1
|
Erezyilmaz D. The genetic determination of alternate stages in polyphenic insects. Evol Dev 2024; 26:e12485. [PMID: 38867484 DOI: 10.1111/ede.12485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/23/2024] [Accepted: 05/14/2024] [Indexed: 06/14/2024]
Abstract
Molt-based transitions in form are a central feature of insect life that have enabled adaptation to diverse and changing environments. The endocrine regulation of these transitions is well established, but an understanding of their genetic regulation has only recently emerged from insect models. The pupal and adult stages of metamorphosing insects are determined by the stage specifying transcription factors broad-complex (br) and Ecdysone inducible protein 93 (E93), respectively. A probable larval determinant, chronologically inappropriate metamorphosis (chinmo), has just recently been characterized. Expression of these three transcription factors in the metamorphosing insects is regulated by juvenile hormone with ecdysteroid hormones, and by mutual repression between the stage-specific transcription factors. This review explores the hypothesis that variations in the onset, duration, and tissue-specific expression of chinmo, br, and E93 underlie other polyphenisms that have arisen throughout insects, including the castes of social insects, aquatic stages of mayflies, and the neoteny of endoparasites. The mechanisms that constrain how chinmo, br, and E93 expression may vary will also constrain the ways that insect life history may evolve. I find that four types of expression changes are associated with novel insect forms: (1) heterochronic shift in the turnover of expression, (2) expansion or contraction of expression, (3) tissue-specific expression, and (4) redeployment of stage-specific expression. While there is more to be learned about chinmo, br, and E93 function in diverse insect taxa, the studies outlined here show that insect stages are modular units in developmental time and a substrate for evolutionary forces to act upon.
Collapse
Affiliation(s)
- Deniz Erezyilmaz
- Department of Physiology, Anatomy and Genetics, Centre for Neural Circuits and Behavior, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Truman JW, Riddiford LM, Konopová B, Nouzova M, Noriega FG, Herko M. The embryonic role of juvenile hormone in the firebrat, Thermobia domestica, reveals its function before its involvement in metamorphosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.06.561279. [PMID: 37873170 PMCID: PMC10592639 DOI: 10.1101/2023.10.06.561279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
To gain insights into how juvenile hormone (JH) came to regulate insect metamorphosis, we studied its function in the ametabolous firebrat, Thermobia domestica. Highest levels of JH occur during late embryogenesis, with only low levels thereafter. Loss-of-function and gain-of-function experiments show that JH acts on embryonic tissues to suppress morphogenesis and cell determination and to promote their terminal differentiation. Similar embryonic actions of JH on hemimetabolous insects with short germ band embryos indicate that JH's embryonic role preceded its derived function as the postembryonic regulator of metamorphosis. The postembryonic expansion of JH function likely followed the evolution of flight. Archaic flying insects were considered to lack metamorphosis because tiny, movable wings were evident on the thoraces of young juveniles and their positive allometric growth eventually allowed them to support flight in late juveniles. Like in Thermobia, we assume that these juveniles lacked JH. However, a postembryonic reappearance of JH during wing morphogenesis in the young juvenile likely redirected wing development to make a wing pad rather than a wing. Maintenance of JH then allowed wing pad growth and its disappearance in the mature juvenile then allowed wing differentiation. Subsequent modification of JH action for hemi- and holometabolous lifestyles are discussed.
Collapse
Affiliation(s)
- James W. Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Lynn M. Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
- Department of Biology, University of Washington, Seattle, WA USA
| | - Barbora Konopová
- Department of Zoology, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Fernando G. Noriega
- Department of Biological Sciences and BSI, Florida International University, FL ,USA
- Department of Parasitology, Faculty of Science, University of South Bohemia, Ceské Budejovice, Czech Republic
| | - Michelle Herko
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA, USA
| |
Collapse
|
3
|
Saito M, Fujimoto S, Kawasaki H. Ecdysone and gene expressions for chromatin remodeling, histone modification, and Broad Complex in relation to pupal commitment in Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22076. [PMID: 38288490 DOI: 10.1002/arch.22076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 02/01/2024]
Abstract
In the present study, we tried to clarify when and how pupal commitment (PT) better to use PC occurs and what is involved in the PT of Bombyx mori. To clarify this, we examined the responsiveness of a wing disc to ecdysone, referring to metamorphosis-related BR-C, development-related Myc and Wnt, and chromatin remodeling-related genes at around the predicted PT stage of the Bombyx wing disc. Wing disc responsiveness to juvenile hormone (JH) and ecdysone was examined using Methoprene and 20-hydroxyecdysone (20E) in vitro. The body weight of B. mori increased after the last larval ecdysis, peaked at Day 5 of the fifth larval instar (D5L5), and then decreased. The responsiveness of the wing disc to JH decreased after the last larval ecdysis up to D3L5. Bmbr-c (the Broad Complex of B. mori) showed enhanced expression in D4L5 wing discs with 20E treatment. Some chromatin remodeler and histone modifier genes (Bmsnr1, Bmutx, and Bmtip60) showed upregulation after being cultured with 20E in D4L5 wing discs. A low concentration of 20E is suggested to induce responsiveness to 20E in D4L5 wing discs. Bmbr-c, Bmsnr1, Bmutx, and Bmtip60 were upregulated after being cultured with a low concentration of 20E in D4L5 wing discs. The expression of Bmmyc and Bmwnt1 did not show a change after being cultured with or without 20E in D4L5 wing discs, while enhanced expression was observed with 20E in D5L5 wing discs. From the present results, we concluded that PT of the wing disc of B. mori occurred beginning on D4L5 with the secretion of low concentrations of ecdysteroids. Bmsnr1, Bmutx, Bmtip60, and BR-C are also involved.
Collapse
Affiliation(s)
- Maki Saito
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Shota Fujimoto
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
| | - Hideki Kawasaki
- Department of Bioproductive Science, Faculty of Agriculture, Takasaki University of Health and Welfare, Gunma, Japan
- Faculty of Agriculture, Utsunomiya University, Tochigi, Japan
| |
Collapse
|
4
|
Belles X. Investigating the origin of insect metamorphosis. eLife 2023; 12:e94410. [PMID: 38126357 PMCID: PMC10735215 DOI: 10.7554/elife.94410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Experiments exploring the role of juvenile hormone during the life cycle of firebrat insects provide clues about the evolution of metamorphosis.
Collapse
Affiliation(s)
- Xavier Belles
- Evolution of Insect Metamorphosis Lab, Institute of Evolutionary Biology, CSIC-Pompeu Fabra UniversityBarcelonaSpain
| |
Collapse
|
5
|
Babišová K, Mentelová L, Geisseová TK, Beňová-Liszeková D, Beňo M, Chase BA, Farkaš R. Apocrine secretion in the salivary glands of Drosophilidae and other dipterans is evolutionarily conserved. Front Cell Dev Biol 2023; 10:1088055. [PMID: 36712974 PMCID: PMC9880899 DOI: 10.3389/fcell.2022.1088055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/15/2022] [Indexed: 01/15/2023] Open
Abstract
Apocrine secretion is a transport and secretory mechanism that remains only partially characterized, even though it is evolutionarily conserved among all metazoans, including humans. The excellent genetic model organism Drosophila melanogaster holds promise for elucidating the molecular mechanisms regulating this fundamental metazoan process. Two prerequisites for such investigations are to clearly define an experimental system to investigate apocrine secretion and to understand the evolutionarily and functional contexts in which apocrine secretion arose in that system. To this end, we recently demonstrated that, in D. melanogaster, the prepupal salivary glands utilize apocrine secretion prior to pupation to deliver innate immune and defense components to the exuvial fluid that lies between the metamorphosing pupae and its chitinous case. This finding provided a unique opportunity to appraise how this novel non-canonical and non-vesicular transport and secretory mechanism is employed in different developmental and evolutionary contexts. Here we demonstrate that this apocrine secretion, which is mechanistically and temporarily separated from the exocytotic mechanism used to produce the massive salivary glue secretion (Sgs), is shared across Drosophilidae and two unrelated dipteran species. Screening more than 30 species of Drosophila from divergent habitats across the globe revealed that apocrine secretion is a widespread and evolutionarily conserved cellular mechanism used to produce exuvial fluid. Species with longer larval and prepupal development than D. melanogaster activate apocrine secretion later, while smaller and more rapidly developing species activate it earlier. In some species, apocrine secretion occurs after the secretory material is first concentrated in cytoplasmic structures of unknown origin that we name "collectors." Strikingly, in contrast to the widespread use of apocrine secretion to provide exuvial fluid, not all species use exocytosis to produce the viscid salivary glue secretion that is seen in D. melanogaster. Thus, apocrine secretion is the conserved mechanism used to realize the major function of the salivary gland in fruitflies and related species: it produces the pupal exuvial fluid that provides an active defense against microbial invasion during pupal metamorphosis.
Collapse
Affiliation(s)
- Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Terézia Klaudia Geisseová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bruce A. Chase
- Department of Biology, University of Nebraska, Omaha, NE, United States
| | - Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center v.v.i., Slovak Academy of Sciences, Bratislava, Slovakia,*Correspondence: Robert Farkaš,
| |
Collapse
|
6
|
Fernandez-Nicolas A, Ventos-Alfonso A, Kamsoi O, Clark-Hachtel C, Tomoyasu Y, Belles X. Broad complex and wing development in cockroaches. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 147:103798. [PMID: 35662625 DOI: 10.1016/j.ibmb.2022.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
In hemimetabolan insects, the transcription factor Broad complex (Br-C) promotes wing growth and development during the nymphal period. We wondered whether Br-C could trigger the initiation of wing development, using the cockroach Blattella germanica as a model. We show that first instar nymphs have their unique identity of these three thoracic segments specified. During embryogenesis, the expression of Br-C and some wing-related genes show two matching waves. The first takes place before the formation of the germ band, which might be involved in the establishment of various developmental fields including a potential "wing field", and the second wave around organogenesis, possibly involved in the initiation of wing development. However, the expression of Br-C in early embryogenesis concentrates in the developing central nervous system, thus not co-localizing with the expression of the typical wing-related gene vestigial, which is expressed at the edge of the thoracic and abdominal segments. This suggests that Br-C is not specifically involved in the establishment of a potential "wing field" in early embryogenesis. Moreover, maternal RNAi for Br-C depletes the first wave of Br-C expression but does not affect the early expression of wing-related genes. As maternal Br-C RNAi did not deplete the second expression wave of Br-C, we could not evaluate if Br-C is involved in the initiation of wing development. Alternatively, using nymphal RNAi of Br-C and Sex combs reduced (Scr), we show that Br-C contributes to the formation of ectopic wing structures that develop in the prothorax when Scr is depleted. The gene most clearly influenced by Br-C RNAi is nubbin (nub), which, in nymphs is crucial for wing growth. Together, these results suggest that Br-C does not specifically contribute to the establishment of the "wing field", but it does seem important later, in the initiation of wing development, enhancing the expression of wing-related genes, especially nub. This supports the hypothesis previously proposed by the authors, whereby Br-C might have facilitated the evolution of holometaboly. However, there is no doubt that other factors have also contributed to this evolution.
Collapse
Affiliation(s)
| | - Alba Ventos-Alfonso
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Orathai Kamsoi
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Courtney Clark-Hachtel
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Yoshinori Tomoyasu
- Department of Biology, Miami University, 700E High St, Pearson Hall, Oxford, OH, 45056, USA
| | - Xavier Belles
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Chinmo is the larval member of the molecular trinity that directs Drosophila metamorphosis. Proc Natl Acad Sci U S A 2022; 119:e2201071119. [PMID: 35377802 PMCID: PMC9169713 DOI: 10.1073/pnas.2201071119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The genome of insects with complete metamorphosis contains the instructions for making three distinct body forms, that of the larva, of the pupa, and of the adult. However, the molecular mechanisms by which each gene set is called forth and stably expressed are poorly understood. A half century ago, it was proposed that there was a set of three master genes that inhibited each other’s expression and enabled the expression of genes for each respective stage. We show that the transcription factor chinmo is essential for maintaining the larval stage in Drosophila, and with two other regulatory genes, broad and E93, makes up the trinity of mutually repressive master genes that underlie insect metamorphosis. The molecular control of insect metamorphosis from larva to pupa to adult has long been a mystery. The Broad and E93 transcription factors, which can modify chromatin domains, are known to direct the production of the pupa and the adult, respectively. We now show that chinmo, a gene related to broad, is essential for the repression of these metamorphic genes. Chinmo is strongly expressed during the formation and growth of the larva and its removal results in the precocious expression of broad and E93 in the first stage larva, causing a shift from larval to premetamorphic functions. This trinity of Chinmo, Broad, and E93 regulatory factors is mutually inhibitory. The interaction of this network with regulatory hormones likely ensures the orderly progression through insect metamorphosis.
Collapse
|
8
|
Molecular mechanisms underlying metamorphosis in the most-ancestral winged insect. Proc Natl Acad Sci U S A 2022; 119:2114773119. [PMID: 35217609 PMCID: PMC8892354 DOI: 10.1073/pnas.2114773119] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2022] [Indexed: 11/18/2022] Open
Abstract
As caterpillars metamorphose to butterflies, insects change their appearance dramatically through metamorphosis. Some insects have an immobile pupal stage for morphological remodeling (homometaboly). Other insects, such as cockroaches, have no pupal stage, and the juveniles and adults are morphologically similar (hemimetaboly). Notably, among the most-ancestral hemimetabolous insects, dragonflies drastically alter their appearance from aquatic nymphs to aerial adults. In dragonflies, we showed that transcription factors Kr-h1 and E93 are essential for regulating metamorphosis as in other insects, while broad, the master gene for pupation in holometabolous insects, regulates a number of both nymph-specific genes and adult-specific genes, providing insight into what evolutionary trajectory the key transcription factor broad has experienced before ending up with governing pupation and holometaboly. Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonata. E93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93. Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93. These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.
Collapse
|
9
|
Guo MP, Qian WL, He XC, Peng J, Wang P, Wang WN, Xia QY, Cheng DJ. Genome-wide identification of target genes for transcription factor BR-C in the silkworm, Bombyx mori. INSECT SCIENCE 2021; 28:1530-1540. [PMID: 33372405 DOI: 10.1111/1744-7917.12893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/23/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
Transcription factor Broad Complex (BR-C) is an ecdysone primary response gene in insects and participates in the regulation of insect growth and development. In this study, we performed a genome-wide identification of BR-C target genes in silkworm (Bombyx mori) using chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq). As a result, a total of 1006 BR-C ChIP peaks were identified, and 15% of peaks were located in the promoter regions of 133 protein-coding genes. Functional annotation revealed that these ChIP peak-associated genes, as potential BR-C targets, were enriched in pathways related to biosynthetic process, metabolic process, and development. Transcriptome analysis and quantitative real-time polymerase chain reaction (PCR) examination revealed that developmental changes in expression patterns of a portion of potential BR-C targets, including HR96 and GC-α1, were similar to those of BR-C. ChIP-PCR examination confirmed that BR-C could directly bind to the promoters of potential targets. Further, dual luciferase assays demonstrated that HR96 promoter activity was significantly upregulated following BR-C overexpression, and this upregulation was abolished when the binding motif in the promoter was truncated. This study will be helpful for deciphering the regulatory roles of BR-C during insect growth and development.
Collapse
Affiliation(s)
- Meng-Pei Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wen-Liang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Xue-Chuan He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Peng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Wei-Na Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qing-You Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| | - Dao-Jun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Sericultural Science, Southwest University, Chongqing, 400715, China
| |
Collapse
|
10
|
Nunes C, Koyama T, Sucena É. Co-option of immune effectors by the hormonal signalling system triggering metamorphosis in Drosophila melanogaster. PLoS Genet 2021; 17:e1009916. [PMID: 34843450 PMCID: PMC8659296 DOI: 10.1371/journal.pgen.1009916] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/09/2021] [Accepted: 10/29/2021] [Indexed: 11/24/2022] Open
Abstract
Insect metamorphosis is triggered by the production, secretion and degradation of 20-hydroxyecdysone (ecdysone). In addition to its role in developmental regulation, increasing evidence suggests that ecdysone is involved in innate immunity processes, such as phagocytosis and the induction of antimicrobial peptide (AMP) production. AMP regulation includes systemic responses as well as local responses at surface epithelia that contact with the external environment. At pupariation, Drosophila melanogaster increases dramatically the expression of three AMP genes, drosomycin (drs), drosomycin-like 2 (drsl2) and drosomycin-like 5 (drsl5). We show that the systemic action of drs at pupariation is dependent on ecdysone signalling in the fat body and operates via the ecdysone downstream target, Broad. In parallel, ecdysone also regulates local responses, specifically through the activation of drsl2 expression in the gut. Finally, we confirm the relevance of this ecdysone dependent AMP expression for the control of bacterial load by showing that flies lacking drs expression in the fat body have higher bacterial persistence over metamorphosis. In contrast, local responses may be redundant with the systemic effect of drs since reduction of ecdysone signalling or of drsl2 expression has no measurable negative effect on bacterial load control in the pupa. Together, our data emphasize the importance of the association between ecdysone signalling and immunity using in vivo studies and establish a new role for ecdysone at pupariation, which impacts developmental success by regulating the immune system in a stage-dependent manner. We speculate that this co-option of immune effectors by the hormonal system may constitute an anticipatory mechanism to control bacterial numbers in the pupa, at the core of metamorphosis evolution.
Collapse
Affiliation(s)
- Catarina Nunes
- Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Takashi Koyama
- Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Élio Sucena
- Evolution and Development Laboratory, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Regulation of metamorphosis in neopteran insects is conserved in the paleopteran Cloeon dipterum (Ephemeroptera). Proc Natl Acad Sci U S A 2021; 118:2105272118. [PMID: 34417295 DOI: 10.1073/pnas.2105272118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the Paleozoic era, more than 400 Ma, a number of insect groups continued molting after forming functional wings. Today, however, flying insects stop molting after metamorphosis when they become fully winged. The only exception is the mayflies (Paleoptera, Ephemeroptera), which molt in the subimago, a flying stage between the nymph and the adult. However, the identity and homology of the subimago still is underexplored. Debate remains regarding whether this stage represents a modified nymph, an adult, or a pupa like that of butterflies. Another relevant question is why mayflies have the subimago stage despite the risk of molting fragile membranous wings. These questions have intrigued numerous authors, but nonetheless, clear answers have not yet been found. By combining morphological studies, hormonal treatments, and molecular analysis in the mayfly Cloeon dipterum, we found answers to these old questions. We observed that treatment with a juvenile hormone analog in the last nymphal instar stimulated the expression of the Kr-h1 gene and reduced that of E93, which suppress and trigger metamorphosis, respectively. The regulation of metamorphosis thus follows the MEKRE93 pathway, as in neopteran insects. Moreover, the treatment prevented the formation of the subimago. These findings suggest that the subimago must be considered an instar of the adult mayfly. We also observed that the forelegs dramatically grow between the last nymphal instar, the subimago, and the adult. This necessary growth spread over the last two stages could explain, at least in part, the adaptive sense of the subimago.
Collapse
|
12
|
Suzuki Y, Shiotsuki T, Jouraku A, Miura K, Minakuchi C. Characterization of E93 in neometabolous thrips Frankliniella occidentalis and Haplothrips brevitubus. PLoS One 2021; 16:e0254963. [PMID: 34293026 PMCID: PMC8297894 DOI: 10.1371/journal.pone.0254963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 11/19/2022] Open
Abstract
Insect metamorphosis into an adult occurs after the juvenile hormone (JH) titer decreases at the end of the juvenile stage. This generally coincides with decreased transcript levels of JH-response transcription factors Krüppel homolog 1 (Kr-h1) and broad (br), and increased transcript levels of the adult specifier E93. Thrips (Thysanoptera) develop through inactive and non-feeding stages referred to as “propupa” and “pupa”, and this type of distinctive metamorphosis is called neometaboly. To understand the mechanisms of hormonal regulation in thrips metamorphosis, we previously analyzed the transcript levels of Kr-h1 and br in two thrips species, Frankliniella occidentalis (Thripidae) and Haplothrips brevitubus (Phlaeothripidae). In both species, the transcript levels of Kr-h1 and br decreased in the “propupal” and “pupal” stages, and their transcription was upregulated by exogenous JH mimic treatment. Here we analyzed the developmental profiles of E93 in these two thrips species. Quantitative RT-PCR revealed that E93 expression started to increase at the end of the larval stage in F. occidentalis and in the “propupal” stage of H. brevitubus, as Kr-h1 and br mRNA levels decreased. Treatment with an exogenous JH mimic at the onset of metamorphosis prevented pupal-adult transition and caused repression of E93. These results indicated that E93 is involved in adult differentiation after JH titer decreases at the end of the larval stage of thrips. By comparing the expression profiles of Kr-h1, br, and E93 among insect species, we propose that the “propupal” and “pupal” stages of thrips have some similarities with the holometabolous prepupal and pupal stages, respectively.
Collapse
Affiliation(s)
- Youhei Suzuki
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
13
|
Martín D, Chafino S, Franch-Marro X. How stage identity is established in insects: the role of the Metamorphic Gene Network. CURRENT OPINION IN INSECT SCIENCE 2021; 43:29-38. [PMID: 33075581 DOI: 10.1016/j.cois.2020.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/07/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Proper formation of adult insects requires the integration of spatial and temporal regulatory axes. Whereas spatial information confers identity to each tissue, organ and appendage, temporal information specifies at which stage of development the animal is. Regardless of the type of post-embryonic development, either hemimetabolous or holometabolous, temporal specificity is achieved through interactions between the temporal identity genes Kr-h1, E93 and Br-C, whose sequential expression is controlled by the two major developmental hormones, 20-hydroxyecdysone and Juvenile hormone. Given the intimate regulatory connection between these three factors to specify life stage identity, we dubbed the regulatory axis that comprises these genes as the Metamorphic Gene Network (MGN). In this review, we survey the molecular mechanisms underlying the control by the MGN of stage identity and progression in hemimetabolous and holometabolous insects.
Collapse
Affiliation(s)
- David Martín
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | - Silvia Chafino
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Xavier Franch-Marro
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| |
Collapse
|
14
|
Abstract
The evolution of insect metamorphosis is one of the most important sagas in animal history, transforming small, obscure soil arthropods into a dominant terrestrial group that has profoundly shaped the evolution of terrestrial life. The evolution of flight initiated the trajectory towards metamorphosis, favoring enhanced differences between juvenile and adult stages. The initial step modified postembryonic development, resulting in the nymph-adult differences characteristic of hemimetabolous species. The second step was to complete metamorphosis, holometaboly, and occurred by profoundly altering embryogenesis to produce a larval stage, the nymph becoming the pupa to accommodate the deferred development needed to make the adult. These changing life history patterns were intimately linked to two hormonal systems, the ecdysteroids and the juvenile hormones (JH), which function in both embryonic and postembryonic domains and control the stage-specifying genes Krüppel homolog 1 (Kr-h1), broad and E93. The ecdysteroids induce and direct molting through the ecdysone receptor (EcR), a nuclear hormone receptor with numerous targets including a conserved transcription factor network, the 'Ashburner cascade', which translates features of the ecdysteroid peak into the different phases of the molt. With the evolution of metamorphosis, ecdysteroids acquired a metamorphic function that exploited the repressor capacity of the unliganded EcR, making it a hormone-controlled gateway for the tissue development preceding metamorphosis. JH directs ecdysteroid action, controlling Kr-h1 expression which in turn regulates the other stage-specifying genes. JH appears in basal insect groups as their embryos shift from growth and patterning to differentiation. As a major portion of embryogenesis was deferred to postembryonic life with the evolution of holometaboly, JH also acquired a potent role in regulating postembryonic growth and development. Details of its involvement in broad expression and E93 suppression have been modified as life cycles became more complex and likely underlie some of the changes seen in the shift from incomplete to complete metamorphosis.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology and Friday Harbor Laboratories, University of Washington, 620 University Road, Friday Harbor, WA 98250, USA.
| |
Collapse
|
15
|
Riddiford LM. Revealing the mysteries of insect metamorphosis. Curr Biol 2020. [DOI: 10.1016/j.cub.2020.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Muramatsu M, Tsuji T, Tanaka S, Shiotsuki T, Jouraku A, Miura K, Vea IM, Minakuchi C. Sex-specific expression profiles of ecdysteroid biosynthesis and ecdysone response genes in extreme sexual dimorphism of the mealybug Planococcus kraunhiae (Kuwana). PLoS One 2020; 15:e0231451. [PMID: 32282855 PMCID: PMC7153872 DOI: 10.1371/journal.pone.0231451] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/24/2020] [Indexed: 01/22/2023] Open
Abstract
Insect molting hormone (ecdysteroids) and juvenile hormone regulate molting and metamorphic events in a variety of insect species. Mealybugs undergo sexually dimorphic metamorphosis: males develop into winged adults through non-feeding, pupa-like stages called prepupa and pupa, while females emerge as neotenic wingless adults. We previously demonstrated, in the Japanese mealybug Planococcus kraunhiae (Kuwana), that the juvenile hormone titer is higher in males than in females at the end of the juvenile stage, which suggests that juvenile hormone may regulate male-specific adult morphogenesis. Here, we examined the involvement of ecdysteroids in sexually dimorphic metamorphosis. To estimate ecdysteroid titers, quantitative RT-PCR analyses of four Halloween genes encoding for cytochrome P450 monooxygenases in ecdysteroid biosynthesis, i.e., spook, disembodied, shadow and shade, were performed. Overall, their expression levels peaked before each nymphal molt. Transcript levels of spook, disembodied and shadow, genes that catalyze the steps in ecdysteroid biosynthesis in the prothoracic gland, were higher in males from the middle of the second nymphal instar to adult emergence. In contrast, the expression of shade, which was reported to be involved in the conversion of ecdysone into 20-hydroxyecdysone in peripheral tissues, was similar between males and females. These results suggest that ecdysteroid biosynthesis in the prothoracic gland is more active in males than in females, although the final conversion into 20-hydroxyecdysone occurs at similar levels in both sexes. Moreover, expression profiles of ecdysone response genes, ecdysone receptor and ecdysone-induced protein 75B, were also analyzed. Based on these expression profiles, we propose that the changes in ecdysteroid titer differ between males and females, and that high ecdysteroid titer is essential for directing male adult development.
Collapse
Affiliation(s)
- Miyuki Muramatsu
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Tomohiro Tsuji
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sayumi Tanaka
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takahiro Shiotsuki
- Faculty of Life and Environmental Science, Shimane University, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ken Miura
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Isabelle Mifom Vea
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| |
Collapse
|
17
|
Cell Cycle Progression Determines Wing Morph in the Polyphenic Insect Nilaparvata lugens. iScience 2020; 23:101040. [PMID: 32315833 PMCID: PMC7170998 DOI: 10.1016/j.isci.2020.101040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 12/26/2022] Open
Abstract
Wing polyphenism is a phenomenon in which one genotype can produce two or more distinct wing phenotypes adapted to the particular environment. What remains unknown is how wing pad development is controlled downstream of endocrine signals such as insulin and JNK pathways. We show that genes important in cellular proliferation, cytokinesis, and cell cycle progression are necessary for growth and development of long wings. Wing pad cellular development of the long-winged morph was characterized by a highly structured epithelial layer with microvilli-like structures. Cells of adult short wing pads are largely in the G2/M phase of the cell cycle, whereas those of long wings are largely in G1. Our study is the first to report the comparative developmental and cellular morphology and structure of the wing morphs and to undertake a comprehensive evaluation of the cell cycle genes necessary for wing development of this unique, adaptive life history strategy. Genes important in determining cell numbers are necessary to form long wings Long-winged development was characterized by microvilli-like structures Cells of adult short wing pads are largely in the G2/M phase of the cell cycle Cells of adult long wing pads are largely in the G1 phase of the cell cycle
Collapse
|
18
|
Belles X. Krüppel homolog 1 and E93: The doorkeeper and the key to insect metamorphosis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21609. [PMID: 31385626 DOI: 10.1002/arch.21609] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/18/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
Insect metamorphosis is regulated by two main hormones: ecdysone (20E), which promotes molting, and juvenile hormone (JH), which inhibits adult morphogenesis. The transduction mechanisms for the respective hormonal signals include the transcription factors Krüppel homolog 1 (Kr-h1) and E93, which are JH- and 20E-dependent, respectively. Kr-h1 is the main effector of the antimetamorphic action of JH, while E93 is a key promoter of metamorphosis. The ancestral regulatory axis of metamorphosis, which operates in insects with hemimetabolan (gradual) metamorphosis and is known as the MEKRE93 pathway, is based on Kr-h1 repression of E93. In the last juvenile stage, when the production of JH dramatically decreases, Kr-h1 expression is almost completely interrupted, E93 becomes upregulated and metamorphosis proceeds. The holometabolan (complete) metamorphosis mode of development includes the peculiar pupal stage, a sort of intermediate between the final larval instar and the adult stage. In holometabolan species, Broad-Complex (BR-C) transcription factors determine the pupal stage and E93 stimulates the expression of BR-C in the prepupa. The MEKRE93 pathway is conserved in holometabolan insects, which have added the E93/BR-C interaction loop to the ancestral (hemimetabolan) pathway during the evolution from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
19
|
Abstract
This autobiographical article describes the research career of Lynn M. Riddiford from its early beginnings in a summer program for high school students at Jackson Laboratory to the present "retirement" at the Friday Harbor Laboratories. The emphasis is on her forays into many areas of insect endocrinology, supported by her graduate students and postdoctoral associates. The main theme is the hormonal regulation of metamorphosis, especially the roles of juvenile hormone (JH). The article describes the work of her laboratory first in the elucidation of the endocrinology of the tobacco hornworm, Manduca sexta, and later in the molecular aspects of the regulation of cuticular and pigment proteins and of the ecdysone-induced transcription factor cascade during molting and metamorphosis. Later studies utilized Drosophila melanogaster to answer further questions about the actions of JH.
Collapse
Affiliation(s)
- Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington 98250, USA;
| |
Collapse
|
20
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Impairment of pupation by RNA interference-aided knockdown of Broad- Complex gene in Leptinotarsa decemlineata (Say). BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:659-668. [PMID: 30704539 DOI: 10.1017/s0007485318001050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Dietary delivery of bacterially expressed double-stranded RNA (dsRNA) has a great potential for management of Leptinotarsa decemlineata. An important first step is to discover possible RNA-interference (RNAi)-target genes effective against larvae, especially the old larvae. In the present paper, five putative Broad-Complex (BrC) cDNAs (Z1-Z4, and Z6) were identified in L. decemlineata. The expression of the five LdBrC isoforms was suppressed by juvenile hormone signaling, whereas the transcription was upregulated by 20-hydroxyecdysone signaling at the fourth (final) instar larval stage. Feeding of bacterially expressed dsBrC (derived from a common fragment of the five LdBrC variants) in the third- and fourth-instar larvae successfully knocked down the target mRNAs. For the fourth-instar LdBrC RNAi hypomorphs, they had a higher larval mortality compared with the controls. Moreover, most dsBrC-fed beetles did not pupate normally. After removal of the apolysed larval cuticle, a miniature adult was found. The adult head, compound eyes, prothorax, mesothorax, metathorax were found on the dorsal view. Distinct adult cuticle pigmentation was seen on the prothorax. The mouthparts, forelegs, midlegs, and hindlegs could be observed on the ventral view of the miniature adults. For the third-instar LdBrC RNAi specimens, around 20% moribund beetles remained as prepupae and finally died. Therefore, LdBrC is among the most attractive candidate genes for RNAi to control the fourth-instar larvae in L. decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - K-Y Fu
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - W-C Guo
- Department of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
21
|
Ishimaru Y, Tomonari S, Watanabe T, Noji S, Mito T. Regulatory mechanisms underlying the specification of the pupal-homologous stage in a hemimetabolous insect. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190225. [PMID: 31438810 DOI: 10.1098/rstb.2019.0225] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Juvenile hormones and the genetic interaction between the transcription factors Krüppel homologue 1 (Kr-h1) and Broad (Br) regulate the transformation of insects from immature to adult forms in both types of metamorphosis (holometaboly with a pupal stage versus hemimetaboly with no pupal stage); however, knowledge about the exact instar in which this occurs is limited. Using the hemimetabolous cricket Gryllus bimaculatus (Gb), we demonstrate that a genetic interaction occurs among Gb'Kr-h1, Gb'Br and the adult-specifier transcription factor Gb'E93 from the sixth to final (eighth) nymphal instar. Gb'Kr-h1 and Gb'Br mRNAs were strongly expressed in the abdominal tissues of sixth instar nymphs, with precocious adult moults being induced by Gb'Kr-h1 or Gb'Br knockdown in the sixth instar. The depletion of Gb'Kr-h1 or Gb'Br upregulates Gb'E93 in the sixth instar. By contrast, Gb'E93 knockdown at the sixth instar prevents nymphs transitioning to adults, instead producing supernumerary nymphs. Gb'E93 also represses Gb'Kr-h1 and Gb'Br expression in the penultimate nymphal instar, demonstrating its important role in adult differentiation. Our results suggest that the regulatory mechanisms underlying the pupal transition in holometabolous insects are evolutionarily conserved in hemimetabolous G. bimaculatus, with the penultimate and final nymphal periods being equivalent to the pupal stage. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Yoshiyasu Ishimaru
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sayuri Tomonari
- Division of Chemical and Physical Analyses, Center for Technical Support, Institute of Technology and Science, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8506, Japan
| | - Takahito Watanabe
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Sumihare Noji
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| | - Taro Mito
- Division of Bioscience and Bioindustry, Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Jyosanjima-cho, Tokushima City, Tokushima 770-8513, Japan
| |
Collapse
|
22
|
Jindra M. Where did the pupa come from? The timing of juvenile hormone signalling supports homology between stages of hemimetabolous and holometabolous insects. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190064. [PMID: 31438814 DOI: 10.1098/rstb.2019.0064] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Insect metamorphosis boasts spectacular cases of postembryonic development when juveniles undergo massive morphogenesis before attaining the adult form and function; in moths or flies the larvae do not even remotely resemble their adult parents. A selective advantage of complete metamorphosis (holometaboly) is that within one species the two forms with different lifestyles can exploit diverse habitats. It was the environmental adaptation and specialization of larvae, primarily the delay and internalization of wing development, that eventually required an intermediate stage that we call a pupa. It is a long-held and parsimonious hypothesis that the holometabolous pupa evolved through modification of a final juvenile stage of an ancestor developing through incomplete metamorphosis (hemimetaboly). Alternative hypotheses see the pupa as an equivalent of all hemimetabolous moulting cycles (instars) collapsed into one, and consider any preceding holometabolous larval instars free-living embryos stalled in development. Discoveries on juvenile hormone signalling that controls metamorphosis grant new support to the former hypothesis deriving the pupa from a final pre-adult stage. The timing of expression of genes that repress and promote adult development downstream of hormonal signals supports homology between postembryonic stages of hemimetabolous and holometabolous insects. This article is part of the theme issue 'The evolution of complete metamorphosis'.
Collapse
Affiliation(s)
- Marek Jindra
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice 370 05, Czech Republic
| |
Collapse
|
23
|
Truman JW, Riddiford LM. The evolution of insect metamorphosis: a developmental and endocrine view. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190070. [PMID: 31438820 PMCID: PMC6711285 DOI: 10.1098/rstb.2019.0070] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developmental, genetic and endocrine data from diverse taxa provide insight into the evolution of insect metamorphosis. We equate the larva–pupa–adult of the Holometabola to the pronymph–nymph–adult of hemimetabolous insects. The hemimetabolous pronymph is a cryptic embryonic stage with unique endocrinology and behavioural modifications that probably served as preadaptations for the larva. It develops in the absence of juvenile hormone (JH) as embryonic primordia undergo patterning and morphogenesis, the processes that were arrested for the evolution of the larva. Embryonic JH then drives tissue differentiation and nymph formation. Experimental treatment of pronymphs with JH terminates patterning and induces differentiation, mimicking the processes that occurred during the evolution of the larva. Unpatterned portions of primordia persist in the larva, becoming imaginal discs that form pupal and adult structures. Key transcription factors are associated with the holometabolous life stages: Krüppel-homolog 1 (Kr-h1) in the larva, broad in the pupa and E93 in the adult. Kr-h1 mediates JH action and is found whenever JH acts, while the other two genes direct the formation of their corresponding stages. In hemimetabolous forms, the pronymph has low Broad expression, followed by Broad expression through the nymphal moults, then a switch to E93 to form the adult. This article is part of the theme issue ‘The evolution of complete metamorphosis’.
Collapse
Affiliation(s)
- James W Truman
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| | - Lynn M Riddiford
- Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
| |
Collapse
|
24
|
Huang J, Fang L, Wang S, Liu X, Chen Y, Chen Y, Tian H, Lin S, Tian S, Wei H, Gu X. Molecular cloning, expression profiling, and functional analysis of a broad-complex isoform 2/3 (Br-Z2/Z3) transcription factor in the diamondback moth, Plutella xylostella (L.). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21549. [PMID: 30941822 DOI: 10.1002/arch.21549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/23/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a widespread and destructive pest of cruciferous crops. New strategies for controlling it are needed because it is rapidly developing resistance to conventional pesticides. In insects, transcription factors (TFs) including broad-complex (Br-C) are thought to be useful for insecticide development because they are able to regulate the transcription of functional genes involved in responses to external stimuli including insecticides. In the present study, we cloned and sequenced the open reading frames (ORFs) of three BTB-ZF encoding genes from the diamondback moth deposited in the National Center for Biotechnology Information (NCBI) database under accessions MG753773, MG288674, and MG753772. The lengths of these ORFs were 1,680, 1,428, and 1,647 bp, respectively. The phylogenetic analysis based on the predicted amino acid sequences of ZF domains showed that MG753773 and MG288674 belonged to Z2/Z3 and Z7 of Br-C while MG753772 belonged to Ttk types. In the agreement, the highest expression level of MG753773 occurred during the prepupal stage, MG288674 and MG753772 were expressed during all stages and peaked in the adult and egg stages, respectively. RNA interference silencing of MG753773 in the late third instar larvae significantly decreased survival and pupation of the insects. With precocene II, transcription of MG753773 increased (4×) in the fourth instar larva 24 hr later; 48 hr later the rate of prepupation and pupation was significantly higher. These findings will contribute to the development of new regulators of the growth and development for diamondback moth control.
Collapse
Affiliation(s)
- Jingfei Huang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Ling Fang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Shuai Wang
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Xiang Liu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Yong Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Yixin Chen
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Houjun Tian
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Shuo Lin
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Sufen Tian
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province, China
| | - Xiaojun Gu
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, China
| |
Collapse
|
25
|
Xu QY, Meng QW, Deng P, Fu KY, Guo WC, Li GQ. Isoform specific roles of Broad-Complex in larval development in Leptinotarsa decemlineata. INSECT MOLECULAR BIOLOGY 2019; 28:420-430. [PMID: 30632239 DOI: 10.1111/imb.12563] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Broad-Complex (BrC) is a downstream target of both 20-hydroxyecdysone and juvenile hormone signalling. BrC regulates morphogenetic changes between nymphal instars in hemimetabolans, whereas it controls pupal commitment, pupal morphogenesis and inhibits adult differentiation in holometabolans. Among five BrC cDNAs (Z1-Z4 and Z6) identified in the Colorado potato beetle, we found in this work that Z1, Z2 and Z6 were mainly expressed at the last (fourth) instar and prepupal stages, whereas the levels of Z3 and Z4 increased during the penultimate (third) instar stage, peaked at the last instar larval phase and gradually decreased at the prepupal and pupal periods. When knocking down all BrC isoforms by RNA interference (RNAi) at the penultimate instar stage, around 20% of the resultant larvae remained as moribund beetles. These moribund BrC RNAi larvae were completely or partially wrapped in old cuticle. Likewise, a portion of larvae treated for a single double-stranded RNA of Z3, Z4 or Z6 displayed a degree of similar aberrancies, increasing in the order of isoforms Z6 < Z3 < Z4. When silencing all BrC isoforms at the last instar period, most of the RNAi larvae did not normally pupate or emerge as adults. Separately silencing each of the five zinc finger domains revealed that approximately 70% of the Z1 RNAi larvae remained as prepupae, around 60% of the Z6 RNAi specimens formed aberrant prepupae or pupae and about 60% of the Z2 RNAi beetles became deformed pupae. After removal of the old exuviae, these deformed larvae in which either Z1, Z2 or Z6 was depleted possessed adult prothorax and mesothorax, developing antenna, mouthparts and wing discs. Moreover, less than 50% of the resultant pupae finally emerged as adults when either of Z1, Z2 or Z6 was knocked down. Therefore, our findings reveal, for the first time, that the two roles of BrC in insect groups (ie directing morphogenetic changes during juvenile development and regulating larval-pupal-adult metamorphosis) are played by different BrC isoforms in Leptinotarsa decemlineata.
Collapse
Affiliation(s)
- Q-Y Xu
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Q-W Meng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - P Deng
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - K-Y Fu
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - W-C Guo
- Institute of Microbiological Application, Xinjiang Academy of Agricultural Science, Urumqi, China
| | - G-Q Li
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
26
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019. [PMID: 30935422 DOI: 10.1101/201731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
27
|
Panfilio KA, Vargas Jentzsch IM, Benoit JB, Erezyilmaz D, Suzuki Y, Colella S, Robertson HM, Poelchau MF, Waterhouse RM, Ioannidis P, Weirauch MT, Hughes DST, Murali SC, Werren JH, Jacobs CGC, Duncan EJ, Armisén D, Vreede BMI, Baa-Puyoulet P, Berger CS, Chang CC, Chao H, Chen MJM, Chen YT, Childers CP, Chipman AD, Cridge AG, Crumière AJJ, Dearden PK, Didion EM, Dinh H, Doddapaneni HV, Dolan A, Dugan S, Extavour CG, Febvay G, Friedrich M, Ginzburg N, Han Y, Heger P, Holmes CJ, Horn T, Hsiao YM, Jennings EC, Johnston JS, Jones TE, Jones JW, Khila A, Koelzer S, Kovacova V, Leask M, Lee SL, Lee CY, Lovegrove MR, Lu HL, Lu Y, Moore PJ, Munoz-Torres MC, Muzny DM, Palli SR, Parisot N, Pick L, Porter ML, Qu J, Refki PN, Richter R, Rivera-Pomar R, Rosendale AJ, Roth S, Sachs L, Santos ME, Seibert J, Sghaier E, Shukla JN, Stancliffe RJ, Tidswell O, Traverso L, van der Zee M, Viala S, Worley KC, Zdobnov EM, Gibbs RA, Richards S. Molecular evolutionary trends and feeding ecology diversification in the Hemiptera, anchored by the milkweed bug genome. Genome Biol 2019; 20:64. [PMID: 30935422 PMCID: PMC6444547 DOI: 10.1186/s13059-019-1660-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The Hemiptera (aphids, cicadas, and true bugs) are a key insect order, with high diversity for feeding ecology and excellent experimental tractability for molecular genetics. Building upon recent sequencing of hemipteran pests such as phloem-feeding aphids and blood-feeding bed bugs, we present the genome sequence and comparative analyses centered on the milkweed bug Oncopeltus fasciatus, a seed feeder of the family Lygaeidae. RESULTS The 926-Mb Oncopeltus genome is well represented by the current assembly and official gene set. We use our genomic and RNA-seq data not only to characterize the protein-coding gene repertoire and perform isoform-specific RNAi, but also to elucidate patterns of molecular evolution and physiology. We find ongoing, lineage-specific expansion and diversification of repressive C2H2 zinc finger proteins. The discovery of intron gain and turnover specific to the Hemiptera also prompted the evaluation of lineage and genome size as predictors of gene structure evolution. Furthermore, we identify enzymatic gains and losses that correlate with feeding biology, particularly for reductions associated with derived, fluid nutrition feeding. CONCLUSIONS With the milkweed bug, we now have a critical mass of sequenced species for a hemimetabolous insect order and close outgroup to the Holometabola, substantially improving the diversity of insect genomics. We thereby define commonalities among the Hemiptera and delve into how hemipteran genomes reflect distinct feeding ecologies. Given Oncopeltus's strength as an experimental model, these new sequence resources bolster the foundation for molecular research and highlight technical considerations for the analysis of medium-sized invertebrate genomes.
Collapse
Affiliation(s)
- Kristen A Panfilio
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, UK.
| | - Iris M Vargas Jentzsch
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Deniz Erezyilmaz
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics, Stony Brook University, Stony Brook, NY, 11794, USA
- Present address: Department of Physiology, Anatomy and Genetics and Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, UK
| | - Yuichiro Suzuki
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA, 02481, USA
| | - Stefano Colella
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
- Present address: LSTM, Laboratoire des Symbioses Tropicales et Méditerranéennes, INRA, IRD, CIRAD, SupAgro, University of Montpellier, Montpellier, France
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Robert M Waterhouse
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
- Present address: Department of Ecology and Evolution, University of Lausanne, 1015, Lausanne, Switzerland
| | - Panagiotis Ioannidis
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Daniel S T Hughes
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Shwetha C Murali
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
- Present address: Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Present address: Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - John H Werren
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Chris G C Jacobs
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
- Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07745, Jena, Germany
| | - Elizabeth J Duncan
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | | | - Chloé S Berger
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Chun-Che Chang
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsu Chao
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Mei-Ju M Chen
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Yen-Ta Chen
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Andrew G Cridge
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Antonin J J Crumière
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Peter K Dearden
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Huyen Dinh
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Harsha Vardhan Doddapaneni
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Dolan
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: School of Life Sciences, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Shannon Dugan
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Gérard Febvay
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Neta Ginzburg
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Yi Han
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter Heger
- Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674, Cologne, Germany
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Thorsten Horn
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Yi-Min Hsiao
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| | - Jeffery W Jones
- Department of Biological Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Stefan Koelzer
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | | | - Megan Leask
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Sandra L Lee
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Chien-Yueh Lee
- National Agricultural Library, Beltsville, MD, 20705, USA
| | - Mackenzie R Lovegrove
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
| | - Hsiao-Ling Lu
- Department of Entomology/Institute of Biotechnology, College of Bioresources and Agriculture, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Yong Lu
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Patricia J Moore
- Department of Entomology, University of Georgia, 120 Cedar St., Athens, GA, 30602, USA
| | - Monica C Munoz-Torres
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Subba R Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
| | - Nicolas Parisot
- Univ Lyon, INSA-Lyon, INRA, BF2I, UMR0203, F-69621, Villeurbanne, France
| | - Leslie Pick
- Department of Entomology and Program in Molecular & Cell Biology, University of Maryland, College Park, MD, 20742, USA
| | - Megan L Porter
- Department of Biology, University of Hawai'i at Mānoa, Honolulu, HI, 96822, USA
| | - Jiaxin Qu
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Peter N Refki
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
- Present address: Department of Evolutionary Genetics, Max-Planck-Institut für Evolutionsbiologie, August-Thienemann-Straße 2, 24306, Plön, Germany
| | - Rose Richter
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
- Present address: Earthworks Institute, 185 Caroline Street, Rochester, NY, 14620, USA
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones, Universidad Nacional del Noroeste de Buenos Aires, Pergamino, Argentina
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Siegfried Roth
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Lena Sachs
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - M Emília Santos
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jan Seibert
- Institute for Zoology: Developmental Biology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Essia Sghaier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Jayendra N Shukla
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, USA
- Present address: Department of Biotechnology, Central University of Rajasthan (CURAJ), NH-8, Bandarsindri, Ajmer, 305801, India
| | - Richard J Stancliffe
- Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121, Bonn, Germany
- Present address: E. A. Milne Centre for Astrophysics, Department of Physics and Mathematics, University of Hull, Hull, HU6 7RX, UK
| | - Olivia Tidswell
- Department of Biochemistry and Genomics Aotearoa, University of Otago, Dunedin, 9054, New Zealand
- Present address: Department of Zoology, University of Cambridge, Cambridge, CB2 3DT, UK
| | - Lucila Traverso
- Centro Regional de Estudios Genómicos, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Maurijn van der Zee
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, Netherlands
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5242, École Normale Supérieure de Lyon, 46 Allée d'Italie, 69364, Lyon, France
| | - Kim C Worley
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Evgeny M Zdobnov
- Department of Genetic Medicine and Development and Swiss Institute of Bioinformatics, University of Geneva, 1211, Geneva, Switzerland
| | - Richard A Gibbs
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Stephen Richards
- Human Genome Sequencing Center, Department of Human and Molecular Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| |
Collapse
|
28
|
Vea IM, Tanaka S, Tsuji T, Shiotsuki T, Jouraku A, Minakuchi C. E93 expression and links to the juvenile hormone in hemipteran mealybugs with insights on female neoteny. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:65-72. [PMID: 30503224 DOI: 10.1016/j.ibmb.2018.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Insect metamorphosis produces reproductive adults and is commonly accompanied with the direct or indirect development of wings. In some winged insects, the imago is altered by life history changes. For instance, in scale insects and mealybugs, reproductive females retain juvenile features and are wingless. The transcription factor E93 triggers metamorphosis and plays in concert with the juvenile hormone pathway to guarantee the successful transition from juvenile to adult. We previously provided evidence of an atypical down-regulation of the juvenile hormone pathway during female development in the Japanese mealybug. Here, we further investigate how E93 is involved in the production of neotenic wingless females, by identifying its isoforms, assessing their expression patterns and evaluating the effect of exogenous juvenile hormone mimic treatment on E93. This study identifies three E93 isoforms on the 5' end, based on Japanese mealybug cDNA and shows that female development occurs with the near absence of E93 transcripts, as opposed to male metamorphosis. Additionally, while male development is typically affected by exogenous juvenile hormone mimic treatments, females seem to remain insensitive to the treatment, and up-regulation of the juvenile hormone signaling is not observed. Furthermore, juvenile hormone mimic treatment on female nymphs did not have an obvious effect on E93 transcription, while treatment on male prepupae resulted in depleted E93 transcripts. In this study, we emphasize the importance in examining atypical cases of metamorphosis as complementary systems to provide a better understanding on the molecular mechanisms underlying insect metamorphosis. For instance, the factors regulating the expression of E93 are largely unclear. Investigating the regulatory mechanism of E93 transcription could provide clues towards identifying the factors that induce or suppress E93 transcription, in turn triggering male adult development or female neoteny.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Nagoya University, Graduate School of Bioagricultural Sciences, Nagoya, Japan; University of Edinburgh, Institute of Evolutionary Biology, Edinburgh, UK.
| | - Sayumi Tanaka
- Nagoya University, Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Tomohiro Tsuji
- Nagoya University, Graduate School of Bioagricultural Sciences, Nagoya, Japan
| | - Takahiro Shiotsuki
- Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Tsukuba, Japan; Shimane University, Faculty of Life and Environmental Science, Matsue, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Institute of Agriculture and Food Research Organization, Tsukuba, Japan
| | - Chieka Minakuchi
- Nagoya University, Graduate School of Bioagricultural Sciences, Nagoya, Japan
| |
Collapse
|
29
|
Zhang S, An S, Hoover K, Li Z, Li X, Liu X, Shen Z, Fang H, Ros VID, Zhang Q, Liu X. Host miRNAs are involved in hormonal regulation of HaSNPV-triggered climbing behaviour in Helicoverpa armigera. Mol Ecol 2018; 27:459-475. [PMID: 29219212 DOI: 10.1111/mec.14457] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 11/19/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022]
Abstract
Baculoviruses manipulate host climbing behaviour to ensure that the hosts die at elevated positions on host plants to facilitate virus proliferation and transmission, which is a process referred to as tree-top disease. However, the detailed molecular mechanism underlying tree-top disease has not been elucidated. Using transcriptome analysis, we showed that two hormone signals, juvenile hormone (JH) and 20-hydroxyecdysone (20E), are key components involved in HaSNPV-induced tree-top disease in Helicoverpa armigera larvae. RNAi-mediated knockdown and exogenous hormone treatment assays demonstrated that 20E inhibits virus-induced tree-top disease, while JH mediates tree-top disease behaviour. Knockdown of BrZ2, a downstream signal of JH and 20E, promoted HaSNPV-induced tree-top disease. We also found that two miRNAs target BrZ2 and are involved in the cross-talk regulation between 20E and JH manipulating HaSNPV replication, time to death and HaSNPV-induced tree-top disease.
Collapse
Affiliation(s)
- Songdou Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Kelli Hoover
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Zhen Li
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiangrui Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoming Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Zhongjian Shen
- Department of Entomology, China Agricultural University, Beijing, China
| | - Haibo Fang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Vera I D Ros
- Laboratory of Virology, Wageningen University, Wageningen, The Netherlands
| | - Qingwen Zhang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Xiaoxia Liu
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Laboratory evaluation of Clusia fluminensis extracts and their isolated compounds against Dysdercus peruvianus and Oncopeltus fasciatus. REVISTA BRASILEIRA DE FARMACOGNOSIA 2017. [DOI: 10.1016/j.bjp.2016.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
31
|
Pupal diapause termination in Bactrocera minax: an insight on 20-hydroxyecdysone induced phenotypic and genotypic expressions. Sci Rep 2016; 6:27440. [PMID: 27273028 PMCID: PMC4897610 DOI: 10.1038/srep27440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/17/2016] [Indexed: 11/08/2022] Open
Abstract
The Chinese citrus fruit fly, Bactrocera minax, is an economically important pest of citrus. It exhibits pupal diapause from November to May to combat harsh environmental conditions. Such a long pupal diapause is a barrier for laboratory rearing and development of control strategies against this pest. In the present study, 20-hydroxyecdysone (20E) was used to break pupal diapause of B. minax by topical application. After diapause termination by 20E treated, the pupal ontogenetic processes were observed along the temporal trajectory. The pupal response time to 20E was estimated by detecting the relative expression of 20E responsive genes at different times after 20E-treatment. Results revealed that 20E could effectively terminate the pupal diapause in a dose-dependent manner and significantly shorten the time for 50% adult emergence (Et50). 20E response genes, including ecr, broad and foxo, were up-regulated within 72h, indicating these genes are involved in pupal metamorphosis and diapause termination processes. Morphological changes showed the pupal metamorphosis began ~7 days after 20E-treatment at 22 °C. This study does not only pave the way for artificial rearing in the laboratory through manipulating of pupal diapause termination, but also deepens our understanding of the underlying pupal diapause termination mechanism of B. minax.
Collapse
|
32
|
Krüppel homolog 1 and E93 mediate Juvenile hormone regulation of metamorphosis in the common bed bug, Cimex lectularius. Sci Rep 2016; 6:26092. [PMID: 27185064 PMCID: PMC4869114 DOI: 10.1038/srep26092] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 04/22/2016] [Indexed: 11/30/2022] Open
Abstract
The common bed bug is an obligate hematophagous parasite of humans. We studied the regulation of molting and metamorphosis in bed bugs with a goal to identify key players involved. qRT-PCR studies on the expression of genes known to be involved in molting and metamorphosis showed high levels of Krüppel homolog 1 [Kr-h1, a transcription factor that plays key roles in juvenile hormone (JH) action] mRNA in the penultimate nymphal stage (N4). However, low levels of Kr-h1 mRNA were detected in the fifth and last nymphal stage (N5). Knockdown of Kr-h1 in N4 resulted in a precocious development of adult structures. Kr-h1 maintains the immature stage by suppressing E93 (early ecdysone response gene) in N4. E93 expression increases during the N5 in the absence of Kr-h1 and promotes the development of adult structures. Knockdown of E93 in N5 results in the formation of supernumerary nymphs. The role of JH in the suppression of adult structures through interaction with Kr-h1 and E93 was also studied by the topical application of JH analog, methoprene, to N5. Methoprene induced Kr-h1 and suppressed E93 and induced formation of the supernumerary nymph. These data show interactions between Kr-h1, E93 and JH in the regulation of metamorphosis in the bed bugs.
Collapse
|
33
|
The Occurrence of the Holometabolous Pupal Stage Requires the Interaction between E93, Krüppel-Homolog 1 and Broad-Complex. PLoS Genet 2016; 12:e1006020. [PMID: 27135810 PMCID: PMC4852927 DOI: 10.1371/journal.pgen.1006020] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complete metamorphosis (Holometaboly) is a key innovation that underlies the spectacular success of holometabolous insects. Phylogenetic analyses indicate that Holometabola form a monophyletic group that evolved from ancestors exhibiting hemimetabolous development (Hemimetaboly). However, the nature of the changes underlying this crucial transition, including the occurrence of the holometabolan-specific pupal stage, is poorly understood. Using the holometabolous beetle Tribolium castaneum as a model insect, here we show that the transient up-regulation of the anti-metamorphic Krüppel-homolog 1 (TcKr-h1) gene at the end of the last larval instar is critical in the formation of the pupa. We find that depletion of this specific TcKr-h1 peak leads to the precocious up-regulation of the adult-specifier factor TcE93 and, hence, to a direct transformation of the larva into the adult form, bypassing the pupal stage. Moreover, we also find that the TcKr-h1-dependent repression of TcE93 is critical to allow the strong up-regulation of Broad-complex (TcBr-C), a key transcription factor that regulates the correct formation of the pupa in holometabolous insects. Notably, we show that the genetic interaction between Kr-h1 and E93 is also present in the penultimate nymphal instar of the hemimetabolous insect Blattella germanica, suggesting that the evolution of the pupa has been facilitated by the co-option of regulatory mechanisms present in hemimetabolan metamorphosis. Our findings, therefore, contribute to the molecular understanding of insect metamorphosis, and indicate the evolutionary conservation of the genetic circuitry that controls hemimetabolan and holometabolan metamorphosis, thereby shedding light on the evolution of complete metamorphosis.
Collapse
|
34
|
Sang W, Speakmon M, Zhou L, Wang Y, Lei C, Pillai SD, Zhu-Salzman K. Detrimental effects of electron beam irradiation on the cowpea bruchid Callosobruchus maculatus. PEST MANAGEMENT SCIENCE 2016; 72:787-795. [PMID: 26033414 DOI: 10.1002/ps.4053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/08/2015] [Accepted: 05/28/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Electron beam (eBeam) irradiation technology is an environmentally friendly, chemical-free alternative for disinfesting insect pests of stored grains. The underlying hypothesis is that specific doses of eBeam will have defined detrimental effects on the different life stages. We evaluated the effects of eBeam exposure in a range of doses (0.03-0.12 kGy) on the development of the cowpea bruchid (Callosobruchus maculatus) at various stages of its life cycle. RESULTS Differential radiosensitivity was detected during egg development. Early and intermediate stages of eggs never hatched after exposure to a dose of 0.03 kGy, whereas a substantial portion of black-headed (i.e. late) eggs survived irradiation even at 0.12 kGy. However, further development of the hatched larvae was inhibited. Although midgut protein digestion remained intact, irradiated larvae (0.06 kGy or higher) failed to develop into normal living adults; rather, they died as pupae or abnormally eclosed adults, suggesting a detrimental effect of eBeam on metamorphosis. Emerged irradiated pupae had shorter longevity and were unable to produce any eggs at 0.06 kGy or higher. At this dose range, eggs laid by irradiated adults were not viable. eBeam treatment shortened adult longevity in a dose-dependent manner. Reciprocal crosses indicated that females were more sensitive to eBeam exposure than their male counterparts. Dissection of the female reproductive system revealed that eBeam treatment prevented formation of oocytes. CONCLUSION eBeam irradiation has very defined effects on cowpea bruchid development and reproduction. A dose of 0.06 kGy could successfully impede cowpea burchid population expansion. This information can be exploited for post-harvest insect control of stored grains.
Collapse
Affiliation(s)
- Wen Sang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Mickey Speakmon
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Lan Zhou
- Department of Statistics, Texas A&M University, College Station, TX, USA
| | - Yu Wang
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Suresh D Pillai
- National Center for Electron Beam Research, Texas A&M University, College Station, TX, USA
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
35
|
Vea IM, Tanaka S, Shiotsuki T, Jouraku A, Tanaka T, Minakuchi C. Differential Juvenile Hormone Variations in Scale Insect Extreme Sexual Dimorphism. PLoS One 2016; 11:e0149459. [PMID: 26894583 PMCID: PMC4760703 DOI: 10.1371/journal.pone.0149459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/01/2016] [Indexed: 11/29/2022] Open
Abstract
Scale insects have evolved extreme sexual dimorphism, as demonstrated by sedentary juvenile-like females and ephemeral winged males. This dimorphism is established during the post-embryonic development; however, the underlying regulatory mechanisms have not yet been examined. We herein assessed the role of juvenile hormone (JH) on the diverging developmental pathways occurring in the male and female Japanese mealybug Planococcus kraunhiae (Kuwana). We provide, for the first time, detailed gene expression profiles related to JH signaling in scale insects. Prior to adult emergence, the transcript levels of JH acid O-methyltransferase, encoding a rate-limiting enzyme in JH biosynthesis, were higher in males than in females, suggesting that JH levels are higher in males. Furthermore, male quiescent pupal-like stages were associated with higher transcript levels of the JH receptor gene, Methoprene-tolerant and its co-activator taiman, as well as the JH early-response genes, Krüppel homolog 1 and broad. The exposure of male juveniles to an ectopic JH mimic prolonged the expression of Krüppel homolog 1 and broad, and delayed adult emergence by producing a supernumeral pupal stage. We propose that male wing development is first induced by up-regulated JH signaling compared to female expression pattern, but a decrease at the end of the prepupal stage is necessary for adult emergence, as evidenced by the JH mimic treatments. Furthermore, wing development seems linked to JH titers as JHM treatments on the pupal stage led to wing deformation. The female pedomorphic appearance was not reflected by the maintenance of high levels of JH. The results in this study suggest that differential variations in JH signaling may be responsible for sex-specific and radically different modes of metamorphosis.
Collapse
Affiliation(s)
- Isabelle Mifom Vea
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- * E-mail:
| | - Sayumi Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Akiya Jouraku
- National Institute of Agrobiological Sciences, Tsukuba, Japan
| | - Toshiharu Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Chieka Minakuchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
36
|
Cai MJ, Zhao WL, Jing YP, Song Q, Zhang XQ, Wang JX, Zhao XF. 20-hydroxyecdysone activates Forkhead box O to promote proteolysis during Helicoverpa armigera molting. Development 2016; 143:1005-15. [DOI: 10.1242/dev.128694] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 01/29/2016] [Indexed: 12/27/2022]
Abstract
Insulin inhibits transcription factor forkhead box O (FoxO) activity, and the steroid hormone 20-hydroxyecdysone (20E) activates FoxO; however, the mechanism is unclear. We hypothesized that 20E upregulates phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase (PTEN) expression to activate FoxO, thereby promoting proteolysis during molting in the lepidopteran insect Helicoverpa armigera. FoxO expression is increased during molting and metamorphosis. The knockdown of FoxO in fifth instar larvae results in larval molting failure. 20E induces FoxO non-phosphorylation and nuclear translocation. Insulin, via Akt, induces FoxO phosphorylation and cytoplasm localization. 20E represses insulin-induced Akt phosphorylation and FoxO phosphorylation. 20E, via ecdysone receptor B1 (EcRB1) and the ultraspiracle protein (USP1), upregulates PTEN expression, which represses Akt phosphorylation, thereby repressing FoxO phosphorylation. The non-phosphorylated FoxO enters the nucleus and attaches to a FoxO binding element in the upstream region of the Broad isoform 7 (BrZ7) gene to regulate BrZ7 transcription under 20E induction. 20E upregulates FoxO expression via EcRB1 and USP1. FoxO regulation of BrZ7 expression regulates CarboxypeptidaseA expression for final proteolysis during insect molting. Hence, 20E activates FoxO via upregulating PTEN expression to counteract insulin activity and promote proteolysis.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Li Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Pu Jing
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Qian Song
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Qian Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
37
|
Jing YP, Liu W, Wang JX, Zhao XF. The steroid hormone 20-hydroxyecdysone via nongenomic pathway activates Ca2+/calmodulin-dependent protein kinase II to regulate gene expression. J Biol Chem 2015; 290:8469-81. [PMID: 25670853 DOI: 10.1074/jbc.m114.622696] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) triggers calcium signaling pathway to regulate 20E response gene expression, but the mechanism underlying this process remains unclear. We propose that the 20E-induced phosphorylation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) serves an important function in 20E response gene transcription in the lepidopteran insect Helicoverpa armigera. CaMKII showed increased expression and phosphorylation during metamorphosis. 20E elevated CaMKII phosphorylation. However, the G protein-coupled receptor (GPCR) and ryanodine receptor inhibitor suramin, the phospholipase C inhibitor U73122, and the inositol 1,4,5-triphosphate receptor inhibitor xestospongin C suppressed 20E-induced CaMKII phosphorylation. Two ecdysone-responsible GPCRs and Gαq protein were involved in 20E-induced CaMKII phosphorylation by RNA interference analysis. 20E regulated CaMKII threonine phosphorylation at amino acid 290, thereby inducing CaMKII nuclear translocation. CaMKII knockdown by dsCaMKII injection into the larvae prevented the occurrence of larval-pupal transition and suppressed 20E response gene expression. CaMKII phosphorylation and nuclear translocation maintained USP1 lysine acetylation at amino acid 303 by inducing histone deacetylase 3 phosphorylation and nuclear export. The lysine acetylation of USP1 was necessary for the interaction of USP1 with EcRB1 and their binding to the ecdysone response element. Results suggest that 20E (via GPCR activation and calcium signaling) activates CaMKII phosphorylation and nuclear translocation, which regulate USP1 lysine acetylation to form an EcRB1-USP1 complex for 20E response gene transcription.
Collapse
Affiliation(s)
- Yu-Pu Jing
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Wen Liu
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|
38
|
Cheng D, Qian W, Wang Y, Meng M, Wei L, Li Z, Kang L, Peng J, Xia Q. Nuclear import of transcription factor BR-C is mediated by its interaction with RACK1. PLoS One 2014; 9:e109111. [PMID: 25280016 PMCID: PMC4184850 DOI: 10.1371/journal.pone.0109111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
The transcription factor Broad Complex (BR-C) is an early ecdysone response gene in insects and contains two types of domains: two zinc finger domains for the activation of gene transcription and a Bric-a-brac/Tramtrack/Broad complex (BTB) domain for protein-protein interaction. Although the mechanism of zinc finger-mediated gene transcription is well studied, the partners interacting with the BTB domain of BR-C has not been elucidated until now. Here, we performed a yeast two-hybrid screen using the BTB domain of silkworm BR-C as bait and identified the receptor for activated C-kinase 1 (RACK1), a scaffolding/anchoring protein, as the novel partner capable of interacting with BR-C. The interaction between BR-C and RACK1 was further confirmed by far-western blotting and pull-down assays. Importantly, the disruption of this interaction, via RNAi against the endogenous RACK1 gene or deletion of the BTB domain, abolished the nuclear import of BR-C in BmN4 cells. In addition, RNAi against the endogenous PKC gene as well as phosphorylation-deficient mutation of the predicted PKC phosphorylation sites at either Ser373 or Thr406 in BR-C phenocopied RACK1 RNAi and altered the nuclear localization of BR-C. However, when BTB domain was deleted, phosphorylation mimics of either Ser373 or Thr406 had no effect on the nuclear import of BR-C. Moreover, mutating the PKC phosphorylation sites at Ser373 and Thr406 or deleting the BTB domain significantly decreased the transcriptional activation of a BR-C target gene. Given that RACK1 is necessary for recruiting PKC to close and phosphorylate target proteins, we suggest that the PKC-mediated phosphorylation and nuclear import of BR-C is determined by its interaction with RACK1. This novel finding will be helpful for further deciphering the mechanism underlying the role of BR-C proteins during insect development.
Collapse
Affiliation(s)
- Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yonghu Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Meng Meng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing, China
| | - Zhiqing Li
- Laboratory of Silkworm Science, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, Fukuoka, Japan
| | - Lixia Kang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- * E-mail:
| |
Collapse
|
39
|
Nagamine K, Kayukawa T, Hoshizaki S, Matsuo T, Shinoda T, Ishikawa Y. Cloning, phylogeny, and expression analysis of the Broad-Complex gene in the longicorn beetle Psacothea hilaris. SPRINGERPLUS 2014; 3:539. [PMID: 25279330 PMCID: PMC4175664 DOI: 10.1186/2193-1801-3-539] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/11/2014] [Indexed: 12/26/2022]
Abstract
Seven isoforms of Broad-Complex (PhBR-C), in which the sequence of the zinc finger domain differed (referred to as Z1, Z2, Z3, Z2/Z3, Z4, Z5/Z6, and Z6, respectively), were cloned from the yellow-spotted longicorn beetle Psacothea hilaris. The Z1–Z4 sequences were highly conserved among insect species. The Z5/Z6 isoform was aberrant in that it contained a premature stop codon. Z6 had previously only been detected in a hemimetabola, the German cockroach Blattella germanica. The presence of Z6 in P. hilaris, and not in other holometabolous model insects such as Drosophila melanogaster or Tribolium castaneum, suggests that Z6 was lost multiple times in holometabolous insects during the course of evolution. PhBR-C expression levels in the brain, salivary gland, and epidermis of larvae grown under different feeding regimens were subsequently investigated. PhBR-C expression levels increased in every tissue examined after the gut purge, and high expression levels were observed in prepupae. A low level of PhBR-C expression was continuously observed in the brain. An increase was noted in PhBR-C expression levels in the epidermis when 4th instar larvae were starved after 4 days of feeding, which induced precocious pupation. No significant changes were observed in expression levels in any tissues of larvae starved immediately after ecdysis into 4th instar, which did not grow and eventually died.
Collapse
Affiliation(s)
- Keisuke Nagamine
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan ; National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Takumi Kayukawa
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Sugihiko Hoshizaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Takashi Matsuo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Tetsuro Shinoda
- National Institute of Agrobiological Sciences, Tsukuba, 305-8634 Japan
| | - Yukio Ishikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
40
|
Marchal E, Hult EF, Huang J, Pang Z, Stay B, Tobe SS. Methoprene-tolerant (Met) knockdown in the adult female cockroach, Diploptera punctata completely inhibits ovarian development. PLoS One 2014; 9:e106737. [PMID: 25197795 PMCID: PMC4157775 DOI: 10.1371/journal.pone.0106737] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/08/2014] [Indexed: 02/06/2023] Open
Abstract
Independent of the design of the life cycle of any insect, their growth and reproduction are highly choreographed through the action of two versatile hormones: ecdysteroids and juvenile hormones (JH). However, the means by which JH can target tissues and exert its pleiotropic physiological effects is currently still not completely elucidated. Although the identity of the one JH receptor is currently still elusive, recent evidence seems to point to the product of the Methoprene-tolerant gene (Met) as the most likely contender in transducing the action of JH. Studies on the role of this transcription factor have mostly been focused on immature insect stages. In this study we used the viviparous cockroach Diploptera punctata, a favorite model in studying JH endocrinology, to examine the role of Met during reproduction. A tissue distribution and developmental profile of transcript levels was determined for Met and its downstream partners during the first gonadotropic cycle of this cockroach. Using RNA interference, our study shows that silencing Met results in an arrest of basal oocyte development; vitellogenin is no longer transcribed in the fat body and no longer taken up by the ovary. Patency is not induced in these animals which fail to produce the characteristic profile of JH biosynthesis typical of the first gonadotropic cycle. Moreover, the ultrastructure of the follicle cells showed conspicuous whorls of rough endoplasmic reticulum and a failure to form chorion. Our study describes the role of Met on a cellular and physiological level during insect reproduction, and confirms the role of Met as a key factor in the JH signaling pathway.
Collapse
Affiliation(s)
- Elisabeth Marchal
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Ekaterina F. Hult
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Juan Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Zhenguo Pang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Barbara Stay
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Stephen S. Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
41
|
Belles X, Santos CG. The MEKRE93 (Methoprene tolerant-Krüppel homolog 1-E93) pathway in the regulation of insect metamorphosis, and the homology of the pupal stage. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2014; 52:60-8. [PMID: 25008785 DOI: 10.1016/j.ibmb.2014.06.009] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/19/2014] [Accepted: 06/24/2014] [Indexed: 05/12/2023]
Abstract
Recent studies on transcription factor E93 revealed that it triggers adult morphogenesis in Blattella germanica, Tribolium castaneum and Drosophila melanogaster. Moreover, we show here that Krüppel homolog 1 (Kr-h1), a transducer of the antimetamorphic action of juvenile hormone (JH), represses E93 expression. Kr-h1 is upstream of E93, and upstream of Kr-h1 is Methoprene-tolerant (Met), the latter being the JH receptor in hemimetabolan and holometabolan species. As such, the Met - Kr-h1 - E93 pathway (hereinafter named "MEKRE93 pathway") appears to be central to the status quo action of JH, which switch adult morphogenesis off and on in species ranging from cockroaches to flies. The decrease in Kr-h1 mRNA and the rise of E93 expression that triggers adult morphogenesis occur at the beginning of the last instar nymph or in the prepupae of hemimetabolan and holometabolan species, respectively. This suggests that the hemimetabolan last nymph (considering the entire stage, from the apolysis to the last instar until the next apolysis that gives rise to the adult) is ontogenetically homologous to the holometabolan pupa (also considered between two apolyses, thus comprising the prepupal stage).
Collapse
Affiliation(s)
- Xavier Belles
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain.
| | - Carolina G Santos
- Institut de Biologia Evolutiva (Universitat Pompeu Fabra-CSIC), Passeig Maritim de la Barceloneta 37, 0803 Barcelona, Spain; Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
42
|
Yang C, Lin Y, Liu H, Shen G, Luo J, Zhang H, Peng Z, Chen E, Xing R, Han C, Xia Q. The Broad Complex isoform 2 (BrC-Z2) transcriptional factor plays a critical role in vitellogenin transcription in the silkworm Bombyx mori. Biochim Biophys Acta Gen Subj 2014; 1840:2674-84. [DOI: 10.1016/j.bbagen.2014.05.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/22/2014] [Accepted: 05/16/2014] [Indexed: 11/16/2022]
|
43
|
Cai MJ, Liu W, Pei XY, Li XR, He HJ, Wang JX, Zhao XF. Juvenile hormone prevents 20-hydroxyecdysone-induced metamorphosis by regulating the phosphorylation of a newly identified broad protein. J Biol Chem 2014; 289:26630-26641. [PMID: 25096576 DOI: 10.1074/jbc.m114.581876] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The steroid hormone 20-hydroxyecdysone (20E) initiates insect molting and metamorphosis. By contrast, juvenile hormone (JH) prevents metamorphosis. However, the mechanism by which JH inhibits metamorphosis remains unclear. In this study, we propose that JH induces the phosphorylation of Broad isoform Z7 (BrZ7), a newly identified protein, to inhibit 20E-mediated metamorphosis in the lepidopteran insect Helicoverpa armigera. The knockdown of BrZ7 in larvae inhibited metamorphosis by repressing the expression of the 20E response gene. BrZ7 was weakly expressed and phosphorylated during larval growth but highly expressed and non-phosphorylated during metamorphosis. JH regulated the rapid phosphorylation of BrZ7 via a G-protein-coupled receptor-, phospholipase C-, and protein kinase C-triggered pathway. The phosphorylated BrZ7 bound to the 5'-regulatory region of calponin to regulate its expression in the JH pathway. Exogenous JH induced BrZ7 phosphorylation to prevent metamorphosis by suppressing 20E-related gene transcription. JH promoted non-phosphorylated calponin interacting with ultraspiracle protein to activate the JH pathway and antagonize the 20E pathway. This study reveals one of the possible mechanisms by which JH counteracts 20E-regulated metamorphosis by inducing the phosphorylation of BrZ7.
Collapse
Affiliation(s)
- Mei-Juan Cai
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen Liu
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xu-Yang Pei
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiang-Ru Li
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hong-Juan He
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Key Laboratory of Plant Cell Engineering and Germplasm Innovation of Ministry of Education / Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
44
|
Burdfield-Steel ER, Shuker DM. The evolutionary ecology of the Lygaeidae. Ecol Evol 2014; 4:2278-301. [PMID: 25360267 PMCID: PMC4201440 DOI: 10.1002/ece3.1093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/07/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022] Open
Abstract
The Lygaeidae (sensu lato) are a highly successful family of true bugs found worldwide, yet many aspects of their ecology and evolution remain obscure or unknown. While a few species have attracted considerable attention as model species for the study of insect physiology, it is only relatively recently that biologists have begun to explore aspects of their behavior, life history evolution, and patterns of intra- and interspecific ecological interactions across more species. As a result though, a range of new phenotypes and opportunities for addressing current questions in evolutionary ecology has been uncovered. For example, researchers have revealed hitherto unexpectedly rich patterns of bacterial symbiosis, begun to explore the evolutionary function of the family's complex genitalia, and also found evidence of parthenogenesis. Here we review our current understanding of the biology and ecology of the group as a whole, focusing on several of the best-studied characteristics of the group, including aposematism (i.e., the evolution of warning coloration), chemical communication, sexual selection (especially, postcopulatory sexual selection), sexual conflict, and patterns of host-endosymbiont coevolution. Importantly, many of these aspects of lygaeid biology are likely to interact, offering new avenues for research, for instance into how the evolution of aposematism influences sexual selection. With the growing availability of genomic tools for previously “non-model” organisms, combined with the relative ease of keeping many of the polyphagous species in the laboratory, we argue that these bugs offer many opportunities for behavioral and evolutionary ecologists.
Collapse
Affiliation(s)
- Emily R Burdfield-Steel
- Centre for Biological Diversity, School of Biology, University of St Andrews Harold Mitchell Building, St Andrews, KY16 9TH, UK
| | - David M Shuker
- Centre for Biological Diversity, School of Biology, University of St Andrews Harold Mitchell Building, St Andrews, KY16 9TH, UK
| |
Collapse
|
45
|
Transcription factor E93 specifies adult metamorphosis in hemimetabolous and holometabolous insects. Proc Natl Acad Sci U S A 2014; 111:7024-9. [PMID: 24778249 DOI: 10.1073/pnas.1401478111] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
All immature animals undergo remarkable morphological and physiological changes to become mature adults. In winged insects, metamorphic changes either are limited to a few tissues (hemimetaboly) or involve a complete reorganization of most tissues and organs (holometaboly). Despite the differences, the genetic switch between immature and adult forms in both types of insects relies on the disappearance of the antimetamorphic juvenile hormone (JH) and the transcription factors Krüppel-homolog 1 (Kr-h1) and Broad-Complex (BR-C) during the last juvenile instar. Here, we show that the transcription factor E93 is the key determinant that promotes adult metamorphosis in both hemimetabolous and holometabolous insects, thus acting as the universal adult specifier. In the hemimetabolous insect Blattella germanica, BgE93 is highly expressed in metamorphic tissues, and RNA interference (RNAi)-mediated knockdown of BgE93 in the nymphal stage prevented the nymphal-adult transition, inducing endless reiteration of nymphal development, even in the absence of JH. We also find that BgE93 down-regulated BgKr-h1 and BgBR-C expression during the last nymphal instar of B. germanica, a key step necessary for proper adult differentiation. This essential role of E93 is conserved in holometabolous insects as TcE93 RNAi in Tribolium castaneum prevented pupal-adult transition and produced a supernumerary second pupa. In this beetle, TcE93 also represses expression of TcKr-h1 and TcBR-C during the pupal stage. Similar results were obtained in the more derived holometabolous insect Drosophila melanogaster, suggesting that winged insects use the same regulatory mechanism to promote adult metamorphosis. This study provides an important insight into the understanding of the molecular basis of adult metamorphosis.
Collapse
|
46
|
Erezyilmaz DF, Hayward A, Huang Y, Paps J, Acs Z, Delgado JA, Collantes F, Kathirithamby J. Expression of the pupal determinant broad during metamorphic and neotenic development of the strepsipteran Xenos vesparum Rossi. PLoS One 2014; 9:e93614. [PMID: 24709670 PMCID: PMC3977908 DOI: 10.1371/journal.pone.0093614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 03/07/2014] [Indexed: 11/18/2022] Open
Abstract
Derived members of the endoparasitic order Strepsiptera have acquired an extreme form of sexual dimorphism whereby males undergo metamorphosis and exist as free-living adults while females remain larviform, reaching sexual maturity within their hosts. Expression of the transcription factor, broad (br) has been shown to be required for pupal development in insects in which both sexes progress through metamorphosis. A surge of br expression appears in the last larval instar, as the epidermis begins pupal development. Here we ask if br is also up-regulated in the last larval instar of male Xenos vesparum Rossi (Stylopidae), and whether such expression is lost in neotenic larviform females. We clone three isoforms of br from X. vesparum (Xv’br), and show that they share greatest similarity to the Z1, Z3 and Z4 isoforms of other insect species. By monitoring Xv’br expression throughout development, we detect elevated levels of total br expression and the Xv’Z1, Xv’Z3, and Xv’Z4 isoforms in the last larval instar of males, but not females. By focusing on Xv’br expression in individual samples, we show that the levels of Xv’BTB and Xv’Z3 in the last larval instar of males are bimodal, with some males expressing 3X greater levels of Xv’br than fourth instar femlaes. Taken together, these data suggest that neoteny (and endoparasitism) in females of Strepsiptera Stylopidia could be linked to the suppression of pupal determination. Our work identifies a difference in metamorphic gene expression that is associated with neoteny, and thus provides insights into the relationship between metamorphic and neotenic development.
Collapse
Affiliation(s)
- Deniz F. Erezyilmaz
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| | - Alex Hayward
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala Biomedical Centre, Uppsala, Sweden
| | - Yan Huang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Jordi Paps
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Zoltan Acs
- Kaposvar University, Faculty of Animal Science, Kaposvar, Hungary
| | - Juan A. Delgado
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | - Francisco Collantes
- Departamento de Zoologia, Facultad de Biologia, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
47
|
Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V. The developmental control of size in insects. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2014; 3:113-34. [PMID: 24902837 PMCID: PMC4048863 DOI: 10.1002/wdev.124] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The mechanisms that control the sizes of a body and its many parts remain among the great puzzles in developmental biology. Why do animals grow to a species-specific body size, and how is the relative growth of their body parts controlled to so they grow to the right size, and in the correct proportion with body size, giving an animal its species-characteristic shape? Control of size must involve mechanisms that somehow assess some aspect of size and are upstream of mechanisms that regulate growth. These mechanisms are now beginning to be understood in the insects, in particular in Manduca sexta and Drosophila melanogaster. The control of size requires control of the rate of growth and control of the cessation of growth. Growth is controlled by genetic and environmental factors. Insulin and ecdysone, their receptors, and intracellular signaling pathways are the principal genetic regulators of growth. The secretion of these growth hormones, in turn, is controlled by complex interactions of other endocrine and molecular mechanisms, by environmental factors such as nutrition, and by the physiological mechanisms that sense body size. Although the general mechanisms of growth regulation appear to be widely shared, the mechanisms that regulate final size can be quite diverse.
Collapse
|
48
|
Beckerman AP, de Roij J, Dennis SR, Little TJ. A shared mechanism of defense against predators and parasites: chitin regulation and its implications for life-history theory. Ecol Evol 2013; 3:5119-26. [PMID: 24455141 PMCID: PMC3892373 DOI: 10.1002/ece3.766] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 01/16/2023] Open
Abstract
Defenses against predators and parasites offer excellent illustrations of adaptive phenotypic plasticity. Despite vast knowledge about such induced defenses, they have been studied largely in isolation, which is surprising, given that predation and parasitism are ubiquitous and act simultaneously in the wild. This raises the possibility that victims must trade-off responses to predation versus parasitism. Here, we propose that arthropod responses to predators and parasites will commonly be based on the endocrine regulation of chitin synthesis and degradation. The proposal is compelling because many inducible defenses are centered on temporal or spatial modifications of chitin-rich structures. Moreover, we show how the chitin synthesis pathway ends in a split to carapace or gut chitin, and how this form of molecular regulation can be incorporated into theory on life-history trade-offs, specifically the Y-model. Our hypothesis thus spans several biological scales to address advice from Stearns that “Endocrine mechanisms may prove to be only the tip of an iceberg of physiological mechanisms that modulate the expression of genetic covariance”.
Collapse
Affiliation(s)
- Andrew P Beckerman
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank Sheffield, S10 2TN, U.K
| | - Job de Roij
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh Kings Buildings, Edinburgh, EH9 3JT, U.K
| | - Stuart R Dennis
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank Sheffield, S10 2TN, U.K
| | - Tom J Little
- Ashworth Laboratories, Institute of Evolutionary Biology, University of Edinburgh Kings Buildings, Edinburgh, EH9 3JT, U.K
| |
Collapse
|
49
|
Luan JB, Ghanim M, Liu SS, Czosnek H. Silencing the ecdysone synthesis and signaling pathway genes disrupts nymphal development in the whitefly. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2013; 43:740-6. [PMID: 23748027 DOI: 10.1016/j.ibmb.2013.05.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 05/28/2013] [Accepted: 05/28/2013] [Indexed: 05/13/2023]
Abstract
Sap-sucking insects are important pests in agriculture and good models to study insect biology. The role of ecdysone pathway genes in the life history of this group of insects is largely unknown likely due to a lack of efficient gene silencing methods allowing functional genetic analyses. Here, we developed a new and high throughput method to silence whitefly genes using a leaf-mediated dsRNA feeding method. We have applied this method to explore the roles of genes within the molting hormone-ecdysone synthesis and signaling pathway for the survival, reproduction and development of whiteflies. Silencing of genes in the ecdysone pathway had a limited effect on the survival and fecundity of adult whiteflies. However, gene silencing reduced survival and delayed development of the whitefly during nymphal stages. These data suggest that the silencing method developed here provides a useful tool for functional gene discovery studies of sap-sucking insects, and further indicate the potential of regulating the ecdysone pathway in whitefly control.
Collapse
Affiliation(s)
- Jun-Bo Luan
- Ministry of Agriculture, Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
50
|
Huang JH, Lozano J, Belles X. Broad-complex functions in postembryonic development of the cockroach Blattella germanica shed new light on the evolution of insect metamorphosis. Biochim Biophys Acta Gen Subj 2013; 1830:2178-87. [DOI: 10.1016/j.bbagen.2012.09.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 01/02/2023]
|