1
|
Guan Y, Yan Z. Molecular Mechanisms of Exercise and Healthspan. Cells 2022; 11:872. [PMID: 35269492 PMCID: PMC8909156 DOI: 10.3390/cells11050872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/16/2022] Open
Abstract
Healthspan is the period of our life without major debilitating diseases. In the modern world where unhealthy lifestyle choices and chronic diseases taper the healthspan, which lead to an enormous economic burden, finding ways to promote healthspan becomes a pressing goal of the scientific community. Exercise, one of humanity's most ancient and effective lifestyle interventions, appears to be at the center of the solution since it can both treat and prevent the occurrence of many chronic diseases. Here, we will review the current evidence and opinions about regular exercise promoting healthspan through enhancing the functionality of our organ systems and preventing diseases.
Collapse
Affiliation(s)
- Yuntian Guan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| | - Zhen Yan
- Department of Pharmacology, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA;
- Center for Skeletal Muscle Research at the Robert M. Berne Cardiovascular Research Center, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
- Department of Molecular Physiology and Biological Biophysics, School of Medicine, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
2
|
Sakellariou XM, Papafaklis MI, Domouzoglou EM, Katsouras CS, Michalis LK, Naka KK. Exercise-mediated adaptations in vascular function and structure: Beneficial effects in coronary artery disease. World J Cardiol 2021; 13:399-415. [PMID: 34621486 PMCID: PMC8462042 DOI: 10.4330/wjc.v13.i9.399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/30/2021] [Accepted: 07/21/2021] [Indexed: 02/06/2023] Open
Abstract
Exercise exerts direct effects on the vasculature via the impact of hemodynamic forces on the endothelium, thereby leading to functional and structural adaptations that lower cardiovascular risk. The patterns of blood flow and endothelial shear stress during exercise lead to atheroprotective hemodynamic stimuli on the endothelium and contribute to adaptations in vascular function and structure. The structural adaptations observed in arterial lumen dimensions after prolonged exercise supplant the need for acute functional vasodilatation in case of an increase in endothelial shear stress due to repeated exercise bouts. In contrast, wall thickness is affected by rather systemic factors, such as transmural pressure modulated during exercise by generalized changes in blood pressure. Several mechanisms have been proposed to explain the exercise-induced benefits in patients with coronary artery disease (CAD). They include decreased progression of coronary plaques in CAD, recruitment of collaterals, enhanced blood rheological properties, improvement of vascular smooth muscle cell and endothelial function, and coronary blood flow. This review describes how exercise via alterations in hemodynamic factors influences vascular function and structure which contributes to cardiovascular risk reduction, and highlights which mechanisms are involved in the positive effects of exercise on CAD.
Collapse
Affiliation(s)
- Xenofon M Sakellariou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
| | - Michail I Papafaklis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Eleni M Domouzoglou
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- Department of Pediatrics, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Christos S Katsouras
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Lampros K Michalis
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| | - Katerina K Naka
- Michailideion Cardiac Centre, University of Ioannina, Ioannina 45100, Epirus, Greece
- 2nd Department of Cardiology, University Hospital of Ioannina, Ioannina 45100, Epirus, Greece
| |
Collapse
|
3
|
Sangha GS, Goergen CJ, Prior SJ, Ranadive SM, Clyne AM. Preclinical techniques to investigate exercise training in vascular pathophysiology. Am J Physiol Heart Circ Physiol 2021; 320:H1566-H1600. [PMID: 33385323 PMCID: PMC8260379 DOI: 10.1152/ajpheart.00719.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Atherosclerosis is a dynamic process starting with endothelial dysfunction and inflammation and eventually leading to life-threatening arterial plaques. Exercise generally improves endothelial function in a dose-dependent manner by altering hemodynamics, specifically by increased arterial pressure, pulsatility, and shear stress. However, athletes who regularly participate in high-intensity training can develop arterial plaques, suggesting alternative mechanisms through which excessive exercise promotes vascular disease. Understanding the mechanisms that drive atherosclerosis in sedentary versus exercise states may lead to novel rehabilitative methods aimed at improving exercise compliance and physical activity. Preclinical tools, including in vitro cell assays, in vivo animal models, and in silico computational methods, broaden our capabilities to study the mechanisms through which exercise impacts atherogenesis, from molecular maladaptation to vascular remodeling. Here, we describe how preclinical research tools have and can be used to study exercise effects on atherosclerosis. We then propose how advanced bioengineering techniques can be used to address gaps in our current understanding of vascular pathophysiology, including integrating in vitro, in vivo, and in silico studies across multiple tissue systems and size scales. Improving our understanding of the antiatherogenic exercise effects will enable engaging, targeted, and individualized exercise recommendations to promote cardiovascular health rather than treating cardiovascular disease that results from a sedentary lifestyle.
Collapse
Affiliation(s)
- Gurneet S Sangha
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| | - Craig J Goergen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland.,Baltimore Veterans Affairs Geriatric Research, Education, and Clinical Center, Baltimore, Maryland
| | - Sushant M Ranadive
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alisa M Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland
| |
Collapse
|
4
|
Rentz T, Wanschel ACBA, de Carvalho Moi L, Lorza-Gil E, de Souza JC, Dos Santos RR, Oliveira HCF. The Anti-atherogenic Role of Exercise Is Associated With the Attenuation of Bone Marrow-Derived Macrophage Activation and Migration in Hypercholesterolemic Mice. Front Physiol 2020; 11:599379. [PMID: 33329050 PMCID: PMC7719785 DOI: 10.3389/fphys.2020.599379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
An early event in atherogenesis is the recruitment and infiltration of circulating monocytes and macrophage activation in the subendothelial space. Atherosclerosis subsequently progresses as a unresolved inflammatory disease, particularly in hypercholesterolemic conditions. Although physical exercise training has been a widely accepted strategy to inhibit atherosclerosis, its impact on arterial wall inflammation and macrophage phenotype and function has not yet been directly evaluated. Thus, the aim of this study was to investigate the effects of aerobic exercise training on the inflammatory state of atherosclerotic lesions with a focus on macrophages. Hypercholesterolemic LDL-receptor-deficient male mice were subjected to treadmill training for 8 weeks and fed a high-fat diet. Analyses included plasma lipoprotein and cytokine levels; aortic root staining for lipids (oil red O); macrophages (CD68, MCP1 and IL1β); oxidative (nitrotyrosine and, DHE) and endoplasmic reticulum (GADD) stress markers. Primary bone marrow-derived macrophages (BMDM) were assayed for migration activity, motility phenotype (Rac1 and F-actin) and inflammation-related gene expression. Plasma levels of HDL cholesterol were increased, while levels of proinflammatory cytokines (TNFa, IL1b, and IL6) were markedly reduced in the exercised mice. The exercised mice developed lower levels of lipid content and inflammation in atherosclerotic plaques. Additionally, lesions in the exercised mice had lower levels of oxidative and ER stress markers. BMDM isolated from the exercised mice showed a marked reduction in proinflammatory cytokine gene expression and migratory activity and a disrupted motility phenotype. More importantly, bone marrow from exercised mice transplanted into sedentary mice led to reduced atherosclerosis in the recipient sedentary mice, thus suggesting that epigenetic mechanisms are associated with exercise. Collectively, the presented data indicate that exercise training prevents atherosclerosis by inhibiting bone marrow-derived macrophage recruitment and activation.
Collapse
Affiliation(s)
- Thiago Rentz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Amarylis C B A Wanschel
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Leonardo de Carvalho Moi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Estela Lorza-Gil
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Jane C de Souza
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| | - Renata R Dos Santos
- Division of Radiotherapy, Faculty of Medical Sciences, Medical School Hospital, State University of Campinas, Campinas, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Brazil
| |
Collapse
|
5
|
Wang H, Sugimoto K, Lu H, Yang WY, Liu JY, Yang HY, Song YB, Yan D, Zou TY, Shen S. HDAC1-mediated deacetylation of HIF1α prevents atherosclerosis progression by promoting miR-224-3p-mediated inhibition of FOSL2. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 23:577-591. [PMID: 33510945 PMCID: PMC7815465 DOI: 10.1016/j.omtn.2020.10.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 10/30/2020] [Indexed: 12/20/2022]
Abstract
We intended to characterize functional relevance of microRNA (miR)-224-3p in endothelial cell (EC) apoptosis and reactive oxygen species (ROS) accumulation in atherosclerosis, considering also the integral involvement of histone deacetylase 1 (HDAC1)-mediated hypoxia-inducible factor-1α (HIF1α) deacetylation. The binding affinity between miR-224-3p and Fos-like antigen 2 (FOSL2) was predicted and validated. Furthermore, we manipulated miR-224-3p, FOSL2, HDAC1, and HIF1α expression in oxidized low-density lipoprotein (ox-LDL)-induced ECs, aiming to clarify their effects on cell activities, inflammation, and ROS level. Additionally, we examined the impact of miR-224-3p on aortic atherosclerotic plaque and lesions in a high-fat-diet-induced atherosclerosis model in ApoE−/− mice. Clinical atherosclerotic samples and ox-LDL-induced human aortic ECs (HAECs) exhibited low HDAC1/miR-224-3p expression and high HIF1α/FOSL2 expression. miR-224-3p repressed EC cell apoptosis, inflammatory responses, and intracellular ROS levels through targeting FOSL2. HIF1α reduced miR-224-3p expression to accelerate EC apoptosis and ROS accumulation. Moreover, HDAC1 inhibited HIF1α expression by deacetylation, which in turn enhanced miR-224-3p expression to attenuate EC apoptosis and ROS accumulation. miR-224-3p overexpression reduced atherosclerotic lesions in vivo. In summary, HDAC1 overexpression may enhance the anti-atherosclerotic and endothelial-protective effects of miR-224-3p-mediated inhibition of FOSL2 by deacetylating HIF1α, underscoring a novel therapeutic insight against experimental atherosclerosis.
Collapse
Affiliation(s)
- Hao Wang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China.,Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Hao Lu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Wan-Yong Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Ji-Yue Liu
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Hong-Yu Yang
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| | - Yue-Bo Song
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Dong Yan
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, P.R. China
| | - Tian-Yu Zou
- Department of Encephalopathy, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, P.R. China
| | - Si Shen
- Stroke Center, the First Affiliated Hospital, Jinan University, Guangzhou 510630, P.R. China
| |
Collapse
|
6
|
Impact of aerobic exercise type on blood flow, muscle energy metabolism, and mitochondrial biogenesis in experimental lower extremity artery disease. Sci Rep 2020; 10:14048. [PMID: 32820213 PMCID: PMC7441153 DOI: 10.1038/s41598-020-70961-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 08/03/2020] [Indexed: 01/08/2023] Open
Abstract
Exercise training (ET) is recommended for lower extremity artery disease (LEAD) management. However, there is still little information on the hemodynamic and metabolic adaptations by skeletal muscle with ET. We examined whether hindlimb perfusion/vascularization and muscle energy metabolism are altered differently by three types of aerobic ET. ApoE−/− mice with LEAD were assigned to one of four groups for 4 weeks: sedentary (SED), forced treadmill running (FTR), voluntary wheel running (VWR), or forced swimming (FS). Voluntary exercise capacity was improved and equally as efficient with FTR and VWR, but remained unchanged with FS. Neither ischemic hindlimb perfusion and oxygenation, nor arteriolar density and mRNA expression of arteriogenic-related genes differed between groups. 18FDG PET imaging revealed no difference in the steady-state levels of phosphorylated 18FDG in ischemic and non-ischemic hindlimb muscle between groups, nor was glycogen content or mRNA and protein expression of glucose metabolism-related genes in ischemic muscle modified. mRNA (but not protein) expression of lipid metabolism-related genes was upregulated across all exercise groups, particularly by non-ischemic muscle. Markers of mitochondrial content (mitochondrial DNA content and citrate synthase activity) as well as mRNA expression of mitochondrial biogenesis-related genes in muscle were not increased with ET. Contrary to FTR and VWR, swimming was ineffective in improving voluntary exercise capacity. The underlying hindlimb hemodynamics or muscle energy metabolism are unable to explain the benefits of running exercise.
Collapse
|
7
|
Tofas T, Draganidis D, Deli CK, Georgakouli K, Fatouros IG, Jamurtas AZ. Exercise-Induced Regulation of Redox Status in Cardiovascular Diseases: The Role of Exercise Training and Detraining. Antioxidants (Basel) 2019; 9:antiox9010013. [PMID: 31877965 PMCID: PMC7023632 DOI: 10.3390/antiox9010013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/10/2019] [Accepted: 12/13/2019] [Indexed: 02/07/2023] Open
Abstract
Although low levels of reactive oxygen species (ROS) are beneficial for the organism ensuring normal cell and vascular function, the overproduction of ROS and increased oxidative stress levels play a significant role in the onset and progression of cardiovascular diseases (CVDs). This paper aims at providing a thorough review of the available literature investigating the effects of acute and chronic exercise training and detraining on redox regulation, in the context of CVDs. An acute bout of either cardiovascular or resistance exercise training induces a transient oxidative stress and inflammatory response accompanied by reduced antioxidant capacity and enhanced oxidative damage. There is evidence showing that these responses to exercise are proportional to exercise intensity and inversely related to an individual’s physical conditioning status. However, when chronically performed, both types of exercise amplify the antioxidant defense mechanism, reduce oxidative stress and preserve redox status. On the other hand, detraining results in maladaptations within a time-frame that depends on the exercise training intensity and mode, as high-intensity training is superior to low-intensity and resistance training is superior to cardiovascular training in preserving exercise-induced adaptations during detraining periods. Collectively, these findings suggest that exercise training, either cardiovascular or resistance or even a combination of them, is a promising, safe and efficient tool in the prevention and treatment of CVDs.
Collapse
|
8
|
Macrophage phenotype and bioenergetics are controlled by oxidized phospholipids identified in lean and obese adipose tissue. Proc Natl Acad Sci U S A 2018; 115:E6254-E6263. [PMID: 29891687 PMCID: PMC6142199 DOI: 10.1073/pnas.1800544115] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue macrophages (ATMs) maintain adipose tissue homeostasis. However, during obesity ATMs become inflammatory, resulting in impaired adipose tissue function. Oxidative stress increases during obesity, which is thought to contribute to adipose tissue inflammation. To date, the connection between oxidative stress and adipose tissue inflammation remain unclear. In this study, we identify two classes of phospholipid oxidation products in lean and obese adipose tissue, which polarize macrophages to an antioxidant or proinflammatory state, respectively. Furthermore, we show that these phospholipids differently affect macrophage cellular metabolism, reflecting the metabolisms of ATMs found in lean and obese adipose tissue. Identification of pathways controlling ATM metabolism will lead to novel therapies for insulin resistance. Adipose tissue macrophages (ATMs) adapt their metabolic phenotype either to maintain lean tissue homeostasis or drive inflammation and insulin resistance in obesity. However, the factors in the adipose tissue microenvironment that control ATM phenotypic polarization and bioenergetics remain unknown. We have recently shown that oxidized phospholipids (OxPL) uniquely regulate gene expression and cellular metabolism in Mox macrophages, but the presence of the Mox phenotype in adipose tissue has not been reported. Here we show, using extracellular flux analysis, that ATMs isolated from lean mice are metabolically inhibited. We identify a unique population of CX3CR1neg/F4/80low ATMs that resemble the Mox (Txnrd1+HO1+) phenotype to be the predominant ATM phenotype in lean adipose tissue. In contrast, ATMs isolated from obese mice had characteristics typical of the M1/M2 (CD11c+CD206+) phenotype with highly activated bioenergetics. Quantifying individual OxPL species in the stromal vascular fraction of murine adipose tissue, using targeted liquid chromatography-mass spectrometry, revealed that high fat diet-induced adipose tissue expansion led to a disproportional increase in full-length over truncated OxPL species. In vitro studies showed that macrophages respond to truncated OxPL species by suppressing bioenergetics and up-regulating antioxidant programs, mimicking the Mox phenotype of ATMs isolated from lean mice. Conversely, full-length OxPL species induce proinflammatory gene expression and an activated bioenergetic profile that mimics ATMs isolated from obese mice. Together, these data identify a redox-regulatory Mox macrophage phenotype to be predominant in lean adipose tissue and demonstrate that individual OxPL species that accumulate in adipose tissue instruct ATMs to adapt their phenotype and bioenergetic profile to either maintain redox homeostasis or to promote inflammation.
Collapse
|
9
|
Garcia NF, Sponton ACS, Delbin MA, Parente JM, Castro MM, Zanesco A, de Moraes C. Metabolic parameters and responsiveness of isolated iliac artery in LDLr -/- mice: role of aerobic exercise training. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2017; 7:64-71. [PMID: 28533932 PMCID: PMC5435607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/25/2017] [Indexed: 06/07/2023]
Abstract
Physical inactivity and dyslipidemia are considered risk factors for cardiovascular diseases. There are few studies evaluating the effects of physical exercise in small-caliber artery in a model that mimics familial hypercholesterolemia. The aim of this study was to examine the effect of exercise training, at moderate intensity, on metabolic parameters and iliac artery responsiveness in LDL-/- mice. Sedentary (SD) and trained (TR) mice performed AET (5 days/week, 60 minutes/day at 60-70% of maximum speed) during 8 weeks. Body weight gain (BWG), epididymal fat, blood glucose, total cholesterol and triglycerides were evaluated. Concentration-response curves to acetylcholine (ACh), sodium nitroprusside, phenylephrine and U46619 were obtained in isolated iliac artery. The production of nitric oxide (NO) and reactive oxygen species as well as the expression and activity of MMP-2 were assessed. AET was effective in preventing BWG and epididymal fat gain, whereas no changes were observed in glucose, total cholesterol and triglycerides levels. Improvement in responsiveness to ACh was found in TR (Emax = 85±3%) compared with SD group (Emax = 62±5%) without changes in the maximal vascular response or potency to SNP, PHE and U46619. The NO level was increased (10.8-fold) while ROS formation was decreased (3.7-fold) in iliac artery from TR, without changes in MMP-2 activity or its expression. AET was effective to improve endothelium-dependent relaxation that was accompanied by increased NO production and decreased ROS formation in iliac artery. The intensity of AET should be greater to modify metabolic disorders in this experimental model of dyslipidemia.
Collapse
Affiliation(s)
- Nádia F Garcia
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SPBrazil
| | - Amanda CS Sponton
- Department of Structural and Functional Biology, University of Campinas, SPBrazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, University of Campinas, SPBrazil
| | - Juliana M Parente
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SPBrazil
| | - Michele M Castro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, SPBrazil
| | | | - Camila de Moraes
- School of Physical Education and Sport of Ribeirão Preto, University of São Paulo, SPBrazil
| |
Collapse
|
10
|
Physical Exercise Is a Potential "Medicine" for Atherosclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:269-286. [PMID: 29022268 DOI: 10.1007/978-981-10-4307-9_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise's beneficial effects and its potential clinical use.
Collapse
|
11
|
Pellegrin M, Szostak J, Bouzourène K, Aubert JF, Berthelot A, Nussberger J, Laurant P, Mazzolai L. Running Exercise and Angiotensin II Type I Receptor Blocker Telmisartan Are Equally Effective in Preventing Angiotensin II-Mediated Vulnerable Atherosclerotic Lesions. J Cardiovasc Pharmacol Ther 2016; 22:159-168. [PMID: 27246357 DOI: 10.1177/1074248416652235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION The present study was conducted to directly compare the efficacy of running exercise and telmisartan treatment on angiotensin (Ang) II-mediated atherosclerosis and plaque vulnerability. MATERIALS AND METHODS Apolipoprotein E-deficient (ApoE-/-) mice with Ang II-mediated atherosclerosis (2-kidney, 1-clip [2K1C] renovascular hypertension model) were randomized into 3 groups: treadmill running exercise (RUN), telmisartan treatment (TEL), and sedentary untreated controls (SED) for 5 weeks. Atherosclerosis was assessed using histological and immunohistochemical analyses. Gene expression was determined by real-time reverse transcription polymerase chain reaction. RESULTS TEL but not RUN mice significantly decreased (50%) atherosclerotic lesion size compared to SED. RUN and TEL promoted plaque stabilization to a similar degree in ApoE-/- 2K1C mice. However, plaque composition and vascular inflammatory markers were differently affected: RUN decreased plaque macrophage infiltration (35%), whereas TEL reduced lipid core size (88%); RUN significantly increased aortic peroxisome proliferator-activated receptor (PPAR)-α, -δ, and -γ expression, whereas TEL significantly modulated T-helper 1/T-helper 2 (Th1/Th2) aortic response toward an anti-inflammatory state (decreased aortic interleukin [IL] 2 to IL-10 and IL-2 to IL-13 expression ratios). Plaque smooth muscle cell content was similarly increased (128% and 141%, respectively). Aortic AT1 and AT2 receptor expression as well as aortic CD11c/CD206 and IL-1β/IL-1ra expression ratios were not significantly modulated by either RUN or TEL. CONCLUSION Running exercise and telmisartan treatment are equally effective in preventing Ang II-mediated plaque vulnerability but through distinct cellular and molecular mechanisms. Our findings further support the use of exercise training and selective AT1 receptor blocker therapies for atherosclerotic cardiovascular disease prevention.
Collapse
Affiliation(s)
- Maxime Pellegrin
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Justyna Szostak
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland.,2 Sciences Séparatives Biologiques et Pharmaceutiques, UFR STAPS/SMP, Université de Franche-Comté, Besançon, France
| | - Karima Bouzourène
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Alain Berthelot
- 2 Sciences Séparatives Biologiques et Pharmaceutiques, UFR STAPS/SMP, Université de Franche-Comté, Besançon, France
| | - Jürg Nussberger
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Pascal Laurant
- 3 Laboratoire Pharm-Ecologie Cardiovasculaire, UFRip Sciences Technologie et Santé, Université Avignon et des Pays de Vaucluse, Avignon, France
| | - Lucia Mazzolai
- 1 Division of Angiology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Szostak J, Miguet-Alfonsi C, Berthelot A, Laurant P. Training-induced anti-atherosclerotic effects are associated with increased vascular PPARgamma expression in apolipoprotein E-deficient mice. Acta Physiol (Oxf) 2016; 216:221-30. [PMID: 26467845 DOI: 10.1111/apha.12615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/21/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
Abstract
AIM Physical exercise prevents cardiovascular risk and atherosclerosis lesions. However, the molecular aspects are still unknown. Vascular peroxisome proliferator-activated receptors (PPARs) exert anti-atherogenic effects. The aim of this study was to determine whether exercise-induced anti-atherosclerotic effect is associated with change in PPARs vascular expression in apolipoprotein E-deficient (ApoE(-/-) ) mice. METHODS Male ApoE(-/-) mice were fed with a high-fat diet and randomized into two groups: one trained group undergoing swimming training for 3 months and one sedentary group. Sedentary and trained C57BL/6J mice were used as control. mRNA of PPAR-α, PPAR-β/δ and PPAR-γ was measured in aorta by quantitative PCR. mRNA of pro- (TNF-α, IL-1β) and anti-inflammatory (IL-10, IL-1Ra) cytokines was also measured. RESULTS Atherosclerotic lesion size was significantly reduced in trained ApoE(-/-) mice compared to sedentary ones. In contrast, reduction of atherosclerotic lesion size was not observed in trained ApoE(-/-) mice supplied with BADGE, an antagonist of PPAR-γ. Exercise training significantly increased PPAR-γ expression in aorta. PPAR-γ expression was inversely correlated with the atherosclerotic plaque area. Aortic PPAR-α and PPAR-β/δ mRNA expressions were not changed in response to exercise training. Atherosclerosis increased the aortic mRNA expression of TNF-α, IL-1β, IL-10 and IL-1Ra. Exercise training decreased aortic IL-1β mRNA expression in ApoE(-/-) mice, but did not change expression of TNF-α, IL-10 and IL-1Ra. IL-1β mRNA expression was also significantly lower in atherosclerosis lesions from trained ApoE(-/-) compared with those from sedentary ones. CONCLUSIONS Exercise training increases vascular PPAR-γ expression in ApoE(-/-) mice that could potentially underlie training-related beneficial effects on atherosclerosis.
Collapse
Affiliation(s)
- J. Szostak
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - C. Miguet-Alfonsi
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - A. Berthelot
- Sciences Separatives Biologiques et Pharmaceutiques; UFR STAPS/SMP; University of Franche-Comté; Besançon France
| | - P. Laurant
- Laboratoire Pharm-Ecologie Cardiovasculaire EA4278; UFRip Sciences Technologie et Santé; UAPV; Avignon France
| |
Collapse
|
13
|
Murphy MO, Petriello MC, Han SG, Sunkara M, Morris AJ, Esser K, Hennig B. Exercise protects against PCB-induced inflammation and associated cardiovascular risk factors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:2201-11. [PMID: 25586614 PMCID: PMC4503535 DOI: 10.1007/s11356-014-4062-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 04/15/2023]
Abstract
Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that contribute to the initiation of cardiovascular disease. Exercise has been shown to reduce the risk of cardiovascular disease; however, whether exercise can modulate PCB-induced vascular endothelial dysfunction and associated cardiovascular risk factors is unknown. We examined the effects of exercise on coplanar PCB-induced cardiovascular risk factors including oxidative stress, inflammation, impaired glucose tolerance, hypercholesteremia, and endothelium-dependent relaxation. Male ApoE(-/-) mice were divided into sedentary and exercise groups (voluntary wheel running) over a 12-week period. Half of each group was exposed to vehicle or PCB 77 at weeks 1, 2, 9, and 10. For ex vivo studies, male C57BL/6 mice exercised via voluntary wheel training for 5 weeks and then were administered with vehicle or PCB 77 24 h before vascular reactivity studies were performed. Exposure to coplanar PCB increased risk factors associated with cardiovascular disease, including oxidative stress and systemic inflammation, glucose intolerance, and hypercholesteremia. The 12-week exercise intervention significantly reduced these proatherogenic parameters. Exercise also upregulated antioxidant enzymes including phase II detoxification enzymes. Sedentary animals exposed to PCB 77 exhibited endothelial dysfunction as demonstrated by significant impairment of endothelium-dependent relaxation, which was prevented by exercise. Lifestyle modifications such as aerobic exercise could be utilized as a therapeutic approach for the prevention of adverse cardiovascular health effects induced by environmental pollutants such as PCBs.
Collapse
Affiliation(s)
- Margaret O Murphy
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
| | - Michael C Petriello
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Sung Gu Han
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Department of Food Science and Biotechnology of Animal Resources, College of Animal Bioscience and Technology, Konkuk University, Seoul, 143-701, Republic of Korea
| | - Manjula Sunkara
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Andrew J Morris
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA
- Division of Cardiovascular Medicine, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Karyn Esser
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA
| | - Bernhard Hennig
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY, 40536, USA.
- University of Kentucky Superfund Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, KY, 40536, USA.
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40536, USA.
| |
Collapse
|
14
|
Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects. PLoS One 2015; 10:e0143536. [PMID: 26600018 PMCID: PMC4658070 DOI: 10.1371/journal.pone.0143536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022] Open
Abstract
We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis.
Collapse
|
15
|
Pinto PR, Rocco DDFM, Okuda LS, Machado-Lima A, Castilho G, da Silva KS, Gomes DJ, Pinto RDS, Iborra RT, Ferreira GDS, Nakandakare ER, Machado UF, Correa-Giannella MLC, Catanozi S, Passarelli M. Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis 2015; 14:109. [PMID: 26377330 PMCID: PMC4572640 DOI: 10.1186/s12944-015-0093-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/12/2015] [Indexed: 12/26/2022] Open
Abstract
Background Regular exercise prevents and regresses atherosclerosis by improving lipid metabolism and antioxidant defenses. Exercise ameliorates the reverse cholesterol transport (RCT), an antiatherogenic system that drives cholesterol from arterial macrophages to the liver for excretion into bile and feces. In this study we analyzed the role of aerobic exercise on the in vivo RCT and expression of genes and proteins involved in lipid flux and inflammation in peritoneal macrophages, aortic arch and liver from wild type mice. Methods Twelve-week-old male mice were divided into sedentary and trained groups. Exercise training was performed in a treadmill (15 m/min, 30 min/day, 5 days/week). Plasma lipids were determined by enzymatic methods and lipoprotein profile by fast protein liquid chromatography. After intraperitoneal injection of J774-macrophages the RCT was assessed by measuring the recovery of 3H-cholesterol in plasma, feces and liver. The expression of liver receptors was determined by immunoblot, macrophages and aortic mRNAs by qRT-PCR. 14C-cholesterol efflux mediated by apo A-I and HDL2 and the uptake of 3H-cholesteryl oleoyl ether (3H-COE)-acetylated-LDL were determined in macrophages isolated from sedentary and trained animals 48 h after the last exercise session. Results Body weight, plasma lipids, lipoprotein profile, glucose and blood pressure were not modified by exercise training. A greater amount of 3H-cholesterol was recovered in plasma (24 h and 48 h) and liver (48 h) from trained animals in comparison to sedentary. No difference was found in 3H-cholesterol excreted in feces between trained and sedentary mice. The hepatic expression of scavenger receptor class B type I (SR-BI) and LDL receptor (B-E) was enhanced by exercise. We observed 2.8 and 1.7 fold rise, respectively, in LXR and Cyp7a mRNA in the liver of trained as compared to sedentary mice. Macrophage and aortic expression of genes involved in lipid efflux was not systematically changed by physical exercise. In agreement, 14C-cholestrol efflux and uptake of 3H-COE-acetylated-LDL by macrophages was similar between sedentary and trained animals. Conclusion Aerobic exercise in vivo accelerates the traffic of cholesterol from macrophages to the liver contributing to prevention and regression of atherosclerosis, independently of changes in macrophage and aorta gene expression.
Collapse
Affiliation(s)
- Paula Ramos Pinto
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Débora Dias Ferraretto Moura Rocco
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Ligia Shimabukuro Okuda
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Adriana Machado-Lima
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Gabriela Castilho
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Karolline Santana da Silva
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Diego Juvenal Gomes
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Raphael de Souza Pinto
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Rodrigo Tallada Iborra
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Guilherme da Silva Ferreira
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Edna Regina Nakandakare
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil.
| | | | - Sergio Catanozi
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| | - Marisa Passarelli
- Lipids Laboratory (LIM - 10), University of São Paulo Medical School, Av. Dr. Arnaldo 455, room 3305, Sao Paulo, SP, CEP 01246000, Brazil.
| |
Collapse
|
16
|
Treadmill Exercise Training Modulates Hepatic Cholesterol Metabolism and Circulating PCSK9 Concentration in High-Fat-Fed Mice. J Lipids 2013; 2013:908048. [PMID: 23862065 PMCID: PMC3703876 DOI: 10.1155/2013/908048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/04/2013] [Indexed: 12/22/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a novel biomarker of LDL clearance and a therapeutic target of cardiovascular disease. We examined the effects of aerobic exercise training in modulating PCSK9 abundance and hepatic sterol regulation in high-fat-fed C57BL/6 mice. Mice (n = 8) were assigned to a low-fat (LF), high-fat (HF), or an HF with exercise (HF + EX) group for 8 weeks. The HF + EX group was progressively trained 5 days/week on a motorized treadmill. The HF + EX group was protected against body weight (BW) gain and diet-induced dyslipidemia compared with the HF group. The HF + EX group demonstrated an increase in hepatic PCSK9 mRNA (1.9-fold of HF control, P < 0.05) and a reduction in plasma PCSK9 (14%) compared with the HF group. Compared with HF mice, HF + EX mice demonstrated reduced hepatic cholesterol (14%) and increased (P < 0.05) nuclear SREBP2 protein (1.8-fold of HF group) and LDLr mRNA (1.4-fold of HF group). Plasma PCSK9 concentrations correlated positively with plasma non-HDL-C (P = 0.01, r = 0.84). Results suggest that treadmill exercise reduces non-HDL cholesterol and differentially modulates hepatic and blood PCSK9 abundance in HF-fed C57BL/6 mice.
Collapse
|
17
|
Meissner M, Wolters H, de Boer RA, Havinga R, Boverhof R, Bloks VW, Kuipers F, Groen AK. Bile acid sequestration normalizes plasma cholesterol and reduces atherosclerosis in hypercholesterolemic mice. No additional effect of physical activity. Atherosclerosis 2013; 228:117-23. [PMID: 23497783 DOI: 10.1016/j.atherosclerosis.2013.02.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 01/14/2013] [Accepted: 02/11/2013] [Indexed: 01/06/2023]
Abstract
AIMS Bile acid sequestrants (BAS) and physical activity (RUN) decrease incidence of cardiovascular events. Both treatments are often prescribed, yet it is not known whether their beneficial effects are additive. We assessed the effects of BAS treatment alone and in combination with RUN on cholesterol metabolism, heart function and atherosclerotic lesion size in hypercholesterolemic mice. METHODS Male Ldlr-deficient mice remained either sedentary (CONTROL), were treated with Colesevelam HCl (BAS), had access to a running wheel (RUN), or were exposed to BAS and RUN (BAS RUN). All groups were fed a high cholesterol diet for 12 weeks. Then, feces, bile and plasma were collected. Atherosclerotic lesion size was determined in the aortic arch and heart function by echocardiography. RESULTS BAS RUN ran more than RUN (6.4 ± 1.4 vs. 3.5 ± 1.0 km/day, p < 0.05). BAS and BAS RUN displayed ~3-fold reductions in plasma cholesterol levels (p < 0.001), ~2.5-fold increases in fecal neutral sterol (p < 0.001) and bile acid (p = 0.01) outputs, decreases in biliary secretions of cholesterol (~6-fold, p < 0.0001) and bile acids (~2-fold, p < 0.001) vs. CONTROL while no significant effects were observed in RUN. Compared to CONTROL, lesion size decreased by 78% in both BAS and BAS RUN, (p < 0.0001). CONCLUSION BAS reduce atherosclerosis in Ldlr-deficient mice, coinciding with a switch from body cholesterol accumulation to cholesterol loss. RUN slightly modulated atherosclerotic lesion formation but the combination of BAS and RUN had no clear additive effects in this respect.
Collapse
Affiliation(s)
- Maxi Meissner
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 17:684-716. [PMID: 22304560 DOI: 10.1089/ars.2011.4196] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
Collapse
Affiliation(s)
- Nicoletta Castiglione
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 2012; 302:H10-23. [PMID: 21984538 PMCID: PMC3334245 DOI: 10.1152/ajpheart.00574.2011] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 09/29/2011] [Indexed: 12/26/2022]
Abstract
Exercise training (EX) induces increases in coronary transport capacity through adaptations in the coronary microcirculation including increased arteriolar diameters and/or densities and changes in the vasomotor reactivity of coronary resistance arteries. In large animals, EX increases capillary exchange capacity through angiogenesis of new capillaries at a rate matched to EX-induced cardiac hypertrophy so that capillary density remains normal. However, after EX coronary capillary exchange area is greater (i.e., capillary permeability surface area product is greater) at any given blood flow because of altered coronary vascular resistance and matching of exchange surface area and blood flow distribution. The improved coronary capillary blood flow distribution appears to be the result of structural changes in the coronary tree and alterations in vasoreactivity of coronary resistance arteries. EX also alters vasomotor reactivity of conduit coronary arteries in that after EX, α-adrenergic receptor responsiveness is blunted. Of interest, α- and β-adrenergic tone appears to be maintained in the coronary microcirculation in the presence of lower circulating catecholamine levels because of increased receptor responsiveness to adrenergic stimulation. EX also alters other vasomotor control processes of coronary resistance vessels. For example, coronary arterioles exhibit increased myogenic tone after EX, likely because of a calcium-dependent PKC signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, EX augments endothelium-dependent vasodilation throughout the coronary arteriolar network and in the conduit arteries in coronary artery disease (CAD). The enhanced endothelium-dependent dilation appears to result from increased nitric oxide bioavailability because of changes in nitric oxide synthase expression/activity and decreased oxidant stress. EX also decreases extravascular compressive forces in the myocardium at rest and at comparable levels of exercise, mainly because of decreases in heart rate and duration of systole. EX does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. While there is evidence that EX can decrease the progression of atherosclerotic lesions or even induce the regression of atherosclerotic lesions in humans, the evidence of this is not strong due to the fact that most prospective trials conducted to date have included other lifestyle changes and treatment strategies by necessity. The literature from large animal models of CAD also presents a cloudy picture concerning whether EX can induce the regression of or slow the progression of atherosclerotic lesions. Thus, while evidence from research using humans with CAD and animal models of CAD indicates that EX increases endothelium-dependent dilation throughout the coronary vascular tree, evidence that EX reverses or slows the progression of lesion development in CAD is not conclusive at this time. This suggests that the beneficial effects of EX in CAD may not be the result of direct effects on the coronary artery wall. If this suggestion is true, it is important to determine the mechanisms involved in these beneficial effects.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Biomedical Sciences, University of Missouri, Columbia, 65211, USA.
| | | | | |
Collapse
|
20
|
The forgotten face of regular physical exercise: a 'natural' anti-atherogenic activity. Clin Sci (Lond) 2011; 121:91-106. [PMID: 21729002 DOI: 10.1042/cs20100520] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Humans are not programmed to be inactive. The combination of both accelerated sedentary lifestyle and constant food availability disturbs ancient metabolic processes leading to excessive storage of energy in tissue, dyslipidaemia and insulin resistance. As a consequence, the prevalence of Type 2 diabetes, obesity and the metabolic syndrome has increased significantly over the last 30 years. A low level of physical activity and decreased daily energy expenditure contribute to the increased risk of cardiovascular morbidity and mortality following atherosclerotic vascular damage. Physical inactivity leads to the accumulation of visceral fat and consequently the activation of the oxidative stress/inflammation cascade, which promotes the development of atherosclerosis. Considering physical activity as a 'natural' programmed state, it is assumed that it possesses atheroprotective properties. Exercise prevents plaque development and induces the regression of coronary stenosis. Furthermore, experimental studies have revealed that exercise prevents the conversion of plaques into a vulnerable phenotype, thus preventing the appearance of fatal lesions. Exercise promotes atheroprotection possibly by reducing or preventing oxidative stress and inflammation through at least two distinct pathways. Exercise, through laminar shear stress activation, down-regulates endothelial AT1R (angiotensin II type 1 receptor) expression, leading to decreases in NADPH oxidase activity and superoxide anion production, which in turn decreases ROS (reactive oxygen species) generation, and preserves endothelial NO bioavailability and its protective anti-atherogenic effects. Contracting skeletal muscle now emerges as a new organ that releases anti-inflammatory cytokines, such as IL-6 (interleukin-6). IL-6 inhibits TNF-α (tumour necrosis factor-α) production in adipose tissue and macrophages. The down-regulation of TNF-α induced by skeletal-muscle-derived IL-6 may also participate in mediating the atheroprotective effect of physical activity.
Collapse
|
21
|
Meissner M, Lombardo E, Havinga R, Tietge UJF, Kuipers F, Groen AK. Voluntary wheel running increases bile acid as well as cholesterol excretion and decreases atherosclerosis in hypercholesterolemic mice. Atherosclerosis 2011; 218:323-9. [PMID: 21802084 DOI: 10.1016/j.atherosclerosis.2011.06.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 06/09/2011] [Accepted: 06/20/2011] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Regular physical activity decreases the risk for atherosclerosis but underlying mechanisms are not fully understood. We questioned whether voluntary wheel running provokes specific modulations in cholesterol turnover that translate into a decreased atherosclerotic burden in hypercholesterolemic mice. METHODS Male LDLR-deficient mice (8 weeks old) had either access to a voluntary running wheel for 12 weeks (RUN) or remained sedentary (CONTROL). Both groups were fed a western-type/high cholesterol diet. Running activity and food intake were recorded. At 12 weeks of intervention, feces, bile and plasma were collected to determine fecal, biliary and plasma parameters of cholesterol metabolism and plasma cytokines. Atherosclerotic lesion size was determined in the aortic root. RESULTS RUN weighed less (∼13%) while food consumption was increased by 17% (p=0.004). Plasma cholesterol levels were decreased by 12% (p=0.035) and plasma levels of pro-atherogenic lipoproteins decreased in RUN compared to control. Running modulated cholesterol catabolism by enhancing cholesterol turnover: RUN displayed an increased biliary bile acid secretion (68%, p=0.007) and increased fecal bile acid (93%, p=0.009) and neutral sterol (33%, p=0.002) outputs compared to control indicating that reverse cholesterol transport was increased in RUN. Importantly, aortic lesion size was decreased by ∼33% in RUN (p=0.033). CONCLUSION Voluntary wheel running reduces atherosclerotic burden in hypercholesterolemic mice. An increased cholesterol turnover, specifically its conversion into bile acids, may underlie the beneficial effect of voluntary exercise in mice.
Collapse
Affiliation(s)
- Maxi Meissner
- Department of Pediatrics, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Kumar A, Kar S, Fay WP. Thrombosis, physical activity, and acute coronary syndromes. J Appl Physiol (1985) 2011; 111:599-605. [PMID: 21596926 DOI: 10.1152/japplphysiol.00017.2011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute coronary syndromes (ACS) are common, life-threatening cardiac disorders that typically are triggered by rupture or erosion of an atherosclerotic plaque. Platelet deposition and activation of the blood coagulation cascade in response to plaque disruption lead to the formation of a platelet-fibrin thrombus, which can grow rapidly, obstruct coronary blood flow, and cause myocardial ischemia and/or infarction. Several clinical studies have examined the relationship between physical activity and ACS, and numerous preclinical and clinical studies have examined specific effects of sustained physical training and acute physical activity on atherosclerotic plaque rupture, platelet function, and formation and clearance of intravascular fibrin. This article reviews the available literature regarding the role of physical activity in determining the incidence of atherosclerotic plaque rupture and the pace and extent of thrombus formation after plaque rupture.
Collapse
Affiliation(s)
- Arun Kumar
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, 5 Hospital Dr., Columbia, MO 65212, USA.
| | | | | |
Collapse
|
23
|
Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice. Lipids 2011; 46:617-25. [PMID: 21479674 DOI: 10.1007/s11745-011-3555-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 03/14/2011] [Indexed: 12/15/2022]
Abstract
We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.
Collapse
|
24
|
Golbidi S, Laher I. Molecular mechanisms in exercise-induced cardioprotection. Cardiol Res Pract 2011; 2011:972807. [PMID: 21403846 PMCID: PMC3051318 DOI: 10.4061/2011/972807] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2010] [Revised: 12/16/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
Abstract
Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
25
|
Teodoro BG, Natali AJ, Fernandes SAT, Peluzio MDCG. A influência da intensidade do exercício físico aeróbio no processo aterosclerótico. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000500013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A aterosclerose é um processo inflamatório crônico e degenerativo que acomete os vasos, sendo caracterizada pelo acúmulo de lipídeos no espaço subendotelial da íntima, acúmulo de células inflamatórias e elementos fibrosos. A oxidação de LDL-c parece ser o principal evento para o início da aterosclerose. O exercício físico aeróbio melhora os sistemas de defesa orgânicos contra aterosclerose, diminuindo o estresse oxidativo e aumentando a síntese de enzimas antioxidantes; aumento da vasodilatação via óxido nítrico (NO) e óxido nítrico sintase endotelial (eNOS) e diminuição da inflamação sistêmica com produção de citocinas pró-inflamatórias e aumento de fatores anti-inflamatórios. Porém, de maneira aguda, o exercício aeróbio de alta intensidade aumenta o risco de desenvolvimento de eventos cardiovasculares e, de forma crônica, pode atuar negativa ou positivamente na prevenção do processo aterosclerótico.
Collapse
|
26
|
Abstract
Exercise training has been shown to reduce many risk factors related to cardiovascular disease, including high blood pressure, high cholesterol, obesity, and insulin resistance. More importantly, exercise training has been consistently shown to confer sustainable protection against myocardial infarction in animal models and has been associated with improved survival following a heart attack in humans. It is still unclear how exercise training is able to protect the heart, but some studies have suggested that it increases a number of classical signalling molecules. For instance, exercise can increase components of the endogenous antioxidant defences (i.e. superoxide dismutase and catalase), increase the expression of heat shock proteins, activate ATP-sensitive potassium (K(ATP)) channels, and increase the expression and activity of endothelial nitric oxide (NO) synthase resulting in an increase in NO levels. This review article will provide a brief summary of the role that these signalling molecules play in mediating the cardioprotective effects of exercise. In particular, it will highlight the role that NO plays and introduce the idea that the stable NO metabolite, nitrite, may play a major role in mediating these cardioprotective effects.
Collapse
Affiliation(s)
- John W Calvert
- Division of Cardiothoracic Surgery, Department of Surgery, Carlyle Fraser Heart Center, Emory University School of Medicine, 550 Peachtree Street NE, Atlanta, GA 30308, USA.
| |
Collapse
|
27
|
Fukao K, Shimada K, Naito H, Sumiyoshi K, Inoue N, Iesaki T, Kume A, Kiyanagi T, Hiki M, Hirose K, Matsumori R, Ohsaka H, Takahashi Y, Toyoda S, Itoh S, Miyazaki T, Tada N, Daida H. Voluntary exercise ameliorates the progression of atherosclerotic lesion formation via anti-inflammatory effects in apolipoprotein E-deficient mice. J Atheroscler Thromb 2010; 17:1226-36. [PMID: 20808053 DOI: 10.5551/jat.4788] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM A sedentary lifestyle with insufficient exercise is associated with cardiovascular disease. Previous studies have demonstrated that endurance exercise benefits atherosclerosis and cardiovascular disorders; however, the mechanisms by which physical activity, such as voluntary exercise (Ex), produces these effects are not fully understood. METHODS AND RESULTS Eight-week-old male apolipoprotein (ApoE)-deficient mice were fed a standard diet (STD) or high fat diet (HFD) for 10 weeks. The HFD+Ex group mice performed Ex on a running wheel for 10 weeks. No significant differences in lipid profiles were observed between the HFD and HFD+Ex groups. Although changes in body and brown adipose tissue weights were comparable between the HFD and HFD+Ex groups, white adipose tissue weight was significantly lower in the HFD+Ex group than in the HFD group. The areas of atherosclerotic lesions in the aortic sinus and thoracoabdominal aorta were significantly reduced in the HFD+Ex group than in the HFD group (p<0.001). There was a strong negative correlation between atherosclerotic areas and the mean running distance per day in the HFD+Ex group (r=-0.90, p=0.01). Endothelial function was significantly preserved in the HFD+Ex group (p<0.05). Serum interleukin-6 and macrophage chemoattractant protein-1 levels were significantly lower and those of adiponectin were significantly higher in the HFD+Ex group than in the HFD group (p<0.05). CONCLUSIONS These results suggest that Ex ameliorates the progression of endothelial dysfunction and atherosclerotic lesion formation through anti-inflammatory effects, despite continued consumption of HFD.
Collapse
Affiliation(s)
- Kosuke Fukao
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
da Rocha RF, de Oliveira MR, de Bittencourt Pasquali MA, Andrades MÉ, Oliveira MWS, Behr GA, Moreira JCF. Vascular redox imbalance in rats submitted to chronic exercise. Cell Biochem Funct 2010; 28:190-6. [DOI: 10.1002/cbf.1640] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
29
|
Abstract
Clinical consequences of heart failure are fatigue, dyspnea, and progressive impairment of exercise tolerance. Regular exercise training is associated with health-improving effects. In patients with stable heart failure, exercise training can relieve symptoms, improve exercise capacity and quality of life, as well as reduce hospitalization and, to some extent, risk of mortality. Progressive exercise training is associated with pulmonary, cardiovascular, and skeletal muscle metabolic adaptations that increase oxygen delivery and energy production. This Review focuses on current knowledge of mechanisms by which progressive and moderate exercise training can have sustained beneficial effects on patients with heart failure.
Collapse
|
30
|
Lee J, Ryu H, Kowall NW. Motor neuronal protection by L-arginine prolongs survival of mutant SOD1 (G93A) ALS mice. Biochem Biophys Res Commun 2009; 384:524-9. [PMID: 19427829 DOI: 10.1016/j.bbrc.2009.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive paralysis due to motor neuron degeneration. Despite the fact that many different therapeutic strategies have been applied to prevent disease progression, no cure or effective therapy is currently available for ALS. We found that L-arginine protects cultured motor neurons from excitotoxic injury. We also found that L-arginine supplementation both prior to and after the onset of motor neuron degeneration in mtSOD1 (G93A) transgenic ALS mice significantly slowed the progression of neuropathology in lumbar spinal cord, delayed onset of motor dysfunction, and prolonged life span. Moreover, L-arginine treatment was associated with preservation of arginase I activity and neuroprotective polyamines in spinal cord motor neurons. Our findings show that L-arginine has potent in vitro and in vivo neuroprotective properties and may be a candidate for therapeutic trials in ALS.
Collapse
Affiliation(s)
- Junghee Lee
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA.
| | | | | |
Collapse
|
31
|
Heeren MV, De Sousa LE, Mostarda C, Moreira E, Machert H, Rigatto KV, Wichi RB, Irigoyen MC, De Angelis K. Exercise improves cardiovascular control in a model of dislipidemia and menopause. Maturitas 2009; 62:200-4. [PMID: 19181466 DOI: 10.1016/j.maturitas.2008.12.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2008] [Revised: 12/16/2008] [Accepted: 12/18/2008] [Indexed: 11/17/2022]
Abstract
The present study investigated the effects of exercise training on arterial pressure, baroreflex sensitivity, cardiovascular autonomic control and metabolic parameters on female LDL-receptor knockout ovariectomized mice. Mice were divided into two groups: sedentary and trained. Trained group was submitted to an exercise training protocol. Blood cholesterol was measured. Arterial pressure (AP) signals were directly recorded in conscious mice. Baroreflex sensitivity was evaluated by tachycardic and bradycardic responses to AP changes. Cardiovascular autonomic modulation was measured in frequency (FFT) and time domains. Maximal exercise capacity was increased in trained as compared to sedentary group. Blood cholesterol was diminished in trained mice (191+/-8mg/dL) when compared to sedentary mice (250+/-9mg/dL, p<0.05). Mean AP and HR were reduced in trained group (101+/-3mmHg and 535+/-14bpm, p<0.05) when compared with sedentary group (125+/-3mmHg and 600+/-12bpm). Exercise training induced improvement in bradycardic reflex response in trained animals (-4.24+/-0.62bpm/mmHg) in relation to sedentary animals (-1.49+/-0.15bpm/mmHg, p<0.01); tachycardic reflex responses were similar between studied groups. Exercise training increased the variance (34+/-8 vs. 6.6+/-1.5ms(2) in sedentary, p<0.005) and the high-frequency band (HF) of the pulse interval (IP) (53+/-7% vs. 26+/-6% in sedentary, p<0.01). It is tempting to speculate that results of this experimental study might represent a rationale for this non-pharmacological intervention in the management of cardiovascular risk factors in dyslipidemic post-menopause women.
Collapse
Affiliation(s)
- Marcelo Velloso Heeren
- Human Movement Laboratory, São Judas Tadeu University, Rua Taquari, 546, Sao Paulo - São Paulo 03166-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ajijola OA, Dong C, Herderick EE, Ma Q, Goldschmidt-Clermont PJ, Yan Z. Voluntary running suppresses proinflammatory cytokines and bone marrow endothelial progenitor cell levels in apolipoprotein-E-deficient mice. Antioxid Redox Signal 2009; 11:15-23. [PMID: 18837653 PMCID: PMC2933158 DOI: 10.1089/ars.2008.2092] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 06/03/2008] [Accepted: 06/26/2008] [Indexed: 12/22/2022]
Abstract
Long-term exercise is associated with reduced atherosclerotic burden, inflammation, and enhanced endothelial progenitor cell (EPC) levels in mice. Infusion of progenitor cells in mice decreases atherosclerosis and suppresses inflammation. The aim of this study was to determine whether exercise-induced enhancement of EPCs is associated with reduced atherosclerosis and inflammation. To study this, 20-week old ApoE(-/-) mice with advanced atherosclerotic lesions (n = 12/group) were randomized to voluntary running or no running for 8 weeks. Exercise led to a potent suppression of elevated circulating proinflammatory cytokines without significant reduction of atherosclerotic lesions. When repeated in ApoE(-/-) mice with early atherosclerotic disease, exercise led to a 62% (p = 0.017) reduction in lesion thickness (intima-to-media ratio) at the aortic root. Interestingly, BM-EPC levels were significantly elevated under proinflammatory conditions seen in ApoE(-/-) mice and decreased in response to exercise, independent of the degree of atherosclerosis. Under early atherosclerotic conditions, long-term exercise reduces atherosclerotic plaque burden and is associated with reduced systemic inflammation. Elevated BM-EPCs seen in atherosclerotic conditions may be a marker of generalized vascular inflammation or injury, and decrease in response to exercise, along with other markers of inflammation.
Collapse
Affiliation(s)
- Olujimi A. Ajijola
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | - Chunming Dong
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| | | | - Qi Ma
- University of Miami Miller School of Medicine, Miami, Florida
| | | | - Zhen Yan
- Division of Cardiology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
33
|
Fiorito C, Rienzo M, Crimi E, Rossiello R, Balestrieri ML, Casamassimi A, Muto F, Grimaldi V, Giovane A, Farzati B, Mancini FP, Napoli C. Antioxidants increase number of progenitor endothelial cells through multiple gene expression pathways. Free Radic Res 2008; 42:754-62. [PMID: 18712633 DOI: 10.1080/10715760802357057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
To date, there is no report on the effect of antioxidants on endothelial progenitor cells (EPCs). This study shows that in vitro incubation of EPCs with vitamin C and E reverted the already well documented lowering effect of TNF-alpha on EPC number and increased p-p38 expression levels. In order to document major changes of gene expression levels and gain insight into signalling pathways, microarray analysis was performed and a significant variation of the expression of 5389 genes in EPCs following antioxidant treatment was detected. Also in vivo evidence is provided about the positive effect of antioxidant vitamins on EPCs, since vitamin C and E supplementation potentiated the physical training-induced increase of EPC number and VEGF levels. Together, these data indicate that antioxidant treatment ameliorates EPC number and causes major changes of gene expression within these cells in vitro. Furthermore, concomitant antioxidant supplementation and physical training in vivo raised the levels of circulating EPCs and serum VEGF more than physical training alone.
Collapse
Affiliation(s)
- Carmela Fiorito
- Department of General Pathology, Division of Clinical Pathology,Excellence Research Center of Cardiovascular Diseases, II University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The microcirculation is a complex and integrated system, transporting oxygen and nutrients to the cells. The key component of this system is the endothelium, contributing to the local balance between pro and anti-inflammatory mediators, hemostatic balance, as well as vascular permeability and cell proliferation. A constant shear stress maintains vascular endothelium homeostasis while perturbed shear stress leads to changes in secretion of vasodilator and vasoconstrictor agents. Increased oxidative stress is a major pathogenetic mechanism of endothelial dysfunction by decreasing NO bioavailability, promoting inflammation and participating in activation of intracellular signals cascade, so influencing ion channels activation, signal transduction pathways, cytoskeleton remodelling, intercellular communication and ultimately gene expression. Targeting the microvascular inflammation and oxidative stress is a fascinating approach for novel therapies in order to decrease morbidity and mortality of chronic and acute diseases.
Collapse
Affiliation(s)
- E Crimi
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
35
|
Napoli C, Balestrieri ML, Sica V, Lerman LO, Crimi E, De Rosa G, Schiano C, Servillo L, D'Armiento FP. Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 2008; 23:124-33. [PMID: 18389338 DOI: 10.1007/s00380-007-1015-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 09/07/2007] [Indexed: 12/18/2022]
Abstract
Moderate wine intake is associated with a reduced risk of morbidity and mortality from cardiovascular disease. Atherosclerosis is enhanced in arterial segments exposed to disturbed flow. Perturbed shear stress increases also the endothelial expression of oxidation-sensitive responsive genes (such as ELK-1 and p-JUN). This study evaluates the effects of chronic consumption of red wine on perturbed shear stress-induced atherogenesis. Results indicated that chronic treatment with red wine significantly attenuated the activation of redox-sensitive genes (ELK-1 and p-JUN) and increased endothelial nitric oxide synthase (eNOS) expression (which was decreased by perturbed shear stress) in cultured human coronary endothelial cells (EC) and in atherosclerosis-prone areas of hypercholesterolemic mice. Oral administration of red wine to hypercholesterolemic mice reduced significantly the progression of atherosclerosis. Moreover, short-term supplementation with red wine to C57BL/6J mice significantly increased upregulation of aortic eNOS and SIRT1 expression induced by physical training. These findings establish that administration of low doses of red wine can attenuate the proatherogenic effects induced by perturbed shear stress in vitro and in vivo. This evidence may have implications for the prevention of atherosclerotic lesion progression and its clinical manifestations.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Division of Clinical Pathology, 1st School of Medicine, II University of Naples, Complesso S. Andrea delle Dame, Via L. de Crecchio 7, Naples, 80138, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Effect of L-arginine on circulating endothelial progenitor cells and VEGF after moderate physical training in mice. Int J Cardiol 2008; 126:421-3. [PMID: 18243372 DOI: 10.1016/j.ijcard.2007.12.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2007] [Accepted: 12/10/2007] [Indexed: 11/22/2022]
Abstract
Alteration of levels and functional activities of circulating endothelial progenitor cells (EPCs) induced by risk factors for coronary heart disease (CHD) profoundly influence their role in the regeneration of tissue ischemia and angiogenesis. Among antioxidant nutrients in the prevention of CHD, L-arginine is particularly effective in enhancing the protection afforded by moderate physical exercise. Here, we aimed to evaluate the effects of L-arginine on EPC levels in C57BL/6J mice subjected to moderate physical exercise. Results showed that supplementation with L-arginine potentiates the effects of moderate physical exercise by increasing significantly EPCs (P<0.001) and VEGF serum levels (P<0.001). Our report highlights the beneficial effect of l-arginine in the modulation of EPC levels and VEGF secretion.
Collapse
|
37
|
Balestrieri ML, Schiano C, Felice F, Casamassimi A, Balestrieri A, Milone L, Servillo L, Napoli C. Effect of low doses of red wine and pure resveratrol on circulating endothelial progenitor cells. J Biochem 2007; 143:179-86. [PMID: 17984121 DOI: 10.1093/jb/mvm209] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circulating endothelial progenitor cells (EPCs) play a significant role in neovascularization of ischaemic tissues and in re-endothelization of injured blood vessels. Identification of compounds able to enhance EPC levels and improve their functional activity, noticeably compromised by risk factors for coronary heart disease, is of clinical interest. This study evaluates the effects of red wine on EPCs. After being isolated from total peripheral blood mononuclear cells, EPC phenotype was confirmed by the presence of double positive cells for DiLDL uptake and lectin binding and by expression of CD34, CD133 and VE-cadherin cell surface markers. Long-term culture in the presence of red wine (1 microl/ml), containing resveratrol (Resv) at physiological concentration (nM), determined a time-dependent amelioration of cell number (P < 0.05). The presence of red wine prevented the TNF-alpha-induced reduction of EPC number (P < 0.05) and this effect was accompanied by reduced p38-phosphorylation expression levels (P < 0.05) and increased NOx levels (P < 0.05) Indeed, pure Resv alone significantly improved the TNF-alpha reduced EPC number (P < 0.05). This evidence indicates novel beneficial effects of red wine and Resv in the positive modulation of EPCs levels.
Collapse
|
38
|
Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. J Cardiovasc Pharmacol 2007; 50:424-33. [PMID: 18049311 DOI: 10.1097/fjc.0b013e31812564e4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral arterial disease (PAD) is a major health problem, especially when associated with severe hypertension. Administration of autologous bone marrow cells (BMCs) is emerging as a novel intervention to induce neoangiogenesis in ischemic limb models and in patients with PAD. This study evaluates the neovascularization capacity of BMCs alone or in combination with metabolic cotreatment (0.8% vitamin E, 0.05% vitamin C, and 5% of L-arginine) in a rat model of ischemic hindlimbs of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Molecular mechanisms were investigated in bone marrow-derived endothelial progenitor cells (BM-EPC) derived from rats. BMC therapy increased blood flow and capillary densities and Ki67 proliferative marker, and it decreased interstitial fibrosis. These effects were amplified by metabolic cotreatment, an intervention that induces vascular protection at least partly through the nitric oxide (NO)/endothelial nitric oxide synthase (eNOS) pathway, reduction of systemic oxidative stress, and macrophage activation. In addition, BMC therapy alone and, more consistently, in combination with metabolic treatment, ameliorated BM-EPC functional activity via decreased cellular senescence and improved homing capacity by increasing CXCR4-expression levels. These data suggest potential therapeutic effects of autologous BMCs and metabolic treatment in hypertensive PAD patients.
Collapse
|
39
|
Wilund KR. Is the anti-inflammatory effect of regular exercise responsible for reduced cardiovascular disease? Clin Sci (Lond) 2007; 112:543-55. [PMID: 17459004 DOI: 10.1042/cs20060368] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Engaging in regular physical activity reduces the risk of developing CVD (cardiovascular disease), but it is not certain to what degree this may be due to the anti-inflammatory effects of exercise. Following acute exercise, there is a transient increase in circulating levels of anti-inflammatory cytokines, whereas chronic exercise reduces basal levels of pro-inflammatory cytokines. Exercise training also induces the expression of antioxidant and anti-inflammatory mediators in the vascular wall that may directly inhibit the development of atherosclerosis. Limited studies in humans and more comprehensive assessments in animal models have confirmed that exercise is atheroprotective and helped identify a number of the mechanisms to explain these effects. This review explores the relationship between systemic and vascular wall inflammation and the role that the anti-inflammatory effects of exercise have on the development and progression of CVD.
Collapse
Affiliation(s)
- Kenneth R Wilund
- Cardiovascular Research Laboratory, Department of Kinesiology and Community Health, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW To describe the influence of acute and chronic administration of L-arginine on metabolism at rest and during exercise. RECENT FINDINGS There has been substantial examination of the effect of infusion and ingestion of L-arginine at rest. It has been clearly demonstrated that L-arginine administration improves endothelial function in various disease states. In addition, L-arginine infusion at rest increases plasma insulin, growth hormone, glucagon, catecholamines and prolactin. Such hormonal changes affect metabolism. There has, however, been very little examination of the effect of increases in L-arginine availability during exercise. This is important to study as there is preliminary evidence that L-arginine infusion, probably via increases in nitric oxide (NO), alters skeletal-muscle metabolism during exercise. There is a need for further research, especially to understand the mechanisms of how L-arginine affects exercise metabolism and also to determine whether the hormonal responses that occur in response to L-arginine at rest are also present to some extent during exercise. SUMMARY This line of research may have important therapeutic implications as there are indications that L-arginine augments the effects of exercise training on insulin sensitivity and capillary growth in muscles.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
41
|
Shimada K, Kishimoto C, Okabe TA, Hattori M, Murayama T, Yokode M, Kita T. Exercise Training Reduces Severity of Atherosclerosis in Apolipoprotein E Knockout Mice via Nitric Oxide. Circ J 2007; 71:1147-51. [PMID: 17587726 DOI: 10.1253/circj.71.1147] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Exercise training may protect against the development of atherosclerosis, although the precise mechanisms are still unknown. The present study assessed the hypothesis that exercise training would reduce the severity of experimental atherosclerosis in apolipoprotein-E (apoE)-deficient mice via nitric oxide (NO). METHODS AND RESULTS ApoE-deficient mice fed a high-fat diet underwent exercise training (30 min swimming) 3 times per week for 8 weeks. The exercise group were also given oral N(G)-nitro-L-arginine methylester (L-NAME; 25 mg x kg (-1) x day(-1)), an inhibitor of NO synthase. Fatty streak plaque lesions developed in ApoE-deficient mice fed the high-fat diet, and were suppressed in the mice that underwent swimming training. In contrast, atherosclerotic lesions were not ameliorated in mice that had exercise training plus oral L-NAME treatment. Immunohistochemical analysis revealed that the expression of endothelial NO increased in mice undergoing exercise compared with the mice that did not exercise, and that the expression was suppressed in the mice having exercise plus oral L-NAME treatment. Differences in lesion area did not correlate with any significant alterations in serum lipid levels. CONCLUSION Exercise training suppressed atherosclerosis via the NO system.
Collapse
Affiliation(s)
- Kana Shimada
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|