1
|
Seneda MM, Costa CB, Zangirolamo AF, dos Anjos MM, de Paula GR, Morotti F. From the laboratory to the field: how to mitigate pregnancy losses in embryo transfer programs? Anim Reprod 2024; 21:e20240032. [PMID: 39175993 PMCID: PMC11340798 DOI: 10.1590/1984-3143-ar2024-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/29/2024] [Indexed: 08/24/2024] Open
Abstract
Pregnancy losses negatively affect the cattle industry, impacting economic indices and consequently the entire production chain. Early embryonic failure has been an important challenge in the embryo industry because proper identification of embryo death at the beginning of gestation is difficult. This review aimed to provide a better understanding on reproductive failure and the relationship between early embryonic loss and different reproductive biotechniques. This review also considers insights and possible strategies for reducing early embryonic loss. The strategies addressed are as follows: i) great impact of rigorous embryo evaluation on reducing embryo losses; ii) selection of recipients at the time of transfer, taking into account health and nutritional status, and classification of the corpus luteum using ultrasound, either in area or vascularization; and iii) paternal effect as one of the factors that contribute to pregnancy losses, with a focus on embryo transfer.
Collapse
Affiliation(s)
- Marcelo Marcondes Seneda
- Universidade Estadual de Londrina, Laboratório de Reprodução Animal, Londrina, PR, Brasil
- Instituto Nacional de Ciência e Tecnologia do Leite – INCT Leite, Londrina, PR, Brasil
| | | | | | | | | | - Fábio Morotti
- Universidade Estadual de Londrina, Laboratório de Reprodução Animal, Londrina, PR, Brasil
| |
Collapse
|
2
|
Jiang Z. Molecular and cellular programs underlying the development of bovine pre-implantation embryos. Reprod Fertil Dev 2023; 36:34-42. [PMID: 38064195 PMCID: PMC10962643 DOI: 10.1071/rd23146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Early embryonic mortality is a major cause of infertility in cattle, yet the underlying molecular causes remain a mystery. Over the past half century, assisted reproductive technologies such as in vitro fertilisation and somatic cell nuclear transfer have been used to improve cattle reproductive efficiency; however, reduced embryo developmental potential is seen compared to their in vivo counterparts. Recent years have seen exciting progress across bovine embryo research, including genomic profiling of embryogenesis, new methods for improving embryo competence, and experimenting on building bovine embryos from stem cell cultures. These advances are beginning to define bovine embryo molecular and cellular programs and could potentially lead to improved embryo health. Here, I highlight the current status of molecular determinants and cellular programs of bovine embryo development and new opportunities to improve the bovine embryo health.
Collapse
Affiliation(s)
- Zongliang Jiang
- Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Sabry R, May DR, Favetta LA. The relationship between miR-21, DNA methylation, and bisphenol a in bovine COCs and granulosa cells. Front Cell Dev Biol 2023; 11:1294541. [PMID: 38033863 PMCID: PMC10684922 DOI: 10.3389/fcell.2023.1294541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Introduction: miR-21 is a critical microRNA for the regulation of various processes in oocytes and granulosa cells. It is involved in the modulation of apoptosis and can influence other epigenetic mechanisms. Among these mechanisms, DNA methylation holds significant importance, particularly during female gametogenesis. Evidence has demonstrated that microRNAs, including miR-21, can regulate DNA methylation. Bisphenol A (BPA) is a widespread chemical that disrupts oocyte maturation and granulosa cell function. Recent findings suggested that BPA can act through epigenetic pathways, including DNA methylation and microRNAs. Methods: This study uses anti-miR-21 LNAs to explore the involvement of miR-21 in the regulation of DNA methylation in bovine Cumulus-Oocyte-Complexes (COCs) and granulosa cells, in the presence and absence of BPA. This study investigated 5 mC/5hmC levels as well as gene expression of various methylation enzymes using qPCR and western blotting. Results and discussion: Results reveal that BPA reduces 5mC levels in granulosa cells but not in COCs, which can be attributed to a decrease in the methylating enzymes DNMT1 and DNMT3A, and an increase in the demethylating enzyme TET2. We observed a significant increase in the protein levels of DNMT1, DNMT3A, and TET2 upon inhibition of miR-21 in both COCs and granulosa cells. These findings directly imply a strong correlation between miR-21 signaling and the regulation of DNA methylation in bovine COCs and granulosa cells under BPA exposure.
Collapse
Affiliation(s)
| | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Laboratory, Department of Biomedical Sciences Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
4
|
Zhang W, Li K, Li S, Lv R, Ma J, Yin P, Li L, Sun N, Chen Y, Lu L, Li Y, Zhang Q, Yan H. High-throughput sequencing reveals hub genes for human early embryonic development arrest in vitro fertilization: a pilot study. Front Physiol 2023; 14:1279559. [PMID: 38033342 PMCID: PMC10684309 DOI: 10.3389/fphys.2023.1279559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023] Open
Abstract
Many clinical studies have shown that embryos of in vitro fertilization (IVF) are often prone to developmental arrest, which leads to recurrent failure of IVF treatment. Early embryonic arrest has always been an urgent clinical problem in assisted reproduction centers. However, the molecular mechanisms underlying early embryonic development arrest remain largely unknown. The objective of this study is to investigate potential candidate hub genes and key signaling pathways involved in early stages of embryonic development. RNA-seq analysis was performed on normal and arrest embryos to study the changes of gene expression during early embryonic development. A total of 520 genes exhibiting differential expression were identified, with 174 genes being upregulated and 346 genes being downregulated. Upregulated genes show enrichment in biosynthesis, cellular proliferation and differentiation, and epigenetic regulation. While downregulated genes exhibit enrichment in transcriptional activity, epigenetic regulation, cell cycle progression, cellular proliferation and ubiquitination. The STRING (search tool for the retravel of interacting genes/proteins) database was utilized to analyze protein-protein interactions among these genes, aiming to enhance comprehension of the potential role of these differentially expressed genes (DEGs). A total of 22 hub genes (highly connected genes) were identified among the DEGs using Cytoscape software. Of these, ERBB2 and VEGFA were upregulated, while the remaining 20 genes (CCNB1, CCNA2, DICER1, NOTCH1, UBE2B, UBE2N, PRMT5, UBE2D1, MAPK3, SOX9, UBE2C, UB2D2, EGF, ACTB, UBA52, SHH, KRAS, UBE2E1, ADAM17 and BRCA2) were downregulated. These hub genes are associated with crucial biological processes such as ubiquitination, cellular senescence, cell proliferation and differentiation, and cell cycle. Among these hub genes, CCNA2 and CCNB1 may be involved in controlling cell cycle, which are critical process in early embryonic development.
Collapse
Affiliation(s)
- Wuwen Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shifeng Li
- Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Rong Lv
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Ma
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Yin
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ningyu Sun
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanyuan Chen
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Lu
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qinhua Zhang
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Yan
- Reproductive Medicine Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
5
|
Velazquez MA, Idriss A, Chavatte-Palmer P, Fleming TP. The mammalian preimplantation embryo: Its role in the environmental programming of postnatal health and performance. Anim Reprod Sci 2023; 256:107321. [PMID: 37647800 DOI: 10.1016/j.anireprosci.2023.107321] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
During formation of the preimplantation embryo several cellular and molecular milestones take place, making the few cells forming the early embryo vulnerable to environmental stressors than can impair epigenetic reprogramming and controls of gene expression. Although these molecular alterations can result in embryonic death, a significant developmental plasticity is present in the preimplantation embryo that promotes full-term pregnancy. Prenatal epigenetic modifications are inherited during mitosis and can perpetuate specific phenotypes during early postnatal development and adulthood. As such, the preimplantation phase is a developmental window where developmental programming can take place in response to the embryonic microenvironment present in vivo or in vitro. In this review, the relevance of the preimplantation embryo as a developmental stage where offspring health and performance can be programmed is discussed, with emphasis on malnutrition and assisted reproductive technologies; two major environmental insults with important implications for livestock production and human reproductive medicine.
Collapse
Affiliation(s)
- Miguel A Velazquez
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Abdullah Idriss
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK; Pathology and laboratory medicine, King Faisal Specialist Hospital and Research Centre, P.O. Box 40047, MBC J-10, Jeddah 21499, Kingdom of Saudi Arabia
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, 78350 Jouy-en-Josas, France; Ecole Nationale Vétérinaire d'Alfort, BREED, 94700 Maisons-Alfort, France
| | - Tom P Fleming
- Biological Sciences, University of Southampton, Southampton, UK
| |
Collapse
|
6
|
Rabaglino MB, Forde N, Besenfelder U, Havlicek V, Blum H, Graf A, Wolf E, Lonergan P. Maternal metabolic status and in-vitro culture conditions during embryonic genome activation deregulate the expression of energy-related genes in the bovine 16-cells embryo. PLoS One 2023; 18:e0290689. [PMID: 37624829 PMCID: PMC10456174 DOI: 10.1371/journal.pone.0290689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The molecular consequences of the metabolic stress caused by milk production of dairy cows in the early embryo are largely unknown. The objective was to determine the impact of dam metabolic status or in vitro culture during embryonic genome activation (EGA) on the transcriptomic profiles of bovine 16-cell stage embryos. Two days after synchronized oestrus, in vitro produced 2- to 4-cell stage embryos were endoscopically transferred in pools of 50 into the oviduct ipsilateral to the corpus luteum of lactating (LACT, n = 3) or nonlactating (i.e. dried off immediately at calving; DRY, n = 3) dairy cows. On Day 4, the oviducts were flushed to recover the embryos. Pools of five Day-2 embryos (n = 5) and Day-4 16-cell stage embryos obtained in vitro (n = 3) or from LACT or DRY cows were subjected to RNAseq. Temporally differentially expressed genes (DEG; FDR<0.05) between Day-2 and Day-4 embryos were determined considering the differences between the three conditions under which EGA occurred. Also, DEG between Day-4 embryos derived from the three conditions were identified. Functional analysis of the temporal DEG demonstrated that genes involved in ribosome, translation and oxidative phosphorylation in the mitochondria were strongly more expressed in Day-4 than Day-2 embryos. Comparison of Day-4 embryos that underwent EGA in vitro, or in LACT or DRY cows, identified DEG enriching for mitochondrial respiration and protein translation, including the mTOR pathway. In conclusion, exposure of the embryo to an unfavourable maternal metabolic status during EGA influences its transcriptome and potentially the competence for pregnancy establishment.
Collapse
Affiliation(s)
- Maria B. Rabaglino
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Niamh Forde
- Division of Reproduction and Early Development, School of Medicine, University of Leeds, Leeds, United Kingdom
| | - Urban Besenfelder
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Vitezslav Havlicek
- Reproduction Centre Wieselburg RCW, Institute for Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, Gene Center, LMU, Munich, Germany
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Rabel RAC, Marchioretto PV, Bangert EA, Wilson K, Milner DJ, Wheeler MB. Pre-Implantation Bovine Embryo Evaluation-From Optics to Omics and Beyond. Animals (Basel) 2023; 13:2102. [PMID: 37443900 DOI: 10.3390/ani13132102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
Approximately 80% of the ~1.5 million bovine embryos transferred in 2021 were in vitro produced. However, only ~27% of the transferred IVP embryos will result in live births. The ~73% pregnancy failures are partly due to transferring poor-quality embryos, a result of erroneous stereomicroscopy-based morphological evaluation, the current method of choice for pre-transfer embryo evaluation. Numerous microscopic (e.g., differential interference contrast, electron, fluorescent, time-lapse, and artificial-intelligence-based microscopy) and non-microscopic (e.g., genomics, transcriptomics, epigenomics, proteomics, metabolomics, and nuclear magnetic resonance) methodologies have been tested to find an embryo evaluation technique that is superior to morphologic evaluation. Many of these research tools can accurately determine embryo quality/viability; however, most are invasive, expensive, laborious, technically sophisticated, and/or time-consuming, making them futile in the context of in-field embryo evaluation. However accurate they may be, using complex methods, such as RNA sequencing, SNP chips, mass spectrometry, and multiphoton microscopy, at thousands of embryo production/collection facilities is impractical. Therefore, future research is warranted to innovate field-friendly, simple benchtop tests using findings already available, particularly from omics-based research methodologies. Time-lapse monitoring and artificial-intelligence-based automated image analysis also have the potential for accurate embryo evaluation; however, further research is warranted to innovate economically feasible options for in-field applications.
Collapse
Affiliation(s)
- R A Chanaka Rabel
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Paula V Marchioretto
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Elizabeth A Bangert
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kenneth Wilson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Derek J Milner
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew B Wheeler
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Biomedical and Translational Sciences, Carle-Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Bafleh WS, Abdulsamad HMR, Al-Qaraghuli SM, El Khatib RY, Elbahrawi RT, Abdukadir AM, Alsawae SM, Dimassi Z, Hamdan H, Kashir J. Applications of advances in mRNA-based platforms as therapeutics and diagnostics in reproductive technologies. Front Cell Dev Biol 2023; 11:1198848. [PMID: 37305677 PMCID: PMC10250609 DOI: 10.3389/fcell.2023.1198848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
The recent COVID-19 pandemic led to many drastic changes in not only society, law, economics, but also in science and medicine, marking for the first time when drug regulatory authorities cleared for use mRNA-based vaccines in the fight against this outbreak. However, while indeed representing a novel application of such technology in the context of vaccination medicine, introducing RNA into cells to produce resultant molecules (proteins, antibodies, etc.) is not a novel principle. It has been common practice to introduce/inject mRNA into oocytes and embryos to inhibit, induce, and identify several factors in a research context, while such aspects have also been proposed as potential therapeutic and diagnostic applications to combat infertility in humans. Herein, we describe key areas where mRNA-based platforms have thus far represented potential areas of clinical applications, describing the advantages and limitations of such applications. Finally, we also discuss how recent advances in mRNA-based platforms, driven by the recent pandemic, may stand to benefit the treatment of infertility in humans. We also present brief future directions as to how we could utilise recent and current advancements to enhance RNA therapeutics within reproductive biology, specifically with relation to oocyte and embryo delivery.
Collapse
Affiliation(s)
- Wjdan S. Bafleh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Haia M. R. Abdulsamad
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Sally M. Al-Qaraghuli
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Riwa Y. El Khatib
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawdah Taha Elbahrawi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Azhar Mohamud Abdukadir
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | | | - Zakia Dimassi
- Department of Pediatrics, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Junaid Kashir
- Department of Biology, College of Arts and Science, Khalifa University, Abu Dhabi, United Arab Emirates
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
9
|
Paulson EE, Fishman EL, Schultz RM, Ross PJ. Embryonic microRNAs are essential for bovine preimplantation embryo development. Proc Natl Acad Sci U S A 2022; 119:e2212942119. [PMID: 36322738 PMCID: PMC9659414 DOI: 10.1073/pnas.2212942119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that regulate gene expression after transcription. miRNAs are present in transcriptionally quiescent full-grown oocytes and preimplantation embryos that display a low level of transcription prior to embryonic genome activation. The role of miRNAs, if any, in preimplantation development is not known. The temporal pattern of expression of miRNAs during bovine preimplantation development was determined by small RNA-sequencing using eggs and preimplantation embryos (1-cell, 2-cell, 4-cell, 8-cell, 16-cell, morula, and blastocyst). Embryos cultured in the presence of α-amanitin, which permitted the distinguishing of maternal miRNAs from embryonic miRNAs, indicated that embryonic miRNA expression was first detected at the two-cell stage but dramatically increased during the morula and blastocyst stages. Targeting DGCR8 by a small-interfering RNA/morpholino approach revealed a role for miRNAs in the morula-to-blastocyst transition. Knockdown of DGCR8 not only inhibited expression of embryonically expressed miRNAs but also inhibited the morula-to-blastocyst transition. In addition, RNA-sequencing identified an increased relative abundance of messenger RNAs potentially targeted by embryonic miRNAs in DGCR8-knockdown embryos when compared with controls. Results from these experiments implicate an essential role for miRNAs in bovine preimplantation embryo development.
Collapse
Affiliation(s)
- Erika E. Paulson
- Department of Animal Science, University of California, Davis, CA 95616
| | - Emily L. Fishman
- Department of Animal Science, University of California, Davis, CA 95616
| | - Richard M. Schultz
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616
| |
Collapse
|
10
|
Zhu L, Zhou T, Iyyappan R, Ming H, Dvoran M, Wang Y, Chen Q, Roberts RM, Susor A, Jiang Z. High-resolution ribosome profiling reveals translational selectivity for transcripts in bovine preimplantation embryo development. Development 2022; 149:280468. [PMID: 36227586 PMCID: PMC9687001 DOI: 10.1242/dev.200819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
High-resolution ribosome fractionation and low-input ribosome profiling of bovine oocytes and preimplantation embryos has enabled us to define the translational landscapes of early embryo development at an unprecedented level. We analyzed the transcriptome and the polysome- and non-polysome-bound RNA profiles of bovine oocytes (germinal vesicle and metaphase II stages) and early embryos at the two-cell, eight-cell, morula and blastocyst stages, and revealed four modes of translational selectivity: (1) selective translation of non-abundant mRNAs; (2) active, but modest translation of a selection of highly expressed mRNAs; (3) translationally suppressed abundant to moderately abundant mRNAs; and (4) mRNAs associated specifically with monosomes. A strong translational selection of low-abundance transcripts involved in metabolic pathways and lysosomes was found throughout bovine embryonic development. Notably, genes involved in mitochondrial function were prioritized for translation. We found that translation largely reflected transcription in oocytes and two-cell embryos, but observed a marked shift in the translational control in eight-cell embryos that was associated with the main phase of embryonic genome activation. Subsequently, transcription and translation become more synchronized in morulae and blastocysts. Taken together, these data reveal a unique spatiotemporal translational regulation that accompanies bovine preimplantation development.
Collapse
Affiliation(s)
- Linkai Zhu
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV 89557-0352, USA
| | - Rajan Iyyappan
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michal Dvoran
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Yinjuan Wang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - R Michael Roberts
- Department of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211-7310, USA
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, CAS, 277 21 Liběchov, Czech Republic
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
11
|
Sharma J, Madan P. Differential regulation of Hippo signaling pathway components between 8-cell and blastocyst stages of bovine preimplantation embryogenesis. Mol Reprod Dev 2022; 89:146-161. [PMID: 35243707 DOI: 10.1002/mrd.23564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
The Hippo signaling pathway is an important regulator of lineage segregation (trophectoderm and inner cell mass) during blastocyst formation in the mouse embryos. However, the role and regulation of Hippo signaling pathway components during bovine embryonic development is not completely understood. This study was thus designed to interpret the roles of Hippo cell signaling pathway components using two different yet specific chemical inhibitors (Cerivastatin and XMU-MP-1). A significant decrease in the blastocyst rates were observed on treatment with Cerivastatin and XMU-MP-1 inhibitors for the treatment groups, in comparison to the control groups. At the 8-cell stage, a significant decrease was observed in the gene expression and nuclear protein localization of YAP1 (Yes Associated Protein 1) and pYAP1 components of Hippo signaling pathway. However, no such effect of Cerivastatin treatment was observed on the localization of TAZ at this cell stage. On the contrary, during bovine blastocyst formation a significant decrease in the gene expression and nuclear localization of both YAP1 and TAZ suggest differences in the regulation of these components at 8-cell and blastocyst stages of embryonic development. Furthermore, XMU-MP-1 mediated chemical inhibition of Mst1 at the blastocyst stage also suggests differences in the regulation of Yap1 and Taz components of Hippo signaling pathway. Overall, this study indicates novel differences in the regulation of Hippo signaling transcript levels and protein localization between the 8-cell and blastocyst stages of bovine preimplantation embryonic development.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
12
|
Dang Y, Luo L, Shi Y, Li S, Wang S, Zhang K. KDM5-mediated redistribution of H3K4me3 is required for oocyte-to-embryonic transition in cattle. Biol Reprod 2022; 106:1059-1071. [PMID: 35243485 DOI: 10.1093/biolre/ioac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 11/12/2022] Open
Abstract
Reprogramming of histone modifications is critical to safeguard correct gene expression profile during preimplantation development. Of interest, trimethylation of lysine 4 on histone 3 (H3K4me3) exhibits a unique and dynamic landscape with a potential species-specific feature. Here, we address how it is reprogrammed and its functional significance during oocyte maturation and early embryonic development in cows. Notably, the overall signal of H3K4me3 decreased sharply during embryonic genome activation (EGA). By using low input ChIP-seq, we find widespread broad H3K4me3 domains in oocytes and early cleaved embryos. The broad domains are gradually removed after fertilization, which is obviously seen during EGA. Meanwhile, H3K4me3 become enriched at promoter regions after the removal of broad H3K4me3. Interestingly, the gene expression level displays a positive correlation with the relative H3K4me3 signal of their promoters when embryos reach 16-cell stage. Importantly, disruption of H3K4me3 demethylases KDM5 increases H3K4me3 level, decreases the embryonic developmental rate and results in dysregulation of over a thousand genes. Meanwhile, KDM5 deficiency causes a redistribution of H3K4me3 across genome. In particular, H3K4me3 in gene body or intergenic regions can't be removed and H3K4me3 in promoter regions is aberrantly reduced. Besides, the positive correlation between promoter H3K4me3 enrichment and gene expression level disappear. Overall, we describe the genomic reprogramming of H3K4me3 with a greater resolution during bovine preimplantation development and propose that KDM5-mediated redistribution of H3K4me3 plays an important role in modulating oocyte-to-embryonic transition.
Collapse
Affiliation(s)
- Yanna Dang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Luo
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yan Shi
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shuang Li
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Shaohua Wang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Kun Zhang
- Laboratory of Mammalian Molecular Embryology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
13
|
Nguyen M, Sabry R, Davis OS, Favetta LA. Effects of BPA, BPS, and BPF on Oxidative Stress and Antioxidant Enzyme Expression in Bovine Oocytes and Spermatozoa. Genes (Basel) 2022; 13:142. [PMID: 35052481 PMCID: PMC8774721 DOI: 10.3390/genes13010142] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/18/2022] Open
Abstract
Bisphenol A (BPA) and its analogs, bisphenol S (BPS) and bisphenol F (BPF), might impact fertility by altering oxidative stress pathways. Here, we hypothesize that bisphenols-induced oxidative stress is responsible for decreased gamete quality. In both female (cumulus-oocyte-complexes-COCs) and male (spermatozoa), oxidative stress was measured by CM-H2DCFDA assay and key ROS scavengers (SOD1, SOD2, GPX1, GPX4, CAT) were quantified at the mRNA and protein levels using qPCR and Western blot (COCs)/immunofluorescence (sperm). Either gamete was treated in five groups: control, vehicle, and 0.05 mg/mL of BPA, BPS, or BPF. Our results show elevated ROS in BPA-treated COCs but decreased production in BPS- and BPF-treated spermatozoa. Additionally, both mRNA and protein expression of SOD2, GPX1, and GPX4 were decreased in BPA-treated COCs (p < 0.05). In sperm, motility (p < 0.03), but not morphology, was significantly altered by bisphenols. SOD1 mRNA expression was significantly increased, while GPX4 was significantly reduced. These results support BPA's ability to alter oxidative stress in oocytes and, to a lesser extent, in sperm. However, BPS and BPF likely act through different mechanisms.
Collapse
Affiliation(s)
| | | | | | - Laura A. Favetta
- Reproductive Health and Biotechnology Lab, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.N.); (R.S.); (O.S.D.)
| |
Collapse
|
14
|
Aranciaga N, Morton JD, Maes E, Gathercole JL, Berg DK. Proteomic determinants of uterine receptivity for pregnancy in early and mid-postpartum dairy cows†. Biol Reprod 2021; 105:1458-1473. [PMID: 34647570 DOI: 10.1093/biolre/ioab190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 11/14/2022] Open
Abstract
Dairy cow subfertility is a worldwide issue arising from multiple factors. It manifests in >30% early pregnancy losses in seasonal pasture-grazed herds, especially when cows are inseminated in the early post-partum period. Most losses occur before implantation, when embryo growth depends on factors present in maternal tract fluids. Here we examined the proteomic composition of early and mid-postpartum uterine luminal fluid in crossbred lactating dairy cows to identify molecular determinants of fertility. We also explored changes in uterine luminal fluid from first to third estrus cycles postpartum in individual cows, linking those changes with divergent embryo development. For this, we flushed uteri of 87 cows at day 7 of pregnancy at first and third estrus postpartum, recovering and grading their embryos. Out of 1563 proteins detected, 472 had not been previously reported in this fluid, and 408 were predicted to be actively secreted by bioinformatic analysis. The abundance of 18 proteins with roles in immune regulation and metabolic function (e.g. cystatin B, pyruvate kinase M2) was associated with contrasting embryo quality. Matched-paired pathway analysis indicated that, from first to third estrus postpartum, upregulation of metabolic (e.g. creatine and carbohydrate) and immune (e.g. complement regulation, antiviral defense) processes were related to poorer quality embryos in the third estrus cycle postpartum. Conversely, upregulated signal transduction and protein trafficking appeared related to improved embryo quality in third estrus. These results advance the characterization of the molecular environment of bovine uterine luminal fluid and may aid understanding fertility issues in other mammals, including humans.
Collapse
Affiliation(s)
- Nicolas Aranciaga
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand.,Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand.,Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| | - James D Morton
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - Evelyne Maes
- Proteins and Metabolites Team, Agresearch, Christchurch, New Zealand
| | | | - Debra K Berg
- Animal Biotechnology Team, Agresearch, Hamilton, New Zealand
| |
Collapse
|
15
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Comparing mRNA and sncRNA profiles during the maternal-to-embryonic transition in bovine IVF and scNT embryos. Biol Reprod 2021; 105:1401-1415. [PMID: 34514499 DOI: 10.1093/biolre/ioab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
16
|
Anger M, Radonova L, Horakova A, Sekach D, Charousova M. Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos. Int J Mol Sci 2021; 22:9073. [PMID: 34445775 PMCID: PMC8396661 DOI: 10.3390/ijms22169073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 11/17/2022] Open
Abstract
The onset of an early development is, in mammals, characterized by profound changes of multiple aspects of cellular morphology and behavior. These are including, but not limited to, fertilization and the merging of parental genomes with a subsequent transition from the meiotic into the mitotic cycle, followed by global changes of chromatin epigenetic modifications, a gradual decrease in cell size and the initiation of gene expression from the newly formed embryonic genome. Some of these important, and sometimes also dramatic, changes are executed within the period during which the gene transcription is globally silenced or not progressed, and the regulation of most cellular activities, including those mentioned above, relies on controlled translation. It is known that the blastomeres within an early embryo are prone to chromosome segregation errors, which might, when affecting a significant proportion of a cell within the embryo, compromise its further development. In this review, we discuss how the absence of transcription affects the transition from the oocyte to the embryo and what impact global transcriptional silencing might have on the basic cell cycle and chromosome segregation controlling mechanisms.
Collapse
Affiliation(s)
- Martin Anger
- Central European Institute of Technology, Department of Genetics and Reproduction, Veterinary Research Institute, 621 00 Brno, Czech Republic; (L.R.); (A.H.); (D.S.); (M.C.)
| | | | | | | | | |
Collapse
|
17
|
Bogliotti YS, Chung N, Paulson EE, Chitwood J, Halstead M, Kern C, Schultz RM, Ross PJ. Transcript profiling of bovine embryos implicates specific transcription factors in the maternal-to-embryo transition. Biol Reprod 2021; 102:671-679. [PMID: 31711115 DOI: 10.1093/biolre/ioz209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/29/2019] [Accepted: 11/01/2019] [Indexed: 12/28/2022] Open
Abstract
Full-grown oocytes are transcriptionally quiescent. Following maturation and fertilization, the early stages of embryonic development occur in the absence (or low levels) of transcription that results in a period of development relying on maternally derived products (e.g., mRNAs and proteins). Two critical steps occur during the transition from maternal to embryo control of development: maternal mRNA clearance and embryonic genome activation with an associated dramatic reprogramming of gene expression required for further development. By combining an RNA polymerase II inhibitor with RNA sequencing, we were able not only to distinguish maternally derived from embryonic transcripts in bovine preimplantation embryos but also to establish that embryonic gene activation is required for clearance of maternal mRNAs as well as to identify putative transcription factors that are likely critical for early bovine development.
Collapse
Affiliation(s)
| | - Nhi Chung
- Department of Animal Science, University of California, Davis, CA, USA
| | - Erika E Paulson
- Department of Animal Science, University of California, Davis, CA, USA
| | - James Chitwood
- Department of Animal Science, University of California, Davis, CA, USA
| | - Michelle Halstead
- Department of Animal Science, University of California, Davis, CA, USA
| | - Colin Kern
- Department of Animal Science, University of California, Davis, CA, USA
| | - Richard M Schultz
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, USA, and.,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, CA, USA
| |
Collapse
|
18
|
Li Y, Sun J, Ling Y, Ming H, Chen Z, Fang F, Liu Y, Cao H, Ding J, Cao Z, Zhang X, Bondioli K, Jiang Z, Zhang Y. Transcription profiles of oocytes during maturation and embryos during preimplantation development in vivo in the goat. Reprod Fertil Dev 2021; 32:714-725. [PMID: 32317096 DOI: 10.1071/rd19391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/30/2020] [Indexed: 11/23/2022] Open
Abstract
RNA sequencing performed on goat matured oocytes and preimplantation embryos generated invivo enabled us to define the transcriptome for goat preimplantation embryo development. The largest proportion of changes in gene expression in goat was found at the 16-cell stage, not as previously defined at the 8-cell stage, and is later than in other mammalian species. In all, 6482 genes were identified to be significantly differentially expressed across all consecutive developmental stage comparisons, and the important signalling pathways involved in each development transition were determined. In addition, we identified genes that appear to be transcribed only at a specific stage of development. Using weighted gene coexpression network analysis, we found nine stage-specific modules of coexpressed genes that represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the goat transcriptional networks. Their association with other embryo genes suggests that they may have important regulatory roles in embryo development. Our cross-mammalian species transcriptomic comparisons demonstrate both conserved and goat-specific features of preimplantation development.
Collapse
Affiliation(s)
- Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jiangwen Sun
- Department of Computer Science, College of Science, Old Dominion University, Norfolk, VA 23529, USA
| | - Yinghui Ling
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao Ming
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zhen Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fugui Fang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ya Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hongguo Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianping Ding
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaorong Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Kenneth Bondioli
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zongliang Jiang
- School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA 70803, USA; and Corresponding authors. Emails: ;
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; and Corresponding authors. Emails: ;
| |
Collapse
|
19
|
In vitro maturation in the presence of Leukemia Inhibitory Factor modulates gene and miRNA expression in bovine oocytes and embryos. Sci Rep 2020; 10:17777. [PMID: 33082423 PMCID: PMC7575586 DOI: 10.1038/s41598-020-74961-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Members of the interleukin-6 (IL-6) family of cytokines are important for reproductive function that are mediated through changes in gene and miRNA expression. Herein, we characterized the expression of miR-21, miR-155, miR-34c and miR-146a in bovine oocytes and cumulus cells during in vitro maturation (IVM) with leukemia inhibitory factor (LIF), IL-6 and IL-11 or unsupplemented controls. LIF-exposed COCs showed higher expression of miR-21 and miR-155 in oocytes, whereas miR-146a expression was increased in oocytes matured with IL-6 and IL-11. In cumulus cells, miR-155 expression was elevated by all treatments while only LIF increased miR-21 expression. Based on these results, we next examined how LIF exposure during IVM affected oocyte competence, through IVF and the expression of specific genes in GV- and MII-oocytes, in 2- and 8-cell embryos, and in Day 8-blastocysts. LIF supplementation did not affect cleavage rate, blastocyst yield or several other developmental parameters, but did increase hatching rate. LIF suppressed DPPA3, ZAR1 and NPM2 expression in 2 cell- and/or 8-cell embryos. LIF increased the expression of KAT2A and HSPA1A in MII-oocytes, and that of HDAC1, KAT2A and HSP90AA1 and the BAX:BCL2L1 ratio in 2-cell embryos. In contrast, HDAC1, KAT2A and HSP90AA1 expression and BAX:BCL2L1 ratio was lower in 8-cell embryos derived from LIF oocytes. IVM with LIF also increased the expression of DNMT3A, HSPA1A and HSP90AA1 in blastocysts. In conclusion, supplementation with LIF during IVM was consistently associated with changes in the relative abundance of transcripts in mature bovine oocytes and in specific embryo developmental stages.
Collapse
|
20
|
Effects of oxygen concentrations on developmental competence and transcriptomic profile of yak oocytes. ZYGOTE 2020; 28:459-469. [PMID: 32772955 DOI: 10.1017/s0967199420000337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Oxygen concentration influences oocyte quality and subsequent embryo development, but it remains unclear whether oxygen concentrations affect the developmental competence and transcriptomic profile of yak oocytes. In this study, we investigated the effects of different oxygen concentrations (5% versus 20%) on the developmental competence, reactive oxygen species (ROS) levels, glutathione (GSH) content, and transcriptomic profile of yak oocytes. The results showed that a low oxygen concentration significantly increased the maturation rate of yak oocytes (81.2 ± 2.2% vs 75.9 ± 1.3%) and the blastocyst quality of yak in vitro fertilized embryos. Analysis of ROS and GSH showed that a low oxygen concentration reduced ROS levels and increased the content of GSH (75.05 ± 7.1 ng/oocyte vs 50.63 ± 5.6 ng/oocyte). Furthermore, transcriptomic analysis identified 120 differentially expressed genes (DEGs) between the two groups of oocytes. Gene enrichment analysis of the DEGs indicated multiple cellular processes, including oxidative phosphorylation, transcription regulation, mitochondrial regulation, oestrogen signalling pathway, HIF-1 signalling pathway, TNF signalling pathway, were involved in the response to oxygen concentration alterations. Taken together, these results indicated that a low oxygen concentration improved the developmental competence of yak oocytes.
Collapse
|
21
|
Schall PZ, Ruebel ML, Midic U, VandeVoort CA, Latham KE. Temporal patterns of gene regulation and upstream regulators contributing to major developmental transitions during Rhesus macaque preimplantation development. Mol Hum Reprod 2020; 25:111-123. [PMID: 30698740 DOI: 10.1093/molehr/gaz001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 12/11/2018] [Accepted: 01/24/2019] [Indexed: 02/07/2023] Open
Abstract
The preimplantation period of life in mammals encompasses a tremendous amount of restructuring and remodeling of the embryonic genome and reprogramming of gene expression. These vast changes support metabolic activation and cellular processes that drive early cleavage divisions and enable the creation of the earliest primitive cell lineages. A major question in mammalian embryology is how such vast, sweeping changes in gene expression are orchestrated, so that changes in gene expression are exactly appropriate to meet the developmental needs of the embryo over time. Using the rhesus macaque as an experimentally tractable model species closely related to the human, we combined high quality RNA-seq libraries, in-depth sequencing and advanced systems analysis to discover the underlying mechanisms that drive major changes in gene regulation during preimplantation development. We identified the major changes in mRNA population and the biological pathways and processes impacted by those changes. Most importantly, we identified 24 key upstream regulators that are themselves modulated during development and that are associated with the regulation of over 1000 downstream genes. Through their roles in extensive gene networks, these 24 upstream regulators are situated to either drive major changes in target gene expression or modify the cellular environment in which other genes function, thereby directing major developmental transitions in the preimplantation embryo. The data presented here highlight some of the specific molecular features that likely drive preimplantation development in a nonhuman primate species and provides an extensive database for novel hypothesis-driven studies.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA.,Comparative Medicine and Integrative Biology Program, Michigan State University, East Lansing, MI, USA
| | - Meghan L Ruebel
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Uros Midic
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| | - Catherine A VandeVoort
- California National Primate Research Center and Department of Obstetrics and Gynecology, University of California, Davis, CA, USA
| | - Keith E Latham
- Department of Animal Science and Reproductive and Developmental Sciences Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
22
|
Peng R, Wang L, Gao W, Zhu F, Hu F, Zeng W, Shi L, Chen X, Cai J, Zhang D, Xia Z, Yang Z. The 5.8S pre-rRNA maturation factor, M-phase phosphoprotein 6, is a female fertility factor required for oocyte quality and meiosis. Cell Prolif 2020; 53:e12769. [PMID: 32003502 PMCID: PMC7106954 DOI: 10.1111/cpr.12769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 12/07/2019] [Accepted: 01/04/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES M-phase phosphoprotein 6 (MPP6) is important for 5.8S pre-rRNA maturation in somatic cells and was screened as a female fertility factor. However, whether MPP6 functions in oocyte meiosis and fertility is not yet known. We aimed to address this. MATERIALS AND METHODS Mouse oocytes with surrounded nucleus (SN) or non-surrounded nucleus (NSN) were used for all experiments. Peptide nanoparticle-mediated antibody transfection was used to deplete MPP6. Immunofluorescence staining, immunohistochemistry and live tracker staining were used to examine MPP6 localization and characterize phenotypes after control or MPP6 depletion. High-fidelity PCR and fluorescence in situ hybridization (FISH) were used to examine the localization and level of 5.8S rRNAs. Western blot was used to examine the protein level. MPP6-EGFP mRNA microinjection was used to do the rescue. RESULTS MPP6 was enriched within ovaries and oocytes. MPP6 depletion significantly impeded oocyte meiosis. MPP6 depletion increased 5.8S pre-rRNA. The mRNA levels of MPP6 and 5.8S rRNA decreased within ageing oocytes, and MPP6 mRNA injection partially increased 5.8S rRNA maturation and improved oocyte quality. CONCLUSIONS MPP6 is required for 5.8S rRNA maturation, meiosis and quality control in mouse oocytes, and MPP6 level might be a marker for oocyte quality.
Collapse
Affiliation(s)
- Rui‐Rui Peng
- Center for Reproductive MedicineShandong Provincial Hospital Affiliated to Shandong UniversityJinanChina
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Li‐Li Wang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen‐Yi Gao
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Feng‐Yu Zhu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Fan Hu
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Wen‐Tao Zeng
- Animal Core FacilityNanjing Medical UniversityNanjingChina
| | - Li‐Ya Shi
- The Second Affiliated HospitalNanjing Medical UniversityNanjingChina
| | - Xi‐Chen Chen
- Analysis and Test CenterNanjing Medical UniversityNanjingChina
| | - Jing‐Yang Cai
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| | - Dong Zhang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
- Animal Core FacilityNanjing Medical UniversityNanjingChina
| | - Zheng‐Rong Xia
- Analysis and Test CenterNanjing Medical UniversityNanjingChina
| | - Zhi‐Xia Yang
- State Key Lab of Reproductive MedicineNanjing Medical UniversityNanjingChina
| |
Collapse
|
23
|
The blueprint of RNA storages relative to oocyte developmental competence in cattle (Bos taurus). Biol Reprod 2020; 102:784-794. [DOI: 10.1093/biolre/ioaa015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
Abstract
From the time oocytes leave quiescence, there are constant microenvironmental influences contributing to development, thus acquiring developmental competence is not a simple, linear phenomenon. During folliculogenesis, oocytes experience many morphological and cytological changes that contribute toward the acquisition of developmental competence, a process defined by an oocyte’s ability to progress through folliculogenesis, be fertilized, undergo cleavage, and develop into an embryo. Many factors, such as ovarian follicle size, cow age, and the morphology of the cumulus–oocyte complex, have been extensively investigated to understand this process. In parallel to aiding in the understanding of oocyte biology, these features have been used to characterize an oocyte’s ability to achieve competence. In addition, oocytes undergo intense gene transcription and protein translation to accumulate the maternal stores. When the oocyte is fully grown, most genes are transcriptionally inactive, and the chromatin is densely compacted. More recently, RNA profiling has been used to further define the transcriptional parameters that are associated with oocyte development. Here, focusing on cattle, we provide an overview of the experimental models commonly used to understand the underlying biology related to oocyte developmental competence. We compiled public data and showed that cattle oocytes can express over 15 000 protein-coding genes, suggesting a complex transcriptome landscape. Surprisingly, less than 2% of the expressed genes have been linked to developmental competence. The identification of the gene products that contribute to oocyte development, and understanding their biological function, are a vital component of our quest toward defining oocyte developmental competence at the molecular level.
Collapse
|
24
|
Ghanem N, Salilew-Wondim D, Hoelker M, Schellander K, Tesfaye D. Transcriptome profile and association study revealed STAT3 gene as a potential quality marker of bovine gametes. ZYGOTE 2020; 28:1-15. [PMID: 31928565 DOI: 10.1017/s0967199419000765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was aimed to investigate differences in molecular signatures in oocytes derived from Holstein-Friesian heifers with different genetic merit for fertility, euthanized during day 0 or day 12 of the estrous cycle. Moreover, association between single nucleotide polymorphisms (SNPs) of ODC1 and STAT3 genes and bull fertility traits was investigated. The gene expression patterns were analyzed using cDNA array and validated with quantitative real-time polymerase chain reaction (PCR). The result revealed that several genes have shown not only to be regulated by fertility merit but also by the day of oocyte recovery during the estrous cycle. The STAT3 gene was found to be upregulated in oocytes recovered from animals with high fertility merit at both day 0 and day 12. Some other genes like PTTG1, ODC1 and TUBA1C were downregulated at day 0 and upregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In contrast, the transcript abundance of TPM3 was upregulated at day 0 and downregulated at day 12 in high, compared with low, fertility merit recovered oocytes. In addition, ODC1 and STAT3 were found to be associated (P < 0.05) with sperm quality traits as well as flow cytometry parameters. Therefore, the expression of several candidate genes including ODC1 and STAT3 was related to the genetic merit of the cow. In addition polymorphisms in these two genes were found to be associated with bull semen quality.
Collapse
Affiliation(s)
- Nasser Ghanem
- Animal Production Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Michael Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
| | - Dawit Tesfaye
- Institute of Animal Science, Animal Breeding and Husbandry Group, University of Bonn, 53115Bonn, Germany
- Department of Biomedical Sciences, Animal Reproduction and Biotechnology Laboratory (ARBL), Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
25
|
Ling YH, Zheng Q, Li YS, Sui MH, Wu H, Zhang YH, Chu MX, Ma YH, Fang FG, Xu LN. Identification of lncRNAs by RNA Sequencing Analysis During in Vivo Pre-Implantation Developmental Transformation in the Goat. Front Genet 2019; 10:1040. [PMID: 31708972 PMCID: PMC6823246 DOI: 10.3389/fgene.2019.01040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022] Open
Abstract
Pre-implantation development is a dynamic, complex and precisely regulated process that is critical for mammalian development. There is currently no description of the role of the long noncoding RNAs (lncRNAs) during the pre-implantation stages in the goat. The in vivo transcriptomes of oocytes (n = 3) and pre-implantation stages (n=19) at seven developmental stages in the goat were analyzed by RNA sequencing (RNA-Seq). The major zygotic gene activation (ZGA) event was found to occur between the 8- and 16-cell stages in the pre-implantation stages. We identified 5,160 differentially expressed lncRNAs (DELs) in developmental stage comparisons and functional analyses of the major and minor ZGAs. Fourteen lncRNA modules were found corresponding to specific pre-implantation developmental stages by weighted gene co-expression network analysis (WGCNA). A comprehensive analysis of the lncRNAs at each developmental transition of high correlation modules was done. We also identified lncRNA-mRNA networks and hub-lncRNAs for the high correlation modules at each stage. The extensive association of lncRNA target genes with other embryonic genes suggests an important regulatory role for lncRNAs in embryonic development. These data will facilitate further exploration of the role of lncRNAs in the developmental transformation in the pre-implantation stage.
Collapse
Affiliation(s)
- Ying-Hui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Sheng Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Meng-Hua Sui
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Hao Wu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Yun-Hai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Ming-Xing Chu
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yue-Hui Ma
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fu-Gui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Local Animal Genetic Resources Conservation and Biobreeding Laboratory of Anhui Province, Hefei, China
| | - Li-Na Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
26
|
Marsico TV, de Camargo J, Valente RS, Sudano MJ. Embryo competence and cryosurvival: Molecular and cellular features. Anim Reprod 2019; 16:423-439. [PMID: 32435286 PMCID: PMC7234140 DOI: 10.21451/1984-3143-ar2019-0072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/28/2019] [Indexed: 12/27/2022] Open
Abstract
Global cattle genetic market is experiencing a change of strategy, large genetic companies, traditionally recognized in the artificial insemination field, have also begun to operate in the embryo market. Consequently, the demand for in vitro produced (IVP) embryos has grown. However, the overall efficiency of the biotechnology process remains low. Additionally, the lack of homogeneity of post-cryopreservation survival results of IVP embryos still impairing a massive dissemination of this biotechnology in the field. A great challenge for in vitro production labs is to increase the amount of embryos produced with exceptional quality after each round of in vitro fertilization. Herein, we discuss the molecular and cellular features associated with the competence and cryosurvival of IVP embryos. First, morphofunctional, cellular and molecular competence of the embryos were addressed and a relationship between embryo developmental ability and quality were established with cryosurvival and pregnancy success. Additionally, determinant factors of embryo competence and cryosurvival were discussed including the following effects: genotype, oocyte quality and follicular microenvironment, in vitro production conditions, and lipids and other determining molecules. Finally, embryo cryopreservation aspects were addressed and an embryo-focused approach to improve cryosurvival was presented.
Collapse
Affiliation(s)
- Thamiris V. Marsico
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Janine de Camargo
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| | - Roniele S. Valente
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
| | - Mateus J. Sudano
- Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brasil.
- School of Veterinary Medicine, Federal University of Pampa, Uruguaiana, RS, Brasil.
| |
Collapse
|
27
|
Rho NY, Ashkar FA, Revay T, Madan P, Rho GJ, King WA, Favetta LA. De novo transcription of thyroid hormone receptors is essential for early bovine embryo development in vitro. Reprod Fertil Dev 2019; 30:779-788. [PMID: 29179810 DOI: 10.1071/rd17165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone receptor (THR) α and THRβ mediate the genomic action of thyroid hormones (THs) that affect bovine embryo development. However, little is known about THRs in the preimplantation embryo. The aim of the present study was to investigate the importance of THRs in in vitro preimplantation bovine embryos. THR transcripts and protein levels were detected in developing preimplantation embryos up to the blastocyst stage. Embryonic transcription of THRs was inhibited by α-amanitin supplementation, and both maternal and embryonic transcription were knocked down by short interference (si) RNA microinjection. In the control group, mRNA and protein levels of THRs increased after fertilisation. In contrast, in both the transcription inhibition and knockdown groups there were significant (P<0.05) decreases in mRNA expression of THRs from the 2-cell stage onwards. However, protein levels of THRs were not altered at 2-cell stage, although they did exhibit a significant (P<0.05) decrease from the 4-cell stage. Moreover, inhibition of de novo transcripts of THRs using siRNA led to a significant (P<0.01) decrease in the developmental rate and cell number, as well as inducing a change in embryo morphology. In conclusion, THRs are transcribed soon after fertilisation, before major activation of the embryonic genome, and they are essential for bovine embryo development in vitro.
Collapse
Affiliation(s)
- N-Y Rho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F A Ashkar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - T Revay
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G-J Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - L A Favetta
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
28
|
Jiang Z, Lin J, Dong H, Zheng X, Marjani SL, Duan J, Ouyang Z, Chen J, Tian XC. DNA methylomes of bovine gametes and in vivo produced preimplantation embryos. Biol Reprod 2019; 99:949-959. [PMID: 29912291 DOI: 10.1093/biolre/ioy138] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
DNA methylation is an important epigenetic modification that undergoes dynamic changes in mammalian embryogenesis, during which both parental genomes are reprogrammed. Despite the many immunostaining studies that have assessed global methylation, the gene-specific DNA methylation patterns in bovine preimplantation embryos are unknown. Using reduced representation bisulfite sequencing, we determined genome-scale DNA methylation of bovine sperm and individual in vivo developed oocytes and preimplantation embryos. We show that (1) the major wave of genome-wide demethylation was completed by the 8-cell stage; (2) promoter methylation was significantly and inversely correlated with gene expression at the 8-cell and blastocyst stages; (3) sperm and oocytes have numerous differentially methylated regions (DMRs)-DMRs specific for sperm were strongly enriched in long terminal repeats and rapidly lost methylation in embryos; while the oocyte-specific DMRs were more frequently localized in exons and CpG islands (CGIs) and demethylated gradually across cleavage stages; (4) DMRs were also found between in vivo and in vitro matured oocytes; and (5) differential methylation between bovine gametes was confirmed in some but not all known imprinted genes. Our data provide insights into the complex epigenetic reprogramming of bovine early embryos, which serve as an important model for human preimplantation development.
Collapse
Affiliation(s)
- Zongliang Jiang
- School of Animal Sciences, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Jianan Lin
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences and Institute for System Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Hong Dong
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Xinbao Zheng
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, Connecticut, USA
| | - Jingyue Duan
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| | - Zhengqing Ouyang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences and Institute for System Genomics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jingbo Chen
- Xinjiang Academy of Animal Science, Urumqi, Xinjiang, PR China
| | - Xiuchun Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
29
|
Huang J, Ma Y, Wei S, Pan B, Qi Y, Hou Y, Meng Q, Zhou G, Han H. Dynamic changes in the global transcriptome of bovine germinal vesicle oocytes after vitrification followed by in vitro maturation. Reprod Fertil Dev 2019; 30:1298-1313. [PMID: 29661269 DOI: 10.1071/rd17535] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/13/2018] [Indexed: 12/11/2022] Open
Abstract
This study was conducted to investigate the effect of vitrification on the dynamics of the global transcriptome in bovine germinal vesicle (GV) oocytes and their in vitro-derived metaphase II (MII) oocytes. The GV oocytes were vitrified using the open-pulled straw method. After warming, GV oocytes and the resulting MII-stage oocytes were cultured in vitro for 2h and 24h respectively and were then collected. The fresh GV oocytes and their in vitro-derived MII oocytes were used as controls. Then, each pool (fresh GV, n=3; vitrified GV, n=4; fresh MII, n=1 and MII derived from vitrified GV, n=2) from the different stages was used for mRNA transcriptome sequencing. The results showed that the in vitro maturation rates of GV oocytes were significantly decreased (32.36% vs 53.14%) after vitrification. Bovine GV oocyte vitrification leads to 12 significantly upregulated and 19 downregulated genes. After culturing in vitro, the vitrification-derived MII oocytes showed 47 significantly upregulated and six downregulated genes when compared with those from fresh GV oocytes. Based on molecular function-gene ontology terms analysis and the Kyoto encyclopaedia of genes (KEGG) pathway database, the differentially expressed genes were associated with the pathways of cell differentiation and mitosis, transcription regulation, regulation of actin cytoskeleton, apoptosis and so on, which potentially result in the lower in vitro development of GV bovine oocytes.
Collapse
Affiliation(s)
- Jianwei Huang
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YongShun Ma
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Shao Wei
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - Bo Pan
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yu Qi
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| | - YunPeng Hou
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - QingYong Meng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing 100193, PR China
| | - GuangBin Zhou
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - HongBing Han
- Beijing Key Laboratory for Animal Genetic Improvement, China Agricultural University, Beijing 100193, PR China
| |
Collapse
|
30
|
Duan JE, Jiang ZC, Alqahtani F, Mandoiu I, Dong H, Zheng X, Marjani SL, Chen J, Tian XC. Methylome Dynamics of Bovine Gametes and in vivo Early Embryos. Front Genet 2019; 10:512. [PMID: 31191619 PMCID: PMC6546829 DOI: 10.3389/fgene.2019.00512] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/10/2019] [Indexed: 01/12/2023] Open
Abstract
DNA methylation undergoes drastic fluctuation during early mammalian embryogenesis. The dynamics of global DNA methylation in bovine embryos, however, have mostly been studied by immunostaining. We adopted the whole genome bisulfite sequencing (WGBS) method to characterize stage-specific genome-wide DNA methylation in bovine sperm, immature oocytes, oocytes matured in vivo and in vitro, as well as in vivo developed single embryos at the 2-, 4-, 8-, and 16-cell stages. We found that the major wave of genome-wide DNA demethylation was complete by the 8-cell stage when de novo methylation became prominent. Sperm and oocytes were differentially methylated in numerous regions (DMRs), which were primarily intergenic, suggesting that these non-coding regions may play important roles in gamete specification. DMRs were also identified between in vivo and in vitro matured oocytes, suggesting environmental effects on epigenetic modifications. In addition, virtually no (less than 1.5%) DNA methylation was found in mitochondrial DNA. Finally, by using RNA-seq data generated from embryos at the same developmental stages, we revealed a weak inverse correlation between gene expression and promoter methylation. This comprehensive analysis provides insight into the critical features of the bovine embryo methylome, and serves as an important reference for embryos produced in vitro, such as by in vitro fertilization and cloning. Lastly, these data can also provide a model for the epigenetic dynamics in human early embryos.
Collapse
Affiliation(s)
- Jingyue Ellie Duan
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| | - Zongliang Carl Jiang
- School of Animal Science, AgCenter, Louisiana State University, Baton Rouge, LA, United States
| | - Fahad Alqahtani
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Ion Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, United States
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Sadie L Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Ürümqi, China
| | - Xiuchun Cindy Tian
- Department of Animal Science, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
31
|
Che YY, Xia XJ, He BP, Gao YY, Ren WB, Liu HT, Liu JF, Huang TH, Han WY, Lei LC. A corn straw-based diet increases release of inflammatory cytokines in peripheral blood mononuclear cells of dairy cows. J Zhejiang Univ Sci B 2019; 19:796-806. [PMID: 30269447 DOI: 10.1631/jzus.b1700571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Expression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24 027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-β1 (TGF-β1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.
Collapse
Affiliation(s)
- Yan-Yi Che
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Xiao-Jing Xia
- College of Veterinary Medicine, Jilin University, Changchun 130062, China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Bo-Ping He
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Yuan-Yuan Gao
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wen-Bo Ren
- Department of Clinical Laboratory, the First Hospital, Jilin University, Changchun 130062, China
| | - Hong-Tao Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jian-Fang Liu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ting-Hao Huang
- College of Animal Science, Jilin University, Changchun 130062, China
| | - Wen-Yu Han
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lian-Cheng Lei
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
32
|
Duan JE, Shi W, Jue NK, Jiang Z, Kuo L, O'Neill R, Wolf E, Dong H, Zheng X, Chen J, Tian XC. Dosage Compensation of the X Chromosomes in Bovine Germline, Early Embryos, and Somatic Tissues. Genome Biol Evol 2019; 11:242-252. [PMID: 30566637 PMCID: PMC6354180 DOI: 10.1093/gbe/evy270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2018] [Indexed: 12/15/2022] Open
Abstract
Dosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes. Here we report the first comprehensive test of Ohno’s hypothesis in bovine preattachment embryos, germline, and somatic tissues. Overall an incomplete dosage compensation (0.5 < X:A < 1) of expressed genes and an excess X dosage compensation (X:A > 1) of ubiquitously expressed “dosage-sensitive” genes were seen. No significant differences in X:A ratios were observed between bovine female and male somatic tissues, further supporting Ohno’s hypothesis. Interestingly, preimplantation embryos manifested a unique pattern of X dosage compensation dynamics. Specifically, X dosage decreased after fertilization, indicating that the sperm brings in an inactive X to the matured oocyte. Subsequently, the activation of the bovine embryonic genome enhanced expression of X-linked genes and increased the X dosage. As a result, an excess compensation was exhibited from the 8-cell stage to the compact morula stage. The X dosage peaked at the 16-cell stage and stabilized after the blastocyst stage. Together, our findings confirm Ohno’s hypothesis of X dosage compensation in the bovine and extend it by showing incomplete and over-compensation for expressed and “dosage-sensitive” genes, respectively.
Collapse
Affiliation(s)
| | - Wei Shi
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Nathaniel K Jue
- School of Natural Sciences, California State University, Monterey Bay, CA
| | - Zongliang Jiang
- School of Animal Science, Louisiana State University, Agricultural Center, Baton Rouge, LA
| | - Lynn Kuo
- Department of Statistics, University of Connecticut, Storrs, CT
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT
| | - Eckhard Wolf
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität Muünchen, Germany
| | - Hong Dong
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Xinbao Zheng
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | - Jingbo Chen
- Institute of Animal Science, Xinjiang Academy of Animal Sciences, Urumqi, Xinjiang, P.R. China
| | | |
Collapse
|
33
|
Chen F, Fu Q, Pu L, Zhang P, Huang Y, Hou Z, Xu Z, Chen D, Huang F, Deng T, Liang X, Lu Y, Zhang M. Integrated Analysis of Quantitative Proteome and Transcriptional Profiles Reveals the Dynamic Function of Maternally Expressed Proteins After Parthenogenetic Activation of Buffalo Oocyte. Mol Cell Proteomics 2018; 17:1875-1891. [PMID: 30002204 PMCID: PMC6166679 DOI: 10.1074/mcp.ra118.000556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/16/2018] [Indexed: 01/09/2023] Open
Abstract
Maternal-effect genes are especially critical for early embryonic development after fertilization and until massive activation of the embryonic genome occurs. By applying a tandem mass tag (TMT)-labeled quantitative proteomics combined with RNA sequencing approach, the proteome of the buffalo was quantitatively analyzed during parthenogenesis of mature oocytes and the two-cell stage embryo. Of 1908 quantified proteins, 123 differed significantly. The transcriptome was analyzed eight stages (GV, MII, 2-cell, 4-cell, 8-cell, 16-cell, morula, blastocyst) of Buffalo using the RNA sequencing approach, and a total of 3567 unique genes were identified to be differently expressed between all consecutive stages of pre-implantation development. Validation of proteomics results (TUBB3, CTNNA1, CDH3, MAP2K1), which are involved in tight junction and gap junction, revealing that the maternal expression of the proteins possibly plays a role in the formation of cellular junctions firstly after parthenogenetic activation. Correlation and hierarchical analyses of transcriptional profiles and the expression of NPM2 and NLRP5 mRNA of buffalo in vitro developed oocytes and parthenogenetic embryos indicated that the "maternal-to-zygotic transition" (MZT) process might exist in the model of parthenogenesis, which is similar to a normally fertilized embryo, and may occur between the 8-cell to 16-cell stage. These data provide a rich resource for further studies on maternal proteins and genes and are conducive to improving nuclear transfer technology.
Collapse
Affiliation(s)
- Fumei Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Qiang Fu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Liping Pu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Pengfei Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Yulin Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhen Hou
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuangzhuang Xu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Dongrong Chen
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Fengling Huang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China
| | - Tingxian Deng
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Xianwei Liang
- §Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, Guangxi 530001, China
| | - Yangqing Lu
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| | - Ming Zhang
- From the ‡State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresource, Animal Reproduction Institute, Guangxi University, Nanning, Guangxi 530004, China;
| |
Collapse
|
34
|
Godini R, Fallahi H. Dynamics changes in the transcription factors during early human embryonic development. J Cell Physiol 2018; 234:6489-6502. [PMID: 30246428 DOI: 10.1002/jcp.27386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 08/17/2018] [Indexed: 12/30/2022]
Abstract
Development of an embryo from a single cell, zygote, to multicellular morulae requires activation of hundreds of genes that were mostly inactivated before fertilization. Inevitably, transcription factors (TFs) would be involved in modulating the drastic changes in gene expression pattern observed at all preimplantation stages. Despite many ongoing efforts to uncover the role of TFs at the early stages of embryogenesis, still many unanswered questions remained that need to be explored. This could be done by studying the expression pattern of multiple genes obtained by high-throughput techniques. In the current study, we have identified a set of TFs that are involved in the progression of the zygote to blastocyst. Global gene expression patterns of consecutive stages were compared and differences documented. Expectedly, at the early stages of development, only a few sets of TFs differentially expressed while at the later stages hundreds of TFs appear to be upregulated. Interestingly, the expression levels of many TFs show an oscillation pattern during development indicating a need for their precise expression. A significant shift in gene expression was observed during the transition from four- to eight-cell stages, an indication of zygote genome activation. Additionally, we have found 11 TFs that were common in all stages including ATF3, EN1, IFI16, IKZF3, KLF3, NPAS3, NR2F2, RUNX1, SOX2, ZBTB20, and ZSCAN4. However, their expression patterns did not follow similar trends in the steps studied. Besides, our findings showed that both upregulation and active downregulation of the TFs expression is required for successful embryogenesis. Furthermore, our detailed network analysis identified the hub TFs for each transition. We found that HNF4A, FOXA2, and EP300 are the three most important elements for the first division of zygote.
Collapse
Affiliation(s)
- Rasoul Godini
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Kermanshah, Iran
| |
Collapse
|
35
|
Transcriptional profiles of crossbred embryos derived from yak oocytes in vitro fertilized with cattle sperm. Sci Rep 2018; 8:11571. [PMID: 30069024 PMCID: PMC6070518 DOI: 10.1038/s41598-018-29912-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/20/2018] [Indexed: 12/24/2022] Open
Abstract
During mammalian pre-implantation embryonic development, dramatic and orchestrated changes occur in gene transcription. Pregnancy rates were low when yak females were crossbred with cattle breeds, but few studies exist to describe the unique molecular network regulation behind the pre-implantation development of these embryos. We determined the transcriptomes of crossbred embryos derived from yak oocytes in vitro fertilized with Jersey sperm using Illumina RNA-seq for the first time in this study. Embryos were sampled at the 2-, 4-, and 8-cell, morula and blastocyst stages. The results showed that in total, 291.9 million short reads were generated from the five libraries of 2-, 4-, and 8-cell, morula and blastocyst stages, with 276.2 million high-quality reads selected for further analysis. Eighty to 91% of the clean reads were aligned against the yak reference genome. A total of 19,072 transcripts were identified in five libraries, of which 7,785 transcripts were co-expressed in each stage and 2,013 transcripts were stage-specific. When a |log2 ratio| ≥1 and q-value ≤ 0.05 were set as thresholds for identifying differentially expressed genes (DEGs), we detected a total of 3,690 to 10,298 DEGs between any two consecutive stages. Based on the results of GO and KEGG enrichment, some of these DEGs potentially play an important role in regulating pre-implantation development, but they are most likely stage-specific. There were 2,960, 7,287, 6,420, 7,724 and 10,417 DEGs in 2-, 4-, 8-cell, morula and blastocyst stages between the crossbred embryos and purebred embryos of the yak, respectively, leading to a large difference in GO terms and pathways. In conclusion, we sequenced transcriptomes of in vitro-produced crossbred embryos of yak and cattle during pre-implantation and provided comprehensive examinations of gene activities. These will be helpful for development of assisted reproductive technology and better understanding the early maternal-fetal or maternal-embryonic dialog in inter-species crossbreeding.
Collapse
|
36
|
Lelièvre JM, Peynot N, Ruffini S, Laffont L, Le Bourhis D, Girard PM, Duranthon V. Regulation of heat-inducible HSPA1A gene expression during maternal-to-embryo transition and in response to heat in in vitro-produced bovine embryos. Reprod Fertil Dev 2018; 29:1868-1881. [PMID: 27851888 DOI: 10.1071/rd15504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/12/2016] [Indexed: 12/14/2022] Open
Abstract
In in vitro-produced (IVP) bovine embryos, a burst in transcriptional activation of the embryonic genome (EGA) occurs at the 8-16-cell stage. To examine transcriptional regulation prior to EGA, notably in response to heat stress, we asked (1) whether the spontaneous expression of a luciferase transgene that is driven by the minimal mouse heat-shock protein 1b (hspa1b) gene promoter paralleled that of HSPA1A during EGA in IVP bovine embryo and (2) whether expression of the endogenous heat-inducible iHSPA group member HSPA1A gene and the hspa1b/luciferase transgene were induced by heat stress (HS) prior to EGA. Using two culture systems, we showed that luciferase activity levels rose during the 40-h long EGA-associated cell cycle. In contrast, iHSPA proteins were abundant in matured oocytes and in blastomeres from the two-cell to the 16-cell stages. However, normalised results detected a rise in the level of HSPA1A and luciferase mRNA during EGA, when transcription was required for their protein expression. Prior to EGA, HS-induced premature luciferase activity and transgene expression were clearly inhibited. We could not, however, establish whether this was also true for HSPA1A expression because of the decay of the abundant maternal transcripts prior to EGA. In bovine embryos, heat-induced expression of hspa1b/luciferase, and most likely of HSPA1A, was therefore strictly dependent on EGA. The level of the heat-shock transcription factor 1 molecules that were found in cell nuclei during embryonic development correlated better with the embryo's capacity for heat-shock response than with EGA-associated gene expression.
Collapse
Affiliation(s)
- Jean-Marc Lelièvre
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Nathalie Peynot
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Sylvie Ruffini
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Ludivine Laffont
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Daniel Le Bourhis
- UMR BDR, INRA, ENVA, Université Paris Saclay, 78350 Jouy-en-Josas, France
| | - Pierre-Marie Girard
- Institut Curie, PSL Research University, CNRS UMR3347, INSERM U1021, 91405 Orsay, France
| | | |
Collapse
|
37
|
Chitwood JL, Burruel VR, Halstead MM, Meyers SA, Ross PJ. Transcriptome profiling of individual rhesus macaque oocytes and preimplantation embryos. Biol Reprod 2018; 97:353-364. [PMID: 29025079 DOI: 10.1093/biolre/iox114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/01/2017] [Indexed: 11/12/2022] Open
Abstract
Early mammalian embryonic transcriptomes are dynamic throughout the process of preimplantation development. Cataloging of primate transcriptomics during early development has been accomplished in humans, but global characterization of transcripts is lacking in the rhesus macaque: a key model for human reproductive processes. We report here the systematic classification of individual macaque transcriptomes using RNA-Seq technology from the germinal vesicle stage oocyte through the blastocyst stage embryo. Major differences in gene expression were found between sequential stages, with the 4- to 8-cell stages showing the highest level of differential gene expression. Analysis of putative transcription factor binding sites also revealed a striking increase in key regulatory factors in 8-cell embryos, indicating a strong likelihood of embryonic genome activation occurring at this stage. Furthermore, clustering analyses of gene co-expression throughout this period resulted in distinct groups of transcripts significantly associated to the different embryo stages assayed. The sequence data provided here along with characterizations of major regulatory transcript groups present a comprehensive atlas of polyadenylated transcripts that serves as a useful resource for comparative studies of preimplantation development in humans and other species.
Collapse
Affiliation(s)
- James L Chitwood
- Department of Animal Science, University of California, Davis, California, USA
| | - Victoria R Burruel
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Michelle M Halstead
- Department of Animal Science, University of California, Davis, California, USA
| | - Stuart A Meyers
- Department of Anatomy, Physiology, and Cell Biology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Pablo J Ross
- Department of Animal Science, University of California, Davis, California, USA
| |
Collapse
|
38
|
Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis. Oncotarget 2018; 7:74120-74131. [PMID: 27705919 PMCID: PMC5342040 DOI: 10.18632/oncotarget.12339] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/17/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM).
Collapse
|
39
|
Liu X, Wang Y, Gao Y, Su J, Zhang J, Xing X, Zhou C, Yao K, An Q, Zhang Y. H3K9 demethylase KDM4E is an epigenetic regulator for bovine embryonic development and a defective factor for nuclear reprogramming. Development 2018; 145:145/4/dev158261. [DOI: 10.1242/dev.158261] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 01/12/2018] [Indexed: 01/13/2023]
Abstract
ABSTRACT
Aberrant epigenetic reprogramming often results in developmental defects in somatic cell nuclear transfer (SCNT) embryos during embryonic genome activation (EGA). Bovine eight-cell SCNT embryos exhibit global hypermethylation of histone H3 lysine 9 tri- and di-methylation (H3K9me3/2), but the intrinsic reason for this remains elusive. Here, we provide evidence that two H3K9 demethylase genes, lysine-specific demethylase 4D (KDM4D) and 4E (KDM4E), are related to active H3K9me3/2 demethylation in in vitro fertilized (IVF) embryos and are deficiently expressed in cloned embryos at the time of EGA. Moreover, KDM4E plays a more crucial role in IVF and SCNT embryonic development, and overexpression of KDM4E can restore the global transcriptome, improve blastocyst formation and increase the cloning efficiency of SCNT embryos. Our results thereby indicate that KDM4E can function as a crucial epigenetic regulator of EGA and as an internal defective factor responsible for persistent H3K9me3/2 barriers to SCNT-mediated reprogramming. Furthermore, we show that interactions between RNA and KDM4E are essential for H3K9 demethylation during EGA. These observations advance the understanding of incomplete nuclear reprogramming and are of great importance for transgenic cattle procreation.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yizhi Wang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanpeng Gao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xupeng Xing
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chuan Zhou
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kezhen Yao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Quanli An
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
- Engineering Center for Animal Embryo Technology, Yangling 712100, Shaanxi, China
- Laboratory of Embryo Technology in Livestock, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
40
|
Oxidative Stress Alters the Profile of Transcription Factors Related to Early Development on In Vitro Produced Embryos. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1502489. [PMID: 29209446 PMCID: PMC5676474 DOI: 10.1155/2017/1502489] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 02/07/2023]
Abstract
High oxygen levels during in vitro culture (IVC) can induce oxidative stress through accumulation of reactive oxygen species (ROS), negatively affecting embryo development. This study evaluated the effect of different O2 tensions during IVC on bovine blastocyst development and transcriptional status, considering transcription factors that play an essential role during early embryo development. For this purpose, embryos were produced in vitro by conventional protocols and cultured in two different oxygen tensions, physiological (5%) and atmospheric (20%). Expanded blastocysts were subjected to transcript quantitation analysis by RT-qPCR with Biomark™ HD System (Fluidigm, US), using 67 TaqMan assays specific for Bos taurus. Differences were observed in genes related to oxidation-reduction processes, DNA-dependent transcription factors, and factors related to important functional pathways for embryo development. Blastocyst rate was higher in the 5% O2 group and the number of cells was assessed, with the 5% O2 group having a higher number of cells. ROS concentration was evaluated, with a higher ROS presence in the 20% O2 group. Taken together, these results allow us to conclude that IVC of embryos at atmospheric O2 tension affects the expression of important transcription factors involved in multiple cell biology pathways that can affect embryo development, quality, and viability.
Collapse
|
41
|
Sun J, Jiang Z, Tian X, Bi J. A cross-species bi-clustering approach to identifying conserved co-regulated genes. Bioinformatics 2017; 32:i137-i146. [PMID: 27307610 PMCID: PMC4908362 DOI: 10.1093/bioinformatics/btw278] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Motivation: A growing number of studies have explored the process of pre-implantation embryonic development of multiple mammalian species. However, the conservation and variation among different species in their developmental programming are poorly defined due to the lack of effective computational methods for detecting co-regularized genes that are conserved across species. The most sophisticated method to date for identifying conserved co-regulated genes is a two-step approach. This approach first identifies gene clusters for each species by a cluster analysis of gene expression data, and subsequently computes the overlaps of clusters identified from different species to reveal common subgroups. This approach is ineffective to deal with the noise in the expression data introduced by the complicated procedures in quantifying gene expression. Furthermore, due to the sequential nature of the approach, the gene clusters identified in the first step may have little overlap among different species in the second step, thus difficult to detect conserved co-regulated genes. Results: We propose a cross-species bi-clustering approach which first denoises the gene expression data of each species into a data matrix. The rows of the data matrices of different species represent the same set of genes that are characterized by their expression patterns over the developmental stages of each species as columns. A novel bi-clustering method is then developed to cluster genes into subgroups by a joint sparse rank-one factorization of all the data matrices. This method decomposes a data matrix into a product of a column vector and a row vector where the column vector is a consistent indicator across the matrices (species) to identify the same gene cluster and the row vector specifies for each species the developmental stages that the clustered genes co-regulate. Efficient optimization algorithm has been developed with convergence analysis. This approach was first validated on synthetic data and compared to the two-step method and several recent joint clustering methods. We then applied this approach to two real world datasets of gene expression during the pre-implantation embryonic development of the human and mouse. Co-regulated genes consistent between the human and mouse were identified, offering insights into conserved functions, as well as similarities and differences in genome activation timing between the human and mouse embryos. Availability and Implementation: The R package containing the implementation of the proposed method in C ++ is available at: https://github.com/JavonSun/mvbc.git and also at the R platform https://www.r-project.org/. Contact:jinbo@engr.uconn.edu
Collapse
Affiliation(s)
| | - Zongliang Jiang
- Center for Regenerative Biology and Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xiuchun Tian
- Center for Regenerative Biology and Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA
| | - Jinbo Bi
- Department of Computer Science and Engineering
| |
Collapse
|
42
|
Biase FH. Oocyte Developmental Competence: Insights from Cross-Species Differential Gene Expression and Human Oocyte-Specific Functional Gene Networks. ACTA ACUST UNITED AC 2017; 21:156-168. [DOI: 10.1089/omi.2016.0177] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
The effect of ovine oocyte vitrification on expression of subset of genes involved in epigenetic modifications during oocyte maturation and early embryo development. Theriogenology 2016; 86:2136-2146. [DOI: 10.1016/j.theriogenology.2016.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
|
45
|
Melo EO, Cordeiro DM, Pellegrino R, Wei Z, Daye ZJ, Nishimura RC, Dode MAN. Identification of molecular markers for oocyte competence in bovine cumulus cells. Anim Genet 2016; 48:19-29. [PMID: 27650317 DOI: 10.1111/age.12496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/17/2022]
Abstract
Cumulus cells (CCs) have an important role during oocyte growth, competence acquisition, maturation, ovulation and fertilization. In an attempt to isolate potential biomarkers for bovine in vitro fertilization, we identified genes differentially expressed in bovine CCs from oocytes with different competence statuses, through microarray analysis. The model of follicle size, in which competent cumulus-oocyte complexes (COCs) were recovered from bigger follicles (≥8.0 mm in diameter) and less competent ones from smaller follicles (1-3 mm), was used. We identified 4178 genes that were differentially expressed (P < 0.05) in the two categories of CCs. The list was further enriched, through the use of a 2.5-fold change in gene expression as a cutoff value, to include 143 up-regulated and 80 down-regulated genes in CCs of competent COCs compared to incompetent COCs. These genes were screened according to their cellular roles, most of which were related to cell cycle, DNA repair, energy metabolism, metabolism of amino acids, cell signaling, meiosis, ovulation and inflammation. Three candidate genes up-regulated (FGF11, IGFBP4, SPRY1) and three down-regulated (ARHGAP22, COL18A1 and GPC4) in CCs from COCs of big follicles (≥8.1 mm) were selected for qPCR analysis. The selected genes showed the same expression patterns by qPCR and microarray analysis. These genes may be potential genetic markers that predict oocyte competence in in vitro fertilization routines.
Collapse
Affiliation(s)
- E O Melo
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| | - D M Cordeiro
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - R Pellegrino
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Z Wei
- Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Z J Daye
- Division of Epidemiology and Biostatistics, University of Arizona, Tucson, AZ, 85721, USA
| | - R C Nishimura
- School of Agriculture and Veterinary Medicine, University of Brasilia, Brasília, DF, 70910-900, Brazil
| | - M A N Dode
- Embrapa- Genetic Resources and Biotechnology, Brasília, DF, 70770-917, Brazil
| |
Collapse
|
46
|
Popken J, Brero A, Koehler D, Schmid VJ, Strauss A, Wuensch A, Guengoer T, Graf A, Krebs S, Blum H, Zakhartchenko V, Wolf E, Cremer T. Reprogramming of fibroblast nuclei in cloned bovine embryos involves major structural remodeling with both striking similarities and differences to nuclear phenotypes of in vitro fertilized embryos. Nucleus 2015; 5:555-89. [PMID: 25482066 PMCID: PMC4615760 DOI: 10.4161/19491034.2014.979712] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear landscapes were studied during preimplantation development of bovine embryos, generated either by in vitro fertilization (IVF), or generated as cloned embryos by somatic cell nuclear transfer (SCNT) of bovine fetal fibroblasts, using 3-dimensional confocal laser scanning microscopy (3D-CLSM) and structured illumination microscopy (3D-SIM). Nuclear landscapes of IVF and SCNT embryonic nuclei were compared with each other and with fibroblast nuclei. We demonstrate that reprogramming of fibroblast nuclei in cloned embryos requires changes of their landscapes similar to nuclei of IVF embryos. On the way toward the 8-cell stage, where major genome activation occurs, a major lacuna, enriched with splicing factors, was formed in the nuclear interior and chromosome territories (CTs) were shifted toward the nuclear periphery. During further development the major lacuna disappeared and CTs were redistributed throughout the nuclear interior forming a contiguous higher order chromatin network. At all stages of development CTs of IVF and SCNT embryonic nuclei were built up from chromatin domain clusters (CDCs) pervaded by interchromatin compartment (IC) channels. Quantitative analyses revealed a highly significant enrichment of RNA polymerase II and H3K4me3, a marker for transcriptionally competent chromatin, at the periphery of CDCs. In contrast, H3K9me3, a marker for silent chromatin, was enriched in the more compacted interior of CDCs. Despite these striking similarities, we also detected major differences between nuclear landscapes of IVF and cloned embryos. Possible implications of these differences for the developmental potential of cloned animals remain to be investigated. We present a model, which integrates generally applicable structural and functional features of the nuclear landscape.
Collapse
Key Words
- 3D-CLSM, 3-dimensional confocal laser scanning microscopy
- 3D-SIM, 3-dimensional structured illumination microscopy
- B23, nucleophosmin B23
- BTA, Bos taurus
- CDC, chromatin domain cluster
- CT, chromosome territory
- EM, electron microscopy
- ENC, embryonic nuclei with conventional nuclear architecture
- ENP, embryonic nuclei with peripheral CT distribution
- H3K4me3
- H3K4me3, histone H3 with tri-methylated lysine 4
- H3K9me3
- H3K9me3, histone H3 with tri-methylated lysine 9
- H3S10p, histone H3 with phosphorylated serine 10
- IC, interchromatin compartment
- IVF, in vitro fertilization
- MCB, major chromatin body
- PR, perichromatin region
- RNA polymerase II
- RNA polymerase II-S2p, RNA polymerase II with phosphorylated serine 2 of its CTD domain
- RNA polymerase II-S5p, RNA polymerase II with phosphorylated serine 5 of its CTD domain
- SC-35, splicing factor SC-35
- SCNT, somatic cell nuclear transfer.
- bovine preimplantation development
- chromatin domain
- chromosome territory
- embryonic genome activation
- in vitro fertilization (IVF)
- interchromatin compartment
- major EGA, major embryonic genome activation
- somatic cell nuclear transfer (SCNT)
Collapse
Affiliation(s)
- Jens Popken
- a Division of Anthropology and Human Genetics ; Biocenter; LMU Munich ; Munich , Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Bai H, Li Y, Gao H, Dong Y, Han P, Yu H. Histone methyltransferase SMYD3 regulates the expression of transcriptional factors during bovine oocyte maturation and early embryonic development. Cytotechnology 2015; 68:849-59. [PMID: 25563599 DOI: 10.1007/s10616-014-9838-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 12/20/2014] [Indexed: 01/09/2023] Open
Abstract
Mammalian early embryonic development is controlled by a unique program of gene expression, and involves epigenetic reprogramming of histone modifications and DNA methylation. SET and MYND domain-containing protein 3 (SMYD3) is a histone H3 lysine 4 methyltransferase that plays important roles in transcription regulation. The expression of SMYD3 has been studied in some cancer cell lines. However, its expression in oocytes and embryos has not previously been reported. Here, we detected the SMYD3 mRNA and found that it was expressed throughout bovine oocyte in vitro maturation and early embryonic development. Microinjection of SMYD3 siRNA at germinal vesicle stage decreased the transcription level of NANOG, and blocked the development of in vitro fertilization embryos at 4-8 cell stage. Conversely, Microinjection of SMYD3 siRNA at pronuclear stage did not affect early embryonic development. Our findings suggest that SMYD3 regulates the expression of NANOG, and plays an essential role in bovine early embryonic development.
Collapse
Affiliation(s)
- Haidong Bai
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Li
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Haixia Gao
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Yanhua Dong
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Pengyong Han
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Haiquan Yu
- The Key Laboratory of Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
48
|
Santos RR, Schoevers EJ, Roelen BAJ. Usefulness of bovine and porcine IVM/IVF models for reproductive toxicology. Reprod Biol Endocrinol 2014; 12:117. [PMID: 25427762 PMCID: PMC4258035 DOI: 10.1186/1477-7827-12-117] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 11/05/2014] [Indexed: 11/10/2022] Open
Abstract
Women presenting fertility problems are often helped by Assisted Reproductive Techniques (ART), such as in vitro fertilization (IVF) programs. However, in many cases the etiology of the in/subfertility remains unknown even after treatment. Although several aspects should be considered when assisting a woman with problems to conceive, a survey on the patients' exposure to contaminants would help to understand the cause of the fertility problem, as well as to follow the patient properly during IVF. Daily exposure to toxic compounds, mainly environmental and dietary ones, may result in reproductive impairment. For instance, because affects oocyte developmental competence. Many of these compounds, natural or synthetic, are endocrine disruptors or endocrine active substances that may impair reproduction. To understand the risks and the mechanism of action of such chemicals in human cells, the use of proper in vitro models is essential. The present review proposes the bovine and porcine models to evaluate toxic compounds on oocyte maturation, fertilization and embryo production in vitro. Moreover, we discuss here the species-specific differences when mice, bovine and porcine are used as models for human.
Collapse
Affiliation(s)
- Regiane R Santos
- />Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University,TD Utrecht,, P.O Box 80152, 3508 The Netherlands
- />Laboratory of Wild Animal Biology and Medicine, Federal University of Pará,, Rua Augusto Corrêa,Belém, CEP 66075-110 Pará Brazil
| | - Eric J Schoevers
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| | - Bernard AJ Roelen
- />Department of Farm Animal Health, Utrecht University,, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
- />Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Yalelaan, 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
49
|
Jiang Z, Sun J, Dong H, Luo O, Zheng X, Obergfell C, Tang Y, Bi J, O'Neill R, Ruan Y, Chen J, Tian XC. Transcriptional profiles of bovine in vivo pre-implantation development. BMC Genomics 2014; 15:756. [PMID: 25185836 PMCID: PMC4162962 DOI: 10.1186/1471-2164-15-756] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/29/2022] Open
Abstract
Background During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology. Results Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo. Surprisingly, more than half of the estimated 22,000 bovine genes, 11,488 to 12,729 involved in more than 100 pathways, is expressed in oocytes and early embryos. Despite the similarity in the total numbers of genes expressed across stages, the nature of the expressed genes is dramatically different. A total of 2,845 genes were differentially expressed among different stages, of which the largest change was observed between the 4- and 8-cell stages, demonstrating that the bovine embryonic genome is activated at this transition. Additionally, 774 genes were identified as only expressed/highly enriched in particular stages of development, suggesting their stage-specific roles in embryogenesis. Using weighted gene co-expression network analysis, we found 12 stage-specific modules of co-expressed genes that can be used to represent the corresponding stage of development. Furthermore, we identified conserved key members (or hub genes) of the bovine expressed gene networks. Their vast association with other embryonic genes suggests that they may have important regulatory roles in embryo development; yet, the majority of the hub genes are relatively unknown/under-studied in embryos. We also conducted the first comparison of embryonic expression profiles across three mammalian species, human, mouse and bovine, for which RNA-seq data are available. We found that the three species share more maternally deposited genes than embryonic genome activated genes. More importantly, there are more similarities in embryonic transcriptomes between bovine and humans than between humans and mice, demonstrating that bovine embryos are better models for human embryonic development. Conclusions This study provides a comprehensive examination of gene activities in bovine embryos and identified little-known potential master regulators of pre-implantation development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-756) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jingbo Chen
- Center for Regenerative Biology, Department of Animal Science, University of Connecticut, Storrs, Connecticut, USA.
| | | |
Collapse
|
50
|
Salilew-Wondim D, Tesfaye D, Hoelker M, Schellander K. Embryo transcriptome response to environmental factors: Implication for its survival under suboptimal conditions. Anim Reprod Sci 2014; 149:30-8. [DOI: 10.1016/j.anireprosci.2014.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/22/2014] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
|