1
|
Moore E, Zhao R, McKinney MC, Yi K, Wood C, Trainor P. Cell extrusion - a novel mechanism driving neural crest cell delamination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584232. [PMID: 38559094 PMCID: PMC10979875 DOI: 10.1101/2024.03.09.584232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency, that contribute to nearly every tissue and organ system throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube, during neurulation. Their delamination and migration are crucial events in embryo development as the differentiation of NCC is heavily influenced by their final resting locations. Previous work in avian and aquatic species has shown that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these stem and progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular drivers facilitating NCC delamination in mammals are poorly understood. We performed live timelapse imaging of NCC delamination in mouse embryos and discovered a group of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with most delaminating NCC. High magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed these round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, we demonstrate that cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1, a key regulator of the live cell extrusion pathway, revealing a new role for PIEZO1 in neural crest cell development. Our results elucidating the cellular and molecular dynamics orchestrating NCC delamination support a model in which high pressure and tension in the neuroepithelium results in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT. This model has broad implications for our understanding of cell delamination in development and disease.
Collapse
Affiliation(s)
- Emma Moore
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Paul Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
2
|
Yagi H, Cui C, Saydmohammed M, Gabriel G, Baker C, Devine W, Wu Y, Lin JH, Malek M, Bais A, Murray S, Aronow B, Tsang M, Kostka D, Lo CW. Spatial transcriptome profiling uncovers metabolic regulation of left-right patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.21.537827. [PMID: 37131609 PMCID: PMC10153223 DOI: 10.1101/2023.04.21.537827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Left-right patterning disturbance can cause severe birth defects, but it remains least understood of the three body axes. We uncovered an unexpected role for metabolic regulation in left-right patterning. Analysis of the first spatial transcriptome profile of left-right patterning revealed global activation of glycolysis, accompanied by right-sided expression of Bmp7 and genes regulating insulin growth factor signaling. Cardiomyocyte differentiation was left-biased, which may underlie the specification of heart looping orientation. This is consistent with known Bmp7 stimulation of glycolysis and glycolysis suppression of cardiomyocyte differentiation. Liver/lung laterality may be specified via similar metabolic regulation of endoderm differentiation. Myo1d , found to be left-sided, was shown to regulate gut looping in mice, zebrafish, and human. Together these findings indicate metabolic regulation of left-right patterning. This could underlie high incidence of heterotaxy-related birth defects in maternal diabetes, and the association of PFKP, allosteric enzyme regulating glycolysis, with heterotaxy. This transcriptome dataset will be invaluable for interrogating birth defects involving laterality disturbance.
Collapse
|
3
|
Yagi H, Lo CW. Left-Sided Heart Defects and Laterality Disturbance in Hypoplastic Left Heart Syndrome. J Cardiovasc Dev Dis 2023; 10:jcdd10030099. [PMID: 36975863 PMCID: PMC10054755 DOI: 10.3390/jcdd10030099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypoplastic left heart syndrome (HLHS) is a complex congenital heart disease characterized by hypoplasia of left-sided heart structures. The developmental basis for restriction of defects to the left side of the heart in HLHS remains unexplained. The observed clinical co-occurrence of rare organ situs defects such as biliary atresia, gut malrotation, or heterotaxy with HLHS would suggest possible laterality disturbance. Consistent with this, pathogenic variants in genes regulating left-right patterning have been observed in HLHS patients. Additionally, Ohia HLHS mutant mice show splenic defects, a phenotype associated with heterotaxy, and HLHS in Ohia mice arises in part from mutation in Sap130, a component of the Sin3A chromatin complex known to regulate Lefty1 and Snai1, genes essential for left-right patterning. Together, these findings point to laterality disturbance mediating the left-sided heart defects associated with HLHS. As laterality disturbance is also observed for other CHD, this suggests that heart development integration with left-right patterning may help to establish the left-right asymmetry of the cardiovascular system essential for efficient blood oxygenation.
Collapse
Affiliation(s)
- Hisato Yagi
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| | - Cecilia W Lo
- Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15201, USA
| |
Collapse
|
4
|
A Rare Case of Polysplenia Syndrome Associated with Severe Cardiac Malformations and Congenital Alveolar Dysplasia in a One-Month-Old Infant: A Complete Macroscopic and Histopathologic Study. J Cardiovasc Dev Dis 2022; 9:jcdd9050135. [PMID: 35621846 PMCID: PMC9144318 DOI: 10.3390/jcdd9050135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023] Open
Abstract
Polysplenia syndrome represents a type of left atrial isomerism characterized by multiple small spleens, often associated with cardiac malformations and with situs ambiguus of the abdominal organs. The case presented is of a one-month-old male infant, weighing approximately 3000 g, born at the County Clinical Emergency Hospital of Sibiu, who was hospitalized from birth until death. The patient suffered cardio-respiratory arrest due to severe hypoxia and septicemia on the background of a series of complex cardiac malformations associated with congenital abdominal organ anomalies. Examination of the body revealed a common atrium with complete atrioventricular canal defect, left ventricular hypertrophy, right ventricle hypoplasia, truncus arteriosus, superior vena cava duplication, bilobation of the lungs, situs ambiguous of the abdominal organs with right-sided stomach, a midline liver, gall bladder agenesis, multiple right-sided spleens and complete inversion of the intestines and pancreas. Histopathology concluded that the patient suffered cardiac lesions consistent with infantile lactic acidosis, as well as pulmonary modifications suggesting congenital alveolar dysplasia and altered hepatic architecture compatible with fibrosis.
Collapse
|
5
|
Zhao R, Trainor PA. Epithelial to mesenchymal transition during mammalian neural crest cell delamination. Semin Cell Dev Biol 2022; 138:54-67. [PMID: 35277330 DOI: 10.1016/j.semcdb.2022.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/18/2022]
Abstract
Epithelial to mesenchymal transition (EMT) is a well-defined cellular process that was discovered in chicken embryos and described as "epithelial to mesenchymal transformation" [1]. During EMT, epithelial cells lose their epithelial features and acquire mesenchymal character with migratory potential. EMT has subsequently been shown to be essential for both developmental and pathological processes including embryo morphogenesis, wound healing, tissue fibrosis and cancer [2]. During the past 5 years, interest and study of EMT especially in cancer biology have increased exponentially due to the implied role of EMT in multiple aspects of malignancy such as cell invasion, survival, stemness, metastasis, therapeutic resistance and tumor heterogeneity [3]. Since the process of EMT in embryogenesis and cancer progression shares similar phenotypic changes, core transcription factors and molecular mechanisms, it has been proposed that the initiation and development of carcinoma could be attributed to abnormal activation of EMT factors usually required for normal embryo development. Therefore, developmental EMT mechanisms, whose timing, location, and tissue origin are strictly regulated, could prove useful for uncovering new insights into the phenotypic changes and corresponding gene regulatory control of EMT under pathological conditions. In this review, we initially provide an overview of the phenotypic and molecular mechanisms involved in EMT and discuss the newly emerging concept of epithelial to mesenchymal plasticity (EMP). Then we focus on our current knowledge of a classic developmental EMT event, neural crest cell (NCC) delamination, highlighting key differences in our understanding of NCC EMT between mammalian and non-mammalian species. Lastly, we highlight available tools and future directions to advance our understanding of mammalian NCC EMT.
Collapse
Affiliation(s)
- Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
6
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Zhang A, Aslam H, Sharma N, Warmflash A, Fakhouri WD. Conservation of Epithelial-to-Mesenchymal Transition Process in Neural Crest Cells and Metastatic Cancer. Cells Tissues Organs 2021; 210:151-172. [PMID: 34218225 DOI: 10.1159/000516466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/12/2021] [Indexed: 11/19/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a highly conserved cellular process in several species, from worms to humans. EMT plays a fundamental role in early embryogenesis, wound healing, and cancer metastasis. For neural crest cell (NCC) development, EMT typically results in forming a migratory and potent cell population that generates a wide variety of cell and tissue, including cartilage, bone, connective tissue, endocrine cells, neurons, and glia amongst many others. The degree of conservation between the signaling pathways that regulate EMT during development and metastatic cancer (MC) has not been fully established, despite ample studies. This systematic review and meta-analysis dissects the major signaling pathways involved in EMT of NCC development and MC to unravel the similarities and differences. While the FGF, TGFβ/BMP, SHH, and NOTCH pathways have been rigorously investigated in both systems, the EGF, IGF, HIPPO, Factor Receptor Superfamily, and their intracellular signaling cascades need to be the focus of future NCC studies. In general, meta-analyses of the associated signaling pathways show a significant number of overlapping genes (particularly ligands, transcription regulators, and targeted cadherins) involved in each signaling pathway of both systems without stratification by body segments and cancer type. Lack of stratification makes it difficult to meaningfully evaluate the intracellular downstream effectors of each signaling pathway. Finally, pediatric neuroblastoma and melanoma are NCC-derived malignancies, which emphasize the importance of uncovering the EMT events that convert NCC into treatment-resistant malignant cells.
Collapse
Affiliation(s)
- April Zhang
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hira Aslam
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Neha Sharma
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Aryeh Warmflash
- Department of Biosciences, Rice University, Houston, Texas, USA
| | - Walid D Fakhouri
- Center for Craniofacial Research, Department of Diagnostic and Biomedical Sciences, School of Dentistry, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
8
|
Little RB, Norris DP. Right, left and cilia: How asymmetry is established. Semin Cell Dev Biol 2021; 110:11-18. [PMID: 32571625 DOI: 10.1016/j.semcdb.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022]
Abstract
The initial breaking of left-right (L-R) symmetry in the embryo is controlled by a motile-cilia-driven leftward fluid flow in the left-right organiser (LRO), resulting in L-R asymmetric gene expression flanking the LRO. Ultimately this results in left- but not right-sided activation of the Nodal-Pitx2 pathway in more lateral tissues. While aspects of the initial breaking event clearly vary between vertebrates, events in the Lateral Plate Mesoderm (LPM) are conserved through the vertebrate lineage. Evidence from model systems and humans highlights the role of cilia both in the initial symmetry breaking and in the ability of more lateral tissues to exhibit asymmetric gene expression. In this review we concentrate on the process of L-R determination in mouse and humans.
Collapse
Affiliation(s)
- Rosie B Little
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - Dominic P Norris
- MRC Harwell Institute, Harwell Campus, Oxfordshire, OX11 0RD, UK.
| |
Collapse
|
9
|
Sanders LM, Cheney A, Seninge L, van den Bout A, Chen M, Beale HC, Kephart ET, Pfeil J, Learned K, Lyle AG, Bjork I, Haussler D, Salama SR, Vaske OM. Identification of a differentiation stall in epithelial mesenchymal transition in histone H3-mutant diffuse midline glioma. Gigascience 2020; 9:giaa136. [PMID: 33319914 PMCID: PMC7736793 DOI: 10.1093/gigascience/giaa136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 11/05/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Diffuse midline gliomas with histone H3 K27M (H3K27M) mutations occur in early childhood and are marked by an invasive phenotype and global decrease in H3K27me3, an epigenetic mark that regulates differentiation and development. H3K27M mutation timing and effect on early embryonic brain development are not fully characterized. RESULTS We analyzed multiple publicly available RNA sequencing datasets to identify differentially expressed genes between H3K27M and non-K27M pediatric gliomas. We found that genes involved in the epithelial-mesenchymal transition (EMT) were significantly overrepresented among differentially expressed genes. Overall, the expression of pre-EMT genes was increased in the H3K27M tumors as compared to non-K27M tumors, while the expression of post-EMT genes was decreased. We hypothesized that H3K27M may contribute to gliomagenesis by stalling an EMT required for early brain development, and evaluated this hypothesis by using another publicly available dataset of single-cell and bulk RNA sequencing data from developing cerebral organoids. This analysis revealed similarities between H3K27M tumors and pre-EMT normal brain cells. Finally, a previously published single-cell RNA sequencing dataset of H3K27M and non-K27M gliomas revealed subgroups of cells at different stages of EMT. In particular, H3.1K27M tumors resemble a later EMT stage compared to H3.3K27M tumors. CONCLUSIONS Our data analyses indicate that this mutation may be associated with a differentiation stall evident from the failure to proceed through the EMT-like developmental processes, and that H3K27M cells preferentially exist in a pre-EMT cell phenotype. This study demonstrates how novel biological insights could be derived from combined analysis of several previously published datasets, highlighting the importance of making genomic data available to the community in a timely manner.
Collapse
Affiliation(s)
- Lauren M Sanders
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Allison Cheney
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Lucas Seninge
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Anouk van den Bout
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Marissa Chen
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Holly C Beale
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Ellen Towle Kephart
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Jacob Pfeil
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Katrina Learned
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - A Geoffrey Lyle
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Isabel Bjork
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| | - David Haussler
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Sofie R Salama
- Department of Biomolecular Engineering, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, 1156 High Street, Santa Cruz, CA 95064, USA
| | - Olena M Vaske
- University of California Santa Cruz Genomics Institute, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USA
| |
Collapse
|
10
|
Transient Nodal Signaling in Left Precursors Coordinates Opposed Asymmetries Shaping the Heart Loop. Dev Cell 2020; 55:413-431.e6. [PMID: 33171097 DOI: 10.1016/j.devcel.2020.10.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
The secreted factor Nodal, known as a major left determinant, is associated with severe heart defects. Yet, it has been unclear how it regulates asymmetric morphogenesis such as heart looping, which align cardiac chambers to establish the double blood circulation. Here, we report that Nodal is transiently active in precursors of the mouse heart tube poles, before looping. In conditional mutants, we show that Nodal is not required to initiate asymmetric morphogenesis. We provide evidence of a heart-specific random generator of asymmetry that is independent of Nodal. Using 3D quantifications and simulations, we demonstrate that Nodal functions as a bias of this mechanism: it is required to amplify and coordinate opposed left-right asymmetries at the heart tube poles, thus generating a robust helical shape. We identify downstream effectors of Nodal signaling, regulating asymmetries in cell proliferation, differentiation, and extracellular matrix composition. Our study uncovers how Nodal regulates asymmetric organogenesis.
Collapse
|
11
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
12
|
Dias A, Lozovska A, Wymeersch FJ, Nóvoa A, Binagui-Casas A, Sobral D, Martins GG, Wilson V, Mallo M. A Tgfbr1/Snai1-dependent developmental module at the core of vertebrate axial elongation. eLife 2020; 9:56615. [PMID: 32597756 PMCID: PMC7324159 DOI: 10.7554/elife.56615] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022] Open
Abstract
Formation of the vertebrate postcranial body axis follows two sequential but distinct phases. The first phase generates pre-sacral structures (the so-called primary body) through the activity of the primitive streak on axial progenitors within the epiblast. The embryo then switches to generate the secondary body (post-sacral structures), which depends on axial progenitors in the tail bud. Here we show that the mammalian tail bud is generated through an independent functional developmental module, concurrent but functionally different from that generating the primary body. This module is triggered by convergent Tgfbr1 and Snai1 activities that promote an incomplete epithelial to mesenchymal transition on a subset of epiblast axial progenitors. This EMT is functionally different from that coordinated by the primitive streak, as it does not lead to mesodermal differentiation but brings axial progenitors into a transitory state, keeping their progenitor activity to drive further axial body extension.
Collapse
Affiliation(s)
- André Dias
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - Filip J Wymeersch
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Ana Nóvoa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Gabriel G Martins
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Valerie Wilson
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| | - Moises Mallo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
13
|
Francou A, Anderson KV. The Epithelial-to-Mesenchymal Transition (EMT) in Development and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019; 4:197-220. [PMID: 34113749 DOI: 10.1146/annurev-cancerbio-030518-055425] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epithelial-to-mesenchymal transitions (EMTs) are complex cellular processes where cells undergo dramatic changes in signaling, transcriptional programming, and cell shape, while directing the exit of cells from the epithelium and promoting migratory properties of the resulting mesenchyme. EMTs are essential for morphogenesis during development and are also a critical step in cancer progression and metastasis formation. Here we provide an overview of the molecular regulation of the EMT process during embryo development, focusing on chick and mouse gastrulation and neural crest development. We go on to describe how EMT regulators participate in the progression of pancreatic and breast cancer in mouse models, and discuss the parallels with developmental EMTs and how these help to understand cancer EMTs. We also highlight the differences between EMTs in tumor and in development to arrive at a broader view of cancer EMT. We conclude by discussing how further advances in the field will rely on in vivo dynamic imaging of the cellular events of EMT.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York NY 10065 USA
| |
Collapse
|
14
|
MicroRNAs Establish the Right-Handed Dominance of the Heart Laterality Pathway in Vertebrates. Dev Cell 2019; 51:446-459.e5. [DOI: 10.1016/j.devcel.2019.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 08/16/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022]
|
15
|
Li J, Perfetto M, Materna C, Li R, Thi Tran H, Vleminckx K, Duncan MK, Wei S. A new transgenic reporter line reveals Wnt-dependent Snai2 re-expression and cranial neural crest differentiation in Xenopus. Sci Rep 2019; 9:11191. [PMID: 31371771 PMCID: PMC6672020 DOI: 10.1038/s41598-019-47665-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
During vertebrate embryogenesis, the cranial neural crest (CNC) forms at the neural plate border and subsequently migrates and differentiates into many types of cells. The transcription factor Snai2, which is induced by canonical Wnt signaling to be expressed in the early CNC, is pivotal for CNC induction and migration in Xenopus. However, snai2 expression is silenced during CNC migration, and its roles at later developmental stages remain unclear. We generated a transgenic X. tropicalis line that expresses enhanced green fluorescent protein (eGFP) driven by the snai2 promoter/enhancer, and observed eGFP expression not only in the pre-migratory and migrating CNC, but also the differentiating CNC. This transgenic line can be used directly to detect deficiencies in CNC development at various stages, including subtle perturbation of CNC differentiation. In situ hybridization and immunohistochemistry confirm that Snai2 is re-expressed in the differentiating CNC. Using a separate transgenic Wnt reporter line, we show that canonical Wnt signaling is also active in the differentiating CNC. Blocking Wnt signaling shortly after CNC migration causes reduced snai2 expression and impaired differentiation of CNC-derived head cartilage structures. These results suggest that Wnt signaling is required for snai2 re-expression and CNC differentiation.
Collapse
Affiliation(s)
- Jiejing Li
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.,Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming, 650032, China
| | - Mark Perfetto
- Department of Biology, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Christopher Materna
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Rebecca Li
- Brown University, Providence, RI, 02912, USA
| | - Hong Thi Tran
- Department for Molecular Biomedical Research and Center for Medical Genetics, Ghent University, B-9052, Ghent, Belgium
| | - Kris Vleminckx
- Department for Molecular Biomedical Research and Center for Medical Genetics, Ghent University, B-9052, Ghent, Belgium
| | - Melinda K Duncan
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
16
|
Non-redundant functions of EMT transcription factors. Nat Cell Biol 2019; 21:102-112. [PMID: 30602760 DOI: 10.1038/s41556-018-0196-y] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a crucial embryonic programme that is executed by various EMT transcription factors (EMT-TFs) and is aberrantly activated in cancer and other diseases. However, the causal role of EMT and EMT-TFs in different disease processes, especially cancer and metastasis, continues to be debated. In this Review, we identify and describe specific, non-redundant functions of the different EMT-TFs and discuss the reasons that may underlie disputes about EMT in cancer.
Collapse
|
17
|
Betters E, Charney RM, Garcia-Castro MI. Early specification and development of rabbit neural crest cells. Dev Biol 2018; 444 Suppl 1:S181-S192. [PMID: 29932896 PMCID: PMC6685428 DOI: 10.1016/j.ydbio.2018.06.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 11/19/2022]
Abstract
The phenomenal migratory and differentiation capacity of neural crest cells has been well established across model organisms. While the earliest stages of neural crest development have been investigated in non-mammalian model systems such as Xenopus and Aves, the early specification of this cell population has not been evaluated in mammalian embryos, of which the murine model is the most prevalent. Towards a more comprehensive understanding of mammalian neural crest formation and human comparative studies, we have used the rabbit as a mammalian system for the study of early neural crest specification and development. We examine the expression profile of well-characterized neural crest markers in rabbit embryos across developmental time from early gastrula to later neurula stages, and provide a comparison to markers of migratory neural crest in the chick. Importantly, we apply explant specification assays to address the pivotal question of mammalian neural crest ontogeny, and provide the first evidence that a specified population of neural crest cells exists in the rabbit gastrula prior to the overt expression of neural crest markers. Finally, we demonstrate that FGF signaling is necessary for early rabbit neural crest formation, as SU5402 treatment strongly represses neural crest marker expression in explant assays. This study pioneers the rabbit as a model for neural crest development, and provides the first demonstration of mammalian neural crest specification and the requirement of FGF signaling in this process.
Collapse
Affiliation(s)
- Erin Betters
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Rebekah M Charney
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA
| | - Martín I Garcia-Castro
- School of Medicine Division of Biomedical Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
18
|
Desgrange A, Le Garrec JF, Meilhac SM. Left-right asymmetry in heart development and disease: forming the right loop. Development 2018; 145:145/22/dev162776. [PMID: 30467108 DOI: 10.1242/dev.162776] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Extensive studies have shown how bilateral symmetry of the vertebrate embryo is broken during early development, resulting in a molecular left-right bias in the mesoderm. However, how this early asymmetry drives the asymmetric morphogenesis of visceral organs remains poorly understood. The heart provides a striking model of left-right asymmetric morphogenesis, undergoing rightward looping to shape an initially linear heart tube and align cardiac chambers. Importantly, abnormal left-right patterning is associated with severe congenital heart defects, as exemplified in heterotaxy syndrome. Here, we compare the mechanisms underlying the rightward looping of the heart tube in fish, chick and mouse embryos. We propose that heart looping is not only a question of direction, but also one of fine-tuning shape. This is discussed in the context of evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Jean-François Le Garrec
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
19
|
Wang H, Unternaehrer JJ. Epithelial-mesenchymal Transition and Cancer Stem Cells: At the Crossroads of Differentiation and Dedifferentiation. Dev Dyn 2018; 248:10-20. [DOI: 10.1002/dvdy.24678] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/29/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| | - Juli J. Unternaehrer
- Division of Biochemistry, Department of Basic Sciences; Loma Linda University; Loma Linda California
| |
Collapse
|
20
|
Pla P, Monsoro-Burq AH. The neural border: Induction, specification and maturation of the territory that generates neural crest cells. Dev Biol 2018; 444 Suppl 1:S36-S46. [PMID: 29852131 DOI: 10.1016/j.ydbio.2018.05.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 11/17/2022]
Abstract
The neural crest is induced at the edge between the neural plate and the nonneural ectoderm, in an area called the neural (plate) border, during gastrulation and neurulation. In recent years, many studies have explored how this domain is patterned, and how the neural crest is induced within this territory, that also participates to the prospective dorsal neural tube, the dorsalmost nonneural ectoderm, as well as placode derivatives in the anterior area. This review highlights the tissue interactions, the cell-cell signaling and the molecular mechanisms involved in this dynamic spatiotemporal patterning, resulting in the induction of the premigratory neural crest. Collectively, these studies allow building a complex neural border and early neural crest gene regulatory network, mostly composed by transcriptional regulations but also, more recently, including novel signaling interactions.
Collapse
Affiliation(s)
- Patrick Pla
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Universitaire de France, F-75005, Paris.
| |
Collapse
|
21
|
Zhang C, Miller SF, Roosenboom J, Wehby GL, Moreno Uribe LM, Hecht JT, Deleyiannis FWB, Christensen K, Marazita ML, Weinberg SM. Soft tissue nasal asymmetry as an indicator of orofacial cleft predisposition. Am J Med Genet A 2018; 176:1296-1303. [PMID: 29663709 DOI: 10.1002/ajmg.a.38688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 12/23/2022]
Abstract
The biological relatives of offspring with nonsyndromic orofacial clefts have been shown to exhibit distinctive facial features, including excess asymmetry, which are hypothesized to indicate the presence of genetic risk factors. The significance of excess soft tissue nasal asymmetry in at-risk relatives is unclear and was examined in the present study. Our sample included 164 unaffected parents from families with a history of orofacial clefting and 243 adult controls. Geometric morphometric methods were used to analyze the coordinates of 15 nasal landmarks collected from three-dimensional facial surface images. Following generalized Procrustes analysis, Procrustes ANOVA and MANOVA tests were applied to determine the type and magnitude of nasal asymmetry present in each group. Group differences in mean nasal asymmetry were also assessed via permutation testing. We found that nasal asymmetry in both parents and controls was directional in nature, although the magnitude of the asymmetry was greater in parents. This was confirmed with permutation testing, where the mean nasal asymmetry was significantly different (p < .0001) between parents and controls. The asymmetry was greatest for midline structures and the nostrils. When subsets of parents were subsequently analyzed and compared (parents with bilateral vs. unilateral offspring; parents with left vs. right unilateral offspring), each group showed a similar pattern of asymmetry and could not be distinguished statistically. Thus, the side of the unilateral cleft (right vs. left) in offspring was not associated with the direction of the nasal asymmetry in parents.
Collapse
Affiliation(s)
- Charles Zhang
- Department of Anthropology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Steven F Miller
- Department of Anatomy, Midwestern University, Downers Grove, Illinois
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, Iowa
| | | | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, Texas
| | | | - Kaare Christensen
- Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
22
|
Ocaña OH, Coskun H, Minguillón C, Murawala P, Tanaka EM, Galcerán J, Muñoz-Chápuli R, Nieto MA. A right-handed signalling pathway drives heart looping in vertebrates. Nature 2018; 549:86-90. [PMID: 28880281 PMCID: PMC5590727 DOI: 10.1038/nature23454] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 06/29/2017] [Indexed: 12/19/2022]
Abstract
The majority of animals show external bilateral symmetry, precluding the observation of multiple internal left-right (L/R) asymmetries that are fundamental for organ packaging and function1,2. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail13,4. Despite some existing evidence3,5, it remains unclear whether an equivalent instructive pathway provides right-hand specific information to the embryo. Here we show that in zebrafish, BMP mediates the L/R asymmetric activation of another EMT inducer, Prrx1a, in the lateral plate mesoderm (LPM) with higher levels on the right. Prrx1a drives L/R differential cell movements towards the midline leading to a leftward displacement of the cardiac posterior pole through an actomyosin-dependent mechanism. Downregulation of Prrx1a prevents heart looping and leads to mesocardia. Two parallel and mutually repressed pathways, respectively driven by Nodal and BMP on the left and right LPM, converge on the asymmetric activation of Pitx2 and Prrx1, two transcription factors that integrate left and right information to govern heart morphogenesis. This mechanism is conserved in the chicken embryo and, in the mouse, Snail1 fulfills the role played by Prrx1 in fish and chick. Thus, a differential L/R EMT produces asymmetric cell movements and forces, more prominent from the right, that drive heart laterality in vertebrates.
Collapse
Affiliation(s)
- Oscar H Ocaña
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Hakan Coskun
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | | | - Prayag Murawala
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Elly M Tanaka
- DFG Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstrasse 105, Dresden, Germany
| | - Joan Galcerán
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| | - Ramón Muñoz-Chápuli
- University of Málaga, Department of Animal Biology, E-29071 Málaga, Spain.,Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Málaga, Spain
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Avenida Ramón y Cajal, s/n, Sant Joan d'Alacant, Alicante, Spain
| |
Collapse
|
23
|
The Role of Cerl2 in the Establishment of Left-Right Asymmetries during Axis Formation and Heart Development. J Cardiovasc Dev Dis 2017; 4:jcdd4040023. [PMID: 29367552 PMCID: PMC5753124 DOI: 10.3390/jcdd4040023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
The formation of the asymmetric left-right (LR) body axis is one of the fundamental aspects of vertebrate embryonic development, and one still raising passionate discussions among scientists. Although the conserved role of nodal is unquestionable in this process, several of the details around this signaling cascade are still unanswered. To further understand this mechanism, we have been studying Cerberus-like 2 (Cerl2), an inhibitor of Nodal, and its role in the generation of asymmetries in the early vertebrate embryo. The absence of Cerl2 results in a wide spectrum of malformations commonly known as heterotaxia, which comprises defects in either global organ position (e.g., situs inversus totalis), reversed orientation of at least one organ (e.g., situs ambiguus), and mirror images of usually asymmetric paired organs (e.g., left or right isomerisms of the lungs). Moreover, these laterality defects are frequently associated with congenital heart diseases (e.g., transposition of the great arteries, or atrioventricular septal defects). Here, reviewing the knowledge on the establishment of LR asymmetry in mouse embryos, the emerging conclusion is that as necessary as is the activation of the Nodal signaling cascade, the tight control that Cerl2-mediates on Nodal signaling is equally important, and that generates a further regionalized LR genetic program in the proper time and space.
Collapse
|
24
|
Le Garrec JF, Domínguez JN, Desgrange A, Ivanovitch KD, Raphaël E, Bangham JA, Torres M, Coen E, Mohun TJ, Meilhac SM. A predictive model of asymmetric morphogenesis from 3D reconstructions of mouse heart looping dynamics. eLife 2017; 6:28951. [PMID: 29179813 PMCID: PMC5705212 DOI: 10.7554/elife.28951] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/15/2017] [Indexed: 01/14/2023] Open
Abstract
How left-right patterning drives asymmetric morphogenesis is unclear. Here, we have quantified shape changes during mouse heart looping, from 3D reconstructions by HREM. In combination with cell labelling and computer simulations, we propose a novel model of heart looping. Buckling, when the cardiac tube grows between fixed poles, is modulated by the progressive breakdown of the dorsal mesocardium. We have identified sequential left-right asymmetries at the poles, which bias the buckling in opposite directions, thus leading to a helical shape. Our predictive model is useful to explore the parameter space generating shape variations. The role of the dorsal mesocardium was validated in Shh-/- mutants, which recapitulate heart shape changes expected from a persistent dorsal mesocardium. Our computer and quantitative tools provide novel insight into the mechanism of heart looping and the contribution of different factors, beyond the simple description of looping direction. This is relevant to congenital heart defects.
Collapse
Affiliation(s)
- Jean-François Le Garrec
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Jorge N Domínguez
- Department of Experimental Biology, University of Jaén, CU Las Lagunillas, Jaén, Spain
| | - Audrey Desgrange
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Kenzo D Ivanovitch
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Etienne Raphaël
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| | | | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares, CNIC, Madrid, Spain
| | - Enrico Coen
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | | | - Sigolène M Meilhac
- Imagine - Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France.,INSERM UMR1163, Université Paris Descartes, Paris, France
| |
Collapse
|
25
|
Weaver CA, Miller SF, da Fontoura CSG, Wehby GL, Amendt BA, Holton NE, Allareddy V, Southard TE, Moreno Uribe LM. Candidate gene analyses of 3-dimensional dentoalveolar phenotypes in subjects with malocclusion. Am J Orthod Dentofacial Orthop 2017; 151:539-558. [PMID: 28257739 DOI: 10.1016/j.ajodo.2016.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 08/01/2016] [Accepted: 08/01/2016] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Genetic studies of malocclusion etiology have identified 4 deleterious mutations in genes DUSP6,ARHGAP21, FGF23, and ADAMTS1 in familial Class III cases. Although these variants may have large impacts on Class III phenotypic expression, their low frequency (<1%) makes them unlikely to explain most malocclusions. Thus, much of the genetic variation underlying the dentofacial phenotypic variation associated with malocclusion remains unknown. In this study, we evaluated associations between common genetic variations in craniofacial candidate genes and 3-dimensional dentoalveolar phenotypes in patients with malocclusion. METHODS Pretreatment dental casts or cone-beam computed tomographic images from 300 healthy subjects were digitized with 48 landmarks. The 3-dimensional coordinate data were submitted to a geometric morphometric approach along with principal component analysis to generate continuous phenotypes including symmetric and asymmetric components of dentoalveolar shape variation, fluctuating asymmetry, and size. The subjects were genotyped for 222 single-nucleotide polymorphisms in 82 genes/loci, and phenotpye-genotype associations were tested via multivariate linear regression. RESULTS Principal component analysis of symmetric variation identified 4 components that explained 68% of the total variance and depicted anteroposterior, vertical, and transverse dentoalveolar discrepancies. Suggestive associations (P < 0.05) were identified with PITX2, SNAI3, 11q22.2-q22.3, 4p16.1, ISL1, and FGF8. Principal component analysis for asymmetric variations identified 4 components that explained 51% of the total variations and captured left-to-right discrepancies resulting in midline deviations, unilateral crossbites, and ectopic eruptions. Suggestive associations were found with TBX1AJUBA, SNAI3SATB2, TP63, and 1p22.1. Fluctuating asymmetry was associated with BMP3 and LATS1. Associations for SATB2 and BMP3 with asymmetric variations remained significant after the Bonferroni correction (P <0.00022). Suggestive associations were found for centroid size, a proxy for dentoalveolar size variation with 4p16.1 and SNAI1. CONCLUSIONS Specific genetic pathways associated with 3-dimensional dentoalveolar phenotypic variation in malocclusions were identified.
Collapse
Affiliation(s)
| | - Steven F Miller
- Department of Anatomy, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, Ill; Department of Dental Medicine, College of Dental Medicine-Illinois, Midwestern University, Downers Grove, Ill
| | - Clarissa S G da Fontoura
- The Iowa Institute for Oral and Craniofacial Research, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - George L Wehby
- Department of Health Management and Policy, College of Public Health, University of Iowa, Iowa City, Iowa
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nathan E Holton
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Veeratrishul Allareddy
- Department of Oral Pathology, Radiology and Medicine, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Thomas E Southard
- Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa
| | - Lina M Moreno Uribe
- The Iowa Institute for Oral and Craniofacial Research, College of Dentistry, University of Iowa, Iowa City, Iowa; Department of Orthodontics, College of Dentistry, University of Iowa, Iowa City, Iowa.
| |
Collapse
|
26
|
Taneyhill LA, Schiffmacher AT. Should I stay or should I go? Cadherin function and regulation in the neural crest. Genesis 2017; 55. [PMID: 28253541 DOI: 10.1002/dvg.23028] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 12/20/2022]
Abstract
Our increasing comprehension of neural crest cell development has reciprocally advanced our understanding of cadherin expression, regulation, and function. As a transient population of multipotent stem cells that significantly contribute to the vertebrate body plan, neural crest cells undergo a variety of transformative processes and exhibit many cellular behaviors, including epithelial-to-mesenchymal transition (EMT), motility, collective cell migration, and differentiation. Multiple studies have elucidated regulatory and mechanistic details of specific cadherins during neural crest cell development in a highly contextual manner. Collectively, these results reveal that gradual changes within neural crest cells are accompanied by often times subtle, yet important, alterations in cadherin expression and function. The primary focus of this review is to coalesce recent data on cadherins in neural crest cells, from their specification to their emergence as motile cells soon after EMT, and to highlight the complexities of cadherin expression beyond our current perceptions, including the hypothesis that the neural crest EMT is a transition involving a predominantly singular cadherin switch. Further advancements in genetic approaches and molecular techniques will provide greater opportunities to integrate data from various model systems in order to distinguish unique or overlapping functions of cadherins expressed at any point throughout the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| | - Andrew T Schiffmacher
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, 20742
| |
Collapse
|
27
|
Abstract
The significant parallels between cell plasticity during embryonic development and carcinoma progression have helped us understand the importance of the epithelial-mesenchymal transition (EMT) in human disease. Our expanding knowledge of EMT has led to a clarification of the EMT program as a set of multiple and dynamic transitional states between the epithelial and mesenchymal phenotypes, as opposed to a process involving a single binary decision. EMT and its intermediate states have recently been identified as crucial drivers of organ fibrosis and tumor progression, although there is some need for caution when interpreting its contribution to metastatic colonization. Here, we discuss the current state-of-the-art and latest findings regarding the concept of cellular plasticity and heterogeneity in EMT. We raise some of the questions pending and identify the challenges faced in this fast-moving field.
Collapse
|
28
|
Boer EF, Jette CA, Stewart RA. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts. PLoS One 2016; 11:e0167278. [PMID: 28005909 PMCID: PMC5179070 DOI: 10.1371/journal.pone.0167278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC diseases.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
29
|
Gupta K, Pilli VSS, Aradhyam GK. Left-right axis asymmetry determining human Cryptic gene is transcriptionally repressed by Snail. BMC DEVELOPMENTAL BIOLOGY 2016; 16:39. [PMID: 27793090 PMCID: PMC5084438 DOI: 10.1186/s12861-016-0141-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/24/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND Establishment of the left-right axis is important for positioning organs asymmetrically in the developing vertebrate-embryo. A number of factors like maternally deposited molecules have emerged essential in initiating the specification of the axis; the downstream events, however, are regulated by signal-transduction and gene-expression changes identifying which remains a crucial challenge. The EGF-CFC family member Cryptic, that functions as a co-receptor for some TGF-beta ligands, is developmentally expressed in higher mammals and mutations in the gene cause loss or change in left-right axis asymmetry. Despite the strong phenotype, no transcriptional-regulator of this gene is known till date. RESULTS Using promoter-analyses tools, we found strong evidence that the developmentally essential transcription factor Snail binds to the human Cryptic-promoter. We cloned the promoter-region of human Cryptic in a reporter gene and observed decreased Cryptic-promoter activation upon increasing Snail expression. Further, the expression of Cryptic is down-regulated upon exogenous Snail expression, validating the reporter assays and the previously identified role of Snail as a transcriptional repressor. Finally, we demonstrate using gel-shift assay that Snail in nuclear extract of PANC1 cells interacts with the promoter-construct bearing putative Snail binding sites and confirm this finding using chromatin immunoprecipitation assay. CONCLUSIONS Snail represses the expression of human Cryptic and therefore, might affect the signaling via Nodal that has previously been demonstrated to specify the left-right axis using the EGF-CFC co-receptors.
Collapse
Affiliation(s)
- Kartik Gupta
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vijaya Satish Sekhar Pilli
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Gopala Krishna Aradhyam
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
30
|
Szabo-Rogers H, Yakob W, Liu KJ. Frontal Bone Insufficiency in Gsk3β Mutant Mice. PLoS One 2016; 11:e0149604. [PMID: 26886780 PMCID: PMC4757545 DOI: 10.1371/journal.pone.0149604] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 02/03/2016] [Indexed: 12/17/2022] Open
Abstract
The development of the mammalian skull is a complex process that requires multiple tissue interactions and a balance of growth and differentiation. Disrupting this balance can lead to changes in the shape and size of skull bones, which can have serious clinical implications. For example, insufficient ossification of the bony elements leads to enlarged anterior fontanelles and reduced mechanical protection of the brain. In this report, we find that loss of Gsk3β leads to a fully penetrant reduction of frontal bone size and subsequent enlarged frontal fontanelle. In the absence of Gsk3β the frontal bone primordium undergoes increased cell death and reduced proliferation with a concomitant increase in Fgfr2-IIIc and Twist1 expression. This leads to a smaller condensation and premature differentiation. This phenotype appears to be Wnt-independent and is not rescued by decreasing the genetic dose of β-catenin/Ctnnb1. Taken together, our work defines a novel role for Gsk3β in skull development.
Collapse
Affiliation(s)
- Heather Szabo-Rogers
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Wardati Yakob
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
| | - Karen J. Liu
- Craniofacial Development and Stem Cell Biology, Floor 27, Tower Wing, Guy’s Campus, King’s College London, London, United Kingdom SE1 9RT
- * E-mail:
| |
Collapse
|
31
|
Pioli PD, Whiteside SK, Weis JJ, Weis JH. Snai2 and Snai3 transcriptionally regulate cellular fitness and functionality of T cell lineages through distinct gene programs. Immunobiology 2016; 221:618-33. [PMID: 26831822 DOI: 10.1016/j.imbio.2016.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/13/2016] [Accepted: 01/14/2016] [Indexed: 01/31/2023]
Abstract
T lymphocytes are essential contributors to the adaptive immune system and consist of multiple lineages that serve various effector and regulatory roles. As such, precise control of gene expression is essential to the proper development and function of these cells. Previously, we identified Snai2 and Snai3 as being essential regulators of immune tolerance partly due to the impaired function of CD4(+) regulatory T cells in Snai2/3 conditional double knockout mice. Here we extend those previous findings using a bone marrow transplantation model to provide an environmentally unbiased view of the molecular changes imparted onto various T lymphocyte populations once Snai2 and Snai3 are deleted. The data presented here demonstrate that Snai2 and Snai3 transcriptionally regulate the cellular fitness and functionality of not only CD4(+) regulatory T cells but effector CD8(α+) and CD4(+) conventional T cells as well. This is achieved through the modulation of gene sets unique to each cell type and includes transcriptional targets relevant to the survival and function of each T cell lineage. As such, Snai2 and Snai3 are essential regulators of T cell immunobiology.
Collapse
Affiliation(s)
- Peter D Pioli
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States.
| | - Sarah K Whiteside
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - Janis J Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| | - John H Weis
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, United States
| |
Collapse
|
32
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
33
|
Barriga EH, Trainor PA, Bronner M, Mayor R. Animal models for studying neural crest development: is the mouse different? Development 2015; 142:1555-60. [PMID: 25922521 DOI: 10.1242/dev.121590] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The neural crest is a uniquely vertebrate cell type and has been well studied in a number of model systems. Zebrafish, Xenopus and chick embryos largely show consistent requirements for specific genes in early steps of neural crest development. By contrast, knockouts of homologous genes in the mouse often do not exhibit comparable early neural crest phenotypes. In this Spotlight article, we discuss these species-specific differences, suggest possible explanations for the divergent phenotypes in mouse and urge the community to consider these issues and the need for further research in complementary systems.
Collapse
Affiliation(s)
- Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA Department of Anatomy and Cell Biology, University of Kansas Medical Centre, Kansas City, KS 66160, USA
| | - Marianne Bronner
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
34
|
Curtain M, Heffner CS, Maddox DM, Gudis P, Donahue LR, Murray SA. A novel allele of Alx4 results in reduced Fgf10 expression and failure of eyelid fusion in mice. Mamm Genome 2015; 26:173-80. [PMID: 25673119 DOI: 10.1007/s00335-015-9557-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/27/2015] [Indexed: 11/27/2022]
Abstract
Normal fusion of developing eyelids requires coordination of inductive signals from the eyelid mesenchyme with migration of the periderm cell layer and constriction of the eyelids across the eye. Failure of this process results in an eyelids open at birth (EOB) phenotype in mice. We have identified a novel spontaneous allele of Alx4 that displays EOB, in addition to polydactyly and cranial malformations. Alx4 is expressed in the eyelid mesenchyme prior to and during eyelid fusion in a domain overlapping the expression of genes that also play a role in normal eyelid development. We show that Alx4 mutant mice have reduced expression of Fgf10, a key factor expressed in the mesenchyme that is required for initiation of eyelid fusion by the periderm. This is accompanied by a reduced number of periderm cells expressing phosphorylated c-Jun, consistent with the incomplete ablation of Fgf10 expression. Together, these data demonstrate that eyelid fusion in mice requires the expression of Alx4, accompanied by the loss of normal expression of essential components of the eyelid fusion pathway.
Collapse
Affiliation(s)
- Michelle Curtain
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME, 04609, USA
| | | | | | | | | | | |
Collapse
|
35
|
Muñoz WA, Trainor PA. Neural crest cell evolution: how and when did a neural crest cell become a neural crest cell. Curr Top Dev Biol 2015; 111:3-26. [PMID: 25662256 DOI: 10.1016/bs.ctdb.2014.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
As vertebrates evolved from protochordates, they shifted to a more predatory lifestyle, and radiated and adapted to most niches of the planet. This process was largely facilitated by the generation of novel vertebrate head structures, which were derived from neural crest cells (NCC). The neural crest is a unique vertebrate cell population that is frequently termed the "fourth germ layer" because it forms in conjunction with the other germ layers and contributes to a diverse array of cell types and tissues including the craniofacial skeleton, the peripheral nervous system, and pigment cells among many other tissues and cell types. NCC are defined by their origin at the neural plate border, via an epithelial-to-mesenchymal transition (EMT), together with multipotency and polarized patterns of migration. These defining characteristics, which evolved independently in the germ layers of invertebrates, were subsequently co-opted through their gene regulatory networks to form NCC in vertebrates. Moreover, recent data suggest that the ability to undergo an EMT was one of the latter features co-opted by NCC. In this review, we discuss the potential origins of NCC and how they evolved to contribute to nearly all tissues and organs throughout the body, based on paleontological evidence together with an evaluation of the evolution of molecules involved in NCC development and their migratory cell paths.
Collapse
Affiliation(s)
- William A Muñoz
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
36
|
Graves CA, Abboodi FF, Tomar S, Wells J, Pirisi L. The translational significance of epithelial-mesenchymal transition in head and neck cancer. Clin Transl Med 2014; 3:60. [PMID: 25632320 PMCID: PMC4302251 DOI: 10.1186/s40169-014-0039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 10/29/2014] [Indexed: 01/01/2023] Open
Abstract
Positive markers of epithelial-mesenchymal transition (EMT) in head and neck cancers complicate clinical management and are associated with reduced survival. We discuss recent translational discoveries in EMT and suggest additional actionable molecular pathways, biomarkers, and clinical agents.
Collapse
Affiliation(s)
- Christian A Graves
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA ; Department of Head and Neck Surgery, Wm. Jennings Dorn VA Medical Center, Columbia, SC 29208 USA
| | - Fadi F Abboodi
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| | - Swati Tomar
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| | - James Wells
- Department of Head and Neck Surgery, Wm. Jennings Dorn VA Medical Center, Columbia, SC 29208 USA
| | - Lucia Pirisi
- Department of Pathology, Microbiology & Immunology, University of South Carolina School of Medicine, Bldg. 1 Room B43 6439 Garners Ferry Rd, Columbia, SC 29208 USA
| |
Collapse
|
37
|
Herion NJ, Salbaum JM, Kappen C. Traffic jam in the primitive streak: the role of defective mesoderm migration in birth defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2014; 100:608-22. [PMID: 25115487 PMCID: PMC9828327 DOI: 10.1002/bdra.23283] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 01/12/2023]
Abstract
Gastrulation is the process in which the three germ layers are formed that contribute to the formation of all major tissues in the developing embryo. We here review mouse genetic models in which defective gastrulation leads to mesoderm insufficiencies in the embryo. Depending on severity of the abnormalities, the outcomes range from incompatible with embryonic survival to structural birth defects, such as heart defects, spina bifida, or caudal dysgenesis. The combined evidence from the mutant models supports the notion that these congenital anomalies can originate from perturbations of mesoderm specification, epithelial-mesenchymal transition, and mesodermal cell migration. Knowledge about the molecular pathways involved may help to improve strategies for the prevention of major structural birth defects.
Collapse
Affiliation(s)
- Nils J. Herion
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana
| | - J. Michael Salbaum
- Pennington Biomedical Research Center, Laboratory for Regulation of Gene Expression, Baton Rouge, Louisiana
| | - Claudia Kappen
- Pennington Biomedical Research Center, Department of Developmental Biology, Baton Rouge, Louisiana,Correspondence to: Claudia Kappen, Pennington Biomedical Research Center, Department of Developmental Biology, 6400 Perkins Road, Baton Rouge, LA 70808.
| |
Collapse
|
38
|
Liu J, Dong F, Jeong J, Masuda T, Lobe CG. Constitutively active Notch1 signaling promotes endothelial‑mesenchymal transition in a conditional transgenic mouse model. Int J Mol Med 2014; 34:669-76. [PMID: 24969754 PMCID: PMC4121347 DOI: 10.3892/ijmm.2014.1818] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/13/2014] [Indexed: 11/26/2022] Open
Abstract
Endothelial-mesenchymal transition (EndoMT) is a process in which endothelial cells lose their cell-type-specific characteristics and gain a mesenchymal cell phenotype. The Notch signaling pathway is crucial in the regulation of EndoMT; however, its roles have not been fully studied in vivo. In a previous study, we reported the generation of transgenic mice with a floxed β-geo/stop signal between a CMV promoter and the constitutively active intracellular domain of Notch1 (IC-Notch1) linked with a human placental alkaline phosphatase (hPLAP) reporter (ZAP-IC-Notch1). In this study, we examined the results of activating IC-Notch1 in endothelial cells. ZAP-IC-Notch1 mice were crossed with Tie2-Cre mice to activate IC-Notch1 expression specifically in endothelial cells. The ZAP-IC-Notch1/Tie2-Cre double transgenic embryos died at E9.5–10.5 with disruption of vasculature and enlargement of myocardium. VE-cadherin expression was decreased and EphrinB2 expression was increased in the heart of these embryos. Mesenchymal cell marker α-smooth muscle actin (SMA) was expressed in IC-Notch1-expressing endothelial cells. In addition, upregulation of Snail, the key effector in mediating EndoMT, was identified in the cardiac cushion of the double transgenic murine embryo heart. The results of the present study demonstrate that constitutively active Notch signaling promotes EndoMT and differentially regulates endothelial/mesenchymal cell markers during cardiac development.
Collapse
Affiliation(s)
- Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, P.R. China
| | - James Jeong
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Takahiro Masuda
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Corrinne G Lobe
- Molecular and Cellular Biology Division, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| |
Collapse
|
39
|
Romero-Valdovinos M, Bobadilla-Sandoval N, Flisser A, Vadillo-Ortega F. The epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome. Med Hypotheses 2014; 83:306-11. [PMID: 24998668 DOI: 10.1016/j.mehy.2014.06.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 05/13/2014] [Accepted: 06/04/2014] [Indexed: 11/30/2022]
Abstract
The etiology of the amniotic band syndrome is unknown, and has been subject of debate since the time of Hippocrates. The most accepted theories fail to cover all the abnomalities found in affected children. During organogenesis the epithelial-mesenchymal transition process (EMTP) participates in adequate formation of different organs from three embryo layers. Altered activation of EMTP occurs when the epithelial homeostasis is disturbed, the resulting myofibroblasts are able to secrete extracellular matrix proteins and deposit them on the tissues contributing to a fibrotic phenotype. If injury occurs during organogenesis, wound healing could be exaggerated and fibrotic response could be triggered. The molecule that regulates both of these processes (EMTP and fibrosis) is the transforming growth factor β (TGFβ); indeed null animals for TGFβ isoforms show similar defects than those seen in the amniotic band syndrome. Based on documented evidence this review intends to explain how the epithelial mesenchymal transition process may contribute to the pathogenesis of amniotic band syndrome.
Collapse
Affiliation(s)
- M Romero-Valdovinos
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General "Dr. Manuel Gea González", Secretaría de Salud, Mexico
| | - N Bobadilla-Sandoval
- Unidad de Fisiología Molecular, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico
| | - A Flisser
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - F Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, Universidad Nacional Autónoma de México en el Instituto Nacional de Medicina Genómica, Mexico.
| |
Collapse
|
40
|
Wu ZQ, Rowe RG, Lim KC, Lin Y, Willis A, Tang Y, Li XY, Nor JE, Maillard I, Weiss SJ. A Snail1/Notch1 signalling axis controls embryonic vascular development. Nat Commun 2014; 5:3998. [PMID: 24894949 PMCID: PMC4052376 DOI: 10.1038/ncomms4998] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 04/29/2014] [Indexed: 12/24/2022] Open
Abstract
Notch1-Delta-like 4 (Dll4) signaling controls vascular development by regulating endothelial cell (EC) targets that modulate vessel wall remodeling and arterial-venous specification. The molecular effectors that modulate Notch signaling during vascular development remain largely undefined. Here we demonstrate that the transcriptional repressor, Snail1, acts as a VEGF-induced regulator of Notch1 signaling and Dll4 expression. EC-specific Snail1 loss-of-function conditional knockout mice die in utero with defects in vessel wall remodeling in association with losses in mural cell investment and disruptions in arterial-venous specification. Snail1 loss-of-function conditional knockout embryos further display up-regulated Notch1 signaling and Dll4 expression that is partially reversed by inhibiting Ɣ-secretase activity in vivo with Dll4 identified as a direct target of Snail1-mediated transcriptional repression. These results document a Snail1-Dll4/Notch1 axis that controls embryonic vascular development.
Collapse
Affiliation(s)
- Zhao-Qiu Wu
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - R Grant Rowe
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA
| | - Yongshun Lin
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [3]
| | - Amanda Willis
- Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Yi Tang
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Xiao-Yan Li
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| | - Jacques E Nor
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Ivan Maillard
- 1] Life Sciences Institute, Ann Arbor, Michigan 48109, USA [2] Department of Cell and Developmental Biology, Ann Arbor, Michigan 48109, USA [3] Division of Hematology-Oncology, Department of Medicine, Ann Arbor, Michigan 48109, USA
| | - Stephen J Weiss
- 1] Division of Molecular Medicine and Genetics, Department of Internal Medicine, Ann Arbor, Michigan 48109, USA [2] Life Sciences Institute, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
41
|
Miller SF, Weinberg SM, Nidey NL, Defay DK, Marazita ML, Wehby GL, Moreno Uribe LM. Exploratory genotype-phenotype correlations of facial form and asymmetry in unaffected relatives of children with non-syndromic cleft lip and/or palate. J Anat 2014; 224:688-709. [PMID: 24738728 DOI: 10.1111/joa.12182] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2014] [Indexed: 02/01/2023] Open
Abstract
Family relatives of children with nonsyndromic cleft lip with or without cleft palate (NSCL/P) who presumably carry a genetic risk yet do not manifest overt oral clefts, often present with distinct facial morphology of unknown genetic etiology. This study investigates distinct facial morphology among unaffected relatives and examines whether candidate genes previously associated with overt NSCL/P and left-right body patterning are correlated with such facial morphology. Cases were unaffected relatives of individuals with NSCL/P (n = 188) and controls (n = 194) were individuals without family history of NSCL/P. Cases and controls were genotyped for 20 SNPs across 13 candidate genes for NSCL/P (PAX7, ABCA4-ARHGAP29, IRF6, MSX1, PITX2, 8q24, FOXE1, TGFB3 and MAFB) and left-right body patterning (LEFTY1, LEFTY2, ISL1 and SNAI1). Facial shape and asymmetry phenotypes were obtained via principal component analyses and Procrustes analysis of variance from 32 coordinate landmarks, digitized on 3D facial images. Case-control comparisons of phenotypes obtained were performed via multivariate regression adjusting for age and gender. Phenotypes that differed significantly (P < 0.05) between cases and controls were regressed on the SNPs one at a time. Cases had significantly (P < 0.05) more profile concavity with upper face retrusion, upturned noses with obtuse nasolabial angles, more protrusive chins, increased lower facial heights, thinner and more retrusive lips and more protrusive foreheads. Furthermore, cases showed significantly more directional asymmetry compared to controls. Several of these phenotypes were significantly associated with genetic variants (P < 0.05). Facial height and width were associated with SNAI1. Midface antero-posterior (AP) projection was associated with LEFTY1. The AP position of the chin was related to SNAI1, IRF6, MSX1 and MAFB. The AP position of the forehead and the width of the mouth were associated with ABCA4-ARHGAP29 and MAFB. Lastly, facial asymmetry was related to LEFTY1, LEFTY2 and SNAI1. This study demonstrates that, genes underlying lip and palate formation and left-right patterning also contribute to facial features characteristic of the NSCL/P spectrum.
Collapse
Affiliation(s)
- Steven F Miller
- Dows Institute for Dental Research, College of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Qiao L, Gao H, Zhang T, Jing L, Xiao C, Xiao Y, Luo N, Zhu H, Meng W, Xu H, Mo X. Snail modulates the assembly of fibronectin via α5 integrin for myocardial migration in zebrafish embryos. Sci Rep 2014; 4:4470. [PMID: 24667151 PMCID: PMC3966048 DOI: 10.1038/srep04470] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/07/2014] [Indexed: 02/05/2023] Open
Abstract
The Snail family member snail encodes a zinc finger-containing transcriptional factor that is involved in heart formation. Yet, little is known about how Snail regulates heart development. Here, we identified that one of the duplicated snail genes, snai1b, was expressed in the heart region of zebrafish embryos. Depletion of Snai1b function dramatically reduced expression of α5 integrin, disrupted Fibronectin layer in the heart region, especially at the midline, and prevented migration of cardiac precursors, resulting in defects in cardiac morphology and function in zebrafish embryos. Injection of α5β1 protein rescued the Fibronectin layer and then the myocardial precursor migration in snai1b knockdown embryos. The results provide the molecular mechanism how Snail controls the morphogenesis of heart during embryonic development.
Collapse
Affiliation(s)
- Liangjun Qiao
- 1] Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China [2]
| | - Hongwei Gao
- 1] Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China [2]
| | - Ting Zhang
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lulu Jing
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chun Xiao
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yue Xiao
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ning Luo
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hongyan Zhu
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wentong Meng
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xu
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianming Mo
- Laboratory of Stem Cell Biology, Center for Medical Stem Cell Biology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
43
|
Villarejo A, Cortés-Cabrera A, Molina-Ortíz P, Portillo F, Cano A. Differential role of Snail1 and Snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J Biol Chem 2013; 289:930-41. [PMID: 24297167 DOI: 10.1074/jbc.m113.528026] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Snail1 (Snail) and Snail2 (Slug) are transcription factors that share a similar DNA binding structure of four and five C2H2 zinc finger motifs (ZF), respectively. Both factors bind specifically to a subset of E-box motifs (E2-box: CAGGTG/CACCTG) in target promoters like the E-cadherin promoter and are key mediators of epithelial-to-mesenchymal transition (EMT). However, there are differences in the biological actions, in binding affinities to E-cadherin promoter, and in the target genes of Snail1 and Snail2, although the molecular bases are presently unknown. In particular, the role of each Snail1 and Snail2 ZF in the binding to E-boxes and in EMT induction has not been previously explored. We have approached this question by modeling Snail1 and Snail2 protein-DNA interactions and through mutational and functional assays of different ZFs. Results show that Snail1 efficient repression and binding to human and mouse E-cadherin promoter as well as EMT-inducing ability require intact ZF1 and ZF2, while for Snail2, either ZF3 or ZF4 is essential for those functions. Furthermore, the differential distribution of E2-boxes in mouse and human E-cadherin promoters also contributes to the differential Snail factor activity. These data indicate a non-equivalent role of Snail1 and Snail2 ZFs in gene repression, contributing to the elucidation of the molecular differences between these important EMT regulators.
Collapse
Affiliation(s)
- Ana Villarejo
- From the Departamento de Bioquímica, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, Universidad Autónoma de Madrid (UAM), IdiPAZ, Arzobispo Morcillo, 2, 28029 Madrid, Spain and
| | | | | | | | | |
Collapse
|
44
|
Taneyhill LA, Schiffmacher AT. Cadherin dynamics during neural crest cell ontogeny. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:291-315. [PMID: 23481200 DOI: 10.1016/b978-0-12-394311-8.00013-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Cell membrane-associated junctional complexes mediate cell-cell adhesion, intercellular interactions, and other fundamental processes required for proper embryo morphogenesis. Cadherins are calcium-dependent transmembrane proteins at the core of adherens junctions and are expressed in distinct spatiotemporal patterns throughout the development of an important vertebrate cell type, the neural crest. Multipotent neural crest cells arise from the ectoderm as epithelial cells under the influence of inductive cues, undergo an epithelial-to-mesenchymal transition, migrate throughout the embryonic body, and then differentiate into multiple derivatives at predetermined destinations. Neural crest cells change their expressed cadherin repertoires as they undergo each new morphogenetic transition, providing insight into distinct functions of expressed cadherins that are essential for proper completion of each specific stage. Cadherins modulate neural crest cell morphology, segregation, migration, and tissue formation. This chapter reviews the knowledge base of cadherin regulation, expression, and function during the ontogeny of the neural crest.
Collapse
Affiliation(s)
- Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, 1405 Animal Sciences Center, College Park, Maryland, USA
| | | |
Collapse
|
45
|
Nitric oxide synthase-3 promotes embryonic development of atrioventricular valves. PLoS One 2013; 8:e77611. [PMID: 24204893 PMCID: PMC3812218 DOI: 10.1371/journal.pone.0077611] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/11/2013] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide synthase-3 (NOS3) has recently been shown to promote endothelial-to-mesenchymal transition (EndMT) in the developing atrioventricular (AV) canal. The present study was aimed to investigate the role of NOS3 in embryonic development of AV valves. We hypothesized that NOS3 promotes embryonic development of AV valves via EndMT. To test this hypothesis, morphological and functional analysis of AV valves were performed in wild-type (WT) and NOS3−/− mice at postnatal day 0. Our data show that the overall size and length of mitral and tricuspid valves were decreased in NOS3−/− compared with WT mice. Echocardiographic assessment showed significant regurgitation of mitral and tricuspid valves during systole in NOS3−/− mice. These phenotypes were all rescued by cardiac specific NOS3 overexpression. To assess EndMT, immunostaining of Snail1 was performed in the embryonic heart. Both total mesenchymal and Snail1+ cells in the AV cushion were decreased in NOS3−/− compared with WT mice at E10.5 and E12.5, which was completely restored by cardiac specific NOS3 overexpression. In cultured embryonic hearts, NOS3 promoted transforming growth factor (TGFβ), bone morphogenetic protein (BMP2) and Snail1expression through cGMP. Furthermore, mesenchymal cell formation and migration from cultured AV cushion explants were decreased in the NOS3−/− compared with WT mice. We conclude that NOS3 promotes AV valve formation during embryonic heart development and deficiency in NOS3 results in AV valve insufficiency.
Collapse
|
46
|
Schlueter J, Brand T. Subpopulation of proepicardial cells is derived from the somatic mesoderm in the chick embryo. Circ Res 2013; 113:1128-37. [PMID: 24019406 DOI: 10.1161/circresaha.113.301347] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
RATIONALE The proepicardium (PE) is a transient structure forming at the venous pole of the heart and gives rise to the epicardium, fibroblasts, and smooth muscle cells. The embryological origin of the PE is presently unclear. Asymmetrical formation of the PE on the right inflow tract is a conserved feature of many vertebrate embryos, and in the chicken is under the control of fibroblast growth factor 8 and snail homolog 1. OBJECTIVE To gain further insight into the process of asymmetrical PE formation, we studied the role of TWIST1 during PE formation in the chick embryo. METHODS AND RESULTS TWIST1 is asymmetrically expressed on the right side in the somatic mesoderm under the control of snail homolog 1. Fate mapping experiments revealed a contribution of the somatic mesoderm to the PE. After colonization of the heart, this cell lineage gives rise to the epicardium, smooth muscle cells, and potentially fibroblast. Suppression of TWIST1 function in the right coelomic cavity caused a severe disruption of the villous protrusions of the PE and Wilms tumor 1 and transcription factor 21 expression. Rescue with the corresponding mouse cDNA normalized gene expression and PE morphology. Forced expression of TWIST1 on the left side induced ectopic expression domains of Wilms tumor 1 and transcription factor 21. CONCLUSIONS A significant proportion of the PE has its origin outside of the currently proposed domain in the splanchnic layer of the lateral plate mesoderm. The phenotype in embryos subjected to TWIST1 loss- or gain-of-function suggests an important contribution of somatic mesoderm to the mesothelial cell layer of the PE.
Collapse
Affiliation(s)
- Jan Schlueter
- From the Heart Science Centre, National Heart and Lung Institute, Imperial College London, United Kingdom
| | | |
Collapse
|
47
|
The snail family gene snai3 is not essential for embryogenesis in mice. PLoS One 2013; 8:e65344. [PMID: 23762348 PMCID: PMC3675094 DOI: 10.1371/journal.pone.0065344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 04/25/2013] [Indexed: 12/29/2022] Open
Abstract
The Snail gene family encodes zinc finger-containing transcriptional repressor proteins. Three members of the Snail gene family have been described in mammals, encoded by the Snai1, Snai2, and Snai3 genes. The function of the Snai1 and Snai2 genes have been studied extensively during both vertebrate embryogenesis and tumor progression and metastasis, and play critically important roles during these processes. However, little is known about the function of the Snai3 gene and protein. We describe here generation and analysis of Snai3 conditional and null mutant mice. We also generated an EYFP-tagged Snai3 null allele that accurately reflects endogenous Snai3 gene expression, with the highest levels of expression detected in thymus and skeletal muscle. Snai3 null mutant homozygous mice are viable and fertile, and exhibit no obvious phenotypic defects. These results demonstrate that Snai3 gene function is not essential for embryogenesis in mice.
Collapse
|
48
|
Chen Y, Gridley T. Compensatory regulation of the Snai1 and Snai2 genes during chondrogenesis. J Bone Miner Res 2013; 28:1412-21. [PMID: 23322385 PMCID: PMC3663919 DOI: 10.1002/jbmr.1871] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/25/2012] [Accepted: 12/31/2012] [Indexed: 01/18/2023]
Abstract
Endochondral bone formation is a multistep process during which a cartilage primordium is replaced by mineralized bone. Several genes involved in cartilage and bone development have been identified as target genes for the Snail family of zinc finger transcriptional repressors, and a gain-of-function study has demonstrated that upregulation of Snai1 activity in mouse long bones caused a reduction in bone length. However, no in vivo loss-of-function studies have been performed to establish whether Snail family genes have an essential, physiological role during normal bone development. We demonstrate here that the Snai1 and Snai2 genes function redundantly during embryonic long bone development in mice. Deletion of the Snai2 gene, or limb bud-specific conditional deletion of the Snai1 gene, did not result in obvious defects in the skeleton. However, limb bud-specific Snai1 deletion on a Snai2 null genetic background resulted in substantial defects in the long bones of the limbs. Long bones of the Snai1/Snai2 double mutants exhibited defects in chondrocyte morphology and organization, inhibited trabecular bone formation, and delayed ossification. Chondrocyte proliferation was markedly reduced, and transcript levels of genes encoding cell cycle regulators, such as p21(Waf1/Cip1) , were strikingly upregulated in the Snai1/Snai2 double mutants, suggesting that during chondrogenesis Snail family proteins act to control cell proliferation by mediating expression of cell-cycle regulators. Snai2 transcript levels were increased in Snai1 mutant femurs, whereas Snai1 transcript levels were increased in Snai2 mutant femurs. In addition, in the mutant femurs the Snai1 and Snai2 genes compensated for each other's loss not only quantitatively, but also by expanding their expression into the other genes' normal expression domains. These results demonstrate that the Snai1 and Snai2 genes transcriptionally compensate temporally, spatially, and quantitatively for each other's loss, and demonstrate an essential role for Snail family genes during chondrogenesis in mice.
Collapse
Affiliation(s)
- Ying Chen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | | |
Collapse
|
49
|
Powell DR, Blasky AJ, Britt SG, Artinger KB. Riding the crest of the wave: parallels between the neural crest and cancer in epithelial-to-mesenchymal transition and migration. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:511-22. [PMID: 23576382 PMCID: PMC3739939 DOI: 10.1002/wsbm.1224] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neural crest (NC) is first induced as an epithelial population of cells at the neural plate border requiring complex signaling between bone morphogenetic protein, Wnt, and fibroblast growth factors to differentiate the neural and NC fate from the epidermis. Remarkably, following induction, these cells undergo an epithelial-to-mesenchymal transition (EMT), delaminate from the neural tube, and migrate through various tissue types and microenvironments before reaching their final destination where they undergo terminal differentiation. This process is mirrored in cancer metastasis, where a primary tumor will undergo an EMT before migrating and invading other cell populations to create a secondary tumor site. In recent years, as our understanding of NC EMT and migration has deepened, important new insights into tumorigenesis and metastasis have also been achieved. These discoveries have been driven by the observation that many cancers misregulate developmental genes to reacquire proliferative and migratory states. In this review, we examine how the NC provides an excellent model for studying EMT and migration. These data are discussed from the perspective of the gene regulatory networks that control both NC and cancer cell EMT and migration. Deciphering these processes in a comparative manner will expand our knowledge of the underlying etiology and pathogenesis of cancer and promote the development of novel targeted therapeutic strategies for cancer patients. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Davalyn R Powell
- Graduate Program in Cell Biology, Stem Cells and Development, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | |
Collapse
|
50
|
Bhatt S, Diaz R, Trainor PA. Signals and switches in Mammalian neural crest cell differentiation. Cold Spring Harb Perspect Biol 2013; 5:5/2/a008326. [PMID: 23378583 DOI: 10.1101/cshperspect.a008326] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Neural crest cells (NCCs) comprise a multipotent, migratory cell population that generates a diverse array of cell and tissue types during vertebrate development. These include cartilage and bone, tendons, and connective tissue, as well as neurons, glia, melanocytes, and endocrine and adipose cells; this remarkable lineage potential persists into adult life. Taken together with a limited capacity for self-renewal, neural crest cells bear the hallmarks of stem and progenitor cells and are considered to be synonymous with vertebrate evolution. The neural crest has provided a system for exploring the mechanisms that govern developmental processes such as morphogenetic induction, cell migration, and fate determination. Today, much of the focus on neural crest cells revolves around their stem cell-like characteristics and potential for use in regenerative medicine. A thorough understanding of the signals and switches that govern mammalian neural crest patterning is central to potential therapeutic application of these cells and better appreciation of the role that neural crest cells play in vertebrate evolution, development, and disease.
Collapse
Affiliation(s)
- Shachi Bhatt
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | |
Collapse
|