1
|
Liu Y, Zhou Q, Zou G, Zhang W. Inhibin subunit beta B (INHBB): an emerging role in tumor progression. J Physiol Biochem 2024:10.1007/s13105-024-01041-y. [PMID: 39183219 DOI: 10.1007/s13105-024-01041-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/30/2024] [Indexed: 08/27/2024]
Abstract
The gene inhibin subunit beta B (INHBB) encodes the inhibin βB subunit, which is involved in forming protein members of the transforming growth factor-β (TGF-β) superfamily. The TGF-β superfamily is extensively involved in cell proliferation, differentiation, adhesion, movement, metabolism, communication, and death. Activins and inhibins, which belong to the TGF-β superfamily, were first discovered in ovarian follicular fluid. They were initially described as regulators of pituitary follicle-stimulating hormone (FSH) secretion both in vivo and in vitro. Later studies found that INHBB is expressed not only in reproductive organs such as the ovary, uterus, and testis but also in numerous other organs, including the brain, spinal cord, liver, kidneys, and adrenal glands. This wide distribution implies its involvement in the normal physiological functions of various organs; however, the mechanisms underlying these functions have not yet been fully elucidated. Recent studies suggest that INHBB plays a significant, yet complex role in tumorigenesis. It appears to have dual effects, promoting tumor progression in some contexts while inhibiting it in others, although these roles are not yet fully understood. In this paper, we review the different expression patterns, functions, and mechanisms of INHBB in normal and tumor tissues to illustrate the research prospects of INHBB in tumor progression.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
- Department of Clinical Laboratory, Zhengzhou Orthopedic Hospital, Zhengzhou, Henan, People's Republic of China
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China
| | - Qing Zhou
- Department of Clinical Laboratory, First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, People's Republic of China
| | - Guoying Zou
- Department of Clinical Laboratory, Brain Hospital of Hunan Province, Changsha, Hunan, People's Republic of China
| | - Wenling Zhang
- Department of Medical Laboratory Science, The Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
- Department of Medical Laboratory Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Freeman DW, Gates BL, Spendlove MD, Gulbahce HE, Spike BT. CRIPTO promotes extracellular vesicle uptake and activation of cancer associated fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.583059. [PMID: 38496478 PMCID: PMC10942388 DOI: 10.1101/2024.03.01.583059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Expression of CRIPTO, a factor involved in embryonic stem cells, fetal development, and wound healing, is tied to poor prognosis in multiple cancers. Prior studies in triple negative breast cancer (TNBC) models showed CRIPTO blockade inhibits tumor growth and dissemination. Here, we uncover a previously unidentified role for CRIPTO in orchestrating tumor-derived extracellular vesicle (TEV) uptake and fibroblast activation through discrete mechanisms. We found a novel mechanism by which CRIPTO drives aggressive TNBC phenotypes, involving CRIPTO-laden TEVs that program stromal fibroblasts, toward cancer associated fibroblast cell states, which in turn prompt tumor cell invasion. CRIPTO-bearing TEVs exhibited markedly elevated uptake in target fibroblasts and activated SMAD2/3 through NODAL-independent and - dependent mechanisms, respectively. Engineered expression of CRIPTO on EVs enhanced the delivery of bioactive molecules. In vivo , CRIPTO levels dictated TEV uptake in mouse lungs, a site of EV-regulated premetastatic niches important for breast cancer dissemination. These discoveries reveal a novel role for CRIPTO in coordinating heterotypic cellular crosstalk which offers novel insights into breast cancer progression, delivery of therapeutic molecules, and new, potentially targetable mechanisms of heterotypic cellular communication between tumor cells and the TME.
Collapse
|
3
|
Fox SC, Waskiewicz AJ. Transforming growth factor beta signaling and craniofacial development: modeling human diseases in zebrafish. Front Cell Dev Biol 2024; 12:1338070. [PMID: 38385025 PMCID: PMC10879340 DOI: 10.3389/fcell.2024.1338070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Humans and other jawed vertebrates rely heavily on their craniofacial skeleton for eating, breathing, and communicating. As such, it is vital that the elements of the craniofacial skeleton develop properly during embryogenesis to ensure a high quality of life and evolutionary fitness. Indeed, craniofacial abnormalities, including cleft palate and craniosynostosis, represent some of the most common congenital abnormalities in newborns. Like many other organ systems, the development of the craniofacial skeleton is complex, relying on specification and migration of the neural crest, patterning of the pharyngeal arches, and morphogenesis of each skeletal element into its final form. These processes must be carefully coordinated and integrated. One way this is achieved is through the spatial and temporal deployment of cell signaling pathways. Recent studies conducted using the zebrafish model underscore the importance of the Transforming Growth Factor Beta (TGF-β) and Bone Morphogenetic Protein (BMP) pathways in craniofacial development. Although both pathways contain similar components, each pathway results in unique outcomes on a cellular level. In this review, we will cover studies conducted using zebrafish that show the necessity of these pathways in each stage of craniofacial development, starting with the induction of the neural crest, and ending with the morphogenesis of craniofacial elements. We will also cover human skeletal and craniofacial diseases and malformations caused by mutations in the components of these pathways (e.g., cleft palate, craniosynostosis, etc.) and the potential utility of zebrafish in studying the etiology of these diseases. We will also briefly cover the utility of the zebrafish model in joint development and biology and discuss the role of TGF-β/BMP signaling in these processes and the diseases that result from aberrancies in these pathways, including osteoarthritis and multiple synostoses syndrome. Overall, this review will demonstrate the critical roles of TGF-β/BMP signaling in craniofacial development and show the utility of the zebrafish model in development and disease.
Collapse
|
4
|
Hamang M, Yaden B, Dai G. Gastrointestinal pharmacology activins in liver health and disease. Biochem Pharmacol 2023; 214:115668. [PMID: 37364623 PMCID: PMC11234865 DOI: 10.1016/j.bcp.2023.115668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023]
Abstract
Activins are a subgroup of the TGFβ superfamily of growth and differentiation factors, dimeric in nature and consisting of two inhibin beta subunits linked via a disulfide bridge. Canonical activin signaling occurs through Smad2/3, with negative feedback initiated by Smad6/7 following signal transduction, which binds activin type I receptor preventing phosphorylation of Smad2/3 and activation of downstream signaling. In addition to Smad6/7, other inhibitors of activin signaling have been identified as well, including inhibins (dimers of an inhibin alpha and beta subunit), BAMBI, Cripto, follistatin, and follistatin-like 3 (fstl3). To date, activins A, B, AB, C, and E have been identified and isolated in mammals, with activin A and B having the most characterization of biological activity. Activin A has been implicated as a regulator of several important functions of liver biology, including hepatocyte proliferation and apoptosis, ECM production, and liver regeneration; the role of other subunits of activin in liver physiology are less understood. There is mounting data to suggest a link between dysregulation of activins contributing to various hepatic diseases such as inflammation, fibrosis, and hepatocellular carcinoma, and emerging studies demonstrating the protective and regenerative effects of inhibiting activins in mouse models of liver disease. Due to their importance in liver biology, activins demonstrate utility as a therapeutic target for the treatment of hepatic diseases such as cirrhosis, NASH, NAFLD, and HCC; further research regarding activins may provide diagnostic or therapeutic opportunity for those suffering from various liver diseases.
Collapse
Affiliation(s)
- Matthew Hamang
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Benjamin Yaden
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University - Purdue University Indianapolis, IN, United States.
| |
Collapse
|
5
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
6
|
Moncla LHM, Mathieu S, Sylla MS, Bossé Y, Thériault S, Arsenault BJ, Mathieu P. Mendelian randomization of circulating proteome identifies actionable targets in heart failure. BMC Genomics 2022; 23:588. [PMID: 35964012 PMCID: PMC9375407 DOI: 10.1186/s12864-022-08811-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Heart failure (HF) is a prevalent cause of mortality and morbidity. The molecular drivers of HF are still largely unknown. Results We aimed to identify circulating proteins causally associated with HF by leveraging genome-wide genetic association data for HF including 47,309 cases and 930,014 controls. We performed two-sample Mendelian randomization (MR) with multiple cis instruments as well as network and enrichment analysis using data from blood protein quantitative trait loci (pQTL) (2,965 blood proteins) measured in 3,301 individuals. Nineteen blood proteins were causally associated with HF, were not subject to reverse causality and were enriched in ligand-receptor and glycosylation molecules. Network pathway analysis of the blood proteins showed enrichment in NF-kappa B, TGF beta, lipid in atherosclerosis and fluid shear stress. Cross-phenotype analysis of HF identified genetic overlap with cardiovascular drugs, myocardial infarction, parental longevity and low-density cholesterol. Multi-trait MR identified causal associations between HF-associated blood proteins and cardiovascular outcomes. Multivariable MR showed that association of BAG3, MIF and APOA5 with HF were mediated by the blood pressure and coronary artery disease. According to the directional effect and biological action, 7 blood proteins are targets of existing drugs or are tractable for the development of novel therapeutics. Among the pathways, sialyl Lewis x and the activin type II receptor are potential druggable candidates. Conclusions Integrative MR analyses of the blood proteins identified causally-associated proteins with HF and revealed pleiotropy of the blood proteome with cardiovascular risk factors. Some of the proteins or pathway related mechanisms could be targeted as novel treatment approach in HF. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08811-2.
Collapse
Affiliation(s)
- Louis-Hippolyte Minvielle Moncla
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Samuel Mathieu
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Mame Sokhna Sylla
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Quebec, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Quebec, Canada
| | - Benoit J Arsenault
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada.,Department of Medicine, Laval University, Quebec, Canada
| | - Patrick Mathieu
- Genomic Medecine and Molecular Epidemiology Laboratory, Quebec Heart and Lung Institute, Laval University, Quebec, G1V-4G5, Canada. .,Department of Surgery, Laval University, Quebec, Canada.
| |
Collapse
|
7
|
Wakitani S. The FGF receptor inhibitor PD173074 modulates Lefty expression in human induced pluripotent stem cells differently depending on the culture conditions. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119260. [PMID: 35306104 DOI: 10.1016/j.bbamcr.2022.119260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/21/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Shoichi Wakitani
- Laboratory of Veterinary Anatomy, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan.
| |
Collapse
|
8
|
Knowles H, Santucci N, Studdert J, Goh HN, Kaufman-Francis K, Salehin N, Tam PPL, Osteil P. Differential impact of TGFβ/SMAD signaling activity elicited by Activin A and Nodal on endoderm differentiation of epiblast stem cells. Genesis 2022; 60:e23466. [PMID: 35104045 DOI: 10.1002/dvg.23466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Abstract
Allocation of cells to an endodermal fate in the gastrulating embryo is driven by Nodal signaling and consequent activation of TGFβ pathway. In vitro methodologies striving to recapitulate the process of endoderm differentiation, however, use TGFβ family member Activin in place of Nodal. This is despite Activin not known to have an in vivo role in endoderm differentiation. In this study, five epiblast stem cell lines were subjected to directed differentiation using both Activin A and Nodal to induce endodermal fate. A reporter line harboring endoderm markers FoxA2 and Sox17 was further analyzed for TGFβ pathway activation and WNT response. We demonstrated that Activin A-treated cells remain more primitive streak-like when compared to Nodal-treated cells that have a molecular profile suggestive of more advanced differentiation. Activin A elicited a robust TGFβ/SMAD activity, enhanced WNT signaling activity and promoted the generation of DE precursors. Nodal treatment resulted in lower TGFβ/SMAD activity, and a weaker, sustained WNT response, and ultimately failed to upregulate endoderm markers. This is despite signaling response resembling more closely the activity seen in vivo. These findings emphasize the importance of understanding the downstream activities of Activin A and Nodal signaling in directing in vitro endoderm differentiation of primed-state epiblast stem cells.
Collapse
Affiliation(s)
- Hilary Knowles
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nicole Santucci
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Joshua Studdert
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Hwee Ngee Goh
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Keren Kaufman-Francis
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Pierre Osteil
- Embryology Research Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia.,Swiss Cancer Research Institute (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Moody SC, Whiley PAF, Western PS, Loveland KL. The Impact of Activin A on Fetal Gonocytes: Chronic Versus Acute Exposure Outcomes. Front Endocrinol (Lausanne) 2022; 13:896747. [PMID: 35721752 PMCID: PMC9205402 DOI: 10.3389/fendo.2022.896747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Activin A, a TGFβ superfamily member, is important for normal testis development through its actions on Sertoli cell development. Our analyses of altered activin A mouse models indicated gonocyte abnormalities, implicating activin A as a key determinant of early germline formation. Whether it acts directly or indirectly on germ cells is not understood. In humans, the fetal testis may be exposed to abnormally elevated activin A levels during preeclampsia, maternal infections, or following ingestion of certain medications. We hypothesized that this may impact fetal testis development and ultimately affect adult fertility. Germ cells from two mouse models of altered activin bioactivity were analysed. RNA-Seq of gonocytes purified from E13.5 and E15.5 Inhba KO mice (activin A subunit knockout) identified 46 and 44 differentially expressed genes (DEGs) respectively, and 45 in the E13.5 Inha KO (inhibin alpha subunit knockout; increased activin A) gonocytes. To discern direct effects of altered activin bioactivity on germline transcripts, isolated E13.5 gonocytes were cultured for 24h with activin A or with the activin/Nodal/TGFβ inhibitor, SB431542. Gonocytes responded directly to altered signalling, with activin A promoting a more differentiated transcript profile (increased differentiation markers Dnmt3l, Nanos2 and Piwil4; decreased early germ cell markers Kit and Tdgf1), while SB431542 had a reciprocal effect (decreased Nanos2 and Piwil4; increased Kit). To delineate direct and indirect effects of activin A exposure on gonocytes, whole testes were cultured 48h with activin A or SB431542 and collected for histological and transcript analyses, or EdU added at the end of culture to measure germ and Sertoli cell proliferation using flow cytometry. Activin increased, and SB431542 decreased, Sertoli cell proliferation. SB431542-exposure resulted in germ cells escaping mitotic arrest. Analysis of FACS-isolated gonocytes following whole testis culture showed SB431542 increased the early germ cell marker Kit, however there was a general reduction in the impact of altered activin A bioavailability in the normal somatic cell environment. This multifaceted approach identifies a capacity for activin A to directly influence fetal germ cell development, highlighting the potential for altered activin A levels in utero to increase the risk of testicular pathologies that arise from impaired germline maturation.
Collapse
Affiliation(s)
- Sarah C. Moody
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Penny A. F. Whiley
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Patrick S. Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Kate L. Loveland
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- *Correspondence: Kate L. Loveland,
| |
Collapse
|
10
|
Freeman DW, Rodrigues Sousa E, Karkampouna S, Zoni E, Gray PC, Salomon DS, Kruithof-de Julio M, Spike BT. Whence CRIPTO: The Reemergence of an Oncofetal Factor in 'Wounds' That Fail to Heal. Int J Mol Sci 2021; 22:10164. [PMID: 34576327 PMCID: PMC8472190 DOI: 10.3390/ijms221810164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 02/06/2023] Open
Abstract
There exists a set of factors termed oncofetal proteins that play key roles in ontogeny before they decline or disappear as the organism's tissues achieve homeostasis, only to then re-emerge in cancer. Although the unique therapeutic potential presented by such factors has been recognized for more than a century, their clinical utility has yet to be fully realized1. This review highlights the small signaling protein CRIPTO encoded by the tumor derived growth factor 1 (TDGF1/Tdgf1) gene, an oft cited oncofetal protein whose presence in the cancer literature as a tumor promoter, diagnostic marker and viable therapeutic target continues to grow. We touch lightly on features well established and well-reviewed since its discovery more than 30 years ago, including CRIPTO's early developmental roles and modulation of SMAD2/3 activation by a selected set of transforming growth factor β (TGF-β) family ligands. We predominantly focus instead on more recent and less well understood additions to the CRIPTO signaling repertoire, on its potential upstream regulators and on new conceptual ground for understanding its mode of action in the multicellular and often stressful contexts of neoplastic transformation and progression. We ask whence it re-emerges in cancer and where it 'hides' between the time of its fetal activity and its oncogenic reemergence. In this regard, we examine CRIPTO's restriction to rare cells in the adult, its potential for paracrine crosstalk, and its emerging role in inflammation and tissue regeneration-roles it may reprise in tumorigenesis, acting on subsets of tumor cells to foster cancer initiation and progression. We also consider critical gaps in knowledge and resources that stand between the recent, exciting momentum in the CRIPTO field and highly actionable CRIPTO manipulation for cancer therapy and beyond.
Collapse
Affiliation(s)
- David W. Freeman
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| | - Elisa Rodrigues Sousa
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Sofia Karkampouna
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Eugenio Zoni
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
| | - Peter C. Gray
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA;
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 20893, USA;
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research DBMR, University of Bern, 3012 Bern, Switzerland; (E.R.S.); (S.K.); (E.Z.)
- Translational Organoid Models, Department for BioMedical Research, University of Bern, 3012 Bern, Switzerland
- Bern Center for Precision Medicine, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
- Department of Urology, Inselspital, University Hospital of Bern, 3010 Bern, Switzerland
| | - Benjamin T. Spike
- Department of Oncological Sciences, School of Medicine, University of Utah, Salt Lake City, UT 84113, USA;
| |
Collapse
|
11
|
Esposito P, Verzola D, Picciotto D, Cipriani L, Viazzi F, Garibotto G. Myostatin/Activin-A Signaling in the Vessel Wall and Vascular Calcification. Cells 2021; 10:2070. [PMID: 34440838 PMCID: PMC8393536 DOI: 10.3390/cells10082070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023] Open
Abstract
A current hypothesis is that transforming growth factor-β signaling ligands, such as activin-A and myostatin, play a role in vascular damage in atherosclerosis and chronic kidney disease (CKD). Myostatin and activin-A bind with different affinity the activin receptors (type I or II), activating distinct intracellular signaling pathways and finally leading to modulation of gene expression. Myostatin and activin-A are expressed by different cell types and tissues, including muscle, kidney, reproductive system, immune cells, heart, and vessels, where they exert pleiotropic effects. In arterial vessels, experimental evidence indicates that myostatin may mostly promote vascular inflammation and premature aging, while activin-A is involved in the pathogenesis of vascular calcification and CKD-related mineral bone disorders. In this review, we discuss novel insights into the biology and physiology of the role played by myostatin and activin in the vascular wall, focusing on the experimental and clinical data, which suggest the involvement of these molecules in vascular remodeling and calcification processes. Moreover, we describe the strategies that have been used to modulate the activin downward signal. Understanding the role of myostatin/activin signaling in vascular disease and bone metabolism may provide novel therapeutic opportunities to improve the treatment of conditions still associated with high morbidity and mortality.
Collapse
Affiliation(s)
- Pasquale Esposito
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Daniela Verzola
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Daniela Picciotto
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Leda Cipriani
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| | - Francesca Viazzi
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
- IRCCS Ospedale Policlinico San Martino, Clinica Nefrologica, Dialisi, Trapianto, 16132 Genova, Italy;
| | - Giacomo Garibotto
- Department of Internal Medicine, University of Genova, 16132 Genova, Italy; (P.E.); (D.V.); (L.C.); (F.V.)
| |
Collapse
|
12
|
Garcia de Vinuesa A, Sanchez-Duffhues G, Blaney-Davidson E, van Caam A, Lodder K, Ramos Y, Kloppenburg M, Meulenbelt I, van der Kraan P, Goumans MJ, Ten Dijke P. Cripto favors chondrocyte hypertrophy via TGF-β SMAD1/5 signaling during development of osteoarthritis. J Pathol 2021; 255:330-342. [PMID: 34357595 PMCID: PMC9292799 DOI: 10.1002/path.5774] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 11/11/2022]
Abstract
Chondrocytes in mice developing osteoarthritis (OA) exhibit an aberrant response to the secreted cytokine transforming growth factor (TGF)‐β, consisting in a potentiation of intracellular signaling downstream of the transmembrane type I receptor kinase activin receptor‐like kinase (ALK)1 against canonical TGF‐β receptor ALK5‐mediated signaling. Unfortunately, the underlying mechanisms remain elusive. In order to identify novel druggable targets for OA, we aimed to investigate novel molecules regulating the ALK1/ALK5 balance in OA chondrocytes. We performed gene expression analysis of TGF‐β signaling modulators in joints from three different mouse models of OA and found an upregulated expression of the TGF‐β co‐receptor Cripto (Tdgf1), which was validated in murine and human cartilage OA samples at the protein level. In vitro and ex vivo, elevated expression of Cripto favors the hypertrophic differentiation of chondrocytes, eventually contributing to tissue calcification. Furthermore, we found that Cripto participates in a TGF‐β–ALK1–Cripto receptor complex in the plasma membrane, thereby inducing catabolic SMAD1/5 signaling in chondrocytes. In conclusion, we demonstrate that Cripto is expressed in OA and plays a functional role promoting chondrocyte hypertrophy, thereby becoming a novel potential therapeutic target in OA, for which there is no efficient cure or validated biomarker. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Amaya Garcia de Vinuesa
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| | - Gonzalo Sanchez-Duffhues
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Esmeralda Blaney-Davidson
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Arjan van Caam
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kirsten Lodder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Yolande Ramos
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Margreet Kloppenburg
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Ingrid Meulenbelt
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology & Advanced Therapeutics, Radboud University, Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Marie-José Goumans
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg Leiden, The Netherlands
| | - Peter Ten Dijke
- Department of Cell and Chemical Biology, Leiden University Medical Center, Oncode Institute, Leiden, The Netherlands
| |
Collapse
|
13
|
Arboretto P, Cillo M, Leonardi A. New Insights into Cancer Targeted Therapy: Nodal and Cripto-1 as Attractive Candidates. Int J Mol Sci 2021; 22:ijms22157838. [PMID: 34360603 PMCID: PMC8345935 DOI: 10.3390/ijms22157838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.
Collapse
|
14
|
Ishii H, Afify SM, Hassan G, Salomon DS, Seno M. Cripto-1 as a Potential Target of Cancer Stem Cells for Immunotherapy. Cancers (Basel) 2021; 13:cancers13102491. [PMID: 34065315 PMCID: PMC8160785 DOI: 10.3390/cancers13102491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer immunotherapy is gaining attention as a potential fourth treatment following surgery, chemotherapy, and radiation therapy. Cancer stem cells have recently been recognized and validated as a key target for cancer treatment. Cripto-1, which is a GPI-anchored membrane-bound protein that functions as a co-receptor of Nodal, is a marker of cancer stem cells. Since Nodal is a member of the TGF-β family, which performs an important role in stem cells and cancer stem cells, the inhibition of Cripto-1 could be a strategy by which to block Nodal signaling and thereby suppress cancer stem cells. We propose that Cripto-1 may be a novel target for cancer immunotherapy. Abstract The immune system has been found to be suppressed in cancer patients. Cancer cells are extremely resistant to chemotherapeutic drugs, conventional immunotherapy, or cancer antigen vaccine therapy. Cancer immunotherapy, which is mainly based on immune checkpoint inhibitors, such as those for PD-1, PD-L1, and CTLA4, is an effective treatment method. However, no immunotherapeutic target has been found that retains validity in the face of tumor diversity. The transforming growth factor (TGF)-β cytokine family possesses broad biological activity and is involved in the induction and/or transdifferentiation of helper T cells, which are important in immunotherapy. Nodal is a member of the TGF-β family playing important roles in tissue stem cells and cancer stem cells (CSCs), interacting with the co-receptor Cripto-1, as well as with Activin type IB (Alk4) and Activin typeIIreceptors, and maintaining stemness and Notch and Wnt/β-catenin signaling in CSCs. In recent years, it has been reported that Cripto-1 could be a potential therapeutic target in CSCs. Here, we review the accumulated literature on the molecular mechanisms by which Cripto-1 functions in CSCs and discuss the potential of Cripto-1 as an immunotherapeutic target in CSCs.
Collapse
Affiliation(s)
- Hiroko Ishii
- GSP Enterprise, Inc., 1-4-38 12F Minato-machi, Naniwa-ku, Osaka 556-0017, Japan;
| | - Said M. Afify
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Division of Biochemistry, Chemistry Department, Faculty of Science, Menoufia University, Shebin ElKoum Menoufia 32511, Egypt
| | - Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
| | - David S. Salomon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA;
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan; (S.M.A.); (G.H.)
- Correspondence: ; Tel.: +81-86-251-8216
| |
Collapse
|
15
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
16
|
Rodrigues Sousa E, Zoni E, Karkampouna S, La Manna F, Gray PC, De Menna M, Kruithof-de Julio M. A Multidisciplinary Review of the Roles of Cripto in the Scientific Literature Through a Bibliometric Analysis of its Biological Roles. Cancers (Basel) 2020; 12:cancers12061480. [PMID: 32517087 PMCID: PMC7352664 DOI: 10.3390/cancers12061480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/21/2022] Open
Abstract
Cripto is a small glycosylphosphatidylinisitol (GPI)-anchored and secreted oncofetal protein that plays important roles in regulating normal physiological processes, including stem cell differentiation, embryonal development, and tissue growth and remodeling, as well as pathological processes such as tumor initiation and progression. Cripto functions as a co-receptor for TGF-β ligands such as Nodal, GDF1, and GDF3. Soluble and secreted forms of Cripto also exhibit growth factor-like activity and activate SRC/MAPK/PI3K/AKT pathways. Glucose-Regulated Protein 78 kDa (GRP78) binds Cripto at the cell surface and has been shown to be required for Cripto signaling via both TGF-β and SRC/MAPK/PI3K/AKT pathways. To provide a comprehensive overview of the scientific literature related to Cripto, we performed, for the first time, a bibliometric analysis of the biological roles of Cripto as reported in the scientific literature covering the last 10 years. We present different fields of knowledge in comprehensive areas of research on Cripto, ranging from basic to translational research, using a keyword-driven approach. Our ultimate aim is to aid the scientific community in conducting targeted research by identifying areas where research has been conducted so far and, perhaps more importantly, where critical knowledge is still missing.
Collapse
Affiliation(s)
- Elisa Rodrigues Sousa
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Eugenio Zoni
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
| | - Sofia Karkampouna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Federico La Manna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | | | - Marta De Menna
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
| | - Marianna Kruithof-de Julio
- Department for Biomedical Research, Urology Research Laboratory, University of Bern, 3008 Bern, Switzerland; (E.R.S.); (E.Z.); (S.K.); (F.L.M.); (M.D.M.)
- Department of Urology, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Correspondence:
| |
Collapse
|
17
|
Sandomenico A, Ruvo M. Targeting Nodal and Cripto-1: Perspectives Inside Dual Potential Theranostic Cancer Biomarkers. Curr Med Chem 2019; 26:1994-2050. [PMID: 30207211 DOI: 10.2174/0929867325666180912104707] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 12/25/2022]
Abstract
BACKGROUND Elucidating the mechanisms of recurrence of embryonic signaling pathways in tumorigenesis has led to the discovery of onco-fetal players which have physiological roles during normal development but result aberrantly re-activated in tumors. In this context, Nodal and Cripto-1 are recognized as onco-developmental factors, which are absent in normal tissues but are overexpressed in several solid tumors where they can serve as theranostic agents. OBJECTIVE To collect, review and discuss the most relevant papers related to the involvement of Nodal and Cripto-1 in the development, progression, recurrence and metastasis of several tumors where they are over-expressed, with a particular attention to their occurrence on the surface of the corresponding sub-populations of cancer stem cells (CSC). RESULTS We have gathered, rationalized and discussed the most interesting findings extracted from some 370 papers related to the involvement of Cripto-1 and Nodal in all tumor types where they have been detected. Data demonstrate the clear connection between Nodal and Cripto-1 presence and their multiple oncogenic activities across different tumors. We have also reviewed and highlighted the potential of targeting Nodal, Cripto-1 and the complexes that they form on the surface of tumor cells, especially of CSC, as an innovative approach to detect and suppress tumors with molecules that block one or more mechanisms that they regulate. CONCLUSION Overall, Nodal and Cripto-1 represent two innovative and effective biomarkers for developing potential theranostic anti-tumor agents that target normal as well as CSC subpopulations and overcome both pharmacological resistance and tumor relapse.
Collapse
Affiliation(s)
- Annamaria Sandomenico
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (IBB-CNR), via Mezzocannone, 16, 80134, Napoli, Italy
| |
Collapse
|
18
|
Gudbergsson JM, Duroux M. An evaluation of different Cripto-1 antibodies and their variable results. J Cell Biochem 2019; 121:545-556. [PMID: 31310365 DOI: 10.1002/jcb.29293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Cripto-1 is a protein expressed during embryonal development and has been linked to several malignant processes in cancer. Since the discovery of cripto-1 in the late 1980s, it has become a subject of biomarker investigation in several types of cancer which in many cases relies on immunolocalization of cripto-1 using antibodies. Investigating cripto-1 expression and localization in primary glioblastoma cells, we discovered nonspecific binding of cripto-1 antibody to the extracellular matrix Geltrex. A panel of four cripto-1 antibodies was investigated with respect to their binding to the Geltrex matrix and to the cripto-1 positive control cells NTERA2. The cripto-1 expression was varied for the different antibodies with respect to cellular localization and fixation methods. To further elaborate on these findings, we present a systematic review of cripto-1 antibodies found in the literature and highlight some possible cross reactants with data on sequence alignments and structural comparison of EGF domains.
Collapse
Affiliation(s)
- Johann Mar Gudbergsson
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Meg Duroux
- Laboratory of Immunology and Cancer Biology, Institute of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
19
|
Osório L, Wu X, Wang L, Jiang Z, Neideck C, Sheng G, Zhou Z. ISM1 regulates NODAL signaling and asymmetric organ morphogenesis during development. J Cell Biol 2019; 218:2388-2402. [PMID: 31171630 PMCID: PMC6605798 DOI: 10.1083/jcb.201801081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/24/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isthmin1 (ISM1) was originally identified as a fibroblast group factor expressed in Xenopus laevis embryonic brain, but its biological functions remain unclear. The spatiotemporal distribution of ISM1, with high expression in the anterior primitive streak of the chick embryo and the anterior mesendoderm of the mouse embryo, suggested that ISM1 may regulate signaling by the NODAL subfamily of TGB-β cytokines that control embryo patterning. We report that ISM1 is an inhibitor of NODAL signaling. ISM1 has little effect on TGF-β1, ACTIVIN-A, or BMP4 signaling but specifically inhibits NODAL-induced phosphorylation of SMAD2. In line with this observation, ectopic ISM1 causes defective left-right asymmetry and abnormal heart positioning in chick embryos. Mechanistically, ISM1 interacts with NODAL ligand and type I receptor ACVR1B through its AMOP domain, which compromises the NODAL-ACVR1B interaction and down-regulates phosphorylation of SMAD2. Therefore, we identify ISM1 as an extracellular antagonist of NODAL and reveal a negative regulatory mechanism that provides greater plasticity for the fine-tuning of NODAL signaling.
Collapse
Affiliation(s)
- Liliana Osório
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Xuewei Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Linsheng Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Zhixin Jiang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Carlos Neideck
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| | - Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong .,Shenzhen Institute of Innovation and Research, The University of Hong Kong, Nanshan, Shenzhen, China
| |
Collapse
|
20
|
Garland MA, Sengupta S, Mathew LK, Truong L, de Jong E, Piersma AH, La Du J, Tanguay RL. Glucocorticoid receptor-dependent induction of cripto-1 ( one-eyed pinhead) inhibits zebrafish caudal fin regeneration. Toxicol Rep 2019; 6:529-537. [PMID: 31249786 PMCID: PMC6584771 DOI: 10.1016/j.toxrep.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/15/2022] Open
Abstract
We previously used a chemical genetics approach with the larval zebrafish to identify small molecule inhibitors of tissue regeneration. This led to the discovery that glucocorticoids (GC) block early stages of tissue regeneration by the inappropriate activation of the glucocorticoid receptor (GR). We performed a microarray analysis to identify the changes in gene expression associated with beclomethasone dipropionate (BDP) exposure during epimorphic fin regeneration. Oncofetal cripto-1 showed > eight-fold increased expression in BDP-treated regenerates. We hypothesized that the mis-expression of cripto-1 was essential for BDP to block regeneration. Expression of cripto-1 was not elevated in GR morphants in the presence of BDP indicating that cripto-1 induction was GR-dependent. Partial translational suppression of Cripto-1 in the presence of BDP restored tissue regeneration. Retinoic acid exposure prevented increased cripto-1 expression and permitted regeneration in the presence of BDP. We demonstrated that BDP exposure increased cripto-1 expression in mouse embryonic stem cells and that regulation of cripto-1 by GCs is conserved in mammals.
Collapse
Key Words
- AEC, apical epithelial cap
- BDP, beclomethasone dipropionate
- Beclomethasone dipropionate
- Cripto-1
- DMSO, dimethyl sulfoxide
- EB, embryoid body
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ERK, extracellular signal-regulated kinase
- Epimorphic regeneration
- FGF, fibroblast growth factor
- GC, glucocorticoid
- GR, glucocorticoid receptor
- Glucocorticoids
- ISH, in situ hybridization
- MIAME, Minimum Information About a Microarray Experiment
- MO, morpholino oligonucleotide
- One-eyed pinhead
- RA, retinoic acid
- SEM, standard error of the mean
- TGF-β, transforming growth factor beta
- Zebrafish
- dpa, days post-amputation
- dpf, days post-fertilization
- eSC, embryonic stem cell
- hpa, hours post-amputation
- hpf, hours post-fertilization
- mLIF, murine leukemia inhibitory factor
- qRT-PCR, quantitative reverse transcription polymerase chain reaction
- zf, zebrafish
Collapse
Affiliation(s)
| | - Sumitra Sengupta
- Department of Environmental and Molecular Toxicology, United States
| | - Lijoy K Mathew
- Department of Environmental and Molecular Toxicology, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, United States
| | - Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Aldert H Piersma
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Jane La Du
- Department of Environmental and Molecular Toxicology, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, United States
| |
Collapse
|
21
|
Alowaidi F, Hashimi SM, Nguyen M, Meshram M, Alqurashi N, Cavanagh BL, Bellette B, Ivanovski S, Meedenyia A, Wood SA. Investigating the role of CRIPTO-1 (TDGF-1) in glioblastoma multiforme U87 cell line. J Cell Biochem 2019; 120:7412-7427. [PMID: 30426531 DOI: 10.1002/jcb.28015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 10/10/2018] [Indexed: 01/24/2023]
Abstract
Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.
Collapse
Affiliation(s)
- Faisal Alowaidi
- Department of Pathology and Laboratory Medicine, College of Medicine and University Hospitals, King Saud University, Riyadh, Saudi Arabia.,Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Saeed M Hashimi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Maria Nguyen
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Mallika Meshram
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Naif Alqurashi
- Department of Basic Science, Biology Unit, Deanship of Preparatory Year and Supporting studies, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Brenton L Cavanagh
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Bernadette Bellette
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Saso Ivanovski
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Adrian Meedenyia
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen A Wood
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
Seachrist DD, Keri RA. The Activin Social Network: Activin, Inhibin, and Follistatin in Breast Development and Cancer. Endocrinology 2019; 160:1097-1110. [PMID: 30874767 PMCID: PMC6475112 DOI: 10.1210/en.2019-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/08/2019] [Indexed: 12/13/2022]
Abstract
Activins and inhibins are closely related protein heterodimers with a similar tissue distribution; however, these two complexes have opposing functions in development and disease. Both are secreted cytokine hormones, with activin the primary inducer of downstream signaling cascades and inhibin acting as a rheostat that exquisitely governs activin function. Adding to the complexity of activin signaling, follistatin, a highly glycosylated monomeric protein, binds activin with high affinity and restrains downstream pathway activation but through a mechanism distinct from that of inhibin. These three proteins were first identified as key ovarian hormones in the pituitary-gonadal axis that direct the synthesis and secretion of FSH from the pituitary, hence controlling folliculogenesis. Research during the past 30 years has expanded the roles of these proteins, first by discovering the ubiquitous expression of the trio and then by implicating them in a wide array of biological functions. In concert, these three hormones govern tissue development, homeostasis, and disease in multiple organ systems through diverse autocrine and paracrine mechanisms. In the present study, we have reviewed the actions of activin and its biological inhibitors, inhibin, and follistatin, in mammary gland morphogenesis and cancer.
Collapse
Affiliation(s)
- Darcie D Seachrist
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
| | - Ruth A Keri
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
- Division of General Medical Sciences–Oncology, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
23
|
Focà G, Iaccarino E, Focà A, Sanguigno L, Untiveros G, Cuevas-Nunez M, Strizzi L, Leonardi A, Ruvo M, Sandomenico A. Development of conformational antibodies targeting Cripto-1 with neutralizing effects in vitro. Biochimie 2019; 158:246-256. [PMID: 30703478 DOI: 10.1016/j.biochi.2019.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/22/2019] [Indexed: 01/14/2023]
Abstract
Human Cripto-1 (Cripto-1), the founding member of the EGF-CFC superfamily, is a key regulator of many processes during embryonic development and oncogenesis. Cripto-1 is barely present or even absent in normal adult tissues while it is aberrantly re-expressed in various tumors. Blockade of the CFC domain-mediated Cripto-1 functions is acknowledged as a promising therapeutic intervention point to inhibit the tumorigenic activity of the protein. In this work, we report the generation and characterization of murine monoclonal antibodies raised against the synthetic folded CFC [112-150] domain of the human protein. Through subtractive ELISA assays clones were screened for the ability to specifically recognize "hot spot" residues on the CFC domain, which are crucial for the interaction with Activin Type I receptor (ALK4) and GRP78. On selected antibodies, SPR and epitope mapping studies have confirmed their specificity and have revealed that recognition occurs only on a conformational epitope. Furthermore, FACS analyses have confirmed the ability of 1B4 antibody to recognize the membrane-anchored and soluble native Cripto-1 protein in a panel of human cancer cells. Finally, we have evaluated its functional effects through in vitro cellular signaling assays and cell cycle analysis. These findings suggest that the selected anti-CFC mAbs have the potential to neutralize the protein oncogenic activity and may be used as theranostic molecules suitable as tumor homing agents for Cripto-1-overexpressing cancer cells and tissues and to overcome drug-resistance in routine cancer therapies.
Collapse
Affiliation(s)
- Giuseppina Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Emanuela Iaccarino
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Annalia Focà
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy
| | - Luca Sanguigno
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Gustavo Untiveros
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Maria Cuevas-Nunez
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA; College of Dental Medicine, Dwners Grove, Chicago, IL, USA
| | - Luigi Strizzi
- Midwestern University, Colleges of Graduate Studies, Dwners Grove, Chicago, IL, USA
| | - Antonio Leonardi
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Menotti Ruvo
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| | - Annamaria Sandomenico
- Institute of Biostructure and Bioimaging, National Research Council (IBB-CNR), Naples, Italy.
| |
Collapse
|
24
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi S, Petraglia F, Reis FM. Activin A in Mammalian Physiology. Physiol Rev 2019; 99:739-780. [DOI: 10.1152/physrev.00002.2018] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Activins are dimeric glycoproteins belonging to the transforming growth factor beta superfamily and resulting from the assembly of two beta subunits, which may also be combined with alpha subunits to form inhibins. Activins were discovered in 1986 following the isolation of inhibins from porcine follicular fluid, and were characterized as ovarian hormones that stimulate follicle stimulating hormone (FSH) release by the pituitary gland. In particular, activin A was shown to be the isoform of greater physiological importance in humans. The current understanding of activin A surpasses the reproductive system and allows its classification as a hormone, a growth factor, and a cytokine. In more than 30 yr of intense research, activin A was localized in female and male reproductive organs but also in other organs and systems as diverse as the brain, liver, lung, bone, and gut. Moreover, its roles include embryonic differentiation, trophoblast invasion of the uterine wall in early pregnancy, and fetal/neonate brain protection in hypoxic conditions. It is now recognized that activin A overexpression may be either cytostatic or mitogenic, depending on the cell type, with important implications for tumor biology. Activin A also regulates bone formation and regeneration, enhances joint inflammation in rheumatoid arthritis, and triggers pathogenic mechanisms in the respiratory system. In this 30-yr review, we analyze the evidence for physiological roles of activin A and the potential use of activin agonists and antagonists as therapeutic agents.
Collapse
Affiliation(s)
- Enrrico Bloise
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Pasquapina Ciarmela
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Cynthia Dela Cruz
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Stefano Luisi
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Felice Petraglia
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| | - Fernando M. Reis
- Department of Morphology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy; Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Department of Molecular and Developmental Medicine, Obstetrics and Gynecological Clinic, University of Siena, Siena, Italy; and Department of Biomedical, Experimental and Clinical Sciences, Division of Obstetrics and
| |
Collapse
|
25
|
Karkampouna S, van der Helm D, Gray PC, Chen L, Klima I, Grosjean J, Burgmans MC, Farina-Sarasqueta A, Snaar-Jagalska EB, Stroka DM, Terracciano L, van Hoek B, Schaapherder AF, Osanto S, Thalmann GN, Verspaget HW, Coenraad MJ, Kruithof-de Julio M. CRIPTO promotes an aggressive tumour phenotype and resistance to treatment in hepatocellular carcinoma. J Pathol 2018; 245:297-310. [PMID: 29604056 DOI: 10.1002/path.5083] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/13/2018] [Accepted: 03/26/2018] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide. Despite increasing treatment options for this disease, prognosis remains poor. CRIPTO (TDGF1) protein is expressed at high levels in several human tumours and promotes oncogenic phenotype. Its expression has been correlated to poor prognosis in HCC. In this study, we aimed to elucidate the basis for the effects of CRIPTO in HCC. We investigated CRIPTO expression levels in three cohorts of clinical cirrhotic and HCC specimens. We addressed the role of CRIPTO in hepatic tumourigenesis using Cre-loxP-controlled lentiviral vectors expressing CRIPTO in cell line-derived xenografts. Responses to standard treatments (sorafenib, doxorubicin) were assessed directly on xenograft-derived ex vivo tumour slices. CRIPTO-overexpressing patient-derived xenografts were established and used for ex vivo drug response assays. The effects of sorafenib and doxorubicin treatment in combination with a CRIPTO pathway inhibitor were tested in ex vivo cultures of xenograft models and 3D cultures. CRIPTO protein was found highly expressed in human cirrhosis and hepatocellular carcinoma specimens but not in those of healthy participants. Stable overexpression of CRIPTO in human HepG2 cells caused epithelial-to-mesenchymal transition, increased expression of cancer stem cell markers, and enhanced cell proliferation and migration. HepG2-CRIPTO cells formed tumours when injected into immune-compromised mice, whereas HepG2 cells lacking stable CRIPTO overexpression did not. High-level CRIPTO expression in xenograft models was associated with resistance to sorafenib, which could be modulated using a CRIPTO pathway inhibitor in ex vivo tumour slices. Our data suggest that a subgroup of CRIPTO-expressing HCC patients may benefit from a combinatorial treatment scheme and that sorafenib resistance may be circumvented by inhibition of the CRIPTO pathway. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Sofia Karkampouna
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Danny van der Helm
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lanpeng Chen
- Institute of Biology, Department of Molecular Cell Biology, Leiden University, Leiden, The Netherlands
| | - Irena Klima
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Joël Grosjean
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland
| | - Mark C Burgmans
- Department of Radiology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | - Ewa B Snaar-Jagalska
- Institute of Biology, Department of Molecular Cell Biology, Leiden University, Leiden, The Netherlands
| | - Deborah M Stroka
- Department of Biomedical Research, Visceral Surgery and Medicine, University of Bern, Bern University Hospital, Switzerland
| | - Luigi Terracciano
- Molecular Pathology Division, Institute of Pathology, University Hospital Basel, Switzerland
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Susan Osanto
- Department of Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - George N Thalmann
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland.,Department of Urology, Bern University Hospital, Switzerland
| | - Hein W Verspaget
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Minneke J Coenraad
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marianna Kruithof-de Julio
- Department of Biomedical Research, Urology Group, University of Bern, Bern, Switzerland.,Department of Urology, Bern University Hospital, Switzerland
| |
Collapse
|
26
|
Nickel J, Ten Dijke P, Mueller TD. TGF-β family co-receptor function and signaling. Acta Biochim Biophys Sin (Shanghai) 2018; 50:12-36. [PMID: 29293886 DOI: 10.1093/abbs/gmx126] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Transforming growth factor-β (TGF-β) family members, which include TGF-βs, activins and bone morphogenetic proteins, are pleiotropic cytokines that elicit cell type-specific effects in a highly context-dependent manner in many different tissues. These secreted protein ligands signal via single-transmembrane Type I and Type II serine/threonine kinase receptors and intracellular SMAD transcription factors. Deregulation in signaling has been implicated in a broad array of diseases, and implicate the need for intricate fine tuning in cellular signaling responses. One important emerging mechanism by which TGF-β family receptor signaling intensity, duration, specificity and diversity are regulated and/or mediated is through cell surface co-receptors. Here, we provide an overview of the co-receptors that have been identified for TGF-β family members. While some appear to be specific to TGF-β family members, others are shared with other pathways and provide possible ways for signal integration. This review focuses on novel functions of TGF-β family co-receptors, which continue to be discovered.
Collapse
Affiliation(s)
- Joachim Nickel
- Universitätsklinikum Würzburg, Lehrstuhl für Tissue Engineering und Regenerative Medizin und Fraunhofer Institut für Silicatforschung (ISC), Translationszentrum "Regenerative Therapien", Röntgenring 11, D-97070 Würzburg, Germany
| | - Peter Ten Dijke
- Department of Molecular and Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, Einthovenweg 20, 2300 RC Leiden, The Netherlands
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von-Sachs Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs-Platz 2, D-97082 Würzburg, Germany
| |
Collapse
|
27
|
Fullerton PT, Monsivais D, Kommagani R, Matzuk MM. Follistatin is critical for mouse uterine receptivity and decidualization. Proc Natl Acad Sci U S A 2017; 114:E4772-E4781. [PMID: 28559342 PMCID: PMC5474784 DOI: 10.1073/pnas.1620903114] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Embryo implantation remains a significant challenge for assisted reproductive technology, with implantation failure occurring in ∼50% of in vitro fertilization attempts. Understanding the molecular mechanisms underlying uterine receptivity will enable the development of new interventions and biomarkers. TGFβ family signaling in the uterus is critical for establishing and maintaining pregnancy. Follistatin (FST) regulates TGFβ family signaling by selectively binding TGFβ family ligands and sequestering them. In humans, FST is up-regulated in the decidua during early pregnancy, and women with recurrent miscarriage have lower endometrial expression of FST during the luteal phase. Because global knockout of Fst is perinatal lethal in mice, we generated a conditional knockout (cKO) of Fst in the uterus using progesterone receptor-cre to study the roles of uterine Fst during pregnancy. Uterine Fst-cKO mice demonstrate severe fertility defects and deliver only 2% of the number of pups delivered by control females. In Fst-cKO mice, the uterine luminal epithelium does not respond properly to estrogen and progesterone signals and remains unreceptive to embryo attachment by continuing to proliferate and failing to differentiate. The uterine stroma of Fst-cKO mice also responds poorly to artificial decidualization, with lower levels of proliferation and differentiation. In the absence of uterine FST, activin B expression and signaling are up-regulated, and bone morphogenetic protein (BMP) signals are impaired. Our findings support a model in which repression of activin signaling by FST enables uterine receptivity by preserving critical BMP signaling.
Collapse
Affiliation(s)
- Paul T Fullerton
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| | - Ramakrishna Kommagani
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030;
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
- Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
28
|
Aykul S, Parenti A, Chu KY, Reske J, Floer M, Ralston A, Martinez-Hackert E. Biochemical and Cellular Analysis Reveals Ligand Binding Specificities, a Molecular Basis for Ligand Recognition, and Membrane Association-dependent Activities of Cripto-1 and Cryptic. J Biol Chem 2017; 292:4138-4151. [PMID: 28126904 PMCID: PMC5354514 DOI: 10.1074/jbc.m116.747501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Transforming growth factor β (TGF-β) pathways are key determinants of cell fate in animals. Their basic mechanism of action is simple. However, to produce cell-specific responses, TGF-β pathways are heavily regulated by secondary factors, such as membrane-associated EGF-CFC family proteins. Cellular activities of EGF-CFC proteins have been described, but their molecular functions, including how the mammalian homologs Cripto-1 and Cryptic recognize and regulate TGF-β family ligands, are less clear. Here we use purified human Cripto-1 and mouse Cryptic produced in mammalian cells to show that these two EGF-CFC homologs have distinct, highly specific ligand binding activities. Cripto-1 interacts with BMP-4 in addition to its known partner Nodal, whereas Cryptic interacts only with Activin B. These interactions depend on the integrity of the protein, as truncated or deglycosylated Cripto-1 lacked BMP-4 binding activity. Significantly, Cripto-1 and Cryptic blocked binding of their cognate ligands to type I and type II TGF-β receptors, indicating that Cripto-1 and Cryptic contact ligands at their receptor interaction surfaces and, thus, that they could inhibit their ligands. Indeed, soluble Cripto-1 and Cryptic inhibited ligand signaling in various cell-based assays, including SMAD-mediated luciferase reporter gene expression, and differentiation of a multipotent stem cell line. But in agreement with previous work, the membrane bound form of Cripto-1 potentiated signaling, revealing a critical role of membrane association for its established cellular activity. Thus, our studies provide new insights into the mechanism of ligand recognition by this enigmatic family of membrane-anchored TGF-β family signaling regulators and link membrane association with their signal potentiating activities.
Collapse
Affiliation(s)
- Senem Aykul
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Anthony Parenti
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Kit Yee Chu
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Jake Reske
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Monique Floer
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Amy Ralston
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| | - Erik Martinez-Hackert
- From the Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319
| |
Collapse
|
29
|
P. Croxford K, L. Reader K, D. Nicholson H. The potential role of transforming growth factor beta family ligand interactions in prostate cancer. AIMS MOLECULAR SCIENCE 2017. [DOI: 10.3934/molsci.2017.1.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
30
|
Bodenstine TM, Chandler GS, Seftor REB, Seftor EA, Hendrix MJC. Plasticity underlies tumor progression: role of Nodal signaling. Cancer Metastasis Rev 2016; 35:21-39. [PMID: 26951550 DOI: 10.1007/s10555-016-9605-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The transforming growth factor beta (TGFβ) superfamily member Nodal is an established regulator of early embryonic development, with primary roles in endoderm induction, left-right asymmetry, and primitive streak formation. Nodal signals through TGFβ family receptors at the plasma membrane and induces signaling cascades leading to diverse transcriptional regulation. While conceptually simple, the regulation of Nodal and its molecular effects are profoundly complex and context dependent. Pioneering work by developmental biologists has characterized the signaling pathways, regulatory components, and provided detailed insight into the mechanisms by which Nodal mediates changes at the cellular and organismal levels. Nodal is also an important factor in maintaining pluripotency of embryonic stem cells through regulation of core transcriptional programs. Collectively, this work has led to an appreciation for Nodal as a powerful morphogen capable of orchestrating multiple cellular phenotypes. Although Nodal is not active in most adult tissues, its reexpression and signaling have been linked to multiple types of human cancer, and Nodal has emerged as a driver of tumor growth and cellular plasticity. In vitro and in vivo experimental evidence has demonstrated that inhibition of Nodal signaling reduces cancer cell aggressive characteristics, while clinical data have established associations with Nodal expression and patient outcomes. As a result, there is great interest in the potential targeting of Nodal activity in a therapeutic setting for cancer patients that may provide new avenues for suppressing tumor growth and metastasis. In this review, we evaluate our current understanding of the complexities of Nodal function in cancer and highlight recent experimental evidence that sheds light on the therapeutic potential of its inhibition.
Collapse
Affiliation(s)
- Thomas M Bodenstine
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Grace S Chandler
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Richard E B Seftor
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Elisabeth A Seftor
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA
| | - Mary J C Hendrix
- Stanley Manne Children's Research Institute, Cancer Biology and Epigenomics Program, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 225 E. Chicago Avenue, Box 222, Chicago, IL, 60611, USA.
| |
Collapse
|
31
|
Abstract
We review the evolution and structure of members of the transforming growth factor β (TGF-β) family, antagonistic or agonistic modulators, and receptors that regulate TGF-β signaling in extracellular environments. The growth factor (GF) domain common to all family members and many of their antagonists evolved from a common cystine knot growth factor (CKGF) domain. The CKGF superfamily comprises six distinct families in primitive metazoans, including the TGF-β and Dan families. Compared with Wnt/Frizzled and Notch/Delta families that also specify body axes, cell fate, tissues, and other families that contain CKGF domains that evolved in parallel, the TGF-β family was the most fruitful in evolution. Complexes between the prodomains and GFs of the TGF-β family suggest a new paradigm for regulating GF release by conversion from closed- to open-arm procomplex conformations. Ternary complexes of the final step in extracellular signaling show how TGF-β GF dimers bind type I and type II receptors on the cell surface, and enable understanding of much of the specificity and promiscuity in extracellular signaling. However, structures suggest that when GFs bind repulsive guidance molecule (RGM) family coreceptors, type I receptors do not bind until reaching an intracellular, membrane-enveloped compartment, blurring the line between extra- and intracellular signaling. Modulator protein structures show how structurally diverse antagonists including follistatins, noggin, and members of the chordin family bind GFs to regulate signaling; complexes with the Dan family remain elusive. Much work is needed to understand how these molecular components assemble to form signaling hubs in extracellular environments in vivo.
Collapse
Affiliation(s)
- Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260
| | - Thomas D Mueller
- Department of Plant Physiology and Biophysics, Julius-von-Sachs Institute of the University Wuerzburg, D-97082 Wuerzburg, Germany
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine and Division of Hematology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
- Department of Biological Chemistry and Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
32
|
Zhao J, Klausen C, Xiong S, Cheng JC, Chang HM, Leung PC. Growth differentiation factor 8 induces SKOV3 ovarian cancer cell migration and E-cadherin down-regulation. Cell Signal 2016; 28:1615-22. [DOI: 10.1016/j.cellsig.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/28/2016] [Indexed: 02/07/2023]
|
33
|
Namwanje M, Brown CW. Activins and Inhibins: Roles in Development, Physiology, and Disease. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a021881. [PMID: 27328872 DOI: 10.1101/cshperspect.a021881] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Since their original discovery as regulators of follicle-stimulating hormone (FSH) secretion and erythropoiesis, the TGF-β family members activin and inhibin have been shown to participate in a variety of biological processes, from the earliest stages of embryonic development to highly specialized functions in terminally differentiated cells and tissues. Herein, we present the history, structures, signaling mechanisms, regulation, and biological processes in which activins and inhibins participate, including several recently discovered biological activities and functional antagonists. The potential therapeutic relevance of these advances is also discussed.
Collapse
Affiliation(s)
- Maria Namwanje
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Chester W Brown
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030 Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030 Texas Children's Hospital, Houston, Texas 77030
| |
Collapse
|
34
|
Hardy CL, Rolland JM, O'Hehir RE. The immunoregulatory and fibrotic roles of activin A in allergic asthma. Clin Exp Allergy 2016; 45:1510-22. [PMID: 25962695 PMCID: PMC4687413 DOI: 10.1111/cea.12561] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Activin A, a member of the TGF-β superfamily of cytokines, was originally identified as an inducer of follicle stimulating hormone release, but has since been ascribed roles in normal physiological processes, as an immunoregulatory cytokine and as a driver of fibrosis. In the last 10–15 years, it has also become abundantly clear that activin A plays an important role in the regulation of asthmatic inflammation and airway remodelling. This review provides a brief introduction to the activin A/TGF-β superfamily, focussing on the regulation of receptors and signalling pathways. We examine the contradictory evidence for generalized pro- vs. anti-inflammatory effects of activin A in inflammation, before appraising its role in asthmatic inflammation and airway remodelling specifically by evaluating data from both murine models and clinical studies. We identify key issues to be addressed, paving the way for safe exploitation of modulation of activin A function for treatment of allergic asthma and other inflammatory lung diseases.
Collapse
Affiliation(s)
- C L Hardy
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - J M Rolland
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| | - R E O'Hehir
- Department of Allergy, Immunology & Respiratory Medicine, Monash University and The Alfred Hospital, Melbourne, Vic., Australia.,Department of Immunology, Monash University, Melbourne, Vic., 3004, Australia
| |
Collapse
|
35
|
Shi Y, Zhang H, Han Z, Mi X, Zhang W, Lv M. HBx interacted with Smad4 to deprive activin a growth inhibition function in hepatocyte HL7702 on CRM1 manner. Tumour Biol 2016; 37:3405-15. [PMID: 26449823 DOI: 10.1007/s13277-015-4076-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/13/2015] [Indexed: 01/16/2023] Open
Abstract
Hepatitis B virus (HBV) is implicated in the pathogenesis of hepatocellular carcinoma, which has been found to be associated with TGF-beta signaling. Activin A is a TGF-β family cytokine that exhibits cell proliferation inhibition on normal hepatocyte. How HBV-encoded X oncoprotein play in activin's activity on hepatocyte has not been developed. In this study, a nontumor hepatic cell line HL7702 with HBX ectogenic expression has been established. MTT and BrdU assays showed that HBx promoted growth of HL7702 cells in vitro and downregulated activin signaling. Deregulated activin signaling pathway by HBX failed to activate target gene p21/waf1 and p15 transcription. In addition, mammalian two-hybrid and coimmunoprecipitation assays revealed that HBX could directly interact with activin signaling transduction protein Smad4, making activated Smad2/3/4 nucleus translocation suppressed. Furthermore, we detected that leptomycin B, the inhibitor of CRM1 protein, could recover nuclear translocation of endogenous Smads complex in HL7702 with HBX expression, indicating that HBX antagonized Smads nucleus translocation, at least partially, on CRM1-dependent manner. Leptomycin B was found to have antigrowth activity on HBX-expressed HL7702, according to its antitumor function in previous study. Above all, HBX antagonized activin signaling in normal human liver cells by interacting with Smad4 might one of the considerable causes of HBX-induced hepatocyte transformation, which deprived activin's cell growth inhibition function at an early stage of tumorigenesis.
Collapse
Affiliation(s)
- Ying Shi
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Haipeng Zhang
- The First Clinical Medical College of Jilin University, Changchun, People's Republic of China
| | - Zhu Han
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xuguang Mi
- Tumor Biological Treatment Center of Jilin Province People's Hospital, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| | - Mingyu Lv
- Institute of Translational Medicine, First Hospital of Jilin University, Changchun, People's Republic of China.
| |
Collapse
|
36
|
Reader KL, Gold E. Activins and activin antagonists in the human ovary and ovarian cancer. Mol Cell Endocrinol 2015; 415:126-32. [PMID: 26277402 DOI: 10.1016/j.mce.2015.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 08/06/2015] [Accepted: 08/09/2015] [Indexed: 12/22/2022]
Abstract
Activins are members of the transforming growth factor β superfamily that play an important role in controlling cell proliferation and differentiation in many organs including the ovary. It is essential that activin signalling be tightly regulated as imbalances can lead to uncontrolled cell proliferation and cancer. This review describes the expression and function of the activins and their known antagonists in both normal and cancerous human ovaries.
Collapse
Affiliation(s)
- Karen L Reader
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand.
| | - Elspeth Gold
- Department of Anatomy, University of Otago, PO Box 913, Dunedin 9054, New Zealand
| |
Collapse
|
37
|
Klammert U, Mueller TD, Hellmann TV, Wuerzler KK, Kotzsch A, Schliermann A, Schmitz W, Kuebler AC, Sebald W, Nickel J. GDF-5 can act as a context-dependent BMP-2 antagonist. BMC Biol 2015; 13:77. [PMID: 26385096 PMCID: PMC4575486 DOI: 10.1186/s12915-015-0183-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/27/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Bone morphogenetic protein (BMP)-2 and growth and differentiation factor (GDF)-5 are two related transforming growth factor (TGF)-β family members with important functions in embryonic development and tissue homeostasis. BMP-2 is best known for its osteoinductive properties whereas GDF-5-as evident from its alternative name, cartilage derived morphogenetic protein 1-plays an important role in the formation of cartilage. In spite of these differences both factors signal by binding to the same subset of BMP receptors, raising the question how these different functionalities are generated. The largest difference in receptor binding is observed in the interaction with the type I receptor BMPR-IA. GDF-5, in contrast to BMP-2, shows preferential binding to the isoform BMPR-IB, which is abrogated by a single amino acid (A57R) substitution. The resulting variant, GDF-5 R57A, represents a "BMP-2 mimic" with respect to BMP receptor binding. In this study we thus wanted to analyze whether the two growth factors can induce distinct signals via an identically composed receptor. RESULTS Unexpectedly and dependent on the cellular context, GDF-5 R57A showed clear differences in its activity compared to BMP-2. In ATDC-5 cells, both ligands induced alkaline phosphatase (ALP) expression with similar potency. But in C2C12 cells, the BMP-2 mimic GDF-5 R57A (and also wild-type GDF-5) clearly antagonized BMP-2-mediated ALP expression, despite signaling in both cell lines occurring solely via BMPR-IA. The BMP-2- antagonizing properties of GDF-5 and GDF-5 R57A could also be observed in vivo when implanting BMP-2 and either one of the two GDF-5 ligands simultaneously at heterotopic sites. CONCLUSIONS Although comparison of the crystal structures of the GDF-5 R57A:BMPR-IAEC- and BMP-2:BMPR-IAEC complex revealed small ligand-specific differences, these cannot account for the different signaling characteristics because the complexes seem identical in both differently reacting cell lines. We thus predict an additional component, most likely a not yet identified GDF-5-specific co-receptor, which alters the output of the signaling complexes. Hence the presence or absence of this component then switches GDF-5's signaling capabilities to act either similar to BMP-2 or as a BMP-2 antagonist. These findings might shed new light on the role of GDF-5, e.g., in cartilage maintenance and/or limb development in that it might act as an inhibitor of signaling events initiated by other BMPs.
Collapse
Affiliation(s)
- Uwe Klammert
- Lehrstuhl für Mund-, Kiefer- und plastische Gesichtschirurgie, Universitätsklinikum Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Thomas D Mueller
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von- Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs- Platz 2, D-97082, Würzburg, Germany.
| | - Tina V Hellmann
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von- Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs- Platz 2, D-97082, Würzburg, Germany.
| | - Kristian K Wuerzler
- Lehrstuhl für Mund-, Kiefer- und plastische Gesichtschirurgie, Universitätsklinikum Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Alexander Kotzsch
- Lehrstuhl für molekulare Pflanzenphysiologie und Biophysik, Julius-von- Sachs-Institut für Biowissenschaften, Universität Würzburg, Julius-von-Sachs- Platz 2, D-97082, Würzburg, Germany.
| | - Anna Schliermann
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, D-97070, Würzburg, Germany.
| | - Werner Schmitz
- Lehrstuhl für Biochemie und Molekularbiologie, Theodor-Boveri-Institut für Biowissenschaften, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Alexander C Kuebler
- Lehrstuhl für Mund-, Kiefer- und plastische Gesichtschirurgie, Universitätsklinikum Würzburg, Pleicherwall 2, 97070, Würzburg, Germany.
| | - Walter Sebald
- Lehrstuhl für Physiologische Chemie II, Theodor-Boveri-Institut für Biowissenschaften, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Joachim Nickel
- Lehrstuhl für Tissue Engineering und Regenerative Medizin, Universitätsklinikum Würzburg, Röntgenring 11, D-97070, Würzburg, Germany. .,Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, Translationszentrum »Regenerative Therapien für Krebs- und Muskuloskelettale Erkrankungen« - Institutsteil Würzburg, Würzburg, Germany.
| |
Collapse
|
38
|
Papanayotou C, Collignon J. Activin/Nodal signalling before implantation: setting the stage for embryo patterning. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0539. [PMID: 25349448 DOI: 10.1098/rstb.2013.0539] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Activins and Nodal are members of the transforming growth factor beta (TGF-β) family of growth factors. Their Smad2/3-dependent signalling pathway is well known for its implication in the patterning of the embryo after implantation. Although this pathway is active early on at preimplantation stages, embryonic phenotypes for loss-of-function mutations of prominent components of the pathway are not detected before implantation. It is only fairly recently that an understanding of the role of the Activin/Nodal signalling pathway at these stages has started to emerge, notably from studies detailing how it controls the expression of target genes in embryonic stem cells. We review here what is currently known of the TGF-β-related ligands that determine the activity of Activin/Nodal signalling at preimplantation stages, and recent advances in the elucidation of the Smad2/3-dependent mechanisms underlying developmental progression.
Collapse
Affiliation(s)
- Costis Papanayotou
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| | - Jérôme Collignon
- Université Paris-Diderot, Sorbonne Paris Cité, Institut Jacques Monod, CNRS UMR 7592, 75205 Paris, France
| |
Collapse
|
39
|
Human Cerberus prevents nodal-receptor binding, inhibits nodal signaling, and suppresses nodal-mediated phenotypes. PLoS One 2015; 10:e0114954. [PMID: 25603319 PMCID: PMC4300205 DOI: 10.1371/journal.pone.0114954] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 11/15/2014] [Indexed: 02/06/2023] Open
Abstract
The Transforming Growth Factor-ß (TGFß) family ligand Nodal is an essential embryonic morphogen that is associated with progression of breast and other cancers. It has therefore been suggested that Nodal inhibitors could be used to treat breast cancers where Nodal plays a defined role. As secreted antagonists, such as Cerberus, tightly regulate Nodal signaling during embryonic development, we undertook to produce human Cerberus, characterize its biochemical activities, and determine its effect on human breast cancer cells. Using quantitative methods, we investigated the mechanism of Nodal signaling, we evaluated binding of human Cerberus to Nodal and other TGFß family ligands, and we characterized the mechanism of Nodal inhibition by Cerberus. Using cancer cell assays, we examined the ability of Cerberus to suppress aggressive breast cancer cell phenotypes. We found that human Cerberus binds Nodal with high affinity and specificity, blocks binding of Nodal to its signaling partners, and inhibits Nodal signaling. Moreover, we showed that Cerberus profoundly suppresses migration, invasion, and colony forming ability of Nodal expressing and Nodal supplemented breast cancer cells. Taken together, our studies provide mechanistic insights into Nodal signaling and Nodal inhibition with Cerberus and highlight the potential value of Cerberus as anti-Nodal therapeutic.
Collapse
|
40
|
Khalkhali-Ellis Z, Kirschmann DA, Seftor EA, Gilgur A, Bodenstine TM, Hinck AP, Hendrix MJC. Divergence(s) in nodal signaling between aggressive melanoma and embryonic stem cells. Int J Cancer 2014; 136:E242-51. [PMID: 25204799 DOI: 10.1002/ijc.29198] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 08/04/2014] [Accepted: 08/12/2014] [Indexed: 12/21/2022]
Abstract
The significant role of the embryonic morphogen Nodal in maintaining the pluripotency of embryonic stem cells is well documented. Interestingly, the recent discovery of Nodal's re-expression in several aggressive and metastatic cancers has highlighted its critical role in self renewal and maintenance of the stem cell-like characteristics of tumor cells, such as melanoma. However, the key TGFβ/Nodal signaling component(s) governing Nodal's effects in metastatic melanoma remain mostly unknown. By employing receptor profiling at the mRNA and protein level(s), we made the novel discovery that embryonic stem cells and metastatic melanoma cells share a similar repertoire of Type I serine/threonine kinase receptors, but diverge in their Type II receptor expression. Ligand:receptor crosslinking and native gel binding assays indicate that metastatic melanoma cells employ the heterodimeric TGFβ receptor I/TGFβ receptor II (TGFβRI/TGFβRII) for signal transduction, whereas embryonic stem cells use the Activin receptors I and II (ACTRI/ACTRII). This unexpected receptor usage by tumor cells was tested by: neutralizing antibody to block its function; and transfecting the dominant negative receptor to compete with the endogenous receptor for ligand binding. Furthermore, a direct biological role for TGFβRII was found to underlie vasculogenic mimicry (VM), an endothelial phenotype contributing to vascular perfusion and associated with the functional plasticity of aggressive melanoma. Collectively, these findings reveal the divergence in Nodal signaling between embryonic stem cells and metastatic melanoma that can impact new therapeutic strategies targeting the re-emergence of embryonic pathways.
Collapse
Affiliation(s)
- Zhila Khalkhali-Ellis
- Cancer Biology and Epigenomics Program, Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | | | | | | | | | | |
Collapse
|
41
|
van der Meulen T, Huising MO. Maturation of stem cell-derived beta-cells guided by the expression of urocortin 3. Rev Diabet Stud 2014; 11:115-32. [PMID: 25148370 DOI: 10.1900/rds.2014.11.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts.
Collapse
Affiliation(s)
- Talitha van der Meulen
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Mark O Huising
- The Salk Institute for Biological Studies, Clayton Laboratories for Peptide Biology, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
Spike BT, Kelber JA, Booker E, Kalathur M, Rodewald R, Lipianskaya J, La J, He M, Wright T, Klemke R, Wahl GM, Gray PC. CRIPTO/GRP78 signaling maintains fetal and adult mammary stem cells ex vivo. Stem Cell Reports 2014; 2:427-39. [PMID: 24749068 PMCID: PMC3986630 DOI: 10.1016/j.stemcr.2014.02.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 02/22/2014] [Accepted: 02/24/2014] [Indexed: 01/16/2023] Open
Abstract
Little is known about the extracellular signaling factors that govern mammary stem cell behavior. Here, we identify CRIPTO and its cell-surface receptor GRP78 as regulators of stem cell behavior in isolated fetal and adult mammary epithelial cells. We develop a CRIPTO antagonist that promotes differentiation and reduces self-renewal of mammary stem cell-enriched populations cultured ex vivo. By contrast, CRIPTO treatment maintains the stem cell phenotype in these cultures and yields colonies with enhanced mammary gland reconstitution capacity. Surface expression of GRP78 marks CRIPTO-responsive, stem cell-enriched fetal and adult mammary epithelial cells, and deletion of GRP78 from adult mammary epithelial cells blocks their mammary gland reconstitution potential. Together, these findings identify the CRIPTO/GRP78 pathway as a developmentally conserved regulator of fetal and adult mammary stem cell behavior ex vivo, with implications for the stem-like cells found in many cancers. CRIPTO/GRP78 signaling activates PI3K/AKT in fetal mammary epithelial cells ex vivo Cell-surface GRP78 marks a CRIPTO-responsive adult mammary stem cell population An antagonist, ALK4L75A-Fc, blocks soluble CRIPTO growth-factor-like activity CRIPTO promotes and ALK4L75A-Fc inhibits mammary stem cell maintenance ex vivo
Collapse
Affiliation(s)
- Benjamin T Spike
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jonathan A Kelber
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Evan Booker
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Madhuri Kalathur
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Rose Rodewald
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julia Lipianskaya
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Justin La
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Marielle He
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Tracy Wright
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Richard Klemke
- Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
43
|
Wang L, Hou Y, Quan H, Xu W, Bao Y, Li Y, Fu Y, Zou S. A compound-based computational approach for the accurate determination of hot spots. Protein Sci 2013; 22:1060-70. [PMID: 23776011 DOI: 10.1002/pro.2296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/27/2013] [Accepted: 06/01/2013] [Indexed: 12/21/2022]
Abstract
A plethora of both experimental and computational methods have been proposed in the past 20 years for the identification of hot spots at a protein-protein interface. The experimental determination of a protein-protein complex followed by alanine scanning mutagenesis, though able to determine hot spots with much precision, is expensive and has no guarantee of success while the accuracy of the current computational methods for hot-spot identification remains low. Here, we present a novel structure-based computational approach that accurately determines hot spots through docking into a set of proteins homologous to only one of the two interacting partners of a compound capable of disrupting the protein-protein interaction (PPI). This approach has been applied to identify the hot spots of human activin receptor type II (ActRII) critical for its binding toward Cripto-I. The subsequent experimental confirmation of the computationally identified hot spots portends a potentially accurate method for hot-spot determination in silico given a compound capable of disrupting the PPI in question. The hot spots of human ActRII first reported here may well become the focal points for the design of small molecule drugs that target the PPI. The determination of their interface may have significant biological implications in that it suggests that Cripto-I plays an important role in both activin and nodal signal pathways.
Collapse
Affiliation(s)
- Lincong Wang
- The College of Computer Science and Technology, Jilin University, Changchun, Jilin, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Jin JZ, Ding J. Cripto is required for mesoderm and endoderm cell allocation during mouse gastrulation. Dev Biol 2013; 381:170-8. [PMID: 23747598 DOI: 10.1016/j.ydbio.2013.05.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/28/2013] [Accepted: 05/29/2013] [Indexed: 10/26/2022]
Abstract
During mouse gastrulation, cells in the primitive streak undergo epithelial-mesenchymal transformation and the resulting mesenchymal cells migrate out laterally to form mesoderm and definitive endoderm across the entire embryonic cylinder. The mechanisms underlying mesoderm and endoderm specification, migration, and allocation are poorly understood. In this study, we focused on the function of mouse Cripto, a member of the EGF-CFC gene family that is highly expressed in the primitive streak and migrating mesoderm cells on embryonic day 6.5. Conditional inactivation of Cripto during gastrulation leads to varied defects in mesoderm and endoderm development. Mutant embryos display accumulation of mesenchymal cells around the shortened primitive streak indicating a functional requirement of Cripto during the formation of mesoderm layer in gastrulation. In addition, some mutant embryos showed poor formation and abnormal allocation of definitive endoderm cells on embryonic day 7.5. Consistently, many mutant embryos that survived to embryonic day 8.5 displayed defects in ventral closure of the gut endoderm causing cardia bifida. Detailed analyses revealed that both the Fgf8-Fgfr1 pathway and p38 MAP kinase activation are partially affected by the loss of Cripto function. These results demonstrate a critical role for Cripto during mouse gastrulation, especially in mesoderm and endoderm formation and allocation.
Collapse
Affiliation(s)
- Jiu-Zhen Jin
- Department of Molecular, Cellular & Craniofacial Biology, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | | |
Collapse
|
45
|
Hedger MP, de Kretser DM. The activins and their binding protein, follistatin-Diagnostic and therapeutic targets in inflammatory disease and fibrosis. Cytokine Growth Factor Rev 2013; 24:285-95. [PMID: 23541927 DOI: 10.1016/j.cytogfr.2013.03.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/05/2013] [Indexed: 02/05/2023]
Abstract
The activins, as members of the transforming growth factor-β superfamily, are pleiotrophic regulators of cell development and function, including cells of the myeloid and lymphoid lineages. Clinical and animal studies have shown that activin levels increase in both acute and chronic inflammation, and are frequently indicators of disease severity. Moreover, inhibition of activin action can reduce inflammation, damage, fibrosis and morbidity/mortality in various disease models. Consequently, activin A and, more recently, activin B are emerging as important diagnostic tools and therapeutic targets in inflammatory and fibrotic diseases. Activin antagonists such as follistatin, an endogenous activin-binding protein, offer considerable promise as therapies in conditions as diverse as sepsis, liver fibrosis, acute lung injury, asthma, wound healing and ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- M P Hedger
- Monash Institute of Medical Research, Monash University, Melbourne, Victoria, Australia.
| | | |
Collapse
|
46
|
Spiller CM, Feng CW, Jackson A, Gillis AJM, Rolland AD, Looijenga LHJ, Koopman P, Bowles J. Endogenous Nodal signaling regulates germ cell potency during mammalian testis development. Development 2012; 139:4123-32. [DOI: 10.1242/dev.083006] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Germ cells, the embryonic precursors of sperm or oocytes, respond to molecular cues that regulate their sex-specific development in the fetal gonads. In males in particular, the balance between continued proliferation and cell fate commitment is crucial: defects in proliferation result in insufficient spermatogonial stem cells for fertility, but escape from commitment and prolonged pluripotency can cause testicular germ cell tumors. However, the factors that regulate this balance remain unidentified. Here, we show that signaling by the TGFβ morphogen Nodal and its co-receptor Cripto is active during a crucial window of male germ cell development. The Nodal pathway is triggered when somatic signals, including FGF9, induce testicular germ cells to upregulate Cripto. Germ cells of mutant mice with compromised Nodal signaling showed premature differentiation, reduced pluripotency marker expression and a reduced ability to form embryonic germ (EG) cell colonies in vitro. Conversely, human testicular tumors showed upregulation of NODAL and CRIPTO that was proportional to invasiveness and to the number of malignant cells. Thus, Nodal signaling provides a molecular control mechanism that regulates male germ cell potency in normal development and testicular cancer.
Collapse
Affiliation(s)
- Cassy M. Spiller
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chun-Wei Feng
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Andrew Jackson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ad J. M. Gillis
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Antoine D. Rolland
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leendert H. J. Looijenga
- Department of Pathology, Josephine Nefkens Institute, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Josephine Bowles
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
47
|
Cripto regulates skeletal muscle regeneration and modulates satellite cell determination by antagonizing myostatin. Proc Natl Acad Sci U S A 2012; 109:E3231-40. [PMID: 23129614 DOI: 10.1073/pnas.1204017109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-β ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.
Collapse
|
48
|
Gray PC, Vale W. Cripto/GRP78 modulation of the TGF-β pathway in development and oncogenesis. FEBS Lett 2012; 586:1836-45. [PMID: 22306319 PMCID: PMC3723343 DOI: 10.1016/j.febslet.2012.01.051] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 10/14/2022]
Abstract
Cripto is a small, GPI-anchored signaling protein that regulates cellular survival, proliferation, differentiation and migration during normal developmental processes and tumorigenesis. Cripto functions as an obligatory co-receptor for the TGF-β ligands Nodal, GDF1 and GDF3 but attenuates signaling of others such as activin-A, activin-B and TGF-β1. Soluble, secreted forms of Cripto also activate Src, ras/raf/MAPK and PI3K/Akt pathways via a mechanism that remains largely obscure. This review describes the biological roles and signaling mechanisms of Cripto, highlighting our identification of the 78 kDa glucose regulated protein (GRP78) as a cell surface receptor/co-factor required for Cripto signaling via both TGF-β and Src/MAPK/PI3K pathways. We discuss emerging evidence indicating that Cripto/GRP78 signaling regulates normal somatic stem cells and their tumorigenic counterparts.
Collapse
Affiliation(s)
- Peter C Gray
- Clayton Foundation Laboratories for Peptide Biology, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, United States.
| | | |
Collapse
|
49
|
Rangel MC, Karasawa H, Castro NP, Nagaoka T, Salomon DS, Bianco C. Role of Cripto-1 during epithelial-to-mesenchymal transition in development and cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:2188-200. [PMID: 22542493 DOI: 10.1016/j.ajpath.2012.02.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/13/2012] [Accepted: 02/21/2012] [Indexed: 02/08/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a critical multistep process that converts epithelial cells to more motile and invasive mesenchymal cells, contributing to body patterning and morphogenesis during embryonic development. In addition, both epithelial plasticity and increased motility and invasiveness are essential for the branching morphogenesis that occurs during development of the mammary gland and during tumor formation, allowing cancer cells to escape from the primary tumor. Cripto-1, a member of the epidermal growth factor-Cripto-1/FRL-1/Cryptic (EGF/CFC) gene family, together with the transforming growth factor (TGF)-β family ligand Nodal, regulates both cell movement and EMT during embryonic development. During postnatal development, Cripto-1 regulates the branching morphogenesis of the mouse mammary gland and enhances both the invasive and migratory properties of mammary epithelial cells in vitro. Furthermore, transgenic mouse models have shown that Cripto-1 promotes the formation of mammary tumors that display properties of EMT, including the down-regulation of the cell surface adherens junctional protein E-cadherin and the up-regulation of mesenchymal markers, such as vimentin, N-cadherin, and Snail. Interestingly, Cripto-1 is enriched in a subpopulation of embryonal, melanoma, prostate, and pancreatic cancer cells that possess stem-like characteristics. Therefore, Cripto-1 may play a role during developmental EMT, and it may also be involved in the reprogramming of differentiated tumor cells into cancer stem cells through the induction of an EMT program.
Collapse
Affiliation(s)
- Maria C Rangel
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
50
|
Nagaoka T, Karasawa H, Castro NP, Rangel MC, Salomon DS, Bianco C. An evolving web of signaling networks regulated by Cripto-1. Growth Factors 2012; 30:13-21. [PMID: 22149969 DOI: 10.3109/08977194.2011.641962] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past few decades, our understanding of the embryonic gene Cripto-1 has considerably advanced through biochemical, cell biology, and animal studies. Cripto-1 performs key functions during embryonic development, while it dramatically disappears in adult tissues, except possibly in adult tissue stem cells. Cripto-1 is re-expressed in human tumors promoting cell proliferation, migration, invasion, epithelial to mesenchymal transition, and tumor angiogenesis. This diversity of biological effects is dependent upon interaction of Cripto-1 with an extensive array of signaling molecules. In fact, Cripto-1 modulates signaling of transforming growth factor-β family members, including Nodal, GDF-1/-3, Activin, and TGF-β1, activates c-src/MAPK/Protein Kinase B (AKT) pathway in a Glypican-1 and GRP78-dependent manner, and cross-talks with erbB4, Wnt/β-catenin, Notch, Caveolin-1, and Apelin/putative receptor protein related to Angiotensin-type I receptor (APJ) pathways. This article provides an updated survey of the various signaling pathways modulated by Cripto-1 with a focus on mechanistic insights in our understanding of the biological function of Cripto-1 in eukaryotic cells.
Collapse
Affiliation(s)
- Tadahiro Nagaoka
- Tumor Growth Factor Section, Laboratory of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | |
Collapse
|