1
|
Schaffer AM, Fiala GJ, Hils M, Natali E, Babrak L, Herr LA, Romero-Mulero MC, Cabezas-Wallscheid N, Rizzi M, Miho E, Schamel WWA, Minguet S. Kidins220 regulates the development of B cells bearing the λ light chain. eLife 2024; 13:e83943. [PMID: 38271217 PMCID: PMC10810608 DOI: 10.7554/elife.83943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.
Collapse
Affiliation(s)
- Anna-Maria Schaffer
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Gina Jasmin Fiala
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Miriam Hils
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of MunichMunichGermany
| | - Eriberto Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Lmar Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Laurenz Alexander Herr
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Mari Carmen Romero-Mulero
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- aiNET GmbHBaselSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Wolfgang WA Schamel
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| |
Collapse
|
2
|
Padmanabhan S, du Toit C, Dominiczak AF. Cardiovascular precision medicine - A pharmacogenomic perspective. CAMBRIDGE PRISMS. PRECISION MEDICINE 2023; 1:e28. [PMID: 38550953 PMCID: PMC10953758 DOI: 10.1017/pcm.2023.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 05/16/2024]
Abstract
Precision medicine envisages the integration of an individual's clinical and biological features obtained from laboratory tests, imaging, high-throughput omics and health records, to drive a personalised approach to diagnosis and treatment with a higher chance of success. As only up to half of patients respond to medication prescribed following the current one-size-fits-all treatment strategy, the need for a more personalised approach is evident. One of the routes to transforming healthcare through precision medicine is pharmacogenomics (PGx). Around 95% of the population is estimated to carry one or more actionable pharmacogenetic variants and over 75% of adults over 50 years old are on a prescription with a known PGx association. Whilst there are compelling examples of pharmacogenomic implementation in clinical practice, the case for cardiovascular PGx is still evolving. In this review, we shall summarise the current status of PGx in cardiovascular diseases and look at the key enablers and barriers to PGx implementation in clinical practice.
Collapse
Affiliation(s)
- Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Clea du Toit
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| |
Collapse
|
3
|
Zhang S, Meng Y, Zhou L, Qiu L, Wang H, Su D, Zhang B, Chan K, Han J. Targeting epigenetic regulators for inflammation: Mechanisms and intervention therapy. MedComm (Beijing) 2022; 3:e173. [PMID: 36176733 PMCID: PMC9477794 DOI: 10.1002/mco2.173] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/28/2022] [Accepted: 08/05/2022] [Indexed: 11/11/2022] Open
Abstract
Emerging evidence indicates that resolution of inflammation is a critical and dynamic endogenous process for host tissues defending against external invasive pathogens or internal tissue injury. It has long been known that autoimmune diseases and chronic inflammatory disorders are characterized by dysregulated immune responses, leading to excessive and uncontrol tissue inflammation. The dysregulation of epigenetic alterations including DNA methylation, posttranslational modifications to histone proteins, and noncoding RNA expression has been implicated in a host of inflammatory disorders and the immune system. The inflammatory response is considered as a critical trigger of epigenetic alterations that in turn intercede inflammatory actions. Thus, understanding the molecular mechanism that dictates the outcome of targeting epigenetic regulators for inflammatory disease is required for inflammation resolution. In this article, we elucidate the critical role of the nuclear factor-κB signaling pathway, JAK/STAT signaling pathway, and the NLRP3 inflammasome in chronic inflammatory diseases. And we formulate the relationship between inflammation, coronavirus disease 2019, and human cancers. Additionally, we review the mechanism of epigenetic modifications involved in inflammation and innate immune cells. All that matters is that we propose and discuss the rejuvenation potential of interventions that target epigenetic regulators and regulatory mechanisms for chronic inflammation-associated diseases to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Su Zhang
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yang Meng
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lian Zhou
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Lei Qiu
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Heping Wang
- Department of NeurosurgeryTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dan Su
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bo Zhang
- Laboratory of Cancer Epigenetics and GenomicsDepartment of Gastrointestinal SurgeryFrontiers Science Center for Disease‐Related Molecular NetworkWest China HospitalSichuan UniversityChengduChina
| | - Kui‐Ming Chan
- Department of Biomedical SciencesCity University of Hong KongHong KongChina
| | - Junhong Han
- Laboratory of Cancer Epigenetics and GenomicsFrontiers Science Center for Disease‐Related Molecular NetworkState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Fee L, Kumar A, Tighe RM, Foster MH. Autoreactive B cells recruited to lungs by silica exposure contribute to local autoantibody production in autoimmune-prone BXSB and B cell receptor transgenic mice. Front Immunol 2022; 13:933360. [PMID: 35983030 PMCID: PMC9378786 DOI: 10.3389/fimmu.2022.933360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/14/2022] [Indexed: 11/16/2022] Open
Abstract
Occupational exposure to inhaled crystalline silica dust (cSiO2) is linked to systemic lupus erythematosus, rheumatoid arthritis, systemic sclerosis, and anti-neutrophil cytoplasmic autoantibody vasculitis. Each disease has a characteristic autoantibody profile used in diagnosis and implicated in pathogenesis. A role for cSiO2 in modulating humoral autoimmunity in vivo is supported by findings in mice, where respirable cSiO2 induces ectopic lymphoid structures as well as inflammation in exposed lungs across genetically diverse backgrounds. In lupus-prone mice cSiO2 exposure also leads to early onset autoantibody production and accelerated disease. Elevated autoantibody levels in bronchoalveolar lavage fluid (BALF) and lung transcriptome analysis suggest that the lung is a hub of cSiO2-evoked autoimmune activity. However, mechanisms by which cSiO2 and lung microenvironments interact to promote autoantibody production remain unclear. We previously demonstrated elevated anti-DNA Ig in BALF but not in lung cell cultures from cSiO2-exposed C57BL/6 mice, suggesting that BALF autoantibodies did not arise locally in this non-autoimmune strain. Autoantibodies were also elevated in BALF of cSiO2-exposed lupus-prone BXSB mice. In this report we test the hypothesis that dysregulated autoreactive B cells recruited to cSiO2-exposed lungs in the context of autoimmune predisposition contribute to local autoantibody production. We found that anti-DNA and anti-myeloperoxidase (MPO) Ig were significantly elevated in cultures of TLR ligand-stimulated lung cells from cSiO2-exposed BXSB mice. To further explore the impact of strain genetic susceptibility versus B cell intrinsic dysfunction on cSiO2-recruited B cell fate, we used an anti-basement membrane autoantibody transgenic (autoAb Tg) mouse line termed M7. In M7 mice, autoAb Tg B cells are aberrantly regulated and escape from tolerance on the C57BL/6 background. Exposure to cSiO2 elicited prominent pulmonary B cell and T cell aggregates and autoAb Tg Ig were readily detected in lung cell culture supernatants. Taken together, diverse disease-relevant autoreactive B cells, including cells specific for DNA, MPO, and basement membrane, are recruited to lung ectopic lymphoid aggregates in response to cSiO2 instillation. B cells that escape tolerance can contribute to local autoantibody production. Our demonstration of significantly enhanced autoantibody induction by TLR ligands further suggests that a coordinated environmental co-exposure can magnify autoimmune vulnerability.
Collapse
Affiliation(s)
- Lanette Fee
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| | - Advika Kumar
- Department of Medicine, Duke University Health System, Durham, NC, United States
| | - Robert M. Tighe
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| | - Mary H. Foster
- Department of Medicine, Duke University Health System, Durham, NC, United States
- Medical Service, Durham Veterans Affairs (VA) Medical Center, Durham, NC, United States
| |
Collapse
|
5
|
Tanaka S, Ise W, Baba Y, Kurosaki T. Silencing and activating anergic B cells. Immunol Rev 2021; 307:43-52. [PMID: 34908172 DOI: 10.1111/imr.13053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023]
Abstract
Despite the existence of central tolerance mechanisms, including clonal deletion and receptor editing to eliminate self-reactive B cells, moderately self-reactive cells still survive in the periphery (about 20% of peripheral B cells). These cells normally exist in a functionally silenced state called anergy; thus, anergy has been thought to contribute to tolerance by active-silencing of potentially dangerous B cells. However, a positive rationale for the existence of these anergic B cells has recently been suggested by discoveries that broadly neutralizing antibodies for HIV and influenza virus possess poly- and/or auto-reactivity. Given the conundrum of generating inherent holes in the immune repertoire, retaining weakly self-reactive BCRs on anergic B cells could allow these antibodies to serve as an effective defense against pathogens, particularly in the case of pathogens that mimic forbidden self-epitopes to evade the host immune system. Thus, anergic B cells should be brought into a silenced or activated state, depending on their contexts. Here, we review recent progress in our understanding of how the anergic B cell state is controlled in B cell-intrinsic and B cell-extrinsic ways.
Collapse
Affiliation(s)
- Shinya Tanaka
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Wataru Ise
- Team of Host Defense, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yoshihiro Baba
- Division of Immunology and Genome Biology, Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory of Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| |
Collapse
|
6
|
Cutaneous drug-induced lupus erythematosus: Clinical and immunological characteristics and update on new associated drugs. Ann Dermatol Venereol 2021; 148:211-220. [PMID: 34711400 DOI: 10.1016/j.annder.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/24/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
Cutaneous drug-induced lupus erythematosus (CDILE) is a lupus-like syndrome related to drug exposure which typically resolves after drug discontinuation. It can present as a systemic or a sole cutaneous form and different drugs may be associated with each form. CDILE pharmacoepidemiology is constantly changing. Indeed, older drugs primarily associated with systemic CDILE are no longer prescribed and new drugs associated with either cutaneous or systemic CDILE have emerged. The present study discusses the clinical and laboratory aspects of CDILE and the postulated pathogenesis, and it provides an update on implicated drugs. We performed a literature review to single out the new drugs associated with CDILE in the past decade (January 2010-June 2020). Among 109 drugs reported to induce CDILE in 472 patients, we identified anti-TNFα, proton-pump inhibitors, antineoplastic drugs, and, in particular, checkpoint inhibitors, as emerging drugs in CDILE. Most of the published studies are cases reports or small case series, and further larger studies as well as the development of validated classification criteria are needed to better understand and characterize their implication in CDILE.
Collapse
|
7
|
Abstract
Over the past decade, pharmacogenetic testing has emerged in clinical practice to guide selected cardiovascular therapies. The most common implementation in practice is CYP2C19 genotyping to predict clopidogrel response and assist in selecting antiplatelet therapy after percutaneous coronary intervention. Additional examples include genotyping to guide warfarin dosing and statin prescribing. Increasing evidence exists on outcomes with genotype-guided cardiovascular therapies from multiple randomized controlled trials and observational studies. Pharmacogenetic evidence is accumulating for additional cardiovascular medications. However, data for many of these medications are not yet sufficient to support the use of genotyping for drug prescribing. Ultimately, pharmacogenetics might provide a means to individualize drug regimens for complex diseases such as heart failure, in which the treatment armamentarium includes a growing list of medications shown to reduce morbidity and mortality. However, sophisticated analytical approaches are likely to be necessary to dissect the genetic underpinnings of responses to drug combinations. In this Review, we examine the evidence supporting pharmacogenetic testing in cardiovascular medicine, including that available from several clinical trials. In addition, we describe guidelines that support the use of cardiovascular pharmacogenetics, provide examples of clinical implementation of genotype-guided cardiovascular therapies and discuss opportunities for future growth of the field.
Collapse
Affiliation(s)
- Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA
| | - Larisa H Cavallari
- Center for Pharmacogenomics and Precision Medicine and Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL, USA.
| |
Collapse
|
8
|
Zouali M. DNA methylation signatures of autoimmune diseases in human B lymphocytes. Clin Immunol 2020; 222:108622. [PMID: 33188932 DOI: 10.1016/j.clim.2020.108622] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/28/2020] [Accepted: 11/07/2020] [Indexed: 12/15/2022]
Abstract
B lymphocytes play key roles in adaptive and innate immunity. In autoimmune diseases, their participation in disease instigation and/or progression has been demonstrated in both experimental models and clinical trials. Recent epigenetic investigations of human B lymphocyte subsets revealed the importance of DNA methylation in exquisitely regulating the cellular activation and differentiation programs. This review discusses recent advances on the potential of DNA methylation to shape events that impart generation of plasma cells and memory B cells, providing novel insight into homeostatic regulation of the immune system. In parallel, epigenetic profiling of B cells from patients with systemic or organo-specific autoimmune diseases disclosed distinctive differential methylation regions that, in some cases, could stratify patients from controls. Development of tools for editing DNA methylation in the mammalian genome could be useful for future functional studies of epigenetic regulation by offering the possibility to edit locus-specific methylation, with potential translational applications.
Collapse
Affiliation(s)
- Moncef Zouali
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Road, North District, Taichung City, Taïwan 404, Taichung, Taiwan.
| |
Collapse
|
9
|
Abstract
Primary Sjögren's syndrome (SjS) is a chronic and systemic autoimmune epithelitis with predominant female incidence, which is characterized by exocrine gland dysfunction. Incompletely understood, the etiology of SjS is multi-factorial and evidence is growing to consider that epigenetic factors are playing a crucial role in its development. Independent from DNA sequence mutations, epigenetics is described as inheritable and reversible processes that modify gene expression. Epigenetic modifications reported in minor salivary gland and lymphocytes from SjS patients are related to (i) an abnormal DNA methylation process inducing in turn defective control of normally repressed genes involving such matters as autoantigens, retrotransposons, and the X chromosome in women; (ii) altered nucleosome positioning associated with autoantibody production; and (iii) altered control of microRNA. Results from epigenome-wide association studies have further revealed the importance of the interferon pathway in disease progression, the calcium signaling pathway for controlling fluid secretions, and a cell-specific cross talk with risk factors associated with SjS. Importantly, epigenetic modifications are reversible thus opening opportunities for therapeutic procedures in this currently incurable disease.
Collapse
|
10
|
Wu H, Chang C, Lu Q. The Epigenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1253:185-207. [PMID: 32445096 DOI: 10.1007/978-981-15-3449-2_7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Systemic lupus erythematosus (SLE) is a life-threatening autoimmune disease that is characterized by dysregulated dendritic cells, T and B cells, and abundant autoantibodies. The pathogenesis of lupus remains unclear. However, increasing evidence has shown that environment factors, genetic susceptibilities, and epigenetic regulation contribute to abnormalities in the immune system. In the past decades, several risk gene loci have been identified, such as MHC and C1q. However, genetics cannot explain the high discordance of lupus incidence in homozygous twins. Environmental factor-induced epigenetic modifications on immune cells may provide some insight. Epigenetics refers to inheritable changes in a chromosome without altering DNA sequence. The primary mechanisms of epigenetics include DNA methylation, histone modifications, and non-coding RNA regulations. Increasing evidence has shown the importance of dysregulated epigenetic modifications in immune cells in pathogenesis of lupus, and has identified epigenetic changes as potential biomarkers and therapeutic targets. Environmental factors, such as drugs, diet, and pollution, may also be the triggers of epigenetic changes. Therefore, this chapter will summarize the up-to-date progress on epigenetics regulation in lupus, in order to broaden our understanding of lupus and discuss the potential roles of epigenetic regulations for clinical applications.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Christopher Chang
- Division of Pediatric Immunology and Allergy, Joe DiMaggio Children's Hospital, Hollywood, FL, 33021, USA.,Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, Davis, CA, 95616, USA
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
11
|
Petralia MC, Mazzon E, Basile MS, Cutuli M, Di Marco R, Scandurra F, Saraceno A, Fagone P, Nicoletti F, Mangano K. Effects of Treatment with the Hypomethylating Agent 5-aza-2'-deoxycytidine in Murine Type II Collagen-Induced Arthritis. Pharmaceuticals (Basel) 2019; 12:ph12040174. [PMID: 31783688 PMCID: PMC6958460 DOI: 10.3390/ph12040174] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
The emerging role of epigenetics in the pathogenesis of autoimmune diseases has recently attracted much interest on the possible use of epigenetic modulators for the prevention and treatment of these diseases. In particular, we and others have shown that drugs that inhibit DNA methylation, such as azacitidine (AZA) and decitabine (DAC), already used for the treatment of acute myeloid leukemia, exert powerful beneficial effects in rodent models of type 1 diabetes, multiple sclerosis, and Guillain Barrè syndrome. Along this line of research, we have presently studied the effects of DAC in a murine model of rheumatoid arthritis induced by type II collagen and have demonstrated that DAC administration was associated with a significant amelioration of the clinical condition, along with in vivo and ex vivo modification of the immunological profile of the so-treated mice, that exhibited a diminished production of Th1 and Th17 pro-inflammatory cytokines and reduction of anti-type II collagen autoantibodies.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, C.da Casazza, 98124 Messina, Italy; (M.C.P.); (E.M.)
| | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Marco Cutuli
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.); (R.D.M.)
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, 86100 Campobasso, Italy; (M.C.); (R.D.M.)
| | - Fabiola Scandurra
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Andrea Saraceno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
- Correspondence: ; Tel.: +39-095-478-1270
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (M.S.B.); (F.S.); (A.S.); (P.F.); (K.M.)
| |
Collapse
|
12
|
Wu H, Chen Y, Zhu H, Zhao M, Lu Q. The Pathogenic Role of Dysregulated Epigenetic Modifications in Autoimmune Diseases. Front Immunol 2019; 10:2305. [PMID: 31611879 PMCID: PMC6776919 DOI: 10.3389/fimmu.2019.02305] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/11/2019] [Indexed: 12/21/2022] Open
Abstract
Autoimmune diseases can be chronic with relapse of inflammatory symptoms, but it can be also acute and life-threatening if immune cells destroy life-supporting organs, such as lupus nephritis. The etiopathogenesis of autoimmune diseases has been revealed as that genetics and environmental factors-mediated dysregulated immune responses contribute to the initiation and development of autoimmune disorders. However, the current understanding of pathogenesis is limited and the underlying mechanism has not been well defined, which lows the development of novel biomarkers and new therapeutic strategies for autoimmune diseases. To improve this, broadening and deepening our understanding of pathogenesis is an unmet need. As genetic susceptibility cannot explain the low accordance rate of incidence in homozygous twins, epigenetic regulations might be an additional explanation. Therefore, this review will summarize current progress of studies on epigenetic dysregulations contributing to autoimmune diseases, including SLE, rheumatoid arthritis (RA), psoriasis, type 1 diabetes (T1D), and systemic sclerosis (SSc), hopefully providing opinions on orientation of future research, as well as discussing the clinical utilization of potential biomarkers and therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yongjian Chen
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huan Zhu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Integrated analysis of microRNA regulation and its interaction with mechanisms of epigenetic regulation in the etiology of systemic lupus erythematosus. PLoS One 2019; 14:e0218116. [PMID: 31237906 PMCID: PMC6592600 DOI: 10.1371/journal.pone.0218116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022] Open
Abstract
The aim of this study was to identity in silico the relationships among microRNAs (miRNAs) and genes encoding transcription factors, ubiquitylation, DNA methylation, and histone modifications in systemic lupus erythematosus (SLE). To identify miRNA dysregulation in SLE, we used miR2Disease and PhenomiR for information about miRNAs exhibiting differential regulation in disease and other biological processes, and HMDD for information about experimentally supported human miRNA–disease association data from genetics, epigenetics, circulating miRNAs, and miRNA–target interactions. This information was incorporated into the miRNA analysis. High-throughput sequencing revealed circulating miRNAs associated with kidney damage in patients with SLE. As the main finding of our in silico analysis of miRNAs differentially expressed in SLE and their interactions with disease-susceptibility genes, post-translational modifications, and transcription factors; we highlight 226 miRNAs associated with genes and processes. Moreover, we highlight that alterations of miRNAs such as hsa-miR-30a-5p, hsa-miR-16-5p, hsa-miR-142-5p, and hsa-miR-324-3p are most commonly associated with post-translational modifications. In addition, altered miRNAs that are most frequently associated with susceptibility-related genes are hsa-miR-16-5p, hsa-miR-374a-5p, hsa-miR-34a-5p, hsa-miR-31-5p, and hsa-miR-1-3p.
Collapse
|
14
|
Pan Q, Guo Y, Guo L, Liao S, Zhao C, Wang S, Liu HF. Mechanistic Insights of Chemicals and Drugs as Risk Factors for Systemic Lupus Erythematosus. Curr Med Chem 2019; 27:5175-5188. [PMID: 30947650 DOI: 10.2174/0929867326666190404140658] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022]
Abstract
Systemic Lupus Erythematosus (SLE) is a chronic and relapsing heterogenous autoimmune disease that primarily affects women of reproductive age. Genetic and environmental risk factors are involved in the pathogenesis of SLE, and susceptibility genes have recently been identified. However, as gene therapy is far from clinical application, further investigation of environmental risk factors could reveal important therapeutic approaches. We systematically explored two groups of environmental risk factors: chemicals (including silica, solvents, pesticides, hydrocarbons, heavy metals, and particulate matter) and drugs (including procainamide, hydralazine, quinidine, Dpenicillamine, isoniazid, and methyldopa). Furthermore, the mechanisms underlying risk factors, such as genetic factors, epigenetic change, and disrupted immune tolerance, were explored. This review identifies novel risk factors and their underlying mechanisms. Practicable measures for the management of these risk factors will benefit SLE patients and provide potential therapeutic strategies.
Collapse
Affiliation(s)
- Qingjun Pan
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Yun Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Linjie Guo
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Shuzhen Liao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Chunfei Zhao
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Sijie Wang
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| | - Hua-Feng Liu
- Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 57th South Renmin Road, Zhanjiang 524001, Guangdong, China
| |
Collapse
|
15
|
Morales-Nebreda L, McLafferty FS, Singer BD. DNA methylation as a transcriptional regulator of the immune system. Transl Res 2019; 204:1-18. [PMID: 30170004 PMCID: PMC6331288 DOI: 10.1016/j.trsl.2018.08.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022]
Abstract
DNA methylation is a dynamic epigenetic modification with a prominent role in determining mammalian cell development, lineage identity, and transcriptional regulation. Primarily linked to gene silencing, novel technologies have expanded the ability to measure DNA methylation on a genome-wide scale and uncover context-dependent regulatory roles. The immune system is a prototypic model for studying how DNA methylation patterning modulates cell type- and stimulus-specific transcriptional programs. Preservation of host defense and organ homeostasis depends on fine-tuned epigenetic mechanisms controlling myeloid and lymphoid cell differentiation and function, which shape innate and adaptive immune responses. Dysregulation of these processes can lead to human immune system pathology as seen in blood malignancies, infections, and autoimmune diseases. Identification of distinct epigenotypes linked to pathogenesis carries the potential to validate therapeutic targets in disease prevention and management.
Collapse
Affiliation(s)
- Luisa Morales-Nebreda
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Fred S McLafferty
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| | - Benjamin D Singer
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois.
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Rapid introduction of newly developed drugs in the absence of clear understanding of the pathophysiologic mechanisms behind drug-induced lupus erythematosus (DILE) can sometimes make DILE difficult to recognize in clinical practice. The purpose of this review is to summarize drugs most recently reported to be involved in DILE and discuss the current landscape of diverse mechanisms involved. RECENT FINDINGS A large number of proton pump inhibitor (PPI)-induced subacute cutaneous lupus erythematosus cases have been reported, suggesting a shift over time in the spectrum of drugs implicated in DILE. Twenty-two articles comprising 29 DILE case reports published within the last 2 years are summarized in this review, including 12 (41.4%) systemic DILE. Antitumor necrosis factor (anti-TNF) drugs were the most frequently (41.7%) reported to introduce systemic DILE in these cases. Chemotherapeutic drugs were the most common drug class (54.5%) involved in subacute cutaneous lupus erythematosus, with an observed higher incidence in female patients. Enhanced neutrophil extracellular trap (NET) formation induced by procainamide and hydralazine could be a new mechanism contributing to the pathogenesis of DILE. SUMMARY The list of drugs implicated in triggering DILE is expanding as new drugs with novel mechanisms of action are being developed. It is important to recognize culprit drugs that may induce lupus erythematosus, as discontinuation usually results in improvement of drug-induced manifestations. Characterizing the mechanisms involved might help better understand the cause of idiopathic autoimmunity.
Collapse
Affiliation(s)
- Ye He
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Amr H. Sawalha
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
17
|
Martínez-García EA, Zavala-Cerna MG, Lujano-Benítez AV, Sánchez-Hernández PE, Martín-Márquez BT, Sandoval-García F, Vázquez-Del Mercado M. Potential Chronotherapeutic Optimization of Antimalarials in Systemic Lupus Erythematosus: Is Toll-Like Receptor 9 Expression Dependent on the Circadian Cycle in Humans? Front Immunol 2018; 9:1497. [PMID: 30034390 PMCID: PMC6043638 DOI: 10.3389/fimmu.2018.01497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptor 9 (TLR9) belongs to the group of endosomal receptors of the innate immune system with the ability to recognize hypomethylated CpG sequences from DNA. There is scarce information about TLR9 expression and its association with the circadian cycle (CC). Different patterns of TLR9 expression are regulated by the CC in mice, with an elevated expression at Zeitgeber time 19 (1:00 a.m.); nevertheless, we still need to corroborate this in humans. In systemic lupus erythematosus (SLE), the inhibitory effect of chloroquine (CQ) on TLR9 is limited. TLR9 activation has been associated with the presence of some autoantibodies: anti-Sm/RNP, anti-histone, anti-Ro, anti-La, and anti-double-stranded DNA. Treatment with CQ for SLE has been proven to be useful, in part by interfering with HLA-antigen coupling and with TLR9 ligand recognition. Studies have shown that TLR9 inhibitors such as antimalarial drugs are able to mask TLR9-binding sites on nucleic acids. The data presented here provide the basic information that could be useful for other clinical researchers to design studies that will have an impact in achieving a chronotherapeutic effect by defining the ideal time for CQ administration in SLE patients, consequently reducing the pathological effects that follow the activation of TLR9.
Collapse
Affiliation(s)
- Erika Aurora Martínez-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Maria Guadalupe Zavala-Cerna
- Immunology Research Laboratory, Programa Internacional de Medicina, Universidad Autonoma de Guadalajara, Guadalajara, Mexico
| | - Andrea Verónica Lujano-Benítez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Pedro Ernesto Sánchez-Hernández
- Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Laboratorio de Inmunología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Beatriz Teresita Martín-Márquez
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Flavio Sandoval-García
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Departamento de Clínicas Médicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG CA-701, Inmunometabolismo en Enfermedades Emergentes (GIIEE), Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Mónica Vázquez-Del Mercado
- Instituto de Investigación en Reumatología y del Sistema Músculo Esquelético, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- UDG-CA-703, Inmunología y Reumatología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
- Hospital Civil de Guadalajara “Juan I. Menchaca”, Servicio de Reumatología, Programa Nacional de Posgrados de Calidad (PNPC), Consejo Nacional de Ciencia y Tecnología (CONACYT), Guadalajara, Mexico
| |
Collapse
|
18
|
Epigenetic regulation in B-cell maturation and its dysregulation in autoimmunity. Cell Mol Immunol 2018; 15:676-684. [PMID: 29375128 PMCID: PMC6123482 DOI: 10.1038/cmi.2017.133] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
B cells have a critical role in the initiation and acceleration of autoimmune diseases, especially those mediated by autoantibodies. In the peripheral lymphoid system, mature B cells are activated by self or/and foreign antigens and signals from helper T cells for differentiating into either memory B cells or antibody-producing plasma cells. Accumulating evidence has shown that epigenetic regulations modulate somatic hypermutation and class switch DNA recombination during B-cell activation and differentiation. Any abnormalities in these complex regulatory processes may contribute to aberrant antibody production, resulting in autoimmune pathogenesis such as systemic lupus erythematosus. Newly generated knowledge from advanced modern technologies such as next-generation sequencing, single-cell sequencing and DNA methylation sequencing has enabled us to better understand B-cell biology and its role in autoimmune development. Thus this review aims to summarize current research progress in epigenetic modifications contributing to B-cell activation and differentiation, especially under autoimmune conditions such as lupus, rheumatoid arthritis and type 1 diabetes.
Collapse
|
19
|
Ahmadi M, Gharibi T, Dolati S, Rostamzadeh D, Aslani S, Baradaran B, Younesi V, Yousefi M. Epigenetic modifications and epigenetic based medication implementations of autoimmune diseases. Biomed Pharmacother 2017; 87:596-608. [DOI: 10.1016/j.biopha.2016.12.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023] Open
|
20
|
Chen SH, Lv QL, Hu L, Peng MJ, Wang GH, Sun B. DNA methylation alterations in the pathogenesis of lupus. Clin Exp Immunol 2016; 187:185-192. [PMID: 27690369 DOI: 10.1111/cei.12877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 01/02/2023] Open
Abstract
Although lupus is, by definition, associated with genetic and immunological factors, its molecular mechanisms remain unclear. The up-to-date research findings point out that various genetic and epigenetic factors, especially gene-specific and site-specific methylation, are believed to contribute to the initiation and development of systemic lupus erythematosus (SLE). This review presents and summarizes the association between abnormal DNA methylation of immune-related cells and lupus-like diseases, as well as the possible mechanisms of immune disorder caused by DNA methylation, aiming at a better understanding of the roles of aberrant DNA methylation in the initiation and development of certain forms of lupus and providing a new insight into promising therapeutic regimens in lupus-like diseases.
Collapse
Affiliation(s)
- S H Chen
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - Q L Lv
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - L Hu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - M J Peng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - G H Wang
- Department of Oncology, Changsha Central Hospital, Changsha, China
| | - B Sun
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
The key culprit in the pathogenesis of systemic lupus erythematosus: Aberrant DNA methylation. Autoimmun Rev 2016; 15:684-9. [DOI: 10.1016/j.autrev.2016.03.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/28/2016] [Indexed: 01/21/2023]
|
22
|
Zan H, Casali P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Front Immunol 2015; 6:631. [PMID: 26697022 PMCID: PMC4677338 DOI: 10.3389/fimmu.2015.00631] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 11/30/2015] [Indexed: 12/13/2022] Open
Abstract
Epigenetic modifications, such as histone post-translational modifications, DNA methylation, and alteration of gene expression by non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), are heritable changes that are independent from the genomic DNA sequence. These regulate gene activities and, therefore, cellular functions. Epigenetic modifications act in concert with transcription factors and play critical roles in B cell development and differentiation, thereby modulating antibody responses to foreign- and self-antigens. Upon antigen encounter by mature B cells in the periphery, alterations of these lymphocytes epigenetic landscape are induced by the same stimuli that drive the antibody response. Such alterations instruct B cells to undergo immunoglobulin (Ig) class switch DNA recombination (CSR) and somatic hypermutation (SHM), as well as differentiation to memory B cells or long-lived plasma cells for the immune memory. Inducible histone modifications, together with DNA methylation and miRNAs modulate the transcriptome, particularly the expression of activation-induced cytidine deaminase, which is essential for CSR and SHM, and factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1. These inducible B cell-intrinsic epigenetic marks guide the maturation of antibody responses. Combinatorial histone modifications also function as histone codes to target CSR and, possibly, SHM machinery to the Ig loci by recruiting specific adaptors that can stabilize CSR/SHM factors. In addition, lncRNAs, such as recently reported lncRNA-CSR and an lncRNA generated through transcription of the S region that form G-quadruplex structures, are also important for CSR targeting. Epigenetic dysregulation in B cells, including the aberrant expression of non-coding RNAs and alterations of histone modifications and DNA methylation, can result in aberrant antibody responses to foreign antigens, such as those on microbial pathogens, and generation of pathogenic autoantibodies, IgE in allergic reactions, as well as B cell neoplasia. Epigenetic marks would be attractive targets for new therapeutics for autoimmune and allergic diseases, and B cell malignancies.
Collapse
Affiliation(s)
- Hong Zan
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| | - Paolo Casali
- Department of Microbiology and Immunology, University of Texas School of Medicine, UT Health Science Center , San Antonio, TX , USA
| |
Collapse
|
23
|
Dantec CL, Brooks WH, Renaudineau Y. Epigenomic revolution in autoimmune diseases. World J Immunol 2015; 5:62-67. [DOI: 10.5411/wji.v5.i2.62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/01/2015] [Accepted: 05/06/2015] [Indexed: 02/05/2023] Open
Abstract
Autoimmunity is believed to develop when genetically predisposed individuals undergo epigenetic modifications in response to environmental factors. Recent advances in the understanding of epigenetic mechanisms suggest, in autoimmune diseases, a multi-step process involving environmental factors (e.g., drugs, stress) and endogenous factors (e.g., cytokines, gender), both leading to the deregulation of the epigenetic machinery (DNA methylation, histone modifications, miRNA), that in turn specifically affects the immune system and/or the target organ(s). Such effect is reinforced in those patients with risk variants mapping to epigenetically-controlled regulators of immune cells. As a consequence, autoreactive lymphocytes and autoantibodies are produced leading to the development of the autoimmune disease. Potential new therapeutic strategies and biomarkers are also addressed.
Collapse
|
24
|
Epigenetic Control of B Cell Development and B-Cell-Related Immune Disorders. Clin Rev Allergy Immunol 2015; 50:301-11. [DOI: 10.1007/s12016-015-8494-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Wu H, Zhao M, Chang C, Lu Q. The real culprit in systemic lupus erythematosus: abnormal epigenetic regulation. Int J Mol Sci 2015; 16:11013-33. [PMID: 25988383 PMCID: PMC4463688 DOI: 10.3390/ijms160511013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/08/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease involving multiple organs and the presence of anti-nuclear antibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. B and T lymphocyte abnormalities, dysregulation of apoptosis, defects in the clearance of apoptotic materials, and various genetic and epigenetic factors are attributed to the development of SLE. The latest research findings point to the association between abnormal epigenetic regulation and SLE, which has attracted considerable interest worldwide. It is the purpose of this review to present and discuss the relationship between aberrant epigenetic regulation and SLE, including DNA methylation, histone modifications and microRNAs in patients with SLE, the possible mechanisms of immune dysfunction caused by epigenetic changes, and to better understand the roles of aberrant epigenetic regulation in the initiation and development of SLE and to provide an insight into the related therapeutic options in SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis, Davis, CA 95616, USA.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
26
|
Alberghini F, Petrocelli V, Rahmat M, Casola S. An epigenetic view of B‐cell disorders. Immunol Cell Biol 2015; 93:253-60. [DOI: 10.1038/icb.2014.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/06/2014] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Mahshid Rahmat
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| | - Stefano Casola
- IFOM, The FIRC Institute of Molecular Oncology Foundation Milan Italy
| |
Collapse
|
27
|
Lupus cutané subaigu induit par la capécitabine : un cas. Ann Dermatol Venereol 2014; 141:593-7. [DOI: 10.1016/j.annder.2014.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/08/2014] [Accepted: 06/19/2014] [Indexed: 11/23/2022]
|
28
|
PharmGKB summary: very important pharmacogene information for N-acetyltransferase 2. Pharmacogenet Genomics 2014; 24:409-25. [PMID: 24892773 DOI: 10.1097/fpc.0000000000000062] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Konsta OD, Thabet Y, Le Dantec C, Brooks WH, Tzioufas AG, Pers JO, Renaudineau Y. The contribution of epigenetics in Sjögren's Syndrome. Front Genet 2014; 5:71. [PMID: 24765104 PMCID: PMC3982050 DOI: 10.3389/fgene.2014.00071] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/17/2014] [Indexed: 12/17/2022] Open
Abstract
Sjögren’s syndrome (SS) is a chronic autoimmune epithelitis that combines exocrine gland dysfunctions and lymphocytic infiltrations. While the pathogenesis of SS remains unclear, its etiology is multifunctional and includes a combination of genetic predispositions, environmental factors, and epigenetic factors. Recently, interest has grown in the involvement of epigenetics in autoimmune diseases. Epigenetics is defined as changes in gene expression, that are inheritable and that do not entail changes in the DNA sequence. In SS, several epigenetic mechanisms are defective including DNA demethylation that predominates in epithelial cells, an abnormal expression of microRNAs, and abnormal chromatin positioning-associated with autoantibody production. Last but not least, epigenetic modifications are reversible as observed in minor salivary glands from SS patients after B cell depletion using rituximab. Thus epigenetic findings in SS open new perspectives for therapeutic approaches as well as the possible identification of new biomarkers.
Collapse
Affiliation(s)
- Orsia D Konsta
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Yosra Thabet
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Christelle Le Dantec
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Wesley H Brooks
- Department of Chemistry, University of South Florida Tampa, FL, USA
| | - Athanasios G Tzioufas
- Department of Pathophysiology, School of Medicine, National University of Athens Athens, Greece
| | - Jacques-Olivier Pers
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France
| | - Yves Renaudineau
- Research Unit EA2216 Immunology, Pathology and Immunotherapy, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology", Réseau Épigénétique du Cancéropole Grand Ouest, European University of Brittany Brest France ; Laboratory of Immunology and Immunotherapy, Hôpital Morvan - Brest University Medical School Brest France
| |
Collapse
|
30
|
Küçükali Cİ, Kürtüncü M, Çoban A, Çebi M, Tüzün E. Epigenetics of multiple sclerosis: an updated review. Neuromolecular Med 2014; 17:83-96. [PMID: 24652042 DOI: 10.1007/s12017-014-8298-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/13/2014] [Indexed: 01/24/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and neurodegenerative disease characterized with autoimmune response against myelin proteins and progressive axonal loss. The heterogeneity of the clinical course and low concordance rates in monozygotic twins have indicated the involvement of complex heritable and environmental factors in MS pathogenesis. MS is more often transmitted to the next generation by mothers than fathers suggesting an epigenetic influence. One of the possible reasons of this parent-of-origin effect might be the human leukocyte antigen-DRB1*15 allele, which is the major risk factor for MS and regulated by epigenetic mechanisms such as DNA methylation and histone deacetylation. Moreover, major environmental risk factors for MS, vitamin D deficiency, smoking and Ebstein-Barr virus are all known to exert epigenetic changes. In the last few decades, compelling evidence implicating the role of epigenetics in MS has accumulated. Increased or decreased acetylation, methylation and citrullination of genes regulating the expression of inflammation and myelination factors appear to be particularly involved in the epigenetics of MS. Although much less is known about epigenetic factors causing neurodegeneration, epigenetic mechanisms regulating axonal loss, apoptosis and mitochondrial dysfunction in MS are in the process of identification. Additionally, expression levels of several microRNAs (miRNAs) (e.g., miR-155 and miR-326) are increased in MS brains and potential mechanisms by which these factors might influence MS pathogenesis have been described. Certain miRNAs may also be potentially used as diagnostic biomarkers in MS. Several reagents, especially histone deacetylase inhibitors have been shown to ameliorate the symptoms of experimental allergic encephalomyelitis. Ongoing efforts in this field are expected to result in characterization of epigenetic factors that can be used in prediction of treatment responsive MS patients, diagnostic screening panels and treatment methods with specific mechanism of action.
Collapse
Affiliation(s)
- Cem İsmail Küçükali
- Department of Neuroscience, Institute for Experimental Medicine (DETAE), Istanbul University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Lupus eritematoso inducido por fármacos. ACTAS DERMO-SIFILIOGRAFICAS 2014; 105:18-30. [DOI: 10.1016/j.ad.2012.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 09/13/2012] [Accepted: 09/16/2012] [Indexed: 01/16/2023] Open
|
33
|
|
34
|
Internalization of B cell receptors in human EU12 μHC⁺ immature B cells specifically alters downstream signaling events. BIOMED RESEARCH INTERNATIONAL 2013; 2013:807240. [PMID: 24222917 PMCID: PMC3809603 DOI: 10.1155/2013/807240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/26/2013] [Indexed: 11/17/2022]
Abstract
It has been recognized for a long time that engagement of B cell antigen receptors (BCRs) on immature B cells or mature B cells leads to completely opposite cell fate decisions. The underlying mechanism remains unclear. Here, we show that crosslinking of BCRs on human EU12 μHC+ immature B cells resulted in complete internalization of cell surface BCRs. After loss of cell surface BCRs, restimulation of EU12 μHC+ cells showed impaired Ca2+ flux, delayed SYK phosphorylation, and decreased CD19 and FOXO1 phosphorylation, which differ from those in mature Daudi or Ramos B cells with partial internalization of BCRs. In contrast, sustained phosphorylation and reactivation of ERK upon restimulation were observed in the EU12 μHC+ cells after BCR internalization. Taken together, these results show that complete internalization of cell surface BCRs in EU12 μHC+ cells specifically alters the downstream signaling events, which may favor receptor editing versus cell activation.
Collapse
|
35
|
Abstract
Epigenetic mechanisms are proposed to underlie aberrant gene expression in systemic lupus erythematosus (SLE) that results in dysregulation of the immune system and loss of tolerance. Modifications of DNA and histones require substrates derived from diet and intermediary metabolism. DNA and histone methyltransferases depend on S-adenosylmethionine (SAM) as a methyl donor. SAM is generated from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (MAT), a redox-sensitive enzyme in the SAM cycle. The availability of B vitamins and methionine regulate SAM generation. The DNA of SLE patients is hypomethylated, indicating dysfunction in the SAM cycle and methyltransferase activity. Acetyl-CoA, which is necessary for histone acetylation, is generated from citrate produced in mitochondria. Mitochondria are also responsible for de novo synthesis of flavin adenine dinucleotide (FAD) for histone demethylation. Mitochondrial oxidative phosphorylation is the dominant source of ATP. The depletion of ATP in lupus T cells may affect MAT activity as well as adenosine monophosphate (AMP) activated protein kinase (AMPK), which phosphorylates histones and inhibits mechanistic target of rapamycin (mTOR). In turn, mTOR can modify epigenetic pathways including methylation, demethylation, and histone phosphorylation and mediates enhanced T-cell activation in SLE. Beyond their role in metabolism, mitochondria are the main source of reactive oxygen intermediates (ROI), which activate mTOR and regulate the activity of histone and DNA modifying enzymes. In this review we will focus on the sources of metabolites required for epigenetic regulation and how the flux of the underlying metabolic pathways affects gene expression.
Collapse
Affiliation(s)
- Zachary Oaks
- Division of Rheumatology, Departments of Medicine, Microbiology and Immunology, and Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine , Syracuse, NY , USA
| | | |
Collapse
|
36
|
Fali T, Le Dantec C, Thabet Y, Jousse S, Hanrotel C, Youinou P, Brooks WH, Perl A, Renaudineau Y. DNA methylation modulates HRES1/p28 expression in B cells from patients with Lupus. Autoimmunity 2013; 47:265-71. [PMID: 24117194 DOI: 10.3109/08916934.2013.826207] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Systemic lupus erythematosus (SLE) disease is an autoimmune disease of unknown aetiology that affects predominantly women of child bearing age. Since previous studies, including ours, have demonstrated that CD4+ T cells and B cells from SLE patients are defective in their ability to methylate their DNA upon antigen stimulation, the aim of this study was to investigate whether DNA demethylation affects the transcription of HRES-1 in B cells. HRES-1 is the prototype of Human Endogenous Retrovirus (HERV) overexpressed in SLE. We have observed that SLE B cells were characterized by their incapacity to methylate the HRES-1 promoter, both in unstimulated and in anti-IgM stimulated B cells. In turn, HRES-1/p28 expression was increased in SLE B cells after B cell receptor engagement, but not in controls. In SLE B cells the Erk/DNMT1 pathway was defective. In addition, blocking the autocrine-loop of IL-6 in SLE B cells with an anti-IL-6 receptor monoclonal antibody restores DNA methylation and control of HRES-1/p28 expression became effective. As a consequence, a better understanding of HERV dysregulation in SLE reinforces our comprehension of the disease and opens new therapeutic perspectives.
Collapse
Affiliation(s)
- Tinhinane Fali
- EA2216 "Immunology, Pathology and Immunotherapy", University of Brittany, SFR ScinBios and Labex Igo "Immunotherapy Graft, Oncology" , Brest , France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li G, Zan H, Xu Z, Casali P. Epigenetics of the antibody response. Trends Immunol 2013; 34:460-70. [PMID: 23643790 PMCID: PMC3744588 DOI: 10.1016/j.it.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 12/19/2022]
Abstract
Epigenetic marks, such as DNA methylation, histone post-translational modifications and miRNAs, are induced in B cells by the same stimuli that drive the antibody response. They play major roles in regulating somatic hypermutation (SHM), class switch DNA recombination (CSR), and differentiation to plasma cells or long-lived memory B cells. Histone modifications target the CSR and, possibly, SHM machinery to the immunoglobulin locus; they together with DNA methylation and miRNAs modulate the expression of critical elements of that machinery, such as activation-induced cytidine deaminase (AID), as well as factors central to plasma cell differentiation, such as B lymphocyte-induced maturation protein-1 (Blimp-1). These inducible B cell-intrinsic epigenetic marks instruct the maturation of antibody responses. Their dysregulation plays an important role in aberrant antibody responses to foreign antigens, such as those of microbial pathogens, and self-antigens, such as those targeted in autoimmunity, and B cell neoplasia.
Collapse
Affiliation(s)
- Guideng Li
- Institute for Immunology and School of Medicine, University of California, Irvine, CA 92697-4120, USA
| | | | | | | |
Collapse
|
38
|
Epigenetic control of cytokine gene expression: regulation of the TNF/LT locus and T helper cell differentiation. Adv Immunol 2013; 118:37-128. [PMID: 23683942 DOI: 10.1016/b978-0-12-407708-9.00002-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Epigenetics encompasses transient and heritable modifications to DNA and nucleosomes in the native chromatin context. For example, enzymatic addition of chemical moieties to the N-terminal "tails" of histones, particularly acetylation and methylation of lysine residues in the histone tails of H3 and H4, plays a key role in regulation of gene transcription. The modified histones, which are physically associated with gene regulatory regions that typically occur within conserved noncoding sequences, play a functional role in active, poised, or repressed gene transcription. The "histone code" defined by these modifications, along with the chromatin-binding acetylases, deacetylases, methylases, demethylases, and other enzymes that direct modifications resulting in specific patterns of histone modification, shows considerable evolutionary conservation from yeast to humans. Direct modifications at the DNA level, such as cytosine methylation at CpG motifs that represses promoter activity, are another highly conserved epigenetic mechanism of gene regulation. Furthermore, epigenetic modifications at the nucleosome or DNA level can also be coupled with higher-order intra- or interchromosomal interactions that influence the location of regulatory elements and that can place them in an environment of specific nucleoprotein complexes associated with transcription. In the mammalian immune system, epigenetic gene regulation is a crucial mechanism for a range of physiological processes, including the innate host immune response to pathogens and T cell differentiation driven by specific patterns of cytokine gene expression. Here, we will review current findings regarding epigenetic regulation of cytokine genes important in innate and/or adaptive immune responses, with a special focus upon the tumor necrosis factor/lymphotoxin locus and cytokine-driven CD4+ T cell differentiation into the Th1, Th2, and Th17 lineages.
Collapse
|
39
|
The epigenetic landscape of B lymphocyte tolerance to self. FEBS Lett 2013; 587:2067-73. [PMID: 23684644 DOI: 10.1016/j.febslet.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 02/06/2023]
Abstract
Despite frequent exposures to a variety of potential triggers, including antigens produced by pathogens or commensal microbiota, B-lymphocytes are able to mount highly protective responses to a variety of threats, while remaining tolerant to self-components. A number of cytokines, signaling pathways and transcription factors have been characterized to elucidate the mechanisms underlying B cell tolerance to self. It is, however, unclear how the signals received by B-lymphocytes are converted into complex and sustained patterns of gene expression that can allow production of protective antibodies and maintain immune tolerance to self-components. Mounting evidence now suggests an important role for epigenetic mechanisms in modulating and transmitting signals for B lymphocyte tolerization to self-antigens. It is likely that a better insight into epigenetic regulation of B cell tolerance will lead to development of gene-specific therapeutic approaches that optimize host defense mechanisms to exogenous threats, while preventing development and/or progression of autoimmune inflammatory diseases.
Collapse
|
40
|
Lionaki S, Vlachopanos G, Georgalis A, Ziakas P, Gakiopoulou H, Petra C, Boletis J. Lupus nephritis and non-Hodgkin lymphoma simultaneously diagnosed in a patient on methimazole. Lupus 2013; 22:95-98. [DOI: 10.1177/0961203312467668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
A 78 year old white male on methimazole due to Grave’s thyroiditis presented with acute renal failure after a short term history of progressive shortness of breath, malaise, myalgias, arthralgias, and bilateral lower limb swelling. The abdomen was remarkable for splenomegaly and lower extremities for erythema nodosum. No peripheral lymphadenopathy was detected. Serum albumin was 1.7 g/dl and very high erythrocyte sedimentation rate. Urine sediment was very active with dysmorphic red blood cells and casts and significant proteinuria (6.6 grams/day). Serum complements were abnormally low and antinuclear and anti-DNA antibodies were positive. Renal histopathology revealed membranoproliferative glomerulonephritis, along with a full house pattern on IFF consistent with lupus nephritis. Bone marrow aspiration revealed a 40% infiltration by a lymphocyte population of small cells consistent with a B cell non-Hodgkin lymphoma.The patient was treated with methylprednisolone, cyclophosphamide and rituximab and acute dialysis. Over the following weeks the patient became dialysis independent and returned to his baseline GFR.
Collapse
Affiliation(s)
- S Lionaki
- Nephrology and Transplantation Department, Laiko Hospital, Greece
| | - G Vlachopanos
- Nephrology and Transplantation Department, Laiko Hospital, Greece
| | - A Georgalis
- Nephrology and Transplantation Department, Laiko Hospital, Greece
| | | | | | - C Petra
- Nephrology and Transplantation Department, Laiko Hospital, Greece
| | - J Boletis
- Nephrology and Transplantation Department, Laiko Hospital, Greece
| |
Collapse
|
41
|
Thabet Y, Cañas F, Ghedira I, Youinou P, Mageed RA, Renaudineau Y. Altered patterns of epigenetic changes in systemic lupus erythematosus and auto-antibody production: is there a link? J Autoimmun 2012; 39:154-60. [PMID: 22709855 DOI: 10.1016/j.jaut.2012.05.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 05/20/2012] [Indexed: 02/07/2023]
Abstract
The prominent feature of immunological defects in systemic lupus erythematosus (SLE) is the production of autoantibodies (auto-Abs) to nuclear antigens including DNA, histones and RNP. In addition, there is growing evidence that epigenetic changes play a key role in the pathogenesis of SLE. Autoreactive CD4(+) T cells and B cells in patients with SLE have evidence of altered patterns of DNA methylation as well as post-translational modifications of histones and ribonucleoproteins (RNP). A key question that has emerged from these two characteristic features of SLE is whether the two processes are linked. New data provide support for such a link. For example, there is evidence that hypomethylated DNA is immunogenic, that anti-histone auto-Abs in patients with SLE bind epigenetic-sensitive hot spots and that epigenetically-modified RNP-derived peptides can modulate lupus disease. All in all, the available evidence indicates that a better understanding of dysregulation in epigenetics in SLE may offer opportunities to develop new biomarkers and novel therapeutic strategies.
Collapse
Affiliation(s)
- Yosra Thabet
- EA2216 Immunology, Pathology and Immunotherapy, European University of Brittany, Brest, France
| | | | | | | | | | | |
Collapse
|
42
|
|
43
|
López-Pedrera C, Pérez-Sánchez C, Ramos-Casals M, Santos-Gonzalez M, Rodriguez-Ariza A, Cuadrado MJ. Cardiovascular risk in systemic autoimmune diseases: epigenetic mechanisms of immune regulatory functions. Clin Dev Immunol 2011; 2012:974648. [PMID: 21941583 PMCID: PMC3173726 DOI: 10.1155/2012/974648] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 07/15/2011] [Accepted: 07/15/2011] [Indexed: 12/31/2022]
Abstract
Autoimmune diseases (AIDs) have been associated with accelerated atherosclerosis (AT) leading to increased cardio- and cerebrovascular disease risk. Traditional risk factors, as well as systemic inflammation mediators, including cytokines, chemokines, proteases, autoantibodies, adhesion receptors, and others, have been implicated in the development of these vascular pathologies. Yet, the characteristics of vasculopathies may significantly differ depending on the underlying disease. In recent years, many new genes and signalling pathways involved in autoimmunity with often overlapping patterns between different disease entities have been further detected. Epigenetics, the control of gene packaging and expression independent of alterations in the DNA sequence, is providing new directions linking genetics and environmental factors. Epigenetic regulatory mechanisms comprise DNA methylation, histone modifications, and microRNA activity, all of which act upon gene and protein expression levels. Recent findings have contributed to our understanding of how epigenetic modifications could influence AID development, not only showing differences between AID patients and healthy controls, but also showing how one disease differs from another and even how the expression of key proteins involved in the development of each disease is regulated.
Collapse
Affiliation(s)
- Chary López-Pedrera
- Unidad de Investigación e Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004 Córdoba, Spain.
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Recent advances in epigenetics have enhanced our knowledge of how environmental factors (UV radiation, drugs, infections, etc.) contribute to the development of autoimmune diseases (AID) in genetically predisposed individuals. Studies conducted in monozygotic twins discordant for AID and spontaneous autoimmune animal models have highlighted the importance of DNA methylation changes and histone modifications. Alterations in the epigenetic pattern seem to be cell specific, as CD4+ T cells and B cells are dysregulated in systemic lupus erythematosus, synovial fibroblasts in rheumatoid arthritis and cerebral cells in multiple sclerosis. With regard to lymphocytes, the control of tolerance is affected, leading to the development of autoreactive cells. Other epigenetic processes, such as the newly described miRNAs, and post-translational protein modifications may also be suspected. Altogether, a conceptual revolution is in progress, in AID, with potential new therapeutic strategies targeting epigenetic patterns.
Collapse
|
45
|
|
46
|
Abstract
The etiology of autoimmune diseases remains largely unknown. Concordance rates in monozygotic twins are lower than 50% while genome-wide association studies propose numerous significant associations representing only a minority of patients. These lines of evidence strongly support other complementary mechanisms involved in the regulation of genes expression ultimately causing overt autoimmunity. Alterations in the post-translational modification of histones and DNA methylation are the two major epigenetic mechanisms that may potentially cause a breakdown of immune tolerance and the perpetuation of autoimmune diseases. In recent years, several studies both in clinical settings and experimental models proposed that the epigenome may hold the key to a better understanding of autoimmunity initiation and perpetuation. More specifically, data support the impact of epigenetic changes in systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and other autoimmune diseases, in some cases based on mechanistical observations. We herein discuss what we currently know and what we expect will come in the next future. Ultimately, epigenetic treatments already being used in oncology may soon prove beneficial also in autoimmune diseases.
Collapse
Affiliation(s)
- Francesca Meda
- Department of Medicine and Hepatobiliary Immunopathology Unit, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | |
Collapse
|
47
|
Abstract
Accumulating epidemiological, clinical, and experimental evidence supports the conclusion of a critical role of epigenetic factors in immune programming. This understanding provides the basis for elucidating how the intricate interactions of the genome, epigenome, and transcriptome shape immune responses and maintain immune tolerance to self-antigens. Deciphering the precise contribution of epigenetic factors to autoimmunity, and in particular to lupus, has become an active research area. On one hand, it is well established that environmental factors have an impact on the epigenome and, therefore, on the transcriptional and translational machinery of specific cell types; on the other, the environment also plays an important role in the severity of lupus and other autoimmunity diseases. Determining how epigenetics "connects" the environment to cell biology and to autoreactivity will be key for advancing our understanding in this field and, possibly, for developing novel preventive strategies.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm UMR-S 606, University Diderot-Paris 7, Paris, France.
| |
Collapse
|
48
|
Luning Prak ET, Monestier M, Eisenberg RA. B cell receptor editing in tolerance and autoimmunity. Ann N Y Acad Sci 2011; 1217:96-121. [PMID: 21251012 DOI: 10.1111/j.1749-6632.2010.05877.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Receptor editing is the process of ongoing antibody gene rearrangement in a lymphocyte that already has a functional antigen receptor. The expression of a functional antigen receptor will normally terminate further rearrangement (allelic exclusion). However, lymphocytes with autoreactive receptors have a chance at escaping negative regulation by "editing" the specificities of their receptors with additional antibody gene rearrangements. As such, editing complicates the Clonal Selection Hypothesis because edited cells are not simply endowed for life with a single, invariant antigen receptor. Furthermore, if the initial immunoglobulin gene is not inactivated during the editing process, allelic exclusion is violated and the B cell can exhibit two specificities. Here, we describe the discovery of editing, the pathways of receptor editing at the heavy (H) and light (L) chain loci, and current evidence regarding how and where editing happens and what effects it has on the antibody repertoire.
Collapse
Affiliation(s)
- Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA.
| | | | | |
Collapse
|
49
|
Garaud S, Youinou P, Renaudineau Y. DNA methylation and B-cell autoreactivity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 711:50-60. [PMID: 21627042 DOI: 10.1007/978-1-4419-8216-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although not exclusive, mounting evidence supports the fact that DNA methylation at CpG dinucleotides controls B-cell development and the progressive eliminati or inactivation of autoreactive B cell. Indeed, the expression of different B ce specific factors, including Pax5, rearrangement of the B-cell receptor (BCR) and cytokine production are tightly controlled by DNA methylation. Among normal B cells, the autoreactive CD5+ B cell sub-population presents a reduced capacity to methylate its DNA that leads to the expression of normally repressed genes, such as the human endogenous retrovirus (HERV). In systemic lupus erythematosus (SLE) patients, the archetype ofautoimmune disease, autoreactive B cells are characterized by their inability to induce DNA methylation that prolongs their survival. Finally, treating B cells with demethylating drugs increased their autoreactivity. Altogether this suggests that a deeper comprehension ofDNA methylation in B cells may offer opportunities to develop new therapeutics to control autoreactive B cells.
Collapse
Affiliation(s)
- Soizic Garaud
- Immiunologie and Pathology, Universitéde Brest, Université Européenne de Bretagne, Brest, France
| | | | | |
Collapse
|
50
|
|