1
|
Mörö A, Samanta S, Honkamäki L, Rangasami VK, Puistola P, Kauppila M, Narkilahti S, Miettinen S, Oommen O, Skottman H. Hyaluronic acid based next generation bioink for 3D bioprinting of human stem cell derived corneal stromal model with innervation. Biofabrication 2022; 15. [PMID: 36579828 DOI: 10.1088/1758-5090/acab34] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Corneal transplantation remains gold standard for the treatment of severe cornea diseases, however, scarcity of donor cornea is a serious bottleneck. 3D bioprinting holds tremendous potential for cornea tissue engineering (TE). One of the key technological challenges is to design bioink compositions with ideal printability and cytocompatibility. Photo-crosslinking and ionic crosslinking are often used for the stabilization of 3D bioprinted structures, which can possess limitations on biological functionality of the printed cells. Here, we developed a hyaluronic acid-based dopamine containing bioink using hydrazone crosslinking chemistry for the 3D bioprinting of corneal equivalents. First, the shear thinning property, viscosity, and mechanical stability of the bioink were optimized before extrusion-based 3D bioprinting for the shape fidelity and self-healing property characterizations. Subsequently, human adipose stem cells (hASCs) and hASC-derived corneal stromal keratocytes were used for bioprinting corneal stroma structures and their cell viability, proliferation, microstructure and expression of key proteins (lumican, vimentin, connexin 43,α-smooth muscle actin) were evaluated. Moreover, 3D bioprinted stromal structures were implanted intoex vivoporcine cornea to explore tissue integration. Finally, human pluripotent stem cell derived neurons (hPSC-neurons), were 3D bioprinted to the periphery of the corneal structures to analyze innervation. The bioink showed excellent shear thinning property, viscosity, printability, shape fidelity and self-healing properties with high cytocompatibility. Cells in the printed structures displayed good tissue formation and 3D bioprinted cornea structures demonstrated excellentex vivointegration to host tissue as well asin vitroinnervation. The developed bioink and the printed cornea stromal equivalents hold great potential for cornea TE applications.
Collapse
Affiliation(s)
- Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Sumanta Samanta
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Vignesh K Rangasami
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Maija Kauppila
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| | - Susanna Miettinen
- Adult Stem Cell Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland.,Research, Development and Innovation Centre, Tampere University Hospital, Tampere 33520, Finland
| | - Oommen Oommen
- Bioengineering and Nanomedicine Lab, Faculty of Medicine and Health Technology, University, Tampere 33720, Finland
| | - Heli Skottman
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere 33520, Finland
| |
Collapse
|
2
|
Zhang T, Chen Z, Zhu M, Jing X, Xu X, Yuan X, Zhou M, Zhang Y, Lu M, Chen D, Xu S, Song J. Extracellular vesicles derived from human dental mesenchymal stem cells stimulated with low-intensity pulsed ultrasound alleviate inflammation-induced bone loss in a mouse model of periodontitis. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
3
|
Samanta S, Ylä-Outinen L, Rangasami VK, Narkilahti S, Oommen OP. Bidirectional cell-matrix interaction dictates neuronal network formation in a brain-mimetic 3D scaffold. Acta Biomater 2022; 140:314-323. [PMID: 34902615 DOI: 10.1016/j.actbio.2021.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/04/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022]
Abstract
Human pluripotent stem cells (hPSC) derived neurons are emerging as a powerful tool for studying neurobiology, disease pathology, and modeling. Due to the lack of platforms available for housing and growing hPSC-derived neurons, a pressing need exists to tailor a brain-mimetic 3D scaffold that recapitulates tissue composition and favourably regulates neuronal network formation. Despite the progress in engineering biomimetic scaffolds, an ideal brain-mimetic scaffold is still elusive. We bioengineered a physiologically relevant 3D scaffold by integrating brain-like extracellular matrix (ECM) components and chemical cues. Culturing hPSCs-neurons in hyaluronic acid (HA) gels and HA-chondroitin sulfate (HA-CS) composite gels showed that the CS component prevails as the predominant factor for the growth of neuronal cells, albeit to modest efficacy. Covalent grafting of dopamine (DA) moieties to the HA-CS gel (HADA-CS) enhanced the scaffold stability and stimulated the gel's remodeling properties by entrapping cell-secreted laminin, and binding brain-derived neurotrophic factor (BDNF). Neurons cultured in the scaffold expressed Col1, Col11, and ITGB4; important for cell adhesion and cell-ECM signaling. Thus, the HA-CS scaffold with integrated chemical cues (DA) supported neuronal growth and network formation. This scaffold offers a valuable tool for tissue engineering and disease modeling and helps in bridging the gap between animal models and human diseases by providing biomimetic neurophysiology. STATEMENT OF SIGNIFICANCE: Developing a brain mimetic 3D scaffold that supports neuronal growth could potentially be useful to study neurobiology, disease pathology, and disease modeling. However, culturing human induced pluripotent stem cells (hiPSC) and human embryonic stem cells (ESCs) derived neurons in a 3D matrix is extremely challenging as neurons are very sensitive cells and require tailored composition, viscoelasticity, and chemical cues. This article identified the key chemical cues necessary for designing neuronal matrix that trap the cell-produced ECM and neurotrophic factors and remodel the matrix and supports neurite outgrowth. The tailored injectable scaffold possesses self-healing/shear-thinning property which is useful to design injectable gels for regenerative medicine and disease modeling that provides biomimetic neurophysiology.
Collapse
Affiliation(s)
- Sumanta Samanta
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Laura Ylä-Outinen
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland; Faculty of Sports and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Vignesh Kumar Rangasami
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland
| | - Susanna Narkilahti
- NeuroGroup, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technology, Tampere University, 33720 Tampere, Finland.
| |
Collapse
|
4
|
Song S, Liu X, Huang J, Zhang Z. Neural stem cell-laden 3D bioprinting of polyphenol-doped electroconductive hydrogel scaffolds for enhanced neuronal differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2022; 133:112639. [DOI: 10.1016/j.msec.2021.112639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/25/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023]
|
5
|
Houshyar S, Pillai MM, Saha T, Sathish-Kumar G, Dekiwadia C, Sarker SR, Sivasubramanian R, Shanks RA, Bhattacharyya A. Three-dimensional directional nerve guide conduits fabricated by dopamine-functionalized conductive carbon nanofibre-based nanocomposite ink printing. RSC Adv 2020; 10:40351-40364. [PMID: 35520827 PMCID: PMC9057509 DOI: 10.1039/d0ra06556k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/10/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Directional growth induced by dopamine-functionalized CNF-based nanocomposite ink printing.
Collapse
Affiliation(s)
- Shadi Houshyar
- School of Engineering
- College of Science, Engineering and Health
- RMIT University
- Melbourne 3001
- Australia
| | - Mamatha M. Pillai
- Tissue Engineering Laboratory
- PSG Institute of Advanced Studies
- Coimbatore-641004
- India
| | - Tanushree Saha
- School of Engineering
- College of Science, Engineering and Health
- RMIT University
- Melbourne 3001
- Australia
| | - G. Sathish-Kumar
- Functional, Innovative and Smart Textiles
- PSG Institute of Advanced Studies
- Coimbatore-641004
- India
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility
- College of Science, Engineering and Health
- RMIT University
- Melbourne 3001
- Australia
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering
- Jahangirnagar University
- Dhaka-1342
- Bangladesh
| | - R. Sivasubramanian
- Electrochemistry Laboratory
- PSG Institute of Advanced Studies
- Coimbatore- 641004
- India
| | - Robert A. Shanks
- School of Science
- College of Science, Engineering and Health
- RMIT University
- Melbourne 3000
- Australia
| | - Amitava Bhattacharyya
- Functional, Innovative and Smart Textiles
- PSG Institute of Advanced Studies
- Coimbatore-641004
- India
| |
Collapse
|
6
|
Yildirimer L, Zhang Q, Kuang S, Cheung CWJ, Chu KA, He Y, Yang M, Zhao X. Engineering three-dimensional microenvironments towards
in vitro
disease models of the central nervous system. Biofabrication 2019; 11:032003. [DOI: 10.1088/1758-5090/ab17aa] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
7
|
Xie Y, Lei D, Wang S, Liu Z, Sun L, Zhang J, Qing FL, He C, You Z. A Biocompatible, Biodegradable, and Functionalizable Copolyester and Its Application in Water-Responsive Shape Memory Scaffold. ACS Biomater Sci Eng 2019. [DOI: 10.1021/acsbiomaterials.8b01337] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lin CY, Luo SC, Yu JS, Chen TC, Su WF. Peptide-Based Polyelectrolyte Promotes Directional and Long Neurite Outgrowth. ACS APPLIED BIO MATERIALS 2018; 2:518-526. [DOI: 10.1021/acsabm.8b00697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chia-Yu Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Jia-Shing Yu
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Ta-Ching Chen
- Department of Ophthalmology, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Tapei 10002, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Molecular Imaging Center, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
9
|
Hong G, Viveros RD, Zwang TJ, Yang X, Lieber CM. Tissue-like Neural Probes for Understanding and Modulating the Brain. Biochemistry 2018; 57:3995-4004. [PMID: 29529359 PMCID: PMC6039269 DOI: 10.1021/acs.biochem.8b00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrophysiology tools have contributed substantially to understanding brain function, yet the capabilities of conventional electrophysiology probes have remained limited in key ways because of large structural and mechanical mismatches with respect to neural tissue. In this Perspective, we discuss how the general goal of probe design in biochemistry, that the probe or label have a minimal impact on the properties and function of the system being studied, can be realized by minimizing structural, mechanical, and topological differences between neural probes and brain tissue, thus leading to a new paradigm of tissue-like mesh electronics. The unique properties and capabilities of the tissue-like mesh electronics as well as future opportunities are summarized. First, we discuss the design of an ultraflexible and open mesh structure of electronics that is tissue-like and can be delivered in the brain via minimally invasive syringe injection like molecular and macromolecular pharmaceuticals. Second, we describe the unprecedented tissue healing without chronic immune response that leads to seamless three-dimensional integration with a natural distribution of neurons and other key cells through these tissue-like probes. These unique characteristics lead to unmatched stable long-term, multiplexed mapping and modulation of neural circuits at the single-neuron level on a year time scale. Last, we offer insights on several exciting future directions for the tissue-like electronics paradigm that capitalize on their unique properties to explore biochemical interactions and signaling in a "natural" brain environment.
Collapse
Affiliation(s)
- Guosong Hong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Robert D. Viveros
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Theodore J. Zwang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiao Yang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Charles M. Lieber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
10
|
Zhou X, Cui H, Nowicki M, Miao S, Lee SJ, Masood F, Harris BT, Zhang LG. Three-Dimensional-Bioprinted Dopamine-Based Matrix for Promoting Neural Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8993-9001. [PMID: 29461046 DOI: 10.1021/acsami.7b18197] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Central nerve repair and regeneration remain challenging problems worldwide, largely because of the extremely weak inherent regenerative capacity and accompanying fibrosis of native nerves. Inadequate solutions to the unmet needs for clinical therapeutics encourage the development of novel strategies to promote nerve regeneration. Recently, 3D bioprinting techniques, as one of a set of valuable tissue engineering technologies, have shown great promise toward fabricating complex and customizable artificial tissue scaffolds. Gelatin methacrylate (GelMA) possesses excellent biocompatible and biodegradable properties because it contains many arginine-glycine-aspartic acids (RGD) and matrix metalloproteinase sequences. Dopamine (DA), as an essential neurotransmitter, has proven effective in regulating neuronal development and enhancing neurite outgrowth. In this study, GelMA-DA neural scaffolds with hierarchical structures were 3D-fabricated using our custom-designed stereolithography-based printer. DA was functionalized on GelMA to synthesize a biocompatible printable ink (GelMA-DA) for improving neural differentiation. Additionally, neural stem cells (NSCs) were employed as the primary cell source for these scaffolds because of their ability to terminally differentiate into a variety of cell types including neurons, astrocytes, and oligodendrocytes. The resultant GelMA-DA scaffolds exhibited a highly porous and interconnected 3D environment, which is favorable for supporting NSC growth. Confocal microscopy analysis of neural differentiation demonstrated that a distinct neural network was formed on the GelMA-DA scaffolds. In particular, the most significant improvements were the enhanced neuron gene expression of TUJ1 and MAP2. Overall, our results demonstrated that 3D-printed customizable GelMA-DA scaffolds have a positive role in promoting neural differentiation, which is promising for advancing nerve repair and regeneration in the future.
Collapse
Affiliation(s)
| | | | | | | | | | - Fahed Masood
- Department of Mechanical Engineering , University of Maryland , Collage Park , Maryland 20742 , United States
| | - Brent T Harris
- Department of Neurology and Pathology , Georgetown University , Washington, D.C. 20057 , United States
| | | |
Collapse
|
11
|
Ham TR, Farrag M, Leipzig ND. Covalent growth factor tethering to direct neural stem cell differentiation and self-organization. Acta Biomater 2017; 53:140-151. [PMID: 28161574 DOI: 10.1016/j.actbio.2017.01.068] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 12/12/2022]
Abstract
Tethered growth factors offer exciting new possibilities for guiding stem cell behavior. However, many of the current methods present substantial drawbacks which can limit their application and confound results. In this work, we developed a new method for the site-specific covalent immobilization of azide-tagged growth factors and investigated its utility in a model system for guiding neural stem cell (NSC) behavior. An engineered interferon-γ (IFN-γ) fusion protein was tagged with an N-terminal azide group, and immobilized to two different dibenzocyclooctyne-functionalized biomimetic polysaccharides (chitosan and hyaluronan). We successfully immobilized azide-tagged IFN-γ under a wide variety of reaction conditions, both in solution and to bulk hydrogels. To understand the interplay between surface chemistry and protein immobilization, we cultured primary rat NSCs on both materials and showed pronounced biological effects. Expectedly, immobilized IFN-γ increased neuronal differentiation on both materials. Expression of other lineage markers varied depending on the material, suggesting that the interplay of surface chemistry and protein immobilization plays a large role in nuanced cell behavior. We also investigated the bioactivity of immobilized IFN-γ in a 3D environment in vivo and found that it sparked the robust formation of neural tube-like structures from encapsulated NSCs. These findings support a wide range of potential uses for this approach and provide further evidence that adult NSCs are capable of self-organization when exposed to the proper microenvironment. STATEMENT OF SIGNIFICANCE For stem cells to be used effectively in regenerative medicine applications, they must be provided with the appropriate cues and microenvironment so that they integrate with existing tissue. This study explores a new method for guiding stem cell behavior: covalent growth factor tethering. We found that adding an N-terminal azide-tag to interferon-γ enabled stable and robust Cu-free 'click' immobilization under a variety of physiologic conditions. We showed that the tagged growth factors retained their bioactivity when immobilized and were able to guide neural stem cell lineage commitment in vitro. We also showed self-organization and neurulation from neural stem cells in vivo. This approach will provide another tool for the orchestration of the complex signaling events required to guide stem cell integration.
Collapse
|
12
|
Yu SB, Baek J, Choi M, Oh Y, Lee HR, Yu SJ, Lee E, Sohn JW, Im SG, Jon S. Polymer Thin Films with Tunable Acetylcholine-like Functionality Enable Long-Term Culture of Primary Hippocampal Neurons. ACS NANO 2016; 10:9909-9918. [PMID: 27792310 DOI: 10.1021/acsnano.6b03527] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In vitro culture systems for primary neurons have served as useful tools for neuroscience research. However, conventional in vitro culture methods are still plagued by challenging problems with respect to applications to neurodegenerative disease models or neuron-based biosensors and neural chips, which commonly require long-term culture of neural cells. These impediments highlight the necessity of developing a platform capable of sustaining neural activity over months. Here, we designed a series of polymeric bilayers composed of poly(glycidyl methacrylate) (pGMA) and poly(2-(dimethylamino)ethyl methacrylate) (pDMAEMA), designated pGMA:pDMAEMA, using initiated chemical vapor deposition (iCVD). Harnessing the surface-growing characteristics of iCVD polymer films, we were able to precisely engraft acetylcholine-like functionalities (tertiary amine and quaternary ammonium) onto cell culture plates. Notably, pGD3, a pGMA:pDMAEMA preparation with the highest surface composition of quaternary ammonium, fostered the most rapid outgrowth of neural cells. Clear contrasts in neural growth and survival between pGD3 and poly-l-lysine (PLL)-coated surfaces became apparent after 30 days in vitro (DIV). Moreover, brain-derived neurotrophic factor level continuously accumulated in pGD3-cultured neurons, reaching a 3-fold increase at 50 DIV. Electrophysiological measurements at 30 DIV revealed that the pGD3 surface not only promoted healthy maturation of hippocampal neurons but also enhanced the function of hippocampal ionotropic glutamate receptors in response to synaptic glutamate release. Neurons cultured long-term on pGD3 also maintained their characteristic depolarization-induced Ca2+ influx functions. Furthermore, primary hippocampal neurons cultured on pGD3 showed long-term survival in a stable state up to 90 days-far longer than neurons on conventional PLL-coated surfaces. Taken together, our findings indicate that a polymer thin film with optimal acetylcholine-like functionality enables a long-term culture and survival of primary neurons.
Collapse
Affiliation(s)
- Seungyoon B Yu
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jieung Baek
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Minsuk Choi
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Youjin Oh
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Hak Rae Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Seung Jung Yu
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Eunjung Lee
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Jong-Woo Sohn
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sung Gap Im
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| | - Sangyong Jon
- KAIST Institute for the BioCentury, Department of Biological Sciences, ‡KAIST Institute for the NanoCentury, Department of Chemical and Biomolecular Engineering, and §Department of Biological Sciences, Korea Advanced Institute of Science and Technology , 291 Daehak-ro, Daejeon 34141, Republic of Korea
| |
Collapse
|
13
|
Wang S, Jeffries E, Gao J, Sun L, You Z, Wang Y. Polyester with Pendent Acetylcholine-Mimicking Functionalities Promotes Neurite Growth. ACS APPLIED MATERIALS & INTERFACES 2016; 8:9590-9599. [PMID: 27010971 DOI: 10.1021/acsami.5b12379] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in vitro degradation under physiologic conditions with a mass loss of 60% within 4 weeks. Overall, this simple and versatile synthesis provides a useful tool to produce biomaterials for creating the appropriate stimulatory environment for nerve regeneration.
Collapse
Affiliation(s)
- Shaofei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Eric Jeffries
- Departments of Bioengineering, Chemical Engineering, Surgery, and the McGowan Institute, University of Pittsburgh , 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Jin Gao
- Departments of Bioengineering, Chemical Engineering, Surgery, and the McGowan Institute, University of Pittsburgh , 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| | - Lijie Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , 2999 North Renmin Road, Shanghai 201620, P. R. China
| | - Yadong Wang
- Departments of Bioengineering, Chemical Engineering, Surgery, and the McGowan Institute, University of Pittsburgh , 3700 O'Hara Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
14
|
Gilmour AD, Woolley AJ, Poole-Warren LA, Thomson CE, Green RA. A critical review of cell culture strategies for modelling intracortical brain implant material reactions. Biomaterials 2016; 91:23-43. [PMID: 26994876 DOI: 10.1016/j.biomaterials.2016.03.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/29/2016] [Accepted: 03/06/2016] [Indexed: 02/07/2023]
Abstract
The capacity to predict in vivo responses to medical devices in humans currently relies greatly on implantation in animal models. Researchers have been striving to develop in vitro techniques that can overcome the limitations associated with in vivo approaches. This review focuses on a critical analysis of the major in vitro strategies being utilized in laboratories around the world to improve understanding of the biological performance of intracortical, brain-implanted microdevices. Of particular interest to the current review are in vitro models for studying cell responses to penetrating intracortical devices and their materials, such as electrode arrays used for brain computer interface (BCI) and deep brain stimulation electrode probes implanted through the cortex. A background on the neural interface challenge is presented, followed by discussion of relevant in vitro culture strategies and their advantages and disadvantages. Future development of 2D culture models that exhibit developmental changes capable of mimicking normal, postnatal development will form the basis for more complex accurate predictive models in the future. Although not within the scope of this review, innovations in 3D scaffold technologies and microfluidic constructs will further improve the utility of in vitro approaches.
Collapse
Affiliation(s)
- A D Gilmour
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| | - A J Woolley
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia; Western Sydney University, Sydney, NSW, Australia
| | - L A Poole-Warren
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - C E Thomson
- Department of Veterinary Medicine, University of Alaska, Fairbanks, AK 99775, USA
| | - R A Green
- Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Chen C, Kong X, Lee IS. Modification of surface/neuron interfaces for neural cell-type specific responses: a review. ACTA ACUST UNITED AC 2015; 11:014108. [PMID: 26694886 DOI: 10.1088/1748-6041/11/1/014108] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Surface/neuron interfaces have played an important role in neural repair including neural prostheses and tissue engineered scaffolds. This comprehensive literature review covers recent studies on the modification of surface/neuron interfaces. These interfaces are identified in cases both where the surfaces of substrates or scaffolds were in direct contact with cells and where the surfaces were modified to facilitate cell adhesion and controlling cell-type specific responses. Different sources of cells for neural repair are described, such as pheochromocytoma neuronal-like cell, neural stem cell (NSC), embryonic stem cell (ESC), mesenchymal stem cell (MSC) and induced pluripotent stem cell (iPS). Commonly modified methods are discussed including patterned surfaces at micro- or nano-scale, surface modification with conducting coatings, and functionalized surfaces with immobilized bioactive molecules. These approaches to control cell-type specific responses have enormous potential implications in neural repair.
Collapse
Affiliation(s)
- Cen Chen
- Bio-X Center, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | | | | |
Collapse
|
16
|
Kim BK, Lee JY, Park JH, Kwak J. Electrochemical detection of dopamine using a bare indium–tin oxide electrode and scan rate control. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2013.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Vats K, Benoit DSW. Dynamic manipulation of hydrogels to control cell behavior: a review. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:455-69. [PMID: 23541134 DOI: 10.1089/ten.teb.2012.0716] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For many tissue engineering applications and studies to understand how materials fundamentally affect cellular functions, it is important to have the ability to synthesize biomaterials that can mimic elements of native cell-extracellular matrix interactions. Hydrogels possess many properties that are desirable for studying cell behavior. For example, hydrogels are biocompatible and can be biochemically and mechanically altered by exploiting the presentation of cell adhesive epitopes or by changing hydrogel crosslinking density. To establish physical and biochemical tunability, hydrogels can be engineered to alter their properties upon interaction with external driving forces such as pH, temperature, electric current, as well as exposure to cytocompatible irradiation. Additionally, hydrogels can be engineered to respond to enzymes secreted by cells, such as matrix metalloproteinases and hyaluronidases. This review details different strategies and mechanisms by which biomaterials, specifically hydrogels, can be manipulated dynamically to affect cell behavior. By employing the appropriate combination of stimuli and hydrogel composition and architecture, cell behavior such as adhesion, migration, proliferation, and differentiation can be controlled in real time. This three-dimensional control in cell behavior can help create programmable cell niches that can be useful for fundamental cell studies and in a variety of tissue engineering applications.
Collapse
Affiliation(s)
- Kanika Vats
- 1 Department of Biomedical Engineering, University of Rochester , Rochester, New York
| | | |
Collapse
|
18
|
Cotransplantation with specific populations of spina bifida bone marrow stem/progenitor cells enhances urinary bladder regeneration. Proc Natl Acad Sci U S A 2013; 110:4003-8. [PMID: 23431178 DOI: 10.1073/pnas.1220764110] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spina bifida (SB) patients afflicted with myelomeningocele typically possess a neurogenic urinary bladder and exhibit varying degrees of bladder dysfunction. Although surgical intervention in the form of enterocystoplasty is the current standard of care in which to remedy the neurogenic bladder, it is still a stop-gap measure and is associated with many complications due to the use of bowel as a source of replacement tissue. Contemporary bladder tissue engineering strategies lack the ability to reform bladder smooth muscle, vasculature, and promote peripheral nerve tissue growth when using autologous populations of cells. Within the context of this study, we demonstrate the role of two specific populations of bone marrow (BM) stem/progenitor cells used in combination with a synthetic elastomeric scaffold that provides a unique and alternative means to current bladder regeneration approaches. In vitro differentiation, gene expression, and proliferation are similar among donor mesenchymal stem cells (MSCs), whereas poly(1,8-octanediol-cocitrate) scaffolds seeded with SB BM MSCs perform analogously to control counterparts with regard to bladder smooth muscle wall formation in vivo. SB CD34(+) hematopoietic stem/progenitor cells cotransplanted with donor-matched MSCs cause a dramatic increase in tissue vascularization as well as an induction of peripheral nerve growth in grafted areas compared with samples not seeded with hematopoietic stem/progenitor cells. Finally, MSC/CD34(+) grafts provided the impetus for rapid urothelium regeneration. Data suggest that autologous BM stem/progenitor cells may be used as alternate, nonpathogenic cell sources for SB patient-specific bladder tissue regeneration in lieu of current enterocystoplasty procedures and have implications for other bladder regenerative therapies.
Collapse
|
19
|
You Z, Bi X, Wang Y. Fine Control of Polyester Properties via Epoxide ROP Using Monomers Carrying Diverse Functional Groups. Macromol Biosci 2012; 12:822-9. [DOI: 10.1002/mabi.201200035] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Indexed: 01/17/2023]
|
20
|
Zhou Z, Yu P, Geller HM, Ober CK. The role of hydrogels with tethered acetylcholine functionality on the adhesion and viability of hippocampal neurons and glial cells. Biomaterials 2011; 33:2473-81. [PMID: 22196899 DOI: 10.1016/j.biomaterials.2011.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 12/02/2011] [Indexed: 12/20/2022]
Abstract
In neural tissue engineering, designing materials with the right chemical cues is crucial in providing a permissive microenvironment to encourage and guide neuronal cell attachment and differentiation. Modifying synthetic hydrogels with biologically active molecules has become an increasingly important route in this field to provide a successful biomaterial and cell interaction. This study presents a strategy of using the monomer 2-methacryloxyethyl trimethylammonium chloride (MAETAC) to provide tethered neurotransmitter acetylcholine-like functionality with a complete 2-acetoxy-N,N,N-trimethylethanaminium segment, thereby modifying the properties of commonly used, non-adhesive PEG-based hydrogels. The effect of the functional monomer concentration on the physical properties of the hydrogels was systematically studied, and the resulting hydrogels were also evaluated for mice hippocampal neural cell attachment and growth. Results from this study showed that MAETAC in the hydrogels promotes neuronal cell attachment and differentiation in a concentration-dependent manner, different proportions of MAETAC monomer in the reaction mixture produce hydrogels with different porous structures, swollen states, and mechanical strengths. Growth of mice hippocampal cells cultured on the hydrogels showed differences in number, length of processes and exhibited different survival rates. Our results indicate that chemical composition of the biomaterials is a key factor in neural cell attachment and growth, and integration of the appropriate amount of tethered neurotransmitter functionalities can be a simple and effective way to optimize existing biomaterials for neuronal tissue engineering applications.
Collapse
Affiliation(s)
- Zhaoli Zhou
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
21
|
Ho QP, Wang SL, Wang MJ. Creation of biofunctionalized micropatterns on poly(methyl methacrylate) by single-step phase separation method. ACS APPLIED MATERIALS & INTERFACES 2011; 3:4496-4503. [PMID: 22022975 DOI: 10.1021/am201188x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, the polymer thin films containing micropatterns and biological functionalities were created by one-step procedure. The adjustable compositions among poly(methyl methacrylate) (PMMA), solvents, nonsolvent, and additional macromolecules formed the polymer thin films with different diameters ranging from 5 to 37 μm. The influences of topographical and chemical cues were investigated by directly cultivating L-929 fibroblasts on the prepared samples. The results revealed the predominant effect of surface topography that the cell density of L-929 fibroblasts increased proportionally with the average diameter of microconcaves. The cell number raised significantly on the PMMA thin films containing type I collagen and dopamine, with or without microstructures. On the other hand, the addition of bovine serum albumin in PMMA limited the growth of cells. The surface chemical composition and cell responses were evaluated by electron spectroscopy for chemical analysis (ESCA), viability assay, and immunostaining, respectively. This work proposed a simple and effective approach to incorporate the biological functions and surface topography simultaneously onto surface of materials that provided further applications for biomedical materials.
Collapse
Affiliation(s)
- Quoc-Phong Ho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan
| | | | | |
Collapse
|
22
|
Chu H, Gao J, Wang Y. Design, synthesis, and biocompatibility of an arginine-based polyester. Biotechnol Prog 2011; 28:257-64. [PMID: 22034156 DOI: 10.1002/btpr.728] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Indexed: 11/11/2022]
Abstract
Polycations are very useful in biotechnology. However, most existing polycations have high toxicity that significantly limits their clinical translation. We designed poly(ethylene argininylaspartate diglyceride) (PEAD) that is based on arginine, aspartic acid, glycerol, and ethylene glycol. A set of in vitro assays demonstrated that PEAD exhibited no cytotoxicity at 1 mg/mL, which is at least 100 times higher than the widely used polycation-polyethylenimine. Subcutaneous injection of 1 mg PEAD in rats did not cause an adverse response acutely or after 4 weeks. Zeta potential measurements revealed that PEAD has high affinity to biological polyanions such as DNA and hyaluronic acid. This polycation represents a new platform of biocompatible polycations that may lead to clinical innovations in gene therapy, controlled release, tissue engineering, biosensors, and medical devices.
Collapse
Affiliation(s)
- Hunghao Chu
- Department of Bioengineering, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | |
Collapse
|
23
|
Gumera C, Rauck B, Wang Y. Materials for central nervous system regeneration: bioactive cues. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm04335d] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Greco G, Panzella L, Gentile G, Errico ME, Carfagna C, Napolitano A, d'Ischia M. A melanin-inspired pro-oxidant system for dopa(mine) polymerization: mimicking the natural casing process. Chem Commun (Camb) 2011; 47:10308-10. [DOI: 10.1039/c1cc13731j] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Mieszawska AJ, Kaplan DL. Smart biomaterials - regulating cell behavior through signaling molecules. BMC Biol 2010; 8:59. [PMID: 20529238 PMCID: PMC2873335 DOI: 10.1186/1741-7007-8-59] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/11/2010] [Indexed: 11/24/2022] Open
Abstract
Important advances in the field of tissue engineering are arising from increased interest in novel biomaterial designs with bioactive components that directly influence cell behavior. Following the recent work of Mitchell and co-workers published in BMC Biology, we review how spatial and temporal control of signaling molecules in a matrix material regulates cellular responses for tissue-specific applications. See research article http://www.biomedcentral.com/1741-7007/8/57
Collapse
Affiliation(s)
- Aneta J Mieszawska
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA.
| | | |
Collapse
|
26
|
You Z, Cao H, Gao J, Shin PH, Day BW, Wang Y. A functionalizable polyester with free hydroxyl groups and tunable physiochemical and biological properties. Biomaterials 2010; 31:3129-38. [PMID: 20149441 PMCID: PMC2827675 DOI: 10.1016/j.biomaterials.2010.01.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 01/08/2010] [Indexed: 11/23/2022]
Abstract
Polyesters with free functional groups allow facile modifications with biomolecules, which can lead to versatile biomaterials that afford controlled interactions with cells and tissues. Efficient synthesis of functionalizable polyesters (Functionalizable polymer is defined as a polymer with functional groups that readily react with biomolecules and functionalized biomaterial as one already modified with biomolecules.) is still a challenge that greatly limits the availability and widespread applications of biofunctionalized synthetic polymers. Here we report a simple route to prepare a functionalizable polyester, poly(sebacoyl diglyceride) (PSeD) bearing free hydroxyl groups. The key synthetic step is an epoxide ring-opening polymerization, instead of the traditional polycondensation that produces poly(glycerol sebacate) (PGS) (Wang YD, Ameer GA, Sheppard BJ, Langer R. A tough biodegradable elastomer. Nat Biotechnol 2002;20(6):602-6). PSeD has a more defined structure with mostly linear backbone, more free hydroxyl groups, higher molecular weight, and lower polydispersity than PGS. Crosslinking PSeD with sebacic acid yields a polymer five times tougher and more elastic than cured PGS. PSeD exhibits good cytocompatibility in vitro. Furthermore, functionalization by glycine proceeds with high efficiency. This versatile synthetic platform can offer a large family of biodegradable, functionalized polymers with tunable physiochemical and biological properties useful for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Zhengwei You
- Department of Bioengineering and the McGowan Institute, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Haiping Cao
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jin Gao
- Department of Bioengineering and the McGowan Institute, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Paul H. Shin
- Department of Bioengineering and the McGowan Institute, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| | - Billy W. Day
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Yadong Wang
- Department of Bioengineering and the McGowan Institute, University of Pittsburgh, 300 Technology Drive, Pittsburgh, PA 15219, USA
| |
Collapse
|
27
|
Abstract
Biomaterials synthesis and scaffold fabrication will play an increasingly important role in the design of systems for regenerative medicine and tissue engineering. These rapidly growing fields are converging as scaffold design must begin to incorporate multidisciplinary aspects in order to effectively organize cell-seeded constructs into functional tissue. This review article examines the use of synthetic biomaterials and fabrication strategies across length scales with the ultimate goal of guiding cell function and directing tissue formation. This discussion is parsed into three subsections: (1) biomaterials synthesis, including elastomers and gels; (2) synthetic micro- and nanostructures for engineering the cell–biomaterial interface; and (3) complex biomaterials systems design for controlling aspects of the cellular microenvironment.
Collapse
|
28
|
Yang X, Li J, Geng M. N-acetylglucosaminyltransferase V modifies TrKA protein, regulates the receptor function. Cell Mol Neurobiol 2008; 28:663-70. [PMID: 18343992 DOI: 10.1007/s10571-007-9186-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 07/28/2007] [Indexed: 12/30/2022]
Abstract
1. N-Acetylglucosaminyltransferases V (GnT-V/Mgat5) play a pivotal role in the processing of N-linked glycoproteins in the Golgi apparatus. The aim of the present study is to investigate whether the N-acetylglucosaminyltransferase V is able to modify TrKA, the high-affinity tyrosine kinase-type receptor for NGF, and thereby to regulate the receptor function. 2. Plasmids of the pcDNA3/GnT-V and pcDNA3 were transfected into PC12 cells. Expression of GnT-V protein was detected by Western blot. TrKA protein was examined by immunoprecipitation. Endocytosis of TrKA was investigated by the method of receptor internalization. 3. We report here that over-expression GnT-V directly modifies TrKA protein, accompanied by marked enhancement of axon outgrowth in rat pheochromocytoma cells (PC12) elicited by a low dose of NGF that alone is insufficient to induce neuronal differentiation. Further study indicated that modification of TrKA glycoprotein could directly enhance NGF-activated autophosphorylation of immunoprecipitated TrKA in vitro. To further elucidate the mechanism, we study the different time point of endocytosis of TrKA receptor. The results show that TrKA of GnT-V gene-transfected PC12 Cells delayed their removal by constitutive endocytosis as compared to the mock cells, suggesting high expression of GnT-V may affect their receptor TrKA endocytosis. 4. These results strongly suggest that N-acetylglucosaminyltransferase V functioning as a specific endogenous role of NGF receptor function, which appear to be due, at least in part, to the promotion of differentiation. This work is an important step toward intriguing innovative therapeutic strategies targeting glycosyltransferase.
Collapse
Affiliation(s)
- Xiaoyun Yang
- Department of Molecular Pharmacology, Marine Drug and Food Institute, Ocean University of China, Qingdao, P.R. China.
| | | | | |
Collapse
|