1
|
Losa M, Vassallo A, Frara S, Mortini P, Giustina A. TSH-secreting pituitary adenomas and bone. Pituitary 2024; 27:752-760. [PMID: 39476262 DOI: 10.1007/s11102-024-01467-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 12/12/2024]
Abstract
TSH-secreting pituitary adenoma (TSHoma) is the rarest functioning pituitary tumor, with an increasing incidence over the last decades. Diagnosis is often delayed, exposing patients to a high risk of developing chronic complications of long-standing hyperthyroidism. Although thyroid hormone excess is a recognized cause of secondary osteoporosis, very few studies have investigated skeletal damage in patients with TSHoma, with data limited to bone turnover markers (BTM) and a study on the prevalence of radiological vertebral fractures (VFs) incidentally detected on chest X-ray, whereas data on bone mineral density (BMD) are anecdotal. Bone resorption is increased in TSHoma compared to controls, whereas few case reports described osteoporosis and spine fractures as early complications of TSHoma. A high prevalence of morphometric VFs was described in TSHoma compared to nonfunctioning pituitary adenoma (NFPA). Patients with fracture were older and had higher free thyroxine (fT4) levels than patients without fracture. In this specific setting, treatment with somatostatin receptor ligands seems to have a protective role on fracture risk. Based on this evidence, a comprehensive osteometabolic evaluation should be performed in all patients with TSHoma, including assessment of BTM, measurement of BMD, and morphometric evaluation of VFs, both at diagnosis and then during follow-up, particularly in patients at high risk for fragility fractures.
Collapse
Affiliation(s)
- Marco Losa
- Chair of Neurosurgery, Università Vita-Salute San Raffaele, Milan, Italy.
- Neurosurgery department, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Via Olgettina, 60, Milano, 20132, Italy.
| | - Alberto Vassallo
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Milan, Italy
| | - Stefano Frara
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Milan, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Pietro Mortini
- Chair of Neurosurgery, Università Vita-Salute San Raffaele, Milan, Italy
- Neurosurgery department, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Via Olgettina, 60, Milano, 20132, Italy
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Università Vita-Salute San Raffaele, Milan, Italy
- Endocrinology Unit, IRCCS Ospedale San Raffaele, Milan, Italy
| |
Collapse
|
2
|
Kim SM, Sultana F, Korkmaz F, Rojekar S, Pallapati A, Ryu V, Lizneva D, Yuen T, Rosen CJ, Zaidi M. Neuroendocrinology of bone. Pituitary 2024; 27:761-777. [PMID: 39096452 DOI: 10.1007/s11102-024-01437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 08/05/2024]
Abstract
The past decade has witnessed significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone in primary and secondary osteoporosis. Recent breakthroughs have primarily emerged from identifying disease-causing mutations and phenocopying human bone disease in rodents. Notably, using genetically-modified rodent models, disrupting the reciprocal relationship with tropic pituitary hormone and effector hormones, we have learned that pituitary hormones have independent roles in skeletal physiology, beyond their effects exerted through target endocrine glands. The rise of follicle-stimulating hormone (FSH) in the late perimenopause may account, at least in part, for the rapid bone loss when estrogen is normal, while low thyroid-stimulating hormone (TSH) levels may contribute to the bone loss in thyrotoxicosis. Admittedly speculative, suppressed levels of adrenocorticotropic hormone (ACTH) may directly exacerbate bone loss in the setting of glucocorticoid-induced osteoporosis. Furthermore, beyond their established roles in reproduction and lactation, oxytocin and prolactin may affect intergenerational calcium transfer and therefore fetal skeletal mineralization, whereas elevated vasopressin levels in chronic hyponatremic states may increase the risk of bone loss.. Here, we discuss the interaction of each pituitary hormone in relation to its role in bone physiology and pathophysiology.
Collapse
Affiliation(s)
- Se-Min Kim
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Farhath Sultana
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Funda Korkmaz
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Satish Rojekar
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anusha Pallapati
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Vitaly Ryu
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Daria Lizneva
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Tony Yuen
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | | | - Mone Zaidi
- Mount Sinai Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
3
|
Dziedzic M, Bonczar M, Ostrowski P, Stachera B, Plutecki D, Buziak-Bereza M, Hubalewska-Dydejczyk A, Walocha J, Koziej M. Association between serum TSH concentration and bone mineral density: an umbrella review. Hormones (Athens) 2024; 23:547-565. [PMID: 38581565 DOI: 10.1007/s42000-024-00555-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
INTRODUCTION The aim of this study was to summarize the results of previous studies, standardize the data, and present new statistical results in order to provide physicians with clinically significant outcomes regarding the association between serum TSH concentration and bone mineral density (BMD). METHODS To perform this umbrella review, a systematic search was conducted in which major online medical databases, such as PubMed, Web of Science, Embase, Scopus, Cochrane Library, and Google Scholar, were searched for meta-analyses and systematic reviews regarding the effect of TSH on BMD. Furthermore, all primary studies were screened for statistical analysis. RESULTS The statistical outcomes of the present study were based on the data of 75,898 patients. The pooled risk ratio of any kind of fracture in patients with subclinical hyperthyroidism was estimated to be 1.36 (95% CI: 1.18-1.56; p < 0.001). The SMD for BMD in the distal radius in male patients receiving L-thyroxine suppression therapy was estimated to be -0.61 (95% CI: -1.10-(-0.11); p = 0.02). Furthermore, the pooled risk ratio of any fracture in patients receiving L-thyroxine suppression therapy was estimated to be 1.98 (95% CI: 0.98 - 3.98; p = 0.06). In these patients, the BMD may significantly differ from that in non-treated patients. However, the difference depends on the type of bone. CONCLUSIONS Our data confirmed that subclinical hyperthyroidism has a detrimental effect on bones, causing decreased BMD. Based on the obtained results, the authors suggest that a reduced TSH serum level itself may be an individual factor associated with decreased BMD and, thus, with a greater risk of bone fracture. Nevertheless, it should be noted that the effects of TSH suppression therapy differ between areas of interest for assessing BMD. Furthermore, the results have shown that this issue may, in specific areas, concern not only postmenopausal women but also male patients. These conclusions should contribute to a careful consideration of the application of TSH suppressive therapy in all patients. Particular attention should be given to patients after DTC, while all the advantages and disadvantages of implementing L-thyroxine therapy should be individually considered.
Collapse
Affiliation(s)
- Martyna Dziedzic
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland.
- Youthoria. Youth Research Organization, Kraków, Poland.
| | - Michał Bonczar
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- Youthoria. Youth Research Organization, Kraków, Poland
| | - Patryk Ostrowski
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- Youthoria. Youth Research Organization, Kraków, Poland
| | - Bartłomiej Stachera
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- Youthoria. Youth Research Organization, Kraków, Poland
| | - Dawid Plutecki
- Youthoria. Youth Research Organization, Kraków, Poland
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Monika Buziak-Bereza
- Department of Endocrynology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Jerzy Walocha
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- Youthoria. Youth Research Organization, Kraków, Poland
| | - Mateusz Koziej
- Department of Anatomy, Jagiellonian University Medical College, Kraków, Poland
- Youthoria. Youth Research Organization, Kraków, Poland
| |
Collapse
|
4
|
Ji J, Li Z, Xue L, Xue H, Wen T, Yang T, Ma T, Tu Y. The impact of thyroid function on total spine bone mineral density in postmenopausal women. Endocrine 2024; 85:279-286. [PMID: 38308787 DOI: 10.1007/s12020-024-03712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
PURPOSE Osteoporosis has been a widespread concern for older women, especially postmenopausal women. Thyroid function is crucial for bone metabolism. However, the relationship between thyroid function variation within thyroxine reference range and bone mineral density (BMD) remains ambiguous. The objective of this study was to evaluate the effect of subclinical hypothyroidism or hyperthyroidism on total spinal BMD in postmenopausal women. METHODS Based on data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010, multivariable weighted logistic regression was used to evaluate the relationships between total spine BMD and TSH among postmenopausal women aged ≥50. RESULTS After accounting for a number of variables, this study discovered that the middle TSH tertile was associated with a decreased probability of osteoporosis. Additionally, the subgroup analysis revealed that postmenopausal women over the age of 65 or people with an overweight BMI had a clearer relationship between total spine BMD and TSH. CONCLUSION The total spinal BMD had a positive relationship with thyroid stimulating hormone in postmenopausal women, and that appropriate TSH level (1.38-2.32 mIU/L) was accompanied by higher total spinal BMD.
Collapse
Affiliation(s)
- Jiazhong Ji
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Zhaoyang Li
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Long Xue
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Huaming Xue
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Tao Wen
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Tao Yang
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| | - Tong Ma
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| | - Yihui Tu
- Department of Orthopaedics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China.
| |
Collapse
|
5
|
Abstract
Traditional textbook physiology has ascribed unitary functions to hormones from the anterior and posterior pituitary gland, mainly in the regulation of effector hormone secretion from endocrine organs. However, the evolutionary biology of pituitary hormones and their receptors provides evidence for a broad range of functions in vertebrate physiology. Over the past decade, we and others have discovered that thyroid-stimulating hormone, follicle-stimulating hormone, adrenocorticotropic hormone, prolactin, oxytocin and arginine vasopressin act directly on somatic organs, including bone, adipose tissue and liver. New evidence also indicates that pituitary hormone receptors are expressed in brain regions, nuclei and subnuclei. These studies have prompted us to attribute the pathophysiology of certain human diseases, including osteoporosis, obesity and neurodegeneration, at least in part, to changes in pituitary hormone levels. This new information has identified actionable therapeutic targets for drug discovery.
Collapse
Affiliation(s)
- Mone Zaidi
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Tony Yuen
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Se-Min Kim
- Center for Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
6
|
Abstract
Bone marrow contains resident cellular components that are not only involved in bone maintenance but also regulate hematopoiesis and immune responses. The immune system and bone interact with each other, coined osteoimmunology. Hashimoto's thyroiditis (HT) is one of the most common chronic autoimmune diseases which is accompanied by lymphocytic infiltration. It shows elevating thyroid autoantibody levels at an early stage and progresses to thyroid dysfunction ultimately. Different effects exert on bone metabolism during different phases of HT. In this review, we summarized the mechanisms of the long-term effects of HT on bone and the relationship between thyroid autoimmunity and osteoimmunology. For patients with HT, the bone is affected not only by thyroid function and the value of TSH, but also by the setting of the autoimmune background. The autoimmune background implies a breakdown of the mechanisms that control self-reactive system, featuring abnormal immune activation and presence of autoantibodies. The etiology of thyroid autoimmunity and osteoimmunology is complex and involves a number of immune cells, cytokines and chemokines, which regulate the pathogenesis of HT and osteoporosis at the same time, and have potential to affect each other. In addition, vitamin D works as a potent immunomodulator to influence both thyroid immunity and osteoimmunology. We conclude that HT affects bone metabolism at least through endocrine and immune pathways.
Collapse
Affiliation(s)
- Jialu Wu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Hui Huang
- Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism/Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, 37 Guoxue Lane, 610041, Chengdu, P.R. China.
| |
Collapse
|
7
|
Xu C, He Z, Song Y, Shao S, Yang G, Zhao J. Atypical pituitary hormone-target tissue axis. Front Med 2023; 17:1-17. [PMID: 36849623 DOI: 10.1007/s11684-022-0973-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/05/2022] [Indexed: 03/01/2023]
Abstract
A long-held belief is that pituitary hormones bind to their cognate receptors in classical target glands to actuate their manifold functions. However, a number of studies have shown that multiple types of pituitary hormone receptors are widely expressed in non-classical target organs. Each pituitary gland-derived hormone exhibits a wide range of nonconventional biological effects in these non-classical target organs. Herein, the extra biological functions of pituitary hormones, thyroid-stimulating hormone, follicle-stimulating hormone, luteinizing hormone, adrenocorticotrophic hormone, and prolactin when they act on non-classical organs were summarized, defined by the novel concept of an "atypical pituitary hormone-target tissue axis." This novel proposal explains the pathomechanisms of abnormal glucose and lipid metabolism, obesity, hypertension, fatty liver, and atherosclerosis while offering a more comprehensive and systematic insights into the coordinated regulation of environmental factors, genetic factors, and neuroendocrine hormones on human biological functions. The continued exploration of the physiology of the "atypical pituitary hormone-target tissue axis" could enable the identification of novel therapeutic targets for metabolic diseases.
Collapse
Affiliation(s)
- Chao Xu
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Zhao He
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Yongfeng Song
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Shanshan Shao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China
| | - Guang Yang
- Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Jiajun Zhao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China. .,Department of Endocrinology and Metabolism, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, China.
| |
Collapse
|
8
|
Zeng Y, Deng JJ, Jiang QL, Wang CL, Zhang L, Li T, Jiang J. Thyrotropin inhibits osteogenic differentiation of human periodontal ligament stem cells. J Periodontal Res 2023; 58:668-678. [PMID: 36807238 DOI: 10.1111/jre.13109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 02/23/2023]
Abstract
BACKGROUND AND OBJECTIVE Periodontal ligament stem cells (PDLSCs) are derived from the periodontal ligament and have the characteristics of pluripotent differentiation, including osteogenesis, and are one of the important seed cells in oral tissue engineering. Thyrotropin (TSH) has been shown to regulate bone metabolism independently of thyroid hormone, including the fate of osteoblasts and osteoclasts, but whether it affects osteogenic differentiation of PDLSCs is unknown. MATERIALS AND METHODS PDLSCs were isolated and cultured from human periodontal ligament and grown in osteogenic medium (containing sodium β-glycerophosphate, ascorbic acid, and dexamethasone). Recombinant human TSH was added to the culture medium. Osteogenic differentiation of PDLSCs was assessed after 14 days by staining with alkaline phosphatase and alizarin red and by detection of osteogenic differentiation genes. Differentially expressed genes (DEGs) in PDLSCs under TSH were detected by high-throughput sequencing. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyzed the biological functions and signaling pathways involved in DEGs. RESULTS We found that osteogenic differentiation of PDLSCs was significantly inhibited in the presence of TSH: including decreased calcium nodule formation, decreased alkaline phosphatase levels, and decreased collagen synthesis. Using high-throughput sequencing, we found changes in the expression of some osteogenesis-related genes, which may be the reason that TSH inhibits osteogenic differentiation of PDLSCs. CONCLUSION Unless TSH is ≥10 mU/L, patients with subclinical hypothyroidism usually do not undergo thyroxine supplementation therapy. However, in this work, we found that elevated TSH inhibited the osteogenic differentiation of PDLSCs. Therefore, correction of TSH levels in patients with subclinical hypothyroidism may be beneficial to improve orthodontic, implant, and periodontitis outcomes in these patients.
Collapse
Affiliation(s)
- Yang Zeng
- Department of Orthodontics, Affiliated Stomatology Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan Province, China
| | - Ji-Jun Deng
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Qi-Lan Jiang
- Department of Clinical Nutrition, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Chun-Lian Wang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| | - Li Zhang
- Department of Orthodontics, Affiliated Stomatology Hospital of Southwest Medical University, Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Luzhou, Sichuan Province, China
| | - Tao Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan Province, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province, China
| |
Collapse
|
9
|
Zaidi M, Kim SM, Mathew M, Korkmaz F, Sultana F, Miyashita S, Gumerova AA, Frolinger T, Moldavski O, Barak O, Pallapati A, Rojekar S, Caminis J, Ginzburg Y, Ryu V, Davies TF, Lizneva D, Rosen CJ, Yuen T. Bone circuitry and interorgan skeletal crosstalk. eLife 2023; 12:83142. [PMID: 36656634 PMCID: PMC9851618 DOI: 10.7554/elife.83142] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/29/2022] [Indexed: 01/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of skeletal homeostasis and the mechanisms that mediate the loss of bone integrity in disease. Recent breakthroughs have arisen mainly from identifying disease-causing mutations and modeling human bone disease in rodents, in essence, highlighting the integrative nature of skeletal physiology. It has become increasingly clear that bone cells, osteoblasts, osteoclasts, and osteocytes, communicate and regulate the fate of each other through RANK/RANKL/OPG, liver X receptors (LXRs), EphirinB2-EphB4 signaling, sphingolipids, and other membrane-associated proteins, such as semaphorins. Mounting evidence also showed that critical developmental pathways, namely, bone morphogenetic protein (BMP), NOTCH, and WNT, interact each other and play an important role in postnatal bone remodeling. The skeleton communicates not only with closely situated organs, such as bone marrow, muscle, and fat, but also with remote vital organs, such as the kidney, liver, and brain. The metabolic effect of bone-derived osteocalcin highlights a possible role of skeleton in energy homeostasis. Furthermore, studies using genetically modified rodent models disrupting the reciprocal relationship with tropic pituitary hormone and effector hormone have unraveled an independent role of pituitary hormone in skeletal remodeling beyond the role of regulating target endocrine glands. The cytokine-mediated skeletal actions and the evidence of local production of certain pituitary hormones by bone marrow-derived cells displays a unique endocrine-immune-skeletal connection. Here, we discuss recently elucidated mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, crosstalk between bone and vital organs, as well as opportunities for treating diseases of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Mehr Mathew
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anisa Azatovna Gumerova
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Tal Frolinger
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ofer Moldavski
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Orly Barak
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Anusha Pallapati
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Satish Rojekar
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - John Caminis
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Yelena Ginzburg
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
10
|
Behera K, Sahu S, Agrawal K, Soren UK, Parida GK, Srinivasan A. Study of Correlation between Serum Osteoprotegerin, TNF-Alfa, and Biomarkers of Bone Metabolism in Patients with Treatment-Naive Graves' Disease-A Cross-Sectional Study. Indian J Endocrinol Metab 2023; 27:62-65. [PMID: 37215268 PMCID: PMC10198200 DOI: 10.4103/ijem.ijem_207_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/16/2023] [Accepted: 01/27/2023] [Indexed: 03/05/2023] Open
Abstract
Objectives Primary - a study of the correlation between serum osteoprotegerin (OPG), and biomarkers of bone metabolism in patients with treatment-naive Graves' disease (GD). Secondary - serum level of OPG, TNF-alfa, and biomarkers of bone metabolism in patients three months after treatment of GD with methimazole (MMI). Materials and Methods A total of thirty-five treatment-naive newly diagnosed GDs were recruited for the study, most of them female. All patients started with MMI for treatment and various blood parameters were measured at baseline and three months after treatment. Measurements: Serum calcium (Ca), phosphorus (P), bone-specific alkaline phosphatase (B-ALP), OPG, TNF-alfa, and urine deoxypyridinoline (U-DPD) along with serum-free T3 and T4, thyroid-stimulating hormone (TSH) and thyroid receptor antibody (TR-ab) were analysed at baseline and three months after MMI treatment. All the patients had euthyroid at three months of MMI treatment. Results Mean serum OPG (0.94 ± 1.39 vs. 0.63 ± 0.27 ng/ml; P = 0.262) level at baseline and after treatment with MMI did not show any significant change. Mean TSH level (0.207 ± 0.59 vs. 1.00 ± 1.95, P = 0.025) was significantly low at baseline than after treatment; FT4 (5.9 ± 5.22 v 1.77 ± 1.89 ng/dl; P < 0.001), FT3 (12.19 ± 6.91 vs. 4.99 ± 3.55 pg/ml; P < 0.001), and TNF-alfa values decreased significantly after treatment, however, PTH (58.09 ± 28.75 vs. 75.57 ± 41.50; P < 0.026) increased significantly after treatment. Discussion There is no correlation of OPG with thyroid hormone profile, TSH, thyroid receptor antibody (TR-ab), and bone metabolic parameters such as serum Ca, P, B-ALP, TNF-alfa, and U-DPD in our study. Mean TNF-alfa decreased significantly (393.43 ± 270.473 vs. 139.34 ± 101.264 pg/ml; P = 0.001) level after treatment with MMI. TNF-alfa was positively correlated with TR-ab (r = 0.374; P = 0.027) and B-ALP (r = 0.388; P = 0.021). Conclusion The bone turnover marker in GD seems to be mediated other than OPG. We observed an increase in circulating TNF-alfa in GD with a significant decrease after treatment. TNF-alfa could be a marker of GD activity as evidenced by a close positive correlation with TR-ab, a sensitive marker of GD autoimmunity. TNF-alfa could be a factor associated with bone turnover markers in GD despite its euthyroid state.
Collapse
Affiliation(s)
- Kishore Behera
- Endocrinology and Metabolism, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Suchanda Sahu
- Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Kanhaiyalal Agrawal
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Uttam K. Soren
- Endocrinology and Metabolism, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Girish K. Parida
- Nuclear Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| | - Anand Srinivasan
- Pharmacology, All India Institute of Medical Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
11
|
Kim SM, Sultana F, Korkmaz F, Lizneva D, Yuen T, Zaidi M. Independent Skeletal Actions of Pituitary Hormones. Endocrinol Metab (Seoul) 2022; 37:719-731. [PMID: 36168775 PMCID: PMC9633224 DOI: 10.3803/enm.2022.1573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/02/2022] [Indexed: 12/30/2022] Open
Abstract
Over the past years, pituitary hormones and their receptors have been shown to have non-traditional actions that allow them to bypass the hypothalamus-pituitary-effector glands axis. Bone cells-osteoblasts and osteoclasts-express receptors for growth hormone, follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin, and vasopressin. Independent skeletal actions of pituitary hormones on bone have been studied using genetically modified mice with haploinsufficiency and by activating or inactivating the receptors pharmacologically, without altering systemic effector hormone levels. On another front, the discovery of a TSH variant (TSH-βv) in immune cells in the bone marrow and skeletal action of FSHβ through tumor necrosis factor α provides new insights underscoring the integrated physiology of bone-immune-endocrine axis. Here we discuss the interaction of each pituitary hormone with bone and the potential it holds in understanding bone physiology and as a therapeutic target.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Corresponding authors: Se-Min Kim. The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, PO Box 1055, New York, NY 10029, USA Tel: +1-212-241-8797, Fax: +1-212-426-8312 E-mail:
| | - Farhath Sultana
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mone Zaidi. The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, PO Box 1055, New York, NY 10029, USA Tel: +1-212-241-8797, Fax: +1-212-426-8312, E-mail:
| |
Collapse
|
12
|
Du Z, You X, Wu D, Huang S, Zhou Z. Rhythm disturbance in osteoarthritis. Cell Commun Signal 2022; 20:70. [PMID: 35610652 PMCID: PMC9128097 DOI: 10.1186/s12964-022-00891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023] Open
Abstract
Osteoarthritis (OA) is one of the main causes of disabilities among older people. To date, multiple disease-related molecular networks in OA have been identified, including abnormal mechanical loadings and local inflammation. These pathways have not, however, properly elucidated the mechanism of OA progression. Recently, sufficient evidence has suggested that rhythmic disturbances in the central nervous system (CNS) and local joint tissues affect the homeostasis of joint and can escalate pathological changes of OA. This is accompanied with an exacerbation of joint symptoms that interfere with the rhythm of CNS in reverse. Eventually, these processes aggravate OA progression. At present, the crosstalk between joint tissues and biological rhythm remains poorly understood. As such, the mechanisms of rhythm changes in joint tissues are worth study; in particular, research on the effect of rhythmic genes on metabolism and inflammation would facilitate the understanding of the natural rhythms of joint tissues and the OA pathology resulting from rhythm disturbance. Video Abstract
Collapse
Affiliation(s)
- Ze Du
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuanhe You
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Diwei Wu
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shishu Huang
- Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zongke Zhou
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China. .,Department of Orthopedics and Research institute of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
13
|
Yang Q, Li J, Kou C, Zhang L, Wang X, Long Y, Ni J, Li S, Zhang H. Presence of TSHR in NK Cells and Action of TSH on NK Cells. Neuroimmunomodulation 2022; 29:77-84. [PMID: 34392245 DOI: 10.1159/000516925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/25/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Thyroid-stimulating hormone receptor (TSHR) is widely expressed in human tissues and cells. TSHR is not only involved in thyroid disease but also in the neuroendocrine-immune regulatory network. However, no study has exclusively focused on the expression and function of TSHR in natural killer (NK) cells. METHODS We studied TSHR expression using reverse transcription PCR to verify TSHR mRNA transcripts in human and mouse NK cells. Human and mouse thyroid and liver tissues as well as peripheral blood mononuclear cells (PBMCs) or spleen lymphoid cells (SLCs) were used as controls. The TSHR protein levels in NK-92 cells were determined by immunofluorescence staining. The function of TSHR in NK cells was investigated by measuring the TSH-stimulated cAMP levels. RESULTS TSHR mRNA was detected in human and mouse NK cells as well as in NK-92 cells and had the same sequence as that of thyroid-derived, PBMC-derived, and liver-derived mRNA. The TSHR protein was also expressed in the cell membrane of NK-92 cells. Furthermore, the cAMP levels in NK-92 cells were significantly higher after adding 102 mIU/mL of bovine TSH at p < 0.05, which stimulated cAMP production in NK-92 cells. CONCLUSIONS Our findings confirm that TSHR is present and functional in NK cells and provide key clues for the potential regulatory effects of TSH on TSHR in NK cells in the immune system.
Collapse
Affiliation(s)
- Qingqing Yang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Endocrinology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Jingyi Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunjia Kou
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li Zhang
- Department of Vascular Surgery, Shandong Provincial Hospital, Jinan, China
| | - Xiansheng Wang
- Department of Internal Medicine, The Central Hospital of Shandong Electrical Power Industry, Jinan, China
| | - Yu Long
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiajia Ni
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuqi Li
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Clinical Medical Center of Endocrinology and Metabolism, Jinan, China
- Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, China
| |
Collapse
|
14
|
Ran B, Wei F, Gong J, Xu H. Application and prospect of trabecular bone score in differentiated thyroid cancer patients receiving thyrotropin suppression therapy. Front Endocrinol (Lausanne) 2022; 13:1004962. [PMID: 36313757 PMCID: PMC9596913 DOI: 10.3389/fendo.2022.1004962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Thyroid-stimulating hormone (TSH) suppression therapy is one of the common treatments for most patients with differentiated thyroid cancer (DTC). Unfortunately, its detrimental effects on bone health are receiving increasing attention. It may increase the risk of osteoporosis and osteoporotic fractures. The trabecular bone score (TBS) is a relatively new gray-scale texture measurement parameter that reflects bone microarchitecture and bone strength and has been shown to independently predict fracture risk. We reviewed for the first time the scientific literature on the use of TBS in DTC patients on TSH suppression therapy and aim to analyze and compare the utility of TBS with bone mass strength (BMD) in the management of skeletal health and prediction of fracture risk. We screened a total of seven relevant publications, four of which were for postmenopausal female patients and three for all female patients. Overall, postmenopausal female patients with DTC had lower TBS and a significant reduction in TBS after receiving TSH suppression therapy, but their BMD did not appear to change significantly. In addition, TBS was also found to be an independent predictor of osteoporotic fracture risk in postmenopausal women with DTC receiving TSH suppression therapy. However, due to limitations in the number of studies and study populations, this evidence is not sufficient to fully demonstrate the adverse effects of TSH suppression therapy on patients' TBS or BMD and the efficacy of TBS, and subsequent larger and more case-cohort studies are needed to further investigate the relationship and application of TBS to TSH suppression therapy in terms of skeletal health impairment and fracture risk in DTC patients.
Collapse
|
15
|
Zhu S, Pang Y, Xu J, Chen X, Zhang C, Wu B, Gao J. Endocrine Regulation on Bone by Thyroid. Front Endocrinol (Lausanne) 2022; 13:873820. [PMID: 35464058 PMCID: PMC9020229 DOI: 10.3389/fendo.2022.873820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND As an endocrine organ, the thyroid acts on the entire body by secreting a series of hormones, and bone is one of the main target organs of the thyroid. SUMMARY This review highlights the roles of thyroid hormones and thyroid diseases in bone homeostasis. CONCLUSION Thyroid hormones play significant roles in the growth and development of bone, and imbalance of thyroid hormones can impair bone homeostasis.
Collapse
Affiliation(s)
- Siyuan Zhu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yidan Pang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Xu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaoyi Chen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Changqing Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Bo Wu
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| | - Junjie Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- *Correspondence: Junjie Gao, ; Bo Wu, ; Changqing Zhang,
| |
Collapse
|
16
|
Kim SM, Ryu V, Miyashita S, Korkmaz F, Lizneva D, Gera S, Latif R, Davies TF, Iqbal J, Yuen T, Zaidi M. Thyrotropin, Hyperthyroidism, and Bone Mass. J Clin Endocrinol Metab 2021; 106:e4809-e4821. [PMID: 34318885 PMCID: PMC8864741 DOI: 10.1210/clinem/dgab548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyrotropin (TSH), traditionally seen as a pituitary hormone that regulates thyroid glands, has additional roles in physiology including skeletal remodeling. Population-based observations in people with euthyroidism or subclinical hyperthyroidism indicated a negative association between bone mass and low-normal TSH. The findings of correlative studies were supported by small intervention trials using recombinant human TSH (rhTSH) injection, and genetic and case-based evidence. Genetically modified mouse models, which disrupt the reciprocal relationship between TSH and thyroid hormone, have allowed us to examine an independent role of TSH. Since the first description of osteoporotic phenotype in haploinsufficient Tshr +/- mice with normal thyroid hormone levels, the antiosteoclastic effect of TSH has been documented in both in vitro and in vivo studies. Further studies showed that increased osteoclastogenesis in Tshr-deficient mice was mediated by tumor necrosis factor α. Low TSH not only increased osteoclastogenesis, but also decreased osteoblastogenesis in bone marrow-derived primary osteoblast cultures. However, later in vivo studies using small and intermittent doses of rhTSH showed a proanabolic effect, which suggests that its action might be dose and frequency dependent. TSHR was shown to interact with insulin-like growth factor 1 receptor, and vascular endothelial growth factor and Wnt pathway might play a role in TSH's effect on osteoblasts. The expression and direct skeletal effect of a biologically active splice variant of the TSHβ subunit (TSHβv) in bone marrow-derived macrophage and other immune cells suggest a local skeletal effect of TSHR. Further studies of how locally secreted TSHβv and systemic TSHβ interact in skeletal remodeling through the endocrine, immune, and skeletal systems will help us better understand the hyperthyroidism-induced bone disease.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rauf Latif
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 4th Floor, Box 1055, New York, NY 10029, USA.
| |
Collapse
|
17
|
Yang C, He Z, Zhang Q, Lu M, Zhao J, Chen W, Gao L. TSH Activates Macrophage Inflammation by G13- and G15-dependent Pathways. Endocrinology 2021; 162:6225351. [PMID: 33851697 DOI: 10.1210/endocr/bqab077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Thyroid-stimulating hormone (TSH) treatment activates inhibitor of NF-κB/nuclear factor κB (IκB/NFκB) and extracellular signal-regulated kinase (ERK)-P38 in macrophages, but how these pathways are activated, and how they contribute to the proinflammatory effect of TSH on macrophages remain unknown. The TSH receptor (TSHR) is coupled to 4 subfamilies of G proteins (Gs, Gi/o, Gq/11, and G12/13) for its downstream signaling. This study investigated the G protein subtypes responsible for the proinflammatory effect of TSH on macrophages. qPCR showed that Gi2, Gi3, Gas, Gq, G11, G12, G13, and G15 are abundantly expressed by macrophages. The contribution of different G protein pathways to the proinflammatory effect was studied by the corresponding inhibitors or siRNA interference. While TSH-induced IκB phosphorylation was not inhibited by Gs inhibitor NF449, Gi inhibitor pertussis toxin, or Gq or G11 siRNA, it was blocked by phospholipase C inhibitor U73122 or G15 siRNA interference. TSH-induced ERK and P38 phosphorylation was blocked by G13 but not G12 siRNA interference. Interference of either G13 or G15 could block the proinflammatory effect of TSH on macrophages. The present study demonstrate that TSH activates macrophage inflammation by the G13/ERK-P38/Rho GTPase and G15/phospholipase C (PLC)/protein kinases C (PKCs)/IκB pathways.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qunye Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong First Medical University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Deng T, Zhang W, Zhang Y, Zhang M, Huan Z, Yu C, Zhang X, Wang Y, Xu J. Thyroid-stimulating hormone decreases the risk of osteoporosis by regulating osteoblast proliferation and differentiation. BMC Endocr Disord 2021; 21:49. [PMID: 33726721 PMCID: PMC7968288 DOI: 10.1186/s12902-021-00715-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND As the incidence of secretory osteoporosis has increased, bone loss, osteoporosis and their relationships with thyroid-stimulating hormone (TSH) have received increased attention. In this study, the role of TSH in bone metabolism and its possible underlying mechanisms were investigated. METHODS We analyzed the serum levels of free triiodothyronine (FT3), free thyroxine (FT4), and TSH and the bone mineral density (BMD) levels of 114 men with normal thyroid function. In addition, osteoblasts from rat calvarial samples were treated with different doses of TSH for different lengths of time. The related gene and protein expression levels were investigated. RESULTS A comparison of the BMD between the high-level and low-level serum TSH groups showed that the TSH serum concentration was positively correlated with BMD. TSH at concentrations of 10 mU/mL and 100 mU/mL significantly increased the mRNA levels of ALP, COI1 and Runx2 compared with those of the control (P < 0.05, P < 0.01). Bone morphogenetic protein (BMP)2 activity was enhanced with both increased TSH concentration and increased time. The protein levels of Runx2 and osterix were increased in a dose-dependent manner. CONCLUSIONS The circulating concentrations of TSH and BMD were positively correlated with normal thyroid function in males. TSH promoted osteoblast proliferation and differentiation in rat primary osteoblasts.
Collapse
Affiliation(s)
- Tuo Deng
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Wenwen Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Yanling Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Mengqi Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Zhikun Huan
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yan Wang
- Department of Anesthesiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China
| | - Jin Xu
- Department of Endocrinology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250021, Shandong, China.
- Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, 250021, Shandong, China.
- Shandong Institute of Endocrine and Metabolic Disease, Jinan, 250021, Shandong, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
19
|
Liu C, Pan J, Wen S, Nguyen T, Xu D, Wang C, Yuan X, Wen Z, Zhou L. Low TSH Levels Within Euthyroid Range Could Play a Negative Role on Bone Mineral Density in Postmenopausal Women with Type 2 Diabetes. Diabetes Metab Syndr Obes 2021; 14:2349-2355. [PMID: 34079313 PMCID: PMC8163625 DOI: 10.2147/dmso.s307633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/04/2021] [Indexed: 01/26/2023] Open
Abstract
OBJECTIVE We aimed to evaluate the relationship between thyroid-stimulating hormone (TSH) and bone mineral density (BMD) in euthyroid type 2 diabetes (T2D). METHODS This retrospective analysis enrolled 439 T2D patients with normal thyroid function, including 226 males and 213 females. All the female patients were postmenopausal. Serum glycosylated hemoglobin A1c (HbA1c), TSH, free triiodothyronine (FT3), and free thyroxine (FT4) concentrations were analyzed. BMD of the lumbar spine (L1-L4), femoral neck, and hip joint was determined using dual-energy X-ray absorptiometry. RESULTS The patients were grouped based on tri-sectional quantiles of the TSH levels: 0.55~1.70mIU/L (Group 1), 1.71~2.58mIU/L (Group 2), and 2.59~4.74mIU/L (Group 3). Our data showed that, in male patients, no difference in BMD was identified among groups. In postmenopausal women, unlike at the lumbar spine (P = 0.459), the mean BMD at the femoral neck (P = 0.014) and hip joint (P = 0.014) had a statistical difference among groups and increased with TSH level. In addition, our analysis demonstrated that TSH levels shown no correlation with BMD at all sites in males. However, in females, BMD at the femoral neck (r = 0.156, P = 0.023) and hip joint (r = 0.172, P = 0.012) had a positive correlation with TSH levels. After adjusting for age and BMI, multiple regression analysis showed that TSH levels influenced BMD at the femoral neck (β = 0.188, P = 0.001) and hip joint (β = 0.204, P = 0.001) in female patients. CONCLUSION In summary, our data demonstrates that low TSH levels are associated with decreased BMD at the femoral neck and hip joint in postmenopausal T2D women with euthyroidism.
Collapse
Affiliation(s)
- Congying Liu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Junhong Pan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Thiquynhnga Nguyen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Dongxiang Xu
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Chaoxun Wang
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Zhongqiu Wen
- Department of Information Center, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People’s Republic of China
- Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, People's Republic of China
- Correspondence: Ligang Zhou Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, 2800 Gongwei Road, Huinan Town, Pudong New Area, Shanghai, 201399, People’s Republic of ChinaTel +8613611927616 Email
| |
Collapse
|
20
|
Phan QT, Liu R, Tan WH, Imangali N, Cheong B, Schartl M, Winkler C. Macrophages Switch to an Osteo-Modulatory Profile Upon RANKL Induction in a Medaka ( Oryzias latipes) Osteoporosis Model. JBMR Plus 2020; 4:e10409. [PMID: 33210062 PMCID: PMC7657398 DOI: 10.1002/jbm4.10409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 12/16/2022] Open
Abstract
In mammals, osteoclasts differentiate from macrophages in the monocyte lineage. Although many factors driving osteoclast formation are known, the detailed processes underlying precursor recruitment, differentiation, and interaction of macrophages with other cell types involved in bone remodeling are poorly understood. Using live imaging in a transgenic medaka osteoporosis model, where ectopic osteoclasts are induced by RANKL expression, we show that a subset of macrophages is recruited to bone matrix to physically interact with bone-forming osteoblast progenitors. These macrophages subsequently differentiate into cathepsin K- (ctsk-) positive osteoclasts. One day later, other macrophages are recruited to clear dying osteoclasts from resorbed bone by phagocytosis. To better understand the molecular changes underlying these dynamic processes, we performed transcriptome profiling of activated macrophages upon RANKL induction. This revealed an upregulation of several bone-related transcripts. Besides osteoclast markers, we unexpectedly also found expression of osteoblast-promoting signals in activated macrophages, suggesting a possible non-cell autonomous role in osteogenesis. Finally, we show that macrophage differentiation into osteoclasts is dependent on inflammatory signals. Medaka deficient for TNFα or treated with the TNFα-inhibitor pentoxifylline exhibited impaired macrophage recruitment and osteoclast differentiation. These results show the involvement of inflammatory signals and the dynamics of a distinct subset of macrophages during osteoclast formation. © 2020 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Quang Tien Phan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Ranran Liu
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Wen Hui Tan
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Nurgul Imangali
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Benedict Cheong
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| | - Manfred Schartl
- Department of Developmental Biochemistry, BiocenterUniversity of WürzburgWürzburgGermany
- The Xiphophorus Genetic Stock CenterTexas State UniversitySan MarcosTexasUSA
| | - Christoph Winkler
- Department of Biological Sciences and Centre for Bioimaging SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
21
|
Influence of General Mineral Condition on Collagen-Guided Alveolar Crest Augmentation. MATERIALS 2020; 13:ma13163649. [PMID: 32824644 PMCID: PMC7476019 DOI: 10.3390/ma13163649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/04/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022]
Abstract
The local regeneration of bone defects is regulated by general hormone, enzyme, ion, and vitamin levels. General diseases and dysregulation of the human mineral system can impact this process, even in alveolar crest. The aim of this study is to investigate a relation between bone density, measured in two-dimensional X-rays, and general mineral condition of patients. The study included 42 patients on whom tooth extractions were performed. Data were divided into two groups: the region where collagen scaffold (BRM) was used and the reference region of intact normal bone (REF). Two-dimensional intraoral radiographs were taken in all cases just after the surgery (00 M) and 12 months later (12 M). Thyrotropin (TSH), parathormone (PTH), Ca2+ in serum, HbA1c, vitamin 25(OH)D3, and spine densitometry were checked. Digital texture analysis in MaZda 4.6 software was done. Texture Index (TI: BRM 1.66 ± 0.34 in 00 M, 1.51 ± 0.41 in 12 M, and REF 1.72 ± 0.28) and Bone Index (BI: BRM 0.73 ± 0.17 in 00 M, 0.65 ± 0.22 41 in 12 M, and REF 0.80 ± 0.14) were calculated to evaluate bone regeneration process after 12 months of healing (TI (p < 0.05) and BI (p < 0.01) are lower in BRM 12 M than in REF). This showed a relation between BI and TSH (R2 = 26%, p < 0.05), as well as a between BI and patient age (R2 = 65%, p < 0.001), and a weak relation between TI and TSH level (R2 = 10%, p < 0.05). This study proved that a collagen scaffold can be successfully used in alveolar crest regeneration, especially in patients with a high normal level of TSH in the middle-aged population.
Collapse
|
22
|
Crosstalk of Brain and Bone-Clinical Observations and Their Molecular Bases. Int J Mol Sci 2020; 21:ijms21144946. [PMID: 32668736 PMCID: PMC7404044 DOI: 10.3390/ijms21144946] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/06/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
As brain and bone disorders represent major health issues worldwide, substantial clinical investigations demonstrated a bidirectional crosstalk on several levels, mechanistically linking both apparently unrelated organs. While multiple stress, mood and neurodegenerative brain disorders are associated with osteoporosis, rare genetic skeletal diseases display impaired brain development and function. Along with brain and bone pathologies, particularly trauma events highlight the strong interaction of both organs. This review summarizes clinical and experimental observations reported for the crosstalk of brain and bone, followed by a detailed overview of their molecular bases. While brain-derived molecules affecting bone include central regulators, transmitters of the sympathetic, parasympathetic and sensory nervous system, bone-derived mediators altering brain function are released from bone cells and the bone marrow. Although the main pathways of the brain-bone crosstalk remain ‘efferent’, signaling from brain to bone, this review emphasizes the emergence of bone as a crucial ‘afferent’ regulator of cerebral development, function and pathophysiology. Therefore, unraveling the physiological and pathological bases of brain-bone interactions revealed promising pharmacologic targets and novel treatment strategies promoting concurrent brain and bone recovery.
Collapse
|
23
|
Delitala AP, Scuteri A, Doria C. Thyroid Hormone Diseases and Osteoporosis. J Clin Med 2020; 9:jcm9041034. [PMID: 32268542 PMCID: PMC7230461 DOI: 10.3390/jcm9041034] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Thyroid hormones are essential for normal skeletal development and normal bone metabolism in adults but can have detrimental effects on bone structures in states of thyroid dysfunction. Untreated severe hyperthyroidism influences the degree of bone mass and increases the probability of high bone turnover osteoporosis. Subclinical hyperthyroidism, defined as low thyrotropin (TSH) and free hormones within the reference range, is a subtler disease, often asymptomatic, and the diagnosis is incidentally made during screening exams. However, more recent data suggest that this clinical condition may affect bone metabolism resulting in decreased bone mineral density (BMD) and increased risk of fracture, particularly in postmenopausal women. The main causes of exogenous subclinical hyperthyroidism are inappropriate replacement dose of thyroxin and TSH suppressive L-thyroxine doses in the therapy of benign thyroid nodules and thyroid carcinoma. Available data similarly suggest that a long-term TSH suppressive dose of thyroxin may decrease BMD and may induce an increased risk of fracture. These effects are particularly observed in postmenopausal women but are less evident in premenopausal women. Overt hypothyroidism is known to lower bone turnover by reducing both osteoclastic bone resorption and osteoblastic activity. These changes in bone metabolism would result in an increase in bone mineralization. At the moment, there are no clear data that demonstrate any relationship between BMD in adults and hypothyroidism. Despite these clinical evidences, the cellular and molecular actions of thyroid hormones on bone structures are not complete clear.
Collapse
|
24
|
Physiological and Pathological Role of Circadian Hormones in Osteoarthritis: Dose-Dependent or Time-Dependent? J Clin Med 2019; 8:jcm8091415. [PMID: 31500387 PMCID: PMC6781184 DOI: 10.3390/jcm8091415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/27/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA), the most common form of arthritis, may be triggered by improper secretion of circadian clock-regulated hormones, such as melatonin, thyroid-stimulating hormone (TSH), or cortisol. The imbalance of these hormones alters the expression of pro-inflammatory cytokines and cartilage degenerative enzymes in articular cartilage, resulting in cartilage erosion, synovial inflammation, and osteophyte formation, the major hallmarks of OA. In this review, we summarize the effects of circadian melatonin, TSH, and cortisol on OA, focusing on how different levels of these hormones affect OA pathogenesis and recovery with respect to the circadian clock. We also highlight the effects of melatonin, TSH, and cortisol at different concentrations both in vivo and in vitro, which may help to elucidate the relationship between circadian hormones and OA.
Collapse
|
25
|
Yang C, Lu M, Chen W, He Z, Hou X, Feng M, Zhang H, Bo T, Zhou X, Yu Y, Zhang H, Zhao M, Wang L, Yu C, Gao L, Jiang W, Zhang Q, Zhao J. Thyrotropin aggravates atherosclerosis by promoting macrophage inflammation in plaques. J Exp Med 2019; 216:1182-1198. [PMID: 30940720 PMCID: PMC6504213 DOI: 10.1084/jem.20181473] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/07/2019] [Accepted: 02/11/2019] [Indexed: 12/31/2022] Open
Abstract
The increased cardiovascular risk in subclinical hypothyroidism has traditionally been attributed to the associated metabolic disorders. This paper, however, revealed that TSH can aggravate atherosclerosis by promoting macrophage inflammation in the plaque, which deepens our understanding of the significance of TSH elevation in subclinical hypothyroidism. Subclinical hypothyroidism is associated with cardiovascular diseases, yet the underlying mechanism remains largely unknown. Herein, in a common population (n = 1,103), TSH level was found to be independently correlated with both carotid plaque prevalence and intima-media thickness. Consistently, TSH receptor ablation in ApoE−/− mice attenuated atherogenesis, accompanied by decreased vascular inflammation and macrophage burden in atherosclerotic plaques. These results were also observed in myeloid-specific Tshr-deficient ApoE−/− mice, which indicated macrophages to be a critical target of the proinflammatory and atherogenic effects of TSH. In vitro experiments further revealed that TSH activated MAPKs (ERK1/2, p38α, and JNK) and IκB/p65 pathways in macrophages and increased inflammatory cytokine production and their recruitment of monocytes. Thus, the present study has elucidated the new mechanisms by which TSH, as an independent risk factor of atherosclerosis, aggravates vascular inflammation and contributes to atherogenesis.
Collapse
Affiliation(s)
- Chongbo Yang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ming Lu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Wenbin Chen
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Zhao He
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xu Hou
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Mei Feng
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Xiaoming Zhou
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Yong Yu
- Department of Sonography, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Haiqing Zhang
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Meng Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Laicheng Wang
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Chunxiao Yu
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Ling Gao
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing Laboratory for Cardiovascular Precision Medicine, Beijing, China
| | - Qunye Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Ministry of Public Health, the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jiajun Zhao
- Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| |
Collapse
|
26
|
Zaidi M, Yuen T, Sun L, Rosen CJ. Regulation of Skeletal Homeostasis. Endocr Rev 2018; 39:701-718. [PMID: 29897433 PMCID: PMC6173473 DOI: 10.1210/er.2018-00050] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022]
Abstract
Landmark advances in skeletal biology have arisen mainly from the identification of disease-causing mutations and the advent of rapid and selective gene-targeting technologies to phenocopy human disease in mice. Here, we discuss work on newly identified mechanisms controlling the remodeling of bone, communication of bone cells with cells of other lineages, and crosstalk between bone and vital organs as these relate to the therapeutic targeting of the skeleton.
Collapse
Affiliation(s)
- Mone Zaidi
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tony Yuen
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Sun
- Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
27
|
Mazziotti G, Frara S, Giustina A. Pituitary Diseases and Bone. Endocr Rev 2018; 39:440-488. [PMID: 29684108 DOI: 10.1210/er.2018-00005] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 04/16/2018] [Indexed: 12/12/2022]
Abstract
Neuroendocrinology of bone is a new area of research based on the evidence that pituitary hormones may directly modulate bone remodeling and metabolism. Skeletal fragility associated with high risk of fractures is a common complication of several pituitary diseases such as hypopituitarism, Cushing disease, acromegaly, and hyperprolactinemia. As in other forms of secondary osteoporosis, pituitary diseases generally affect bone quality more than bone quantity, and fractures may occur even in the presence of normal or low-normal bone mineral density as measured by dual-energy X-ray absorptiometry, making difficult the prediction of fractures in these clinical settings. Treatment of pituitary hormone excess and deficiency generally improves skeletal health, although some patients remain at high risk of fractures, and treatment with bone-active drugs may become mandatory. The aim of this review is to discuss the physiological, pathophysiological, and clinical insights of bone involvement in pituitary diseases.
Collapse
Affiliation(s)
| | - Stefano Frara
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| | - Andrea Giustina
- Institute of Endocrinology, Università Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
28
|
van Vliet NA, Noordam R, van Klinken JB, Westendorp RG, Bassett JD, Williams GR, van Heemst D. Thyroid Stimulating Hormone and Bone Mineral Density: Evidence From a Two-Sample Mendelian Randomization Study and a Candidate Gene Association Study. J Bone Miner Res 2018; 33:1318-1325. [PMID: 29544020 DOI: 10.1002/jbmr.3426] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/26/2018] [Accepted: 03/14/2018] [Indexed: 12/16/2022]
Abstract
With population aging, prevalence of low bone mineral density (BMD) and associated fracture risk are increased. To determine whether low circulating thyroid stimulating hormone (TSH) levels within the normal range are causally related to BMD, we conducted a two-sample Mendelian randomization (MR) study. Furthermore, we tested whether common genetic variants in the TSH receptor (TSHR) gene and genetic variants influencing expression of TSHR (expression quantitative trait loci [eQTLs]) are associated with BMD. For both analyses, we used summary-level data of genomewide association studies (GWASs) investigating BMD of the femoral neck (n = 32,735) and the lumbar spine (n = 28,498) in cohorts of European ancestry from the Genetic Factors of Osteoporosis (GEFOS) Consortium. For the MR study, we selected 20 genetic variants that were previously identified for circulating TSH levels in a GWAS meta-analysis (n = 26,420). All independent genetic instruments for TSH were combined in analyses for both femoral neck and lumbar spine BMD. In these studies, we found no evidence that a genetically determined 1-standard deviation (SD) decrease in circulating TSH concentration was associated with femoral neck BMD (0.003 SD decrease in BMD per SD decrease of TSH; 95% CI, -0.053 to 0.048; p = 0.92) or lumbar spine BMD (0.010 SD decrease in BMD per SD decrease of TSH; 95% CI, -0.069 to 0.049; p = 0.73). A total of 706 common genetic variants have been mapped to the TSHR locus and expression loci for TSHR. However, none of these genetic variants were associated with BMD at the femoral neck or lumbar spine. In conclusion, we found no evidence for a causal effect of circulating TSH on BMD, nor did we find any association between genetic variation at the TSHR locus or expression thereof and BMD. © 2018 The Authors. Journal of Bone and Mineral Research Published by WileyPeriodicals, Inc.
Collapse
Affiliation(s)
- Nicolien A van Vliet
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Raymond Noordam
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| | - Jan B van Klinken
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Rudi Gj Westendorp
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands.,Department of Public Health and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jh Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, London, UK
| | - Diana van Heemst
- Department of Internal Medicine, Section of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
29
|
Zaidi M, New MI, Blair HC, Zallone A, Baliram R, Davies TF, Cardozo C, Iqbal J, Sun L, Rosen CJ, Yuen T. Actions of pituitary hormones beyond traditional targets. J Endocrinol 2018; 237:R83-R98. [PMID: 29555849 PMCID: PMC5924585 DOI: 10.1530/joe-17-0680] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023]
Abstract
Studies over the past decade have challenged the long-held belief that pituitary hormones have singular functions in regulating specific target tissues, including master hormone secretion. Our discovery of the action of thyroid-stimulating hormone (TSH) on bone provided the first glimpse into the non-traditional functions of pituitary hormones. Here we discuss evolving experimental and clinical evidence that growth hormone (GH), follicle-stimulating hormone (FSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) regulate bone and other target tissues, such as fat. Notably, genetic and pharmacologic FSH suppression increases bone mass and reduces body fat, laying the framework for targeting the FSH axis for treating obesity and osteoporosis simultaneously with a single agent. Certain 'pituitary' hormones, such as TSH and oxytocin, are also expressed in bone cells, providing local paracrine and autocrine networks for the regulation of bone mass. Overall, the continuing identification of new roles for pituitary hormones in biology provides an entirely new layer of physiologic circuitry, while unmasking new therapeutic targets.
Collapse
Affiliation(s)
- Mone Zaidi
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: Mone Zaidi, MD, PhD, The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1055, New York, NY 10029;
| | - Maria I. New
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Harry C. Blair
- The Pittsburgh VA Medical Center and Departments of Pathology and of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Alberta Zallone
- Department of Histology, University of Bari, 70121 Bari, Italy
| | - Ramkumarie Baliram
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F. Davies
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Christopher Cardozo
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - James Iqbal
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Li Sun
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Tony Yuen
- The Mount Sinai Bone Program, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
30
|
|
31
|
Siderova M, Hristozov K, Tsukeva A. TSH-receptor antibodies may prevent bone loss in pre- and postmenopausal women with Graves' disease and Graves' orbitopathy. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2018; 62:221-226. [PMID: 29768627 PMCID: PMC10118993 DOI: 10.20945/2359-3997000000027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/23/2016] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Thyrotoxicosis is established risk factor for osteoporosis due to increased bone turnover. Glucocorticoids often administered for Graves' orbitopathy (GO) have additional negative effect on bone mineral density (BMD). Our aim was to examine the influence of thyroid hormones, TSH, TSH-receptor antibodies (TRAb) and glucocorticoid treatment on bone in women with Graves' thyrotoxicosis and Graves' orbitopathy (GO). SUBJECTS AND METHODS Forty seven women with Graves' disease, mean age 55.6 ± 12.8 (23 women with thyrotoxicosis and 24 hyperthyroid with concomitant GO and glucocorticoid therapy) and 40 age-matched healthy female controls were enrolled in the study. We analyzed clinical features, TSH, FT4, FT3, TRAb, TPO antibodies. BMD of lumbar spine and hip was measured by DEXA and 10-year fracture risk was calculated with FRAX tool. RESULTS The study showed significantly lower spine and femoral BMD (g/cm2) in patients with and without GO compared to controls, as well as significantly higher fracture risk. Comparison between hyperthyroid patients without and with orbitopathy found out significantly lower spine BMD in the first group (p = 0.0049). Negative correlations between FT3 and femoral neck BMD (p = 0.0001), between FT4 and BMD (p = 0.049) and positive between TSH and BMD (p = 0.0001), TRAb and BMD (p = 0.026) were observed. Fracture risk for major fractures and TRAb were negatively associated (p = 0.05). We found negative correlation of BMD to duration of thyrotoxicosis and cumulative steroid dose. CONCLUSIONS Our results confirm the negative effect of hyperthyroid status on BMD. TRAb, often in high titers in patients with GO, may have protective role for the bone, but further research is needed.
Collapse
|
32
|
Gouveia CHA, Miranda-Rodrigues M, Martins GM, Neofiti-Papi B. Thyroid Hormone and Skeletal Development. VITAMINS AND HORMONES 2018; 106:383-472. [PMID: 29407443 DOI: 10.1016/bs.vh.2017.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Thyroid hormone (TH) is essential for skeletal development from the late fetal life to the onset of puberty. During this large window of actions, TH has key roles in endochondral and intramembranous ossifications and in the longitudinal bone growth. There is evidence that TH acts directly in skeletal cells but also indirectly, specially via the growth hormone/insulin-like growth factor-1 axis, to control the linear skeletal growth and maturation. The presence of receptors, plasma membrane transporters, and activating and inactivating enzymes of TH in skeletal cells suggests that direct actions of TH in these cells are crucial for skeletal development, which has been confirmed by several in vitro and in vivo studies, including mouse genetic studies, and clinical studies in patients with resistance to thyroid hormone due to dominant-negative mutations in TH receptors. This review examines progress made on understanding the mechanisms by which TH regulates the skeletal development.
Collapse
Affiliation(s)
- Cecilia H A Gouveia
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil.
| | | | - Gisele M Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil; Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Bianca Neofiti-Papi
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil; Experimental Pathophysiology Program, School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
34
|
Leitch VD, Di Cosmo C, Liao XH, O’Boy S, Galliford TM, Evans H, Croucher PI, Boyde A, Dumitrescu A, Weiss RE, Refetoff S, Williams GR, Bassett JHD. An Essential Physiological Role for MCT8 in Bone in Male Mice. Endocrinology 2017; 158:3055-3066. [PMID: 28637283 PMCID: PMC5659673 DOI: 10.1210/en.2017-00399] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/12/2017] [Indexed: 11/19/2022]
Abstract
T3 is an important regulator of skeletal development and adult bone maintenance. Thyroid hormone action requires efficient transport of T4 and T3 into target cells. We hypothesized that monocarboxylate transporter (MCT) 8, encoded by Mct8 on the X-chromosome, is an essential thyroid hormone transporter in bone. To test this hypothesis, we determined the juvenile and adult skeletal phenotypes of male Mct8 knockout mice (Mct8KO) and Mct8D1D2KO compound mutants, which additionally lack the ability to convert the prohormone T4 to the active hormone T3. Prenatal skeletal development was normal in both Mct8KO and Mct8D1D2KO mice, whereas postnatal endochondral ossification and linear growth were delayed in both Mct8KO and Mct8D1D2KO mice. Furthermore, bone mass and mineralization were decreased in adult Mct8KO and Mct8D1D2KO mice, and compound mutants also had reduced bone strength. Delayed bone development and maturation in Mct8KO and Mct8D1D2KO mice is consistent with decreased thyroid hormone action in growth plate chondrocytes despite elevated serum T3 concentrations, whereas low bone mass and osteoporosis reflects increased thyroid hormone action in adult bone due to elevated systemic T3 levels. These studies identify an essential physiological requirement for MCT8 in chondrocytes, and demonstrate a role for additional transporters in other skeletal cells during adult bone maintenance.
Collapse
Affiliation(s)
- Victoria D. Leitch
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Caterina Di Cosmo
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Xiao-Hui Liao
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
| | - Sam O’Boy
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Thomas M. Galliford
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - Holly Evans
- Sheffield Myeloma Research Team, University of Sheffield, Sheffield S10 2RX, United Kingdom
| | - Peter I. Croucher
- The Garvan Institute of Medical Research and St. Vincent’s Clinical School, University of New South Wales Medicine, Sydney, New South Wales 2010, Australia
| | - Alan Boyde
- Queen Mary University of London, Oral Growth and Development, Bart’s and The London School of Medicine and Dentistry, London E1 4NS, United Kingdom
| | | | - Roy E. Weiss
- Department of Medicine, University of Miami, Miami, Florida 33136
| | - Samuel Refetoff
- Department of Medicine, The University of Chicago, Chicago, Illinois 60637
- Department of Pediatrics, The University of Chicago, Chicago, Illinois 60637
- Committee on Genetics, The University of Chicago, Chicago, Illinois 60637
| | - Graham R. Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| | - J. H. Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
35
|
Ding B, Zhang Y, Li Q, Hu Y, Tao XJ, Liu BL, Ma JH, Li DM. Low Thyroid Stimulating Hormone Levels Are Associated with Low Bone Mineral Density in Femoral Neck in Elderly Women. Arch Med Res 2017; 47:310-4. [PMID: 27664492 DOI: 10.1016/j.arcmed.2016.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND AIMS To determine the relationship between thyroid stimulating hormone (TSH) and bone mineral density (BMD) in elderly women. METHODS This is a retrospective cross-sectional population cohort study of women aged ≥65 years. All 1097 subjects had no overt thyroid dysfunction, 47 had subclinical hyperthyroidism and 100 had subclinical hypothyroidism. Overall, 167 had normal BMD, 594 had osteopenia and 336 had osteoporosis. RESULTS The femoral neck (FN) BMD was lower in women with lower TSH, with a high prevalance of osteoporosis and osteopenia (p = 0.036).The prevalence of osteoporosis and osteopenia was significantly low in the lowest quartile compared with the third quartile (p = 0.023) and the fourth quartile (p = 0.002), and the second low quartile, compared with the fourth quartile (p = 0.028). The differences were not significant among subclinical hyperthyroid, subclinical hypothyroid and euthyroid women. Low TSH was related to low BMDs at FN by multiple logistic regression analysis corrected for age and BMI. TSH in the lower two quartiles were independently related to osteoporosis (OR: 1.960, p = 0.023 and OR: 1.800, p = 0.037) and osteopenia (OR: 2.108, p = 0.005 and OR: 1.723, p = 0.030). Low TSH quartile (β: 0.007, p = 0.013) predicting low BMDs at FN. CONCLUSION Low TSH was independently related to decreased BMDs at FN in elderly women without overt thyroid dysfunction.
Collapse
Affiliation(s)
- Bo Ding
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Ying Zhang
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Qian Li
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Yun Hu
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Xiao-Jun Tao
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Bing-Li Liu
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Jian-Hua Ma
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China
| | - Dong-Mei Li
- Department of Endocrinology, Nanjing Medical University Affiliated Nanjing Hospital (Nanjing First Hospital), Nanjing, China.
| |
Collapse
|
36
|
Zaidi M, Sun L, Liu P, Davies TF, New M, Zallone A, Yuen T. Pituitary-bone connection in skeletal regulation. Horm Mol Biol Clin Investig 2017; 28:85-94. [PMID: 27508964 DOI: 10.1515/hmbci-2016-0015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/11/2016] [Indexed: 11/15/2022]
Abstract
Pituitary hormones have traditionally been thought to exert specific, but limited function on target tissues. More recently, the discovery of these hormones and their receptors in organs such as the skeleton suggests that pituitary hormones have more ubiquitous functions. Here, we discuss the interaction of growth hormone (GH), follicle stimulating hormone (FSH), thyroid stimulating hormone (TSH), adrenocorticotrophic hormone (ACTH), prolactin, oxytocin and arginine vasopressin (AVP) with bone. The direct skeletal action of pituitary hormones therefore provides new insights and therapeutic opportunities for metabolic bone diseases, prominently osteoporosis.
Collapse
|
37
|
Baliram R, Latif R, Zaidi M, Davies TF. Expanding the Role of Thyroid-Stimulating Hormone in Skeletal Physiology. Front Endocrinol (Lausanne) 2017; 8:252. [PMID: 29042858 PMCID: PMC5632520 DOI: 10.3389/fendo.2017.00252] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022] Open
Abstract
The dogma that thyroid-stimulating hormone (TSH) solely regulates the production of thyroid hormone from the thyroid gland has hampered research on its wider physiological roles. The action of pituitary TSH on the skeleton has now been well described; in particular, its action on osteoblasts and osteoclasts. It has also been recently discovered that the bone marrow microenvironment acts as an endocrine circuit with bone marrow-resident macrophages capable of producing a novel TSH-β subunit variant (TSH-βv), which may modulate skeletal physiology. Interestingly, the production of this TSH-βv is positively regulated by T3 accentuating such modulation in the presence of thyroid overactivity. Furthermore, a number of small molecule ligands acting as TSH agonists, which allosterically modulate the TSH receptor have been identified and may have similar modulatory influences on bone cells suggesting therapeutic potential. This review summarizes our current understanding of the role of TSH, TSH-β, TSH-βv, and small molecule agonists in bone physiology.
Collapse
Affiliation(s)
- Ramkumarie Baliram
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- *Correspondence: Ramkumarie Baliram,
| | - Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
| | - Mone Zaidi
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Terry F. Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, United States
- The Mount Sinai Bone Program, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
38
|
Chin KY, Wan Ngah WZ, Ima-Nirwana S. Lessons from the Bone Chapter of the Malaysian Aging Men Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13060531. [PMID: 27231930 PMCID: PMC4923988 DOI: 10.3390/ijerph13060531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Abstract
Male osteoporosis in Malaysia is a largely neglected problem. Therefore, a bone health study in men using quantitative ultrasonometry was launched as part of the Malaysian Aging Men Study in 2009–2012. This review aimed to summarize the findings of the aforementioned bone health study. The study examined the bone health of Chinese and Malaysian men aged 20 years and above living in Kuala Lumpur using a quantitative ultrasound device. Participants answered a questionnaire on their demographic details and physical activity status. Body anthropometry of the participants was measured and their blood collected for biochemical analysis. Results showed that a significant proportion of the Malaysian Chinese and Malay men had suboptimal bone health indicated by calcaneal speed of sound and vitamin D status. Age-related decline of the calcaneal speed of sound in these men was gradual and biphasic without ethnic difference. Body anthropometry such as height, weight, body mass index, and body fat percentage contributed to the variation of the calcaneal speed of sound in Malaysian men. Age-related changes in testosterone, insulin-like growth factor 1, and thyroid stimulating hormone also influenced the calcaneal speed of sound in these men. This study serves as a reminder that male osteoporosis in Malaysia should be an issue of concern. It is also a basis for a more comprehensive study on bone health in men in the future.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| |
Collapse
|
39
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
40
|
Chawla R, Alden TD, Bizhanova A, Kadakia R, Brickman W, Kopp PA. Squamosal Suture Craniosynostosis Due to Hyperthyroidism Caused by an Activating Thyrotropin Receptor Mutation (T632I). Thyroid 2015; 25:1167-72. [PMID: 26114856 DOI: 10.1089/thy.2014.0503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND Congenital hyperthyroidism can be a cause of failure to thrive, hyperactivity, developmental delay, and craniosynostosis during infancy. Most commonly, the condition occurs in the setting of maternal autoimmune thyroid disease. Rarely, congenital hyperthyroidism can also occur secondary to activating mutations within the thyrotropin (TSH) receptor. PATIENT FINDINGS A Hispanic male infant presented at age 6 months with severe thyrotoxicosis. At the time of presentation he was being evaluated for squamosal suture synostosis and he was noted to have significant developmental delays. SUMMARY The patient's thyrotoxicosis was initially treated with antithyroid medication, and he subsequently underwent craniosynostosis repair leading to neurodevelopmental improvement. DNA from the patient and his parents was submitted for mutational analysis of exons 9 and 10 of the TSH receptor. He was found to carry a monoallelic transition 1895C>T in exon 10 that resulted in the substitution of threonine at position 632 by isoleucine (T32I). This mutation resulted in constitutive activation of the TSH receptor. Neither parent carried this mutation indicating that the child has acquired a de novo germline mutation. CONCLUSIONS We report the first case of squamosal suture craniosynostosis in a patient with non-autoimmune hyperthyroidism. Squamosal suture craniosynotosis is rare, often has a subtle presentation, and should be considered in all patients with this condition because prompt treatment of hyperthyroidism and craniosynotosis repair can lead to normalization of neurodevelopment.
Collapse
Affiliation(s)
- Reeti Chawla
- 1 Division of Pediatric Endocrinology, Phoenix Children's Hospital , Phoenix, Arizona
| | - Tord D Alden
- 2 Division of Neurosurgery, Ann and Robert H. Lurie Children's Hospital of Chicago , Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Aigerim Bizhanova
- 3 Department of Biology, Harold Washington College , Chicago, Illinois
| | - Rachel Kadakia
- 4 Division of Pediatric Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago , Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Wendy Brickman
- 4 Division of Pediatric Endocrinology, Ann and Robert H. Lurie Children's Hospital of Chicago , Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Peter A Kopp
- 5 Division of Endocrinology Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine , Chicago, Illinois
| |
Collapse
|
41
|
Bassett JHD, van der Spek A, Logan JG, Gogakos A, Bagchi-Chakraborty J, Williams AJ, Murphy E, van Zeijl C, Down J, Croucher PI, Boyde A, Boelen A, Williams GR. Thyrostimulin Regulates Osteoblastic Bone Formation During Early Skeletal Development. Endocrinology 2015; 156:3098-113. [PMID: 26018249 PMCID: PMC4541616 DOI: 10.1210/en.2014-1943] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ancestral glycoprotein hormone thyrostimulin is a heterodimer of unique glycoprotein hormone subunit alpha (GPA)2 and glycoprotein hormone subunit beta (GPB)5 subunits with high affinity for the TSH receptor. Transgenic overexpression of GPB5 in mice results in cranial abnormalities, but the role of thyrostimulin in bone remains unknown. We hypothesized that thyrostimulin exerts paracrine actions in bone and determined: 1) GPA2 and GPB5 expression in osteoblasts and osteoclasts, 2) the skeletal consequences of thyrostimulin deficiency in GPB5 knockout (KO) mice, and 3) osteoblast and osteoclast responses to thyrostimulin treatment. Gpa2 and Gpb5 expression was identified in the newborn skeleton but declined rapidly thereafter. GPA2 and GPB5 mRNAs were also expressed in primary osteoblasts and osteoclasts at varying concentrations. Juvenile thyrostimulin-deficient mice had increased bone volume and mineralization as a result of increased osteoblastic bone formation. However, thyrostimulin failed to induce a canonical cAMP response or activate the noncanonical Akt, ERK, or mitogen-activated protein kinase (P38) signaling pathways in primary calvarial or bone marrow stromal cell-derived osteoblasts. Furthermore, thyrostimulin did not directly inhibit osteoblast proliferation, differentiation or mineralization in vitro. These studies identify thyrostimulin as a negative but indirect regulator of osteoblastic bone formation during skeletal development.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anne van der Spek
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - John G Logan
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Apostolos Gogakos
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jayashree Bagchi-Chakraborty
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | | | - Elaine Murphy
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Clementine van Zeijl
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Jenny Down
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Peter I Croucher
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Alan Boyde
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Anita Boelen
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory (J.H.D.B., J.G.L., A.G., J.B.C., E.M., G.R.W.), Department of Medicine, Imperial College London, London, W12 0NN United Kingdom; Department of Endocrinology (A.v.d.S., C.v.Z., A.Boe.), Academic Medical Centre, University of Amsterdam, 1100 DD Amsterdam, The Netherlands; Bone Biology Program (J.D., P.I.C.), Garvan Institute of Medical Research, Sydney, NSW 2010 Australia; and Centre for Oral Growth and Development (A.Boy.), Queen Mary, University of London, London, E1 4NS United Kingdom
| |
Collapse
|
42
|
Tripathi YB, Pandey N. Carbimazole inhibits TNF-α expression in Fat-induced hypothyroidism. J Diabetes Metab Disord 2014; 13:83. [PMID: 25258706 PMCID: PMC4174658 DOI: 10.1186/s40200-014-0083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 07/22/2014] [Indexed: 11/26/2022]
Abstract
The effect of the carbimazole on expression of tumor necrosis factor (TNF-α) in liver, was investigated in an experimental model of high fat diet (HFD) induced obesity. The HFD (orally given for 4 months) induced TNF-α in liver tissue along with raised serum triglyceride (TG), cholesterol and high TSH (62%). In carbimazole (1 mg/100 gbw) treatment, the induction of TNF-α was significantly inhibited, without affecting other parameters. It also improved the liver function, which was raised due to HFD in experimental control rats.
Collapse
Affiliation(s)
- Yamani Bhusan Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| | - Nidhi Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005 India
| |
Collapse
|
43
|
Garin MC, Arnold AM, Lee JS, Robbins J, Cappola AR. Subclinical thyroid dysfunction and hip fracture and bone mineral density in older adults: the cardiovascular health study. J Clin Endocrinol Metab 2014; 99:2657-64. [PMID: 24878045 PMCID: PMC4121038 DOI: 10.1210/jc.2014-1051] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Subclinical thyroid dysfunction is common in the elderly, yet its relationship with hip fracture and bone mineral density (BMD) is unclear. OBJECTIVE We examined the association between endogenous subclinical hyper- and hypothyroidism and hip fracture and BMD in older adults. METHODS A total of 4936 US individuals 65 years old or older enrolled in the Cardiovascular Health Study and not taking thyroid preparations were included. Analyses of incident hip fracture were performed by thyroid status, over a median follow-up of 12 years. A cross-sectional analysis of thyroid status and BMD was performed in a subset of 1317 participants who had dual-energy x-ray absorptiometry scans. Models were adjusted for risk factors and stratified by sex. RESULTS No association was found between subclinical hypothyroidism and incident hip fracture compared with euthyroidism, when assessed at a single time point or persisting at two time points, in either women [hazard ratio (HR) 0.91, 95% confidence interval (CI) 0.69-1.20 for a single and HR 0.79, 95% CI 0.52-1.21 for two time points] or men (HR 1.27, 95% CI 0.82-1.95 for a single and HR 1.09, 95% CI 0.57-2.10 for two time points). Likewise, no association was found between subclinical hyperthyroidism and incident hip fracture in either sex (HR 1.11, 95% CI 0.55-2.25 in women and HR 1.78, 95% CI 0.56-5.66 in men). No association was found between subclinical thyroid dysfunction and BMD at the lumbar spine, total hip, or femoral neck sites. CONCLUSIONS Our data suggest no association between subclinical hypothyroidism or subclinical hyperthyroidism and hip fracture risk or BMD in older men and women. Additional data are needed to improve the precision of estimates for subclinical hyperthyroidism and in men.
Collapse
Affiliation(s)
- Margaret C Garin
- Division of Endocrinology, Diabetes, and Metabolism (M.C.G., A.R.C.), Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104; Department of Biostatistics (A.M.A.), University of Washington, Seattle, Washington 98155; Division of Endocrinology, Gerontology, and Metabolism (J.S.L.), Stanford University School of Medicine and Veterans Affairs Palo Alto Health Care System (J.S.L.), Palo Alto, California 94305; and Division of General Medicine (J.R.), University of California, Davis, Sacramento, California 95817
| | | | | | | | | |
Collapse
|
44
|
Endo T, Kobayashi T. Excess TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate. Am J Physiol Endocrinol Metab 2013; 305:E660-6. [PMID: 23880310 DOI: 10.1152/ajpendo.00067.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypothyroidism in the young leads to irreversible growth failure. hyt/hyt Mice have a nonfunctional TSH receptor (TSHR) and are severely hypothyroid, but growth retardation was not observed in adult mice. We found that epiphysial cartilage as well as cultured chondrocytes expressed functional TSHR at levels comparable to that seen in the thyroid, and that addition of TSH to cultured chondrocytes suppressed expression of chondrocyte differentiation marker genes such as Sox-9 and type IIa collagen. Next, we compared the long bone phenotypes of two distinct mouse models of hypothyroidism: thyroidectomized (THYx) mice and hyt/hyt mice. Although both THYx and hyt/hyt mice were severely hypothyroid and had similar serum Ca(2+) and growth hormone levels, the tibia was shorter and the proliferating and hypertrophic zones in the growth plate was significantly narrower in THYx mice than in hyt/hyt mice. Supplementation of hyt/hyt mice thyroid hormone resulted in a wider growth plate compared with that of wild-type mice. Expressions of chondrocyte differentiation marker genes Sox-9 and type IIa collagen in growth plate from THYx mice were 52 and 60% lower than those of hyt/hyt mice, respectively. High serum TSH causes abnormal skeletal development in young mice with hypothyroidism via suppressive effects on the growth plate.
Collapse
Affiliation(s)
- Toyoshi Endo
- Third Department of Internal Medicine, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo City, Yamanashi, Japan
| | | |
Collapse
|
45
|
FSH and TSH in the regulation of bone mass: the pituitary/immune/bone axis. Clin Dev Immunol 2013; 2013:382698. [PMID: 23818914 PMCID: PMC3683445 DOI: 10.1155/2013/382698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 11/21/2022]
Abstract
Recent evidences have highlighted that the pituitary hormones have profound effects on bone, so that the pituitary-bone axis is now becoming an important issue in the skeletal biology. Here, we discuss the topical evidence about the dysfunction of the pituitary-bone axis that leads to osteoporotic bone loss. We will explore the context of FSH and TSH hormones arguing their direct or indirect role in bone loss. In addition, we will focus on the knowledge that both FSH and TSH have influence on proinflammatory and proosteoclastogenic cytokine expression, such as TNFα and IL-1, underlining the correlation of pituitary-bone axis to the immune system.
Collapse
|
46
|
Genetic confirmation for a central role for TNFα in the direct action of thyroid stimulating hormone on the skeleton. Proc Natl Acad Sci U S A 2013; 110:9891-6. [PMID: 23716650 DOI: 10.1073/pnas.1308336110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Clinical data showing correlations between low thyroid-stimulating hormone (TSH) levels and high bone turnover markers, low bone mineral density, and an increased risk of osteoporosis-related fractures are buttressed by mouse genetic and pharmacological studies identifying a direct action of TSH on the skeleton. Here we show that the skeletal actions of TSH deficiency are mediated, in part, through TNFα. Compound mouse mutants generated by genetically deleting the Tnfα gene on a Tshr(-/-) (homozygote) or Tshr(+/-) (heterozygote) background resulted in full rescue of the osteoporosis, low bone formation, and hyperresorption that accompany TSH deficiency. Studies using ex vivo bone marrow cell cultures showed that TSH inhibits and stimulates TNFα production from macrophages and osteoblasts, respectively. TNFα, in turn, stimulates osteoclastogenesis but also enhances the production in bone marrow of a variant TSHβ. This locally produced TSH suppresses osteoclast formation in a negative feedback loop. We speculate that TNFα elevations due to low TSH signaling in human hyperthyroidism contribute to the bone loss that has traditionally been attributed solely to high thyroid hormone levels.
Collapse
|
47
|
Chin KY, Ima-Nirwana S, Mohamed IN, Aminuddin A, Johari MH, Ngah WZW. Thyroid-stimulating hormone is significantly associated with bone health status in men. Int J Med Sci 2013; 10:857-63. [PMID: 23781131 PMCID: PMC3675499 DOI: 10.7150/ijms.5870] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Accepted: 03/18/2013] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND AND AIM Recent studies revealed a novel association between thyroid-stimulating hormone (TSH) and bone health status in healthy male populations. The present study aimed to validate this association and provide new information on the relationship between TSH levels and calcaneal speed of sound (SOS) in men. METHODS This cross-sectional study recruited 681 men with complete data of calcaneal SOS, body anthropometry, serum TSH, free triiodothyronine (FT3) and free thyroxine (FT4) levels. RESULTS All subjects had FT3 and FT4 levels within the in-house reference range and 13 subjects had lower than normal TSH levels. The results revealed that the SOS value of subjects was significantly associated with TSH after multiple adjustments (p<0.05). When subjects were divided into quintiles according to their TSH levels, the difference of SOS between men with low-normal TSH and high-normal TSH contributed significantly to the association between TSH and bone health status (p<0.05). The significance of the association persisted with the inclusion and exclusion of subclinical hyperthyroid subjects. CONCLUSIONS There was a significant association between TSH levels and bone health status in men as assessed by quantitative ultrasound. This age-independent association between TSH and SOS might explain some of the individual variation of bone health status in men.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Pharmacology Department, Faculty of Medicine, Universiti Kebangsaan Malaysia
| | | | | | | | | | | |
Collapse
|
48
|
Liu RD, Chen RX, Li WR, Huang YL, Li WH, Cai GR, Zhang H. The Glu727 Allele of Thyroid Stimulating Hormone Receptor Gene is Associated with Osteoporosis. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 4:300-4. [PMID: 22866266 PMCID: PMC3409653 DOI: 10.4103/1947-2714.98588] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: Published data indicate that thyroid stimulating hormone receptor (TSHR) activities are associated with osteoporosis in some patients. Aim: This study aimed to elucidate whether a given polymorphism of the TSHR gene is associated with osteoporosis. Materials and Methods: One hundred and fifty subjects with osteoporosis were recruited in this study. The diagnosis of osteoporosis was performed with quantitative ultrasound system. The TSHR gene polymorphism was examined by polymerase chain reaction–restriction fragment length polymorphism. Results: The results showed a nucleotide substitution in the first position of codon 36 of the TSHR gene. The nucleotide substitution was from G to C, leading to a 36D → 36H change (D36H) in the predicted amino acid sequence of the receptor. The change did not show significance between healthy subjects and patients with osteoporosis (P > 0.05). On the other hand, we identified another single nucleotide polymorphism that is a C-to-G substitution at codon 727 (GAC to GAG); its frequency was significantly higher in patients with osteoporosis than that in healthy subjects. Using logistic regression analysis, significant correlation was revealed between the genotype D727E and the serum levels of TSH, or the quantitative ultrasound value of the calcaneal bone. Conclusions: The present study suggests that the genotype D727E of the TSHR, but not the genotype D36H, may be a genetic risk factor for osteoporosis.
Collapse
Affiliation(s)
- Ren-De Liu
- Department of Orthopedics, Shaoguan First People's Hospital, Guangdong Medical University, Shaoguan, China
| | | | | | | | | | | | | |
Collapse
|
49
|
Ramajayam G, Vignesh RC, Karthikeyan S, Senthil Kumar K, Karthikeyan GD, Veni S, Sridhar M, Arunakaran J, Michael Aruldhas M, Srinivasan N. Regulation of insulin-like growth factors and their binding proteins by thyroid stimulating hormone in human osteoblast-like (SaOS2) cells. Mol Cell Biochem 2012; 368:77-88. [DOI: 10.1007/s11010-012-1345-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/16/2012] [Indexed: 11/25/2022]
|
50
|
Abstract
Euthyroid status is essential for normal skeletal development and the maintenance of adult bone structure and strength. Established thyrotoxicosis has long been recognised as a cause of high bone turnover osteoporosis and fracture but more recent studies have suggested that subclinical hyperthyroidism and long-term suppressive doses of thyroxine (T4) may also result in decreased bone mineral density (BMD) and an increased risk of fragility fracture, particularly in postmenopausal women. Furthermore, large population studies of euthyroid individuals have demonstrated that a hypothalamic-pituitary-thyroid axis set point at the upper end of the normal reference range is associated with reduced BMD and increased fracture susceptibility. Despite these findings, the cellular and molecular mechanisms of thyroid hormone action in bone remain controversial and incompletely understood. In this review, we discuss the role of thyroid hormones in bone and the skeletal consequences of hyperthyroidism.
Collapse
Affiliation(s)
- Jonathan J Nicholls
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, Room 7N2b, Commonwealth Building, Du Cane Road, London W12 0NN, UK
| | | | | | | |
Collapse
|