi
- Institut de Biologie Moléculaire des Plantes, IBMP, CNRS, Université de StrasbourgStrasbourgFrance
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, UA13 BGE, CNRS, CEA, FR2048GrenobleFrance
| | - Richard Sibout
- Biopolymères Interactions Assemblages, UR1268 BIA, INRAENantesFrance
| | - Natacha Bies-Etheve
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| | - Thierry Lagrange
- Laboratoire Génome et Développement des Plantes, Université de Perpignan via Domitia, CNRS, UMR5096PerpignanFrance
| |
Collapse
|
4
|
Shi Q, Abdel-Hamid AM, Sun Z, Cheng Y, Tu T, Cann I, Yao B, Zhu W. Carbohydrate-binding modules facilitate the enzymatic hydrolysis of lignocellulosic biomass: Releasing reducing sugars and dissociative lignin available for producing biofuels and chemicals. Biotechnol Adv 2023; 65:108126. [PMID: 36921877 DOI: 10.1016/j.biotechadv.2023.108126] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/05/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023]
Abstract
The microbial decomposition and utilization of lignocellulosic biomass present in the plant tissues are driven by a series of carbohydrate active enzymes (CAZymes) acting in concert. As the non-catalytic domains widely found in the modular CAZymes, carbohydrate-binding modules (CBMs) are intimately associated with catalytic domains (CDs) that effect the diverse hydrolytic reactions. The CBMs function as auxiliary components for the recognition, adhesion, and depolymerization of the complex substrate mediated by the associated CDs. Therefore, CBMs are deemed as significant biotools available for enzyme engineering, especially to facilitate the enzymatic hydrolysis of dense and insoluble plant tissues to acquire more fermentable sugars. This review aims at presenting the taxonomies and biological properties of the CBMs currently curated in the CAZy database. The molecular mechanisms that CBMs use in assisting the enzymatic hydrolysis of plant polysaccharides and the regulatory factors of CBM-substrate interactions are outlined in detail. In addition, guidelines for the rational designs of CBM-fused CAZymes are proposed. Furthermore, the potential to harness CBMs for industrial applications, especially in enzymatic pretreatment of the recalcitrant lignocellulose, is evaluated. It is envisaged that the ideas outlined herein will aid in the engineering and production of novel CBM-fused enzymes to facilitate efficient degradation of lignocellulosic biomass to easily fermentable sugars for production of value-added products, including biofuels.
Collapse
Affiliation(s)
- Qicheng Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ahmed M Abdel-Hamid
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Zhanying Sun
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanfen Cheng
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China.
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Isaac Cann
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Animal Science, University of Illinois at Urbana-Champaign, IL 61801, USA; Department of Microbiology, University of Illinois at Urbana-Champaign, IL 61801, USA; Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, IL 61801, USA; Center for East Asian and Pacific Studies, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Ji S, Tian X, Li X, She Q. Identification and structural analysis of a carbohydrate-binding module specific to alginate, a representative of a new family, CBM96. J Biol Chem 2023; 299:102854. [PMID: 36592931 PMCID: PMC9971899 DOI: 10.1016/j.jbc.2022.102854] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Carbohydrate-binding modules (CBMs) are the noncatalytic modules that assist functions of the catalytic modules in carbohydrate-active enzymes, and they are usually discrete structural domains in larger multimodular enzymes. CBMs often occur in tandem in different alginate lyases belonging to the CBM families 13, 16, and 32. However, none of the currently known CBMs in alginate lyases specifically bind to an internal alginate chain. In our investigation of the multidomain alginate lyase Dp0100 carrying several ancillary domains, we identified an alginate-binding domain denoted TM6-N4 using protein truncation analysis. The structure of this CBM domain was determined at 1.35 Å resolution. TM6-N4 exhibited an overall β-sandwich fold architecture with two antiparallel β-sheets. We identified an extended binding groove in the CBM using site-directed mutagenesis, docking, and surface electrostatic potential analysis. Affinity analysis revealed that residues of Lys10, Lys22, Lys25, Lys27, Lys31, Arg36, and Tyr159 located on the bottom or the wall of the shallow groove are responsible for alginate binding, and isothermal titration calorimetry analyses indicated that the binding cleft consists of six subsites for sugar recognition. This substrate binding pattern is typical for type B CBM, and it represents the first CBM domain that specifically binds internal alginate chain. Phylogenetic analysis supports that TM6-N4 constitutes the founding member of a new CBM family denoted as CBM96. Our reported structure not only facilitates the investigation of the CBM-alginate ligand recognition mechanism but also inspires the utilization of the CBM domain in biotechnical applications.
Collapse
Affiliation(s)
- Shiqi Ji
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| | - Xuhui Tian
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xin Li
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
6
|
Badruna L, Burlat V, Montanier CY. CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry. Methods Mol Biol 2023; 2657:163-179. [PMID: 37149530 DOI: 10.1007/978-1-0716-3151-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Immunocytochemistry is a widely used technique to localize antigen within intact tissues. Plant cell walls are complex matrixes of highly decorated polysaccharides and the large number of CBM families displaying specific substrate recognition reflects this complexity. The accessibility of large proteins, such as antibodies, to their cell wall epitopes may be sometimes difficult due to steric hindrance problems. Due to their smaller size, CBMs are interesting alternative probes. The aim of this chapter is to describe the use of CBM as probes to explore complex polysaccharide topochemistry in muro and to quantify enzymatic deconstruction.
Collapse
Affiliation(s)
- Louise Badruna
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UT3, INP-ENSAT, Auzeville-Tolosane, France
| | | |
Collapse
|
7
|
Srivastava A, Nagar P, Rathore S, Adlakha N. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate. Microbiol Spectr 2022; 10:e0269721. [PMID: 35080440 PMCID: PMC8791183 DOI: 10.1128/spectrum.02697-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 12/03/2022] Open
Abstract
Lytic polysaccharide monooxygenases (LPMOs) mediate oxidative degradation of plant polysaccharides. The genes encoding LPMOs are most commonly arranged with one catalytic domain, while a few are found tethered to additional noncatalytic units, i.e., cellulase linker and carbohydrate-binding module (CBM). The presence of CBM is known to facilitate catalysis by directing the enzymes toward cellulosic polymer, while the role of linkers is poorly understood. Based on limited experimental evidence, linkers are believed to serve merely as flexible spacers between the structured domains. Thus, this study aims to unravel the role of the linker regions present in LPMO sequences. For this, we analyzed the genome of Botrytis cinerea and found 9 genes encoding cellulose lytic monooxygenases (AA9 family), of which BcAA9C was overexpressed in cellulose-inducible conditions. We designed variants of flLPMO (full-length enzyme) with truncation of either linker or CBM to examine the role of linker in activity, binding, and thermal stability of the associated monooxygenase. Biochemical assays predicted that the deletion of linker does not impact the potential of flLPMO for catalyzing the oxidation of Amplex Red, but that it does have a major influence on the capability of flLPMO to degrade recalcitrant polysaccharide substrate. Langmuir isotherm and SEM analysis demonstrated that linker domain aids in polysaccharide binding during flLPMO-mediated deconstruction of plant cell wall. Interestingly, linker domain was also found to contribute toward the thermostability of flLPMO. Overall, our study reveals that linker is not merely a spacer, but plays a key role in LPMO-mediated biomass fibrillation; these findings are broadly applicable to other polysaccharide-degrading enzymes. IMPORTANCE The polysaccharide-disintegrating carbohydrate-active enzymes (CAZymes) are often found with multimodular architecture, where the catalytic domain is connected to an accessory CBM domain with the help of a flexible linker region. So far, the linker has been understood merely as a flexible spacer between the two domains. Therefore, the current study is designed to determine the role of linker in polysaccharide fibrillation. To conceive this study, we have selected LPMO as a model enzyme, as it is not only an industrially relevant enzyme but it also harbors a catalytic domain, linker region, and CBM domain. The present study highlighted the crucial and indispensable role of the linker region in mediating polysaccharide disintegration. Considering its role in binding, thermostability, and activity toward polysaccharide substrate, we propose linker as a potential candidate for future CAZyme engineering.
Collapse
Affiliation(s)
- Aishwarya Srivastava
- Synthetic Biology and Bioprocessing Laboratory, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, Haryana, India
| | - Pragya Nagar
- Synthetic Biology and Bioprocessing Laboratory, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, Haryana, India
| | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Nidhi Adlakha
- Synthetic Biology and Bioprocessing Laboratory, Regional Centre for Biotechnology, NCR-Biotech Cluster, Faridabad, Haryana, India
| |
Collapse
|
8
|
Mei X, Chang Y, Shen J, Zhang Y, Chen G, Liu Y, Xue C. Characterization of a sulfated fucan-specific carbohydrate-binding module: A promising tool for investigating sulfated fucans. Carbohydr Polym 2022; 277:118748. [PMID: 34893209 DOI: 10.1016/j.carbpol.2021.118748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/02/2022]
Abstract
Sulfated fucans are important polysaccharides with diverse biological and biomedical activities. Carbohydrate-binding modules (CBMs) could serve as beneficial tools for the investigation of polysaccharides. Nevertheless, no sulfated fucan-binding CBM has been hitherto discovered. In the present study, a novel CBM47 domain was cloned from the marine bacterium Wenyingzhuangia fucanilytica, and heterologously expressed in Escherichia coli. The expressed protein WfCBM47 exhibited a specific binding capacity to sulfated fucans with the backbone composed of 1,3-α-l-fucopyranose residues. Furthermore, a fluorescent probe was successfully constructed by fusing WfCBM47 with a green fluorescent protein, based on which the in situ visualization of sulfated fucan in the sea cucumber (Apostichopus japonicus) body wall was implemented for the first time. The discovery of WfCBM47 provided a promising tool for future investigations on sulfated fucans.
Collapse
Affiliation(s)
- Xuanwei Mei
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yaoguang Chang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| | - Jingjing Shen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yuying Zhang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guangning Chen
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Yanyan Liu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
9
|
Li Z, Zhang C, Zhang Y, Zeng W, Cesarino I. Coffee cell walls—composition, influence on cup quality and opportunities for coffee improvements. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
The coffee beverage is the second most consumed drink worldwide after water. In coffee beans, cell wall storage polysaccharides (CWSPs) represent around 50 per cent of the seed dry mass, mainly consisting of galactomannans and arabinogalactans. These highly abundant structural components largely influence the organoleptic properties of the coffee beverage, mainly due to the complex changes they undergo during the roasting process. From a nutritional point of view, coffee CWSPs are soluble dietary fibers shown to provide numerous health benefits in reducing the risk of human diseases. Due to their influence on coffee quality and their health-promoting benefits, CWSPs have been attracting significant research attention. The importance of cell walls to the coffee industry is not restricted to beans used for beverage production, as several coffee by-products also present high concentrations of cell wall components. These by-products include cherry husks, cherry pulps, parchment skin, silver skin, and spent coffee grounds, which are currently used or have the potential to be utilized either as food ingredients or additives, or for the generation of downstream products such as enzymes, pharmaceuticals, and bioethanol. In addition to their functions during plant development, cell walls also play a role in the plant’s resistance to stresses. Here, we review several aspects of coffee cell walls, including chemical composition, biosynthesis, their function in coffee’s responses to stresses, and their influence on coffee quality. We also propose some potential cell wall–related biotechnological strategies envisaged for coffee improvements.
Collapse
Affiliation(s)
| | | | | | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Peck LD, Nowell RW, Flood J, Ryan MJ, Barraclough TG. Historical genomics reveals the evolutionary mechanisms behind multiple outbreaks of the host-specific coffee wilt pathogen Fusarium xylarioides. BMC Genomics 2021; 22:404. [PMID: 34082717 PMCID: PMC8176585 DOI: 10.1186/s12864-021-07700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. RESULTS Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. CONCLUSION Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.
Collapse
Affiliation(s)
- Lily D Peck
- Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK. .,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Julie Flood
- CABI, Bakeham Lane, Egham, Surrey, TW20 9TY, UK
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
11
|
Galloway AF, Akhtar J, Marcus SE, Fletcher N, Field K, Knox P. Cereal root exudates contain highly structurally complex polysaccharides with soil-binding properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1666-1678. [PMID: 32463959 DOI: 10.1111/tpj.14852] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 05/21/2023]
Abstract
Rhizosheaths function in plant-soil interactions, and are proposed to form due to a mix of soil particle entanglement in root hairs and the action of adhesive root exudates. The soil-binding factors released into rhizospheres to form rhizosheaths have not been characterised. Analysis of the high-molecular-weight (HMW) root exudates of both wheat and maize plants indicate the presence of complex, highly branched polysaccharide components with a wide range of galactosyl, glucosyl and mannosyl linkages that do not directly reflect cereal root cell wall polysaccharide structures. Periodate oxidation indicates that it is the carbohydrate components of the HMW exudates that have soil-binding properties. The root exudates contain xyloglucan (LM25), heteroxylan (LM11/LM27) and arabinogalactan-protein (LM2) epitopes, and sandwich-ELISA evidence indicates that, in wheat particularly, these can be interlinked in multi-polysaccharide complexes. Using wheat as a model, exudate-binding monoclonal antibodies have enabled the tracking of polysaccharide release along root axes of young seedlings, and their presence at root hair surfaces and in rhizosheaths. The observations indicate that specific root exudate polysaccharides, distinct from cell wall polysaccharides, are adhesive factors secreted by root axes, and that they contribute to the formation and stabilisation of cereal rhizosheaths.
Collapse
Affiliation(s)
- Andrew F Galloway
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Jumana Akhtar
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Nathan Fletcher
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Katie Field
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
12
|
Specific Xylan Activity Revealed for AA9 Lytic Polysaccharide Monooxygenases of the Thermophilic Fungus Malbranchea cinnamomea by Functional Characterization. Appl Environ Microbiol 2019; 85:AEM.01408-19. [PMID: 31540984 PMCID: PMC6856335 DOI: 10.1128/aem.01408-19] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/14/2019] [Indexed: 11/20/2022] Open
Abstract
The thermophilic biomass-degrader Malbranchea cinnamomea exhibits poor growth on cellulose but excellent growth on hemicelluloses as the sole carbon source. This is surprising considering that its genome encodes eight lytic polysaccharide monooxygenases (LPMOs) from auxiliary activity family 9 (AA9), enzymes known for their high potential in accelerating cellulose depolymerization. We characterized four of the eight (M. cinnamomea AA9s) McAA9s, namely, McAA9A, McAA9B, McAA9F, and McAA9H, to gain a deeper understanding about their roles in the fungus. The characterized McAA9s were active on hemicelluloses, including xylan, glucomannan, and xyloglucan, and furthermore, in accordance with transcriptomics data, differed in substrate specificity. Of the McAA9s, McAA9H is unique, as it preferentially cleaves residual xylan in phosphoric acid-swollen cellulose (PASC). Moreover, when exposed to cellulose-xylan blends, McAA9H shows a preference for xylan and for releasing (oxidized) xylooligosaccharides. The cellulose dependence of the xylan activity suggests that a flat conformation, with rigidity similar to that of cellulose microfibrils, is a prerequisite for productive interaction between xylan and the catalytic surface of the LPMO. McAA9H showed a similar trend on xyloglucan, underpinning the suggestion that LPMO activity on hemicelluloses strongly depends on the polymers' physicochemical context and conformation. Our results support the notion that LPMO multiplicity in fungal genomes relates to the large variety of copolymeric polysaccharide arrangements occurring in the plant cell wall.IMPORTANCE The Malbranchea cinnamomea LPMOs (McAA9s) showed activity on a broad range of soluble and insoluble substrates, suggesting their involvement in various steps of biomass degradation besides cellulose decomposition. Our results indicate that the fungal AA9 family is more diverse than originally thought and able to degrade almost any kind of plant cell wall polysaccharide. The discovery of an AA9 that preferentially cleaves xylan enhances our understanding of the physiological roles of LPMOs and enables the use of xylan-specific LPMOs in future applications.
Collapse
|
13
|
Guo X, Yang F, Liu H, Hou Y, Wang Y, Sun J, Chen X, Liu Y, Li X. Prediction of Cellulose Crystallinity in Liquid Phase Using CBM-GFP Probe. Macromol Res 2019. [DOI: 10.1007/s13233-019-7059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Cornuault V, Posé S, Knox JP. Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems. Food Chem 2018; 246:275-285. [PMID: 29291850 PMCID: PMC5770856 DOI: 10.1016/j.foodchem.2017.11.025] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/08/2023]
Abstract
The matrix polysaccharides of plant cell walls are diverse and variable sets of polymers influencing cell wall, tissue and organ properties. Focusing on the relatively simple parenchyma tissues of four fruits - tomato, aubergine, strawberry and apple - we have dissected cell wall matrix polysaccharide contents using sequential solubilisation and antibody-based approaches with a focus on pectic homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). Epitope detection in association with anion-exchange chromatography analysis indicates that in all cases solubilized polymers include spectra of HG molecules with unesterified regions that are separable from methylesterified HG domains. In highly soluble fractions, RG-I domains exist in both HG-associated and non-HG-associated forms. Soluble xyloglucan and pectin-associated xyloglucan components were detected in all fruits. Aubergine glycans contain abundant heteroxylan epitopes, some of which are associated with both pectin and xyloglucan. These profiles of polysaccharide heterogeneity provide a basis for future studies of more complex cell and tissue systems.
Collapse
Affiliation(s)
- Valérie Cornuault
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Posé
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
15
|
Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat Chem Biol 2018; 14:306-310. [DOI: 10.1038/nchembio.2558] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 12/11/2017] [Indexed: 12/26/2022]
|
16
|
Carbohydrate active enzyme domains from extreme thermophiles: components of a modular toolbox for lignocellulose degradation. Extremophiles 2017; 22:1-12. [PMID: 29110088 DOI: 10.1007/s00792-017-0974-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/24/2017] [Indexed: 02/06/2023]
Abstract
Lignocellulosic biomass is a promising feedstock for the manufacture of biodegradable and renewable bioproducts. However, the complex lignocellulosic polymeric structure of woody tissue is difficult to access without extensive industrial pre-treatment. Enzyme processing of partly depolymerised biomass is an established technology, and there is evidence that high temperature (extremely thermophilic) lignocellulose degrading enzymes [carbohydrate active enzymes (CAZymes)] may enhance processing efficiency. However, wild-type thermophilic CAZymes will not necessarily be functionally optimal under industrial pre-treatment conditions. With recent advances in synthetic biology, it is now potentially possible to build CAZyme constructs from individual protein domains, tailored to the conditions of specific industrial processes. In this review, we identify a 'toolbox' of thermostable CAZyme domains from extremely thermophilic organisms and highlight recent advances in CAZyme engineering which will allow for the rational design of CAZymes tailored to specific aspects of lignocellulose digestion.
Collapse
|
17
|
Sun Q, Sun Y, Juzenas K. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2231-2244. [PMID: 28398585 PMCID: PMC5447876 DOI: 10.1093/jxb/erx103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types.
Collapse
Affiliation(s)
- Qiang Sun
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, USA
| | - Yuliang Sun
- School of Medicine, Boston University, Boston, MA 02118, USA
| | - Kevin Juzenas
- Department of Biology, University of Wisconsin, Stevens Point, WI 54481, USA
| |
Collapse
|
18
|
Badruna L, Burlat V, Montanier CY. CBMs as Probes to Explore Plant Cell Wall Heterogeneity Using Immunocytochemistry. Methods Mol Biol 2017; 1588:181-197. [PMID: 28417369 DOI: 10.1007/978-1-4939-6899-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Immunocytochemistry is a widely used technique to localize antigen within intact tissues. Plant cell walls are complex matrixes of highly decorated polysaccharides and the large number of CBM families displaying specific substrate recognition reflects this complexity. The accessibility of large proteins, such as antibodies, to their cell wall epitopes may be sometimes difficult due to steric hindrance problems. Due to their smaller size, CBMs are interesting alternative probes. The aim of this chapter is to describe the use of CBM as probes to explore complex polysaccharide topochemistry in muro and to quantify enzymatic deconstruction.
Collapse
Affiliation(s)
- Louise Badruna
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France
| | - Vincent Burlat
- Laboratoire de Recherche en Sciences Végétales, UMR 5546 UPS/CNRS, 31326, Castanet-Tolosan, France
| | - Cédric Y Montanier
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 135 Avenue de Rangueil, 31077, Toulouse, France.
| |
Collapse
|
19
|
Liu S, Ding S. Replacement of carbohydrate binding modules improves acetyl xylan esterase activity and its synergistic hydrolysis of different substrates with xylanase. BMC Biotechnol 2016; 16:73. [PMID: 27770795 PMCID: PMC5075172 DOI: 10.1186/s12896-016-0305-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/13/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Acetylation of the xylan backbone was a major obstacle to enzymatic decomposition. Removal of acetyl groups by acetyl xylan esterases (AXEs) is essential for completely enzymatic hydrolysis of xylan. Appended carbohydrate binding modules (CBMs) can promote the enzymatic deconstruction of plant cell walls by targeting and proximity effects. Fungal acetyl xylan esterases are strictly appended to cellulose-specific CBM1. It is still unclear whether xylan-specific CBMs have a greater advantage than CBM1 in potentiating the activity of fungal deacetylating enzymes and its synergistic hydrolysis of different substrates with xylanase. RESULTS Three recombinant AXE1s fused with different xylan-specific CBMs, together with wild-type AXE1 with CBM1 and CBM1-deleted mutant AXE1dC, were constructed in this study. The optimal temperature and pH of recombinant AXE1s was 50 °C and 8.0 (except AXE1dC-CBM6), respectively. Cellulose-specific CBM1 in AXE1 obviously contributed to its catalytic action against substrates compared with AXE1dC. However, replacement of CBM1 with xylan-specific CBM4-2 significantly enhanced AXE1 thermostability and catalytic activity against soluble substrate 4-methylumbelliferyl acetate. Whereas replacements with xylan-specific CBM6 and CBM22-2 were more effective in enzymatic release of acetic acid from destarched wheat bran, NaClO2-treated wheat straw, and water-insoluble wheat arabinoxylan compared to AXE1. Moreover, replacement with CBM6 and CBM22-2 also resulted in higher degree releases of reducing sugar and acetic acid from different substrates when simultaneous hydrolysis with xylanase. A good linear relationship exists between the acetic acid and reducing sugar release. CONCLUSIONS Our findings suggested that the replacement with CBM6 and CBM22-2 not only significantly improved the catalysis efficiency of AXE1, but also increased its synergistic hydrolysis of different substrates with xylanase, indicating the significance of targeting effect in AXE1 catalysis mediated by xylan-specific CBMs.
Collapse
Affiliation(s)
- Shiping Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shaojun Ding
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
20
|
Abstract
The enzyme-catalysed degradation of oligo and polysaccharides is of considerable interest in many fields ranging from the fundamental–understanding the intrinsic chemical beauty–through to the applied, including diverse practical applications in medicine and biotechnology. Carbohydrates are the most stereochemically-complex biopolymer, and myriad different natural polysaccharides have led to evolution of multifaceted enzyme consortia for their degradation. The glycosidic bonds that link sugar monomers are among the most chemically-stable, yet enzymatically-labile, bonds in the biosphere. That glycoside hydrolases can achieve a rate enhancement (kcat/kuncat) >1017-fold provides testament to their remarkable proficiency and the sophistication of their catalysis reaction mechanisms. The last two decades have seen significant advances in the discovery of new glycosidase sequences, sequence-based classification into families and clans, 3D structures and reaction mechanisms, providing new insights into enzymatic catalysis. New impetus to these studies has been provided by the challenges inherent in plant and microbial polysaccharide degradation, both in the context of environmentally-sustainable routes to foods and biofuels, and increasingly in human nutrition. Study of the reaction mechanism of glycoside hydrolases has also inspired the development of enzyme inhibitors, both as mechanistic probes and increasingly as therapeutic agents. We are on the cusp of a new era where we are learning how to dovetail powerful computational techniques with structural and kinetic data to provide an unprecedented view of conformational details of enzyme action.
Collapse
|
21
|
Karita S. Carbohydrate-Binding Modules in Plant Cell Wall-Degrading Enzymes. TRENDS GLYCOSCI GLYC 2016. [DOI: 10.4052/tigg.1403.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
Fong M, Berrin JG, Paës G. Investigation of the binding properties of a multi-modular GH45 cellulase using bioinspired model assemblies. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:12. [PMID: 26788125 PMCID: PMC4717654 DOI: 10.1186/s13068-016-0428-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/05/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Enzymes degrading plant biomass polymers are widely used in biotechnological applications. Their efficiency can be limited by non-specific interactions occurring with some chemical motifs. In particular, the lignin component is known to bind enzymes irreversibly. In order to determine interactions of enzymes with their substrates, experiments are usually performed on isolated simple polymers which are not representative of plant cell wall complexity. But when using natural plant substrates, the role of individual chemical and structural features affecting enzyme-binding properties is also difficult to decipher. RESULTS We have designed and used lignified model assemblies of plant cell walls as templates to characterize binding properties of multi-modular cellulases. These three-dimensional assemblies are modulated in their composition using the three principal polymers found in secondary plant cell walls (cellulose, hemicellulose, and lignin). Binding properties of enzymes are obtained from the measurement of their mobility that depends on their interactions with the polymers and chemical motifs of the assemblies. The affinity of the multi-modular GH45 cellulase was characterized using a statistical analysis to determine the role played by each assembly polymer. Presence of hemicellulose had much less impact on affinity than cellulose and model lignin. Depending on the number of CBMs appended to the cellulase catalytic core, binding properties toward cellulose and lignin were highly contrasted. CONCLUSIONS Model assemblies bring new insights into the molecular determinants that are responsible for interactions between enzymes and substrate without the need of complex analysis. Consequently, we believe that model bioinspired assemblies will provide relevant information for the design and optimization of enzyme cocktails in the context of biorefineries.
Collapse
Affiliation(s)
- Monica Fong
- />UMR0614, Fractionnement des AgroRessources et Environnement, INRA, 2 esplanade Roland-Garros, 51100 Reims, France
- />UMR0614, Fractionnement des AgroRessources et Environnement, University of Reims Champagne Ardenne, 2 esplanade Roland-Garros, 51100 Reims, France
| | - Jean-Guy Berrin
- />UMR1163, Biodiversité et Biotechnologie Fongiques, INRA, 13288 Marseille, France
- />UMR1163, Biodiversité et Biotechnologie Fongiques, Aix Marseille Université, 13288 Marseille, France
- />UMR1163, Biodiversité et Biotechnologie Fongiques, Polytech’Marseille, 13288 Marseille, France
| | - Gabriel Paës
- />UMR0614, Fractionnement des AgroRessources et Environnement, INRA, 2 esplanade Roland-Garros, 51100 Reims, France
- />UMR0614, Fractionnement des AgroRessources et Environnement, University of Reims Champagne Ardenne, 2 esplanade Roland-Garros, 51100 Reims, France
| |
Collapse
|
23
|
|
24
|
|
25
|
Pattathil S, Avci U, Zhang T, Cardenas CL, Hahn MG. Immunological Approaches to Biomass Characterization and Utilization. Front Bioeng Biotechnol 2015; 3:173. [PMID: 26579515 PMCID: PMC4623462 DOI: 10.3389/fbioe.2015.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 10/12/2015] [Indexed: 11/13/2022] Open
Abstract
Plant biomass is the major renewable feedstock resource for sustainable generation of alternative transportation fuels to replace fossil carbon-derived fuels. Lignocellulosic cell walls are the principal component of plant biomass. Hence, a detailed understanding of plant cell wall structure and biosynthesis is an important aspect of bioenergy research. Cell walls are dynamic in their composition and structure, varying considerably among different organs, cells, and developmental stages of plants. Hence, tools are needed that are highly efficient and broadly applicable at various levels of plant biomass-based bioenergy research. The use of plant cell wall glycan-directed probes has seen increasing use over the past decade as an excellent approach for the detailed characterization of cell walls. Large collections of such probes directed against most major cell wall glycans are currently available worldwide. The largest and most diverse set of such probes consists of cell wall glycan-directed monoclonal antibodies (McAbs). These McAbs can be used as immunological probes to comprehensively monitor the overall presence, extractability, and distribution patterns among cell types of most major cell wall glycan epitopes using two mutually complementary immunological approaches, glycome profiling (an in vitro platform) and immunolocalization (an in situ platform). Significant progress has been made recently in the overall understanding of plant biomass structure, composition, and modifications with the application of these immunological approaches. This review focuses on such advances made in plant biomass analyses across diverse areas of bioenergy research.
Collapse
Affiliation(s)
- Sivakumar Pattathil
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| | - Tiantian Zhang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Claudia L. Cardenas
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Oak Ridge National Laboratory, BioEnergy Science Center (BESC), Oak Ridge, TN, USA
| |
Collapse
|
26
|
Paës G, von Schantz L, Ohlin M. Bioinspired assemblies of plant cell wall polymers unravel the affinity properties of carbohydrate-binding modules. SOFT MATTER 2015; 11:6586-94. [PMID: 26189625 DOI: 10.1039/c5sm01157d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Lignocellulose-acting enzymes play a central role in the biorefinery of plant biomass to make fuels, chemicals and materials. These enzymes are often appended to carbohydrate binding modules (CBMs) that promote substrate targeting. When used in plant materials, which are complex assemblies of polymers, the binding properties of CBMs can be difficult to understand and predict, thus limiting the efficiency of enzymes. In order to gain more information on the binding properties of CBMs, some bioinspired model assemblies that contain some of the polymers and covalent interactions found in the plant cell walls have been designed. The mobility of three engineered CBMs has been investigated by FRAP in these assemblies, while varying the parameters related to the polymer concentration, the physical state of assemblies and the oligomerization state of CBMs. The features controlling the mobility of the CBMs in the assemblies have been quantified and hierarchized. We demonstrate that the parameters can have additional or opposite effects on mobility, depending on the CBM tested. We also find evidence of a relationship between the mobility of CBMs and their binding strength. Overall, bioinspired assemblies are able to reveal the unique features of affinity of CBMs. In particular, the results show that oligomerization of CBMs and the presence of ferulic acid motifs in the assemblies play an important role in the binding affinity of CBMs. Thus we propose that these features should be finely tuned when CBMs are used in plant cell walls to optimise bioprocesses.
Collapse
Affiliation(s)
- Gabriel Paës
- INRA, UMR0614 Fractionnement des AgroRessources et Environnement, 2 esplanade Roland-Garros, 51100 Reims, France.
| | | | | |
Collapse
|
27
|
Hernandez-Gomez MC, Runavot JL, Guo X, Bourot S, Benians TAS, Willats WGT, Meulewaeter F, Knox JP. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. PLANT & CELL PHYSIOLOGY 2015; 56:1786-97. [PMID: 26187898 PMCID: PMC4562070 DOI: 10.1093/pcp/pcv101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/27/2015] [Indexed: 05/18/2023]
Abstract
The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing.
Collapse
Affiliation(s)
- Mercedes C Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK These authors contributed equally to this work
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium These authors contributed equally to this work
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Stéphane Bourot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Thomas A S Benians
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
28
|
Hernandez-Gomez MC, Rydahl MG, Rogowski A, Morland C, Cartmell A, Crouch L, Labourel A, Fontes CMGA, Willats WGT, Gilbert HJ, Knox JP. Recognition of xyloglucan by the crystalline cellulose-binding site of a family 3a carbohydrate-binding module. FEBS Lett 2015; 589:2297-303. [PMID: 26193423 DOI: 10.1016/j.febslet.2015.07.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 07/01/2015] [Accepted: 07/07/2015] [Indexed: 11/29/2022]
Abstract
Type A non-catalytic carbohydrate-binding modules (CBMs), exemplified by CtCBM3acipA, are widely believed to specifically target crystalline cellulose through entropic forces. Here we have tested the hypothesis that type A CBMs can also bind to xyloglucan (XG), a soluble β-1,4-glucan containing α-1,6-xylose side chains. CtCBM3acipA bound to xyloglucan in cell walls and arrayed on solid surfaces. Xyloglucan and cellulose were shown to bind to the same planar surface on CBM3acipA. A range of type A CBMs from different families were shown to bind to xyloglucan in solution with ligand binding driven by enthalpic changes. The nature of CBM-polysaccharide interactions is discussed.
Collapse
Affiliation(s)
| | - Maja G Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Artur Rogowski
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Carl Morland
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alan Cartmell
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Lucy Crouch
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Aurore Labourel
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Carlos M G A Fontes
- CIISA - Faculdade de Medicina Veterinária, Universidade de Lisboa, Pólo Universitário do Alto da Ajuda, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Harry J Gilbert
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
29
|
Sainz-Polo MA, González B, Menéndez M, Pastor FIJ, Sanz-Aparicio J. Exploring Multimodularity in Plant Cell Wall Deconstruction: STRUCTURAL AND FUNCTIONAL ANALYSIS OF Xyn10C CONTAINING THE CBM22-1-CBM22-2 TANDEM. J Biol Chem 2015; 290:17116-30. [PMID: 26001782 DOI: 10.1074/jbc.m115.659300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Indexed: 11/06/2022] Open
Abstract
Elucidating the molecular mechanisms regulating multimodularity is a challenging task. Paenibacillus barcinonensis Xyn10C is a 120-kDa modular enzyme that presents the CBM22/GH10/CBM9 architecture found in a subset of large xylanases. We report here the three-dimensional structure of the Xyn10C N-terminal region, containing the xylan-binding CBM22-1-CBM22-2 tandem (Xyn10C-XBD), which represents the first solved crystal structure of two contiguous CBM22 modules. Xyn10C-XBD is folded into two separate CBM22 modules linked by a flexible segment that endows the tandem with extraordinary plasticity. Each isolated domain has been expressed and crystallized, and their binding abilities have been investigated. Both domains contain the R(W/Y)YYE motif required for xylan binding. However, crystallographic analysis of CBM22-2 complexes shows Trp-308 as an additional binding determinant. The long loop containing Trp-308 creates a platform that possibly contributes to the recognition of precise decorations at subsite S2. CBM22-2 may thus define a subset of xylan-binding CBM22 modules directed to particular regions of the polysaccharide. Affinity electrophoresis reveals that Xyn10C-XBD binds arabinoxylans more tightly, which is more apparent when CBM22-2 is tested against highly substituted xylan. The crystal structure of the catalytic domain, also reported, shows the capacity of the active site to accommodate xylan substitutions at almost all subsites. The structural differences found at both Xyn10C-XBD domains are consistent with the isothermal titration calorimetry experiments showing two sites with different affinities in the tandem. On the basis of the distinct characteristics of CBM22, a delivery strategy of Xyn10C mediated by Xyn10C-XBD is proposed.
Collapse
Affiliation(s)
| | - Beatriz González
- From the Departamentos de Cristalografía y Biología Estructural y
| | - Margarita Menéndez
- Química Física Biólogica, Instituto de Química-Física Rocasolano, Consejo Superior de Investigaciones Científicas, Serrano 119, 28006-Madrid and
| | - F I Javier Pastor
- the Departamento de Microbiología, Facultad de Biología, Universidad de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain
| | | |
Collapse
|
30
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015; 3:10. [PMID: 25750913 PMCID: PMC4335395 DOI: 10.3389/fcell.2015.00010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 02/02/2015] [Indexed: 01/05/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H. Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Tara J. Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Darren M. Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of LeedsLeeds, UK
| | - William G. T. Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of CopenhagenCopenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Malcolm J. Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of AntwerpAntwerp, Belgium
| | - T. Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of NottinghamSutton Bonington, UK
| |
Collapse
|
31
|
Lakhundi S, Siddiqui R, Khan NA. Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasit Vectors 2015; 8:23. [PMID: 25586209 PMCID: PMC4300153 DOI: 10.1186/s13071-015-0642-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 01/05/2015] [Indexed: 11/10/2022] Open
Abstract
Acanthamoeba is an opportunistic free-living amoeba that can cause blinding keratitis and fatal brain infection. Early diagnosis, followed by aggressive treatment is a pre-requisite in the successful treatment but even then the prognosis remains poor. A major drawback during the course of treatment is the ability of the amoeba to enclose itself within a shell (a process known as encystment), making it resistant to chemotherapeutic agents. As the cyst wall is partly made of cellulose, thus cellulose degradation offers a potential therapeutic strategy in the effective targeting of trophozoite encased within the cyst walls. Here, we present a comprehensive report on the structure of cellulose and cellulases, as well as known cellulose degradation mechanisms with an eye to target the Acanthamoeba cyst wall. The disruption of the cyst wall will make amoeba (concealed within) susceptible to chemotherapeutic agents, and at the very least inhibition of the excystment process will impede infection recurrence, as we bring these promising drug targets into focus so that they can be explored to their fullest.
Collapse
Affiliation(s)
- Sahreena Lakhundi
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Ruqaiyyah Siddiqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan.
| | - Naveed Ahmed Khan
- Department of Biological and Biomedical Sciences, Aga Khan University, Stadium Road, Karachi, Pakistan.
| |
Collapse
|
32
|
Derba-Maceluch M, Awano T, Takahashi J, Lucenius J, Ratke C, Kontro I, Busse-Wicher M, Kosik O, Tanaka R, Winzéll A, Kallas Å, Leśniewska J, Berthold F, Immerzeel P, Teeri TT, Ezcurra I, Dupree P, Serimaa R, Mellerowicz EJ. Suppression of xylan endotransglycosylase PtxtXyn10A affects cellulose microfibril angle in secondary wall in aspen wood. THE NEW PHYTOLOGIST 2015; 205:666-81. [PMID: 25307149 DOI: 10.1111/nph.13099] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 08/25/2014] [Indexed: 05/02/2023]
Abstract
Certain xylanases from family GH10 are highly expressed during secondary wall deposition, but their function is unknown. We carried out functional analyses of the secondary-wall specific PtxtXyn10A in hybrid aspen (Populus tremula × tremuloides). PtxtXyn10A function was analysed by expression studies, overexpression in Arabidopsis protoplasts and by downregulation in aspen. PtxtXyn10A overexpression in Arabidopsis protoplasts resulted in increased xylan endotransglycosylation rather than hydrolysis. In aspen, the enzyme was found to be proteolytically processed to a 68 kDa peptide and residing in cell walls. Its downregulation resulted in a corresponding decrease in xylan endotransglycosylase activity and no change in xylanase activity. This did not alter xylan molecular weight or its branching pattern but affected the cellulose-microfibril angle in wood fibres, increased primary growth (stem elongation, leaf formation and enlargement) and reduced the tendency to form tension wood. Transcriptomes of transgenic plants showed downregulation of tension wood related genes and changes in stress-responsive genes. The data indicate that PtxtXyn10A acts as a xylan endotransglycosylase and its main function is to release tensional stresses arising during secondary wall deposition. Furthermore, they suggest that regulation of stresses in secondary walls plays a vital role in plant development.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, SLU, Umeå Plant Science Centre (UPSC), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wilson MH, Holman TJ, Sørensen I, Cancho-Sanchez E, Wells DM, Swarup R, Knox JP, Willats WGT, Ubeda-Tomás S, Holdsworth M, Bennett MJ, Vissenberg K, Hodgman TC. Multi-omics analysis identifies genes mediating the extension of cell walls in the Arabidopsis thaliana root elongation zone. Front Cell Dev Biol 2015. [PMID: 25750913 DOI: 10.3389/fcell.2015.00010/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
Plant cell wall composition is important for regulating growth rates, especially in roots. However, neither analyses of cell wall composition nor transcriptomes on their own can comprehensively reveal which genes and processes are mediating growth and cell elongation rates. This study reveals the benefits of carrying out multiple analyses in combination. Sections of roots from five anatomically and functionally defined zones in Arabidopsis thaliana were prepared and divided into three biological replicates. We used glycan microarrays and antibodies to identify the major classes of glycans and glycoproteins present in the cell walls of these sections, and identified the expected decrease in pectin and increase in xylan from the meristematic zone (MS), through the rapid and late elongation zones (REZ, LEZ) to the maturation zone and the rest of the root, including the emerging lateral roots. Other compositional changes included extensin and xyloglucan levels peaking in the REZ and increasing levels of arabinogalactan-proteins (AGP) epitopes from the MS to the LEZ, which remained high through the subsequent mature zones. Immuno-staining using the same antibodies identified the tissue and (sub)cellular localization of many epitopes. Extensins were localized in epidermal and cortex cell walls, while AGP glycans were specific to different tissues from root-hair cells to the stele. The transcriptome analysis found several gene families peaking in the REZ. These included a large family of peroxidases (which produce the reactive oxygen species (ROS) needed for cell expansion), and three xyloglucan endo-transglycosylase/hydrolase genes (XTH17, XTH18, and XTH19). The significance of the latter may be related to a role in breaking and re-joining xyloglucan cross-bridges between cellulose microfibrils, a process which is required for wall expansion. Knockdowns of these XTHs resulted in shorter root lengths, confirming a role of the corresponding proteins in root extension growth.
Collapse
Affiliation(s)
- Michael H Wilson
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Tara J Holman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Iben Sørensen
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Ester Cancho-Sanchez
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Darren M Wells
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Ranjan Swarup
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds Leeds, UK
| | - William G T Willats
- Plant Glycobiology Section, Department of Plant and Environmental Sciences, University of Copenhagen Copenhagen, Denmark
| | - Susana Ubeda-Tomás
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Michael Holdsworth
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Malcolm J Bennett
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| | - Kris Vissenberg
- Laboratory of Plant Growth and Development, Department of Biology, University of Antwerp Antwerp, Belgium
| | - T Charlie Hodgman
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham Sutton Bonington, UK
| |
Collapse
|
34
|
Ratke C, Pawar PMA, Balasubramanian VK, Naumann M, Duncranz ML, Derba-Maceluch M, Gorzsás A, Endo S, Ezcurra I, Mellerowicz EJ. Populus GT43 family members group into distinct sets required for primary and secondary wall xylan biosynthesis and include useful promoters for wood modification. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:26-37. [PMID: 25100045 DOI: 10.1111/pbi.12232] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 05/05/2023]
Abstract
The plant GT43 protein family includes xylosyltransferases that are known to be required for xylan backbone biosynthesis, but have incompletely understood specificities. RT-qPCR and histochemical (GUS) analyses of expression patterns of GT43 members in hybrid aspen, reported here, revealed that three clades of the family have markedly differing specificity towards secondary wall-forming cells (wood and extraxylary fibres). Intriguingly, GT43A and B genes (corresponding to the Arabidopsis IRX9 clade) showed higher specificity for secondary-walled cells than GT43C and D genes (IRX14 clade), although both IRX9 and IRX14 are required for xylosyltransferase activity. The remaining genes, GT43E, F and G (IRX9-L clade), showed broad expression patterns. Transient transactivation analyses of GT43A and B reporters demonstrated that they are activated by PtxtMYB021 and PNAC085 (master secondary wall switches), mediated in PtxtMYB021 activation by an AC element. The high observed secondary cell wall specificity of GT43B expression prompted tests of the efficiency of its promoter (pGT43B), relative to the CaMV 35S (35S) promoter, for overexpressing a xylan acetyl esterase (CE5) or downregulating REDUCED WALL ACETYLATION (RWA) family genes and thus engineering wood acetylation. CE5 expression was weaker when driven by pGT43B, but it reduced wood acetyl content substantially more efficiently than the 35S promoter. RNAi silencing of the RWA family, which was ineffective using 35S, was achieved when using GT43B promoter. These results show the utility of the GT43B promoter for genetically engineering properties of wood and fibres.
Collapse
Affiliation(s)
- Christine Ratke
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Mravec J, Kračun SK, Rydahl MG, Westereng B, Miart F, Clausen MH, Fangel JU, Daugaard M, Van Cutsem P, De Fine Licht HH, Höfte H, Malinovsky FG, Domozych DS, Willats WGT. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes. Development 2014; 141:4841-50. [DOI: 10.1242/dev.113365] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons.
Collapse
Affiliation(s)
- Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Stjepan K. Kračun
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Maja G. Rydahl
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Bjørge Westereng
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas NO-1432, Norway
| | - Fabien Miart
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Saclay Plant Sciences, INRA Centre de Versailles, Versailles 78026, Cedex, France
| | - Mads H. Clausen
- Center for Nano medicine and Theranostics and Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Jonatan U. Fangel
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Mathilde Daugaard
- Center for Nano medicine and Theranostics and Department of Chemistry, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Pierre Van Cutsem
- Unité de Recherche en Biologie cellulaire végétale, University of Namur, Namur B-5000, Belgium
| | - Henrik H. De Fine Licht
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - Herman Höfte
- Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Saclay Plant Sciences, INRA Centre de Versailles, Versailles 78026, Cedex, France
| | - Frederikke G. Malinovsky
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| | - David S. Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, NY 12866, USA
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark
| |
Collapse
|
36
|
|
37
|
Zhang X, Rogowski A, Zhao L, Hahn MG, Avci U, Knox JP, Gilbert HJ. Understanding how the complex molecular architecture of mannan-degrading hydrolases contributes to plant cell wall degradation. J Biol Chem 2014; 289:2002-12. [PMID: 24297170 PMCID: PMC3900950 DOI: 10.1074/jbc.m113.527770] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/25/2013] [Indexed: 12/16/2022] Open
Abstract
Microbial degradation of plant cell walls is a central component of the carbon cycle and is of increasing importance in environmentally significant industries. Plant cell wall-degrading enzymes have a complex molecular architecture consisting of catalytic modules and, frequently, multiple non-catalytic carbohydrate binding modules (CBMs). It is currently unclear whether the specificities of the CBMs or the topology of the catalytic modules are the primary drivers for the specificity of these enzymes against plant cell walls. Here, we have evaluated the relationship between CBM specificity and their capacity to enhance the activity of GH5 and GH26 mannanases and CE2 esterases against intact plant cell walls. The data show that cellulose and mannan binding CBMs have the greatest impact on the removal of mannan from tobacco and Physcomitrella cell walls, respectively. Although the action of the GH5 mannanase was independent of the context of mannan in tobacco cell walls, a significant proportion of the polysaccharide was inaccessible to the GH26 enzyme. The recalcitrant mannan, however, was fully accessible to the GH26 mannanase appended to a cellulose binding CBM. Although CE2 esterases display similar specificities against acetylated substrates in vitro, only CjCE2C was active against acetylated mannan in Physcomitrella. Appending a mannan binding CBM27 to CjCE2C potentiated its activity against Physcomitrella walls, whereas a xylan binding CBM reduced the capacity of esterases to deacetylate xylan in tobacco walls. This work provides insight into the biological significance for the complex array of hydrolytic enzymes expressed by plant cell wall-degrading microorganisms.
Collapse
Affiliation(s)
- Xiaoyang Zhang
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Artur Rogowski
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
| | - Lei Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Michael G. Hahn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Harry J. Gilbert
- From the Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle-upon-Tyne, NE 4HH, United Kingdom
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, and
| |
Collapse
|
38
|
Konietzny SGA, Pope PB, Weimann A, McHardy AC. Inference of phenotype-defining functional modules of protein families for microbial plant biomass degraders. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:124. [PMID: 25342967 PMCID: PMC4189754 DOI: 10.1186/s13068-014-0124-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/05/2014] [Indexed: 05/14/2023]
Abstract
BACKGROUND Efficient industrial processes for converting plant lignocellulosic materials into biofuels are a key to global efforts to come up with alternative energy sources to fossil fuels. Novel cellulolytic enzymes have been discovered in microbial genomes and metagenomes of microbial communities. However, the identification of relevant genes without known homologs, and the elucidation of the lignocellulolytic pathways and protein complexes for different microorganisms remain challenging. RESULTS We describe a new computational method for the targeted discovery of functional modules of plant biomass-degrading protein families, based on their co-occurrence patterns across genomes and metagenome datasets, and the strength of association of these modules with the genomes of known degraders. From approximately 6.4 million family annotations for 2,884 microbial genomes, and 332 taxonomic bins from 18 metagenomes, we identified 5 functional modules that are distinctive for plant biomass degraders, which we term "plant biomass degradation modules" (PDMs). These modules incorporate protein families involved in the degradation of cellulose, hemicelluloses, and pectins, structural components of the cellulosome, and additional families with potential functions in plant biomass degradation. The PDMs were linked to 81 gene clusters in genomes of known lignocellulose degraders, including previously described clusters of lignocellulolytic genes. On average, 70% of the families of each PDM were found to map to gene clusters in known degraders, which served as an additional confirmation of their functional relationships. The presence of a PDM in a genome or taxonomic metagenome bin furthermore allowed us to accurately predict the ability of any particular organism to degrade plant biomass. For 15 draft genomes of a cow rumen metagenome, we used cross-referencing to confirmed cellulolytic enzymes to validate that the PDMs identified plant biomass degraders within a complex microbial community. CONCLUSIONS Functional modules of protein families that are involved in different aspects of plant cell wall degradation can be inferred from co-occurrence patterns across (meta-)genomes with a probabilistic topic model. PDMs represent a new resource of protein families and candidate genes implicated in microbial plant biomass degradation. They can also be used to predict the plant biomass degradation ability for a genome or taxonomic bin. The method is also suitable for characterizing other microbial phenotypes.
Collapse
Affiliation(s)
- Sebastian GA Konietzny
- />Max-Planck Research Group for Computational Genomics and Epidemiology, Max-Planck Institute for Informatics, University Campus E1 4, Saarbrücken, 66123 Germany
- />Department of Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Phillip B Pope
- />Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Post Office Box 5003, 1432 Ås, Norway
| | - Aaron Weimann
- />Department of Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, 40225 Germany
| | - Alice C McHardy
- />Max-Planck Research Group for Computational Genomics and Epidemiology, Max-Planck Institute for Informatics, University Campus E1 4, Saarbrücken, 66123 Germany
- />Department of Algorithmic Bioinformatics, Heinrich Heine University Düsseldorf, Düsseldorf, 40225 Germany
| |
Collapse
|
39
|
Ejby M, Fredslund F, Vujicic-Zagar A, Svensson B, Slotboom DJ, Abou Hachem M. Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol Microbiol 2013; 90:1100-12. [PMID: 24279727 DOI: 10.1111/mmi.12419] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2013] [Indexed: 11/27/2022]
Abstract
Glycan utilization plays a key role in modulating the composition of the gut microbiota, but molecular insight into oligosaccharide uptake by this microbial community is lacking. Arabinoxylo-oligosaccharides (AXOS) are abundant in the diet, and are selectively fermented by probiotic bifidobacteria in the colon. Here we show how selectivity for AXOS uptake is established by the probiotic strain Bifidobacterium animalis subsp. lactis Bl-04. The binding protein BlAXBP, which is associated with an ATP-binding cassette (ABC) transporter that mediates the uptake of AXOS, displays an exceptionally broad specificity for arabinosyl-decorated and undecorated xylo-oligosaccharides, with preference for tri- and tetra-saccharides. Crystal structures of BlAXBP in complex with four different ligands revealed the basis for this versatility. Uniquely, the protein was able to recognize oligosaccharides in two opposite orientations, which facilitates the optimization of interactions with the various ligands. Broad substrate specificity was further enhanced by a spacious binding pocket accommodating decorations at different mainchain positions and conformational flexibility of a lid-like loop. Phylogenetic and genetic analyses show that BlAXBP is highly conserved within Bifidobacterium, but is lacking in other gut microbiota members. These data indicate niche adaptation within Bifidobacterium and highlight the metabolic syntrophy (cross-feeding) among the gut microbiota.
Collapse
Affiliation(s)
- Morten Ejby
- Enzyme and Protein Chemistry, Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
40
|
Gilbert HJ, Knox JP, Boraston AB. Advances in understanding the molecular basis of plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr Opin Struct Biol 2013; 23:669-77. [DOI: 10.1016/j.sbi.2013.05.005] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/03/2013] [Accepted: 05/09/2013] [Indexed: 11/25/2022]
|
41
|
Nardi C, Escudero C, Villarreal N, Martínez G, Civello PM. The carbohydrate-binding module of Fragaria × ananassa expansin 2 (CBM-FaExp2) binds to cell wall polysaccharides and decreases cell wall enzyme activities "in vitro". JOURNAL OF PLANT RESEARCH 2013; 126:151-159. [PMID: 22752710 DOI: 10.1007/s10265-012-0504-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 05/28/2012] [Indexed: 05/27/2023]
Abstract
A putative carbohydrate binding module (CBM) from strawberry (Fragaria × ananassa Duch.) expansin 2 (CBM-FaExp2) was cloned and the encoding protein was over-expressed in Escherichia coli and purified in order to evaluate its capacity to bind different cell wall polysaccharides "in vitro". The protein CBM-FaExp2 bound to microcrystalline cellulose, xylan and pectin with different affinities (K(ad) = 33.6 ± 0.44 mL g(-1), K(ad) = 11.37 ± 0.87 mL g(-1), K(ad) = 10.4 ± 0.19 mL g(-1), respectively). According to "in vitro" enzyme assays, this CBM is able to decrease the activity of cell wall degrading enzymes such as polygalacturonase, endo-glucanase, pectinase and xylanase, probably because the binding of CBM-FaExp2 to the different substrates interferes with enzyme activity. The results suggest that expansins would bind not only cellulose but also a wide range of cell wall polymers.
Collapse
Affiliation(s)
- Cristina Nardi
- IIB-INTECH (CONICET-UNSAM), Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, Camino de Circunvalación Laguna, km 6, (B7130IWA) Chascomús, Pcia, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
42
|
Moller IE, Pettolino FA, Hart C, Lampugnani ER, Willats WGT, Bacic A. Glycan profiling of plant cell wall polymers using microarrays. J Vis Exp 2012:e4238. [PMID: 23271573 DOI: 10.3791/4238] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Plant cell walls are complex matrixes of heterogeneous glycans which play an important role in the physiology and development of plants and provide the raw materials for human societies (e.g. wood, paper, textile and biofuel industries)(1,2). However, understanding the biosynthesis and function of these components remains challenging. Cell wall glycans are chemically and conformationally diverse due to the complexity of their building blocks, the glycosyl residues. These form linkages at multiple positions and differ in ring structure, isomeric or anomeric configuration, and in addition, are substituted with an array of non-sugar residues. Glycan composition varies in different cell and/or tissue types or even sub-domains of a single cell wall(3). Furthermore, their composition is also modified during development(1), or in response to environmental cues(4). In excess of 2,000 genes have Plant cell walls are complex matrixes of heterogeneous glycans been predicted to be involved in cell wall glycan biosynthesis and modification in Arabidopsis(5). However, relatively few of the biosynthetic genes have been functionally characterized (4,5). Reverse genetics approaches are difficult because the genes are often differentially expressed, often at low levels, between cell types(6). Also, mutant studies are often hindered by gene redundancy or compensatory mechanisms to ensure appropriate cell wall function is maintained(7). Thus novel approaches are needed to rapidly characterise the diverse range of glycan structures and to facilitate functional genomics approaches to understanding cell wall biosynthesis and modification. Monoclonal antibodies (mAbs)(8,9) have emerged as an important tool for determining glycan structure and distribution in plants. These recognise distinct epitopes present within major classes of plant cell wall glycans, including pectins, xyloglucans, xylans, mannans, glucans and arabinogalactans. Recently their use has been extended to large-scale screening experiments to determine the relative abundance of glycans in a broad range of plant and tissue types simultaneously(9,10,11). Here we present a microarray-based glycan screening method called Comprehensive Microarray Polymer Profiling (CoMPP) (Figures 1 & 2)(10,11) that enables multiple samples (100 sec) to be screened using a miniaturised microarray platform with reduced reagent and sample volumes. The spot signals on the microarray can be formally quantified to give semi-quantitative data about glycan epitope occurrence. This approach is well suited to tracking glycan changes in complex biological systems(12) and providing a global overview of cell wall composition particularly when prior knowledge of this is unavailable.
Collapse
Affiliation(s)
- Isabel E Moller
- Australian Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne.
| | | | | | | | | | | |
Collapse
|
43
|
Luís AS, Venditto I, Temple MJ, Rogowski A, Baslé A, Xue J, Knox JP, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S, Gilbert HJ. Understanding how noncatalytic carbohydrate binding modules can display specificity for xyloglucan. J Biol Chem 2012; 288:4799-809. [PMID: 23229556 PMCID: PMC3576085 DOI: 10.1074/jbc.m112.432781] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Plant biomass is central to the carbon cycle and to environmentally sustainable industries exemplified by the biofuel sector. Plant cell wall degrading enzymes generally contain noncatalytic carbohydrate binding modules (CBMs) that fulfil a targeting function, which enhances catalysis. CBMs that bind β-glucan chains often display broad specificity recognizing β1,4-glucans (cellulose), β1,3-β1,4-mixed linked glucans and xyloglucan, a β1,4-glucan decorated with α1,6-xylose residues, by targeting structures common to the three polysaccharides. Thus, CBMs that recognize xyloglucan target the β1,4-glucan backbone and only accommodate the xylose decorations. Here we show that two closely related CBMs, CBM65A and CBM65B, derived from EcCel5A, a Eubacterium cellulosolvens endoglucanase, bind to a range of β-glucans but, uniquely, display significant preference for xyloglucan. The structures of the two CBMs reveal a β-sandwich fold. The ligand binding site comprises the β-sheet that forms the concave surface of the proteins. Binding to the backbone chains of β-glucans is mediated primarily by five aromatic residues that also make hydrophobic interactions with the xylose side chains of xyloglucan, conferring the distinctive specificity of the CBMs for the decorated polysaccharide. Significantly, and in contrast to other CBMs that recognize β-glucans, CBM65A utilizes different polar residues to bind cellulose and mixed linked glucans. Thus, Gln106 is central to cellulose recognition, but is not required for binding to mixed linked glucans. This report reveals the mechanism by which β-glucan-specific CBMs can distinguish between linear and mixed linked glucans, and show how these CBMs can exploit an extensive hydrophobic platform to target the side chains of decorated β-glucans.
Collapse
Affiliation(s)
- Ana S Luís
- CIISA, Faculdade de Medicina Veterinária, Universidade Técnica de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ruel K, Nishiyama Y, Joseleau JP. Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:48-61. [PMID: 22794918 DOI: 10.1016/j.plantsci.2012.05.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 05/09/2012] [Accepted: 05/11/2012] [Indexed: 06/01/2023]
Abstract
In the cell walls of higher plants, cellulose chains are present in crystalline microfibril, with an amorphous part at the surface, or present as amorphous material. To assess the distribution and relative occurrence of the two forms of cellulose in the inflorescence stem of Arabidopsis, we used two carbohydrate-binding modules, CBM3a and CBM28, specific for crystalline and amorphous cellulose, respectively, with immunogold detection in TEM. The binding of the two CBMs displayed specific patterns suggesting that the synthesis of cellulose leads to variable nanodomains of cellulose structures according to cell type. In developing cell walls, only CBM3a bound significantly to the incipient primary walls, indicating that at the onset of its deposition cellulose is in a crystalline structure. As the secondary wall develops, the labeling with both CBMs becomes more intense. The variation of the labeling pattern by CBM3a between transverse and longitudinal sections appeared related to microfibril orientation and differed between fibers and vessels. Although the two CBMs do not allow the description of the complete status of cellulose microstructures, they revealed the dynamics of the deposition of crystalline and amorphous forms of cellulose during wall formation and between cell types adapting cellulose microstructures to the cell function.
Collapse
Affiliation(s)
- Katia Ruel
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS UPR 5301), BP 53 38041 Grenoble CEDEX 9, France
| | - Yoshiharu Nishiyama
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS UPR 5301), BP 53 38041 Grenoble CEDEX 9, France
| | - Jean-Paul Joseleau
- Centre de Recherches sur les Macromolécules Végétales (CERMAV-CNRS UPR 5301), BP 53 38041 Grenoble CEDEX 9, France.
| |
Collapse
|
45
|
4-O-methylation of glucuronic acid in Arabidopsis glucuronoxylan is catalyzed by a domain of unknown function family 579 protein. Proc Natl Acad Sci U S A 2012; 109:14253-8. [PMID: 22893684 DOI: 10.1073/pnas.1208097109] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The hemicellulose 4-O-methyl glucuronoxylan is one of the principle components present in the secondary cell walls of eudicotyledonous plants. However, the biochemical mechanisms leading to the formation of this polysaccharide and the effects of modulating its structure on the physical properties of the cell wall are poorly understood. We have identified and functionally characterized an Arabidopsis glucuronoxylan methyltransferase (GXMT) that catalyzes 4-O-methylation of the glucuronic acid substituents of this polysaccharide. AtGXMT1, which was previously classified as a domain of unknown function (DUF) 579 protein, specifically transfers the methyl group from S-adenosyl-L-methionine to O-4 of α-D-glucopyranosyluronic acid residues that are linked to O-2 of the xylan backbone. Biochemical characterization of the recombinant enzyme indicates that GXMT1 is localized in the Golgi apparatus and requires Co(2+) for optimal activity in vitro. Plants lacking GXMT1 synthesize glucuronoxylan in which the degree of 4-O-methylation is reduced by 75%. This result is correlated to a change in lignin monomer composition and an increase in glucuronoxylan release during hydrothermal treatment of secondary cell walls. We propose that the DUF579 proteins constitute a previously undescribed family of cation-dependent, polysaccharide-specific O-methyl-transferases. This knowledge provides new opportunities to selectively manipulate polysaccharide O-methylation and extends the portfolio of structural targets that can be modified either alone or in combination to modulate biopolymer interactions in the plant cell wall.
Collapse
|
46
|
Koutaniemi S, Guillon F, Tranquet O, Bouchet B, Tuomainen P, Virkki L, Petersen HL, Willats WGT, Saulnier L, Tenkanen M. Substituent-specific antibody against glucuronoxylan reveals close association of glucuronic acid and acetyl substituents and distinct labeling patterns in tree species. PLANTA 2012; 236:739-51. [PMID: 22526506 DOI: 10.1007/s00425-012-1653-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 04/11/2012] [Indexed: 05/18/2023]
Abstract
Immunolabeling can be used to locate plant cell wall carbohydrates or other components to specific cell types or to specific regions of the wall. Some antibodies against xylans exist; however, many partly react with the xylan backbone and thus provide limited information on the type of substituents present in various xylans. We have produced a monoclonal antibody which specifically recognizes glucopyranosyl uronic acid (GlcA), or its 4-O-methyl ether (meGlcA), substituents in xylan and has no cross-reactivity with linear or arabinofuranosyl-substituted xylans. The UX1 antibody binds most strongly to (me)GlcA substitutions at the non-reducing ends of xylan chains, but has a low cross-reactivity with internal substitutions as well, at least on oligosaccharides. The antibody labeled plant cell walls from both mono- and dicotyledons, but in most tissues an alkaline pretreatment was needed for antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in glucuronic acid content.
Collapse
Affiliation(s)
- Sanna Koutaniemi
- Department of Food and Environmental Sciences, University of Helsinki, PO Box 27, 00014, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wilson SM, Burton RA, Collins HM, Doblin MS, Pettolino FA, Shirley N, Fincher GB, Bacic A. Pattern of deposition of cell wall polysaccharides and transcript abundance of related cell wall synthesis genes during differentiation in barley endosperm. PLANT PHYSIOLOGY 2012; 159:655-70. [PMID: 22510768 PMCID: PMC3375932 DOI: 10.1104/pp.111.192682] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Immunolabeling, combined with chemical analyses and transcript profiling, have provided a comprehensive temporal and spatial picture of the deposition and modification of cell wall polysaccharides during barley (Hordeum vulgare) grain development, from endosperm cellularization at 3 d after pollination (DAP) through differentiation to the mature grain at 38 DAP. (1→3)-β-D-Glucan appears transiently during cellularization but reappears in patches in the subaleurone cell walls around 20 DAP. (1→3, 1→4)-β-Glucan, the most abundant polysaccharide of the mature barley grain, accumulates throughout development. Arabino-(1-4)-β-D-xylan is deposited significantly earlier than we previously reported. This was attributable to the initial deposition of the polysaccharide in a highly substituted form that was not recognized by antibodies commonly used to detect arabino-(1-4)-β-D-xylans in sections of plant material. The epitopes needed for antibody recognition were exposed by pretreatment of sections with α-L-arabinofuranosidase; this procedure showed that arabino-(1-4)-β-D-xylans were deposited as early as 5 DAP and highlighted their changing structures during endosperm development. By 28 DAP labeling of hetero-(1→4)-β-D-mannan is observed in the walls of the starchy endosperm but not in the aleurone walls. Although absent in mature endosperm cell walls we now show that xyloglucan is present transiently from 3 until about 6 DAP and disappears by 8 DAP. Quantitative reverse transcription-polymerase chain reaction of transcripts for GLUCAN SYNTHASE-LIKE, Cellulose Synthase, and CELLULOSE SYNTHASE-LIKE genes were consistent with the patterns of polysaccharide deposition. Transcript profiling of some members from the Carbohydrate-Active Enzymes database glycosyl transferase families GT61, GT47, and GT43, previously implicated in arabino-(1-4)-β-d-xylan biosynthesis, confirms their presence during grain development.
Collapse
Affiliation(s)
- Sarah M Wilson
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules. Carbohydr Polym 2012; 89:213-21. [DOI: 10.1016/j.carbpol.2012.02.073] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022]
|
49
|
von Schantz L, Håkansson M, Logan DT, Walse B, Österlin J, Nordberg-Karlsson E, Ohlin M. Structural basis for carbohydrate-binding specificity—A comparative assessment of two engineered carbohydrate-binding modules. Glycobiology 2012; 22:948-61. [DOI: 10.1093/glycob/cws063] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
50
|
Abstract
Cellulose is generally found in the context of complex plant cell wall materials and mostly in association with other glycans. Cellulose-directed carbohydrate-binding modules (CBMs) can be readily adapted to a range of methods for the in situ imaging of cellulose structures within plant cell walls or other cellulose-based materials. Protocols for the preparation and selection of plant materials, their fixation and processing for preparation of sections for CBM labeling, and fluorescence imaging procedures are described. Approaches to direct methods in which CBMs are directly coupled to fluorophores and indirect methods in which staged incubations with secondary reagents are used for the fluorescence imaging of CBM binding to materials are discussed and presented.
Collapse
Affiliation(s)
- J Paul Knox
- Faculty of Biological Sciences, Centre for Plant Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|