1
|
Bastos AP, Claessens S, Nelson XJ, Welch D, Atkinson QD, Taylor AH. Evidence of self-care tooling and phylogenetic modeling reveal parrot tool use is not rare. iScience 2025; 28:112156. [PMID: 40171485 PMCID: PMC11960656 DOI: 10.1016/j.isci.2025.112156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/25/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Putatively rare behaviors like tool use are difficult to study because absence of evidence can arise from a species' inability to produce the behavior or from insufficient research. We combine data from digital platforms and phylogenetic modeling to estimate rates of tool use in parrots. Videos on YouTube revealed novel instances of self-care tooling in 17 parrot species, more than doubling the number of tool-using parrots from 11 (3%) to 28 (7%). Phylogenetic modeling suggests 11-17% of extant parrot species may be capable of tool use and identifies likely candidates. These discoveries impact our understanding of the evolution of tool use in parrots, revealing associations with relative brain size and feeding generalism and indicating likely ancestral tool use in several genera. Our findings challenge the assumption that current sampling efforts fully capture the distribution of putatively rare animal behaviors and offer a fruitful approach for investigating other rare behaviors.
Collapse
Affiliation(s)
- Amalia P.M. Bastos
- Department of Psychological & Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Scott Claessens
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Ximena J. Nelson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - David Welch
- School of Computer Science, University of Auckland, Auckland, New Zealand
| | | | - Alex H. Taylor
- School of Psychology, University of Auckland, Auckland, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- ICREA, Pg. Lluís Companys 23, Barcelona, Spain
- Institute of Neuroscience, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
2
|
Cui G, Ren Y, Zhou X. Language as a modulator to cognitive and neurological systems. Acta Psychol (Amst) 2025; 254:104803. [PMID: 39965507 DOI: 10.1016/j.actpsy.2025.104803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/13/2024] [Accepted: 02/11/2025] [Indexed: 02/20/2025] Open
Abstract
Language is a defining characteristic of humans, playing a crucial role in both species evolution and individual development. While traditional views, such as Chomsky's, emphasize language's dual functions in sensorimotor externalization and conceptual-intentional thought, its broader role as a modulator of cognitive and neurological systems remains underexplored. Here, we propose that language, due to its profound, accessible, and widespread neurological activation, serves as a pivotal modulator of these systems. This perspective provides new insights into the interconnection between language, cognition, and brain function, and points to novel therapeutic pathways that leverage the modulating capabilities of language for cognitive enhancement and neurological rehabilitation.
Collapse
Affiliation(s)
- Gang Cui
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| | - Yufei Ren
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China.
| | - Xiaoran Zhou
- Department of Foreign Languages and Literatures, Tsinghua University, Beijing, China
| |
Collapse
|
3
|
Nodé-Langlois O, Rolland E, Girard-Buttoz C, Samuni L, Ferrari PF, Wittig RM, Crockford C. Social tolerance and role model diversity increase tool use learning opportunities across chimpanzee ontogeny. Commun Biol 2025; 8:509. [PMID: 40155771 PMCID: PMC11953367 DOI: 10.1038/s42003-025-07885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Social learning opportunities shape cognitive skills across species, especially in humans. Although the social environment impacts learning opportunities, the benefits of role model diversity and tolerance on task learning in tool-using species remain poorly understood. To explore these links, we study 2343 peering events (close-range observation of a conspecific) from 35 wild immature (<10 y) chimpanzees (Pan troglodytes verus). We find that chimpanzee peering functions to acquire information more than food, persists during development while peaking around weaning age, and increases with food processing complexity. Role models change throughout development, with increased peering at mothers during early stages and for more complex tasks. Finally, immatures observe many role models, favouring older and more tolerant individuals. We conclude that chimpanzees learn from multiple tolerant individuals, particularly when acquiring complex skills like tool use. Tolerant societies may be necessary for the acquisition and retention of the diverse tool kits rarely found in nature.
Collapse
Affiliation(s)
- Oscar Nodé-Langlois
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Bron, France.
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
- Université Claude Bernard Lyon 1, Villeurbanne, France.
| | - Eléonore Rolland
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Bron, France
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Claude Bernard Lyon 1, Villeurbanne, France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Cédric Girard-Buttoz
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- ENES Bioacoustics Research Laboratory Centre de Recherche en Neurosciences de Lyon, CNRS, Inserm, University of Saint-Etienne, Saint-Etienne, France
| | - Liran Samuni
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Cooperative Evolution Lab, German Primate Center, Gottingen, Germany
| | | | - Roman M Wittig
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Bron, France
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Catherine Crockford
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, Bron, France.
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire.
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
4
|
Hahn LG, Hooper R, McIvor GE, Thornton A. Pair-bond strength is consistent and related to partner responsiveness in a wild corvid. Proc Biol Sci 2025; 292:20242729. [PMID: 39904394 PMCID: PMC11793980 DOI: 10.1098/rspb.2024.2729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/30/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
The need to maintain strong social bonds is widely thought to be a key driver of cognitive evolution. Cognitive abilities to track and respond to information about social partners may be favoured by selection if they vary within populations and confer fitness benefits. Here we evaluate four key assumptions of this argument in wild jackdaws (Corvus monedula), corvids whose long-term pair bonds exemplify one of the putative social drivers of cognitive evolution in birds. Combining observational and experimental behavioural data with long-term breeding records, we found support for three assumptions: (i) pair-bond strength varies across the population, (ii) is consistent within pairs over time and (iii) is positively associated with partner responsiveness, a measure of socio-cognitive performance. However, (iv) we did not find clear evidence that stronger pair bonds lead to better fitness outcomes. Strongly bonded pairs were better able to adjust hatching synchrony to environmental conditions but they did not fledge more or higher quality offspring. Together, these findings suggest that maintaining strong pair bonds is linked to socio-cognitive performance and may facilitate effective coordination between partners. However, they also imply that these benefits are insufficient to explain how selection acts on social cognition. We argue that evaluating how animals navigate trade-offs between investing in long-term relationships versus optimizing interactions in their wider social networks will be a crucial avenue for future research.
Collapse
Affiliation(s)
- Luca G. Hahn
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
- Department of Biosciences, Swansea University, SwanseaSA2 8PP, UK
| | - Rebecca Hooper
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
- Centre for Research in Animal Behaviour, University of Exeter, ExeterEX4 4PY, UK
| | - Guillam E. McIvor
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
- Department of Behavioral and Cognitive Biology, University of Vienna, Vienna1030, Austria
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, PenrynTR10 9FE, UK
| |
Collapse
|
5
|
Wrangham RW, Worthington S. Apparent Stasis of Endocranial Volume in Two Chimpanzee Subspecies. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e25048. [PMID: 39718299 DOI: 10.1002/ajpa.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/26/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024]
Abstract
OBJECTIVES Self-domestication theory and preliminary data suggest that western chimpanzees (Pan troglodytes verus) could have smaller brains than eastern chimpanzees (P. t. schweinfurthii), but no large-scale studies of chimpanzee endocranial volume (ECV) have tested this. This study compares ECV of wild adult P. t. verus and P. t. schweinfurthii, along with femoral head diameter (FHD; an index of body size), bizygomatic breadth (BZB) and palate length (PAL). MATERIALS AND METHODS Adult crania of P. t. schweinfurthii (60 females, 90 males, from Uganda and Democratic Republic of Congo) and P. t. verus (43 females, 37 males, from Liberia and Ivory Coast) were sampled. ECV was measured using 3 mm diameter glass beads, and FHD, PAL, and BZB with digital calipers. Quantities of interest were estimated using Bayesian inference. RESULTS No meaningful differences were found between subspecies on average in ECV, FHD, or the relationship between ECV and FHD. Within countries and subspecies, ECV varied widely among individuals, partly because males had higher ECV on average than females. When sex was controlled for, ECV was unrelated to FHD. Within subspecies there was no evidence of meaningful differences in average ECV among countries. PAL was the only measure that differed between subspecies on average, being shorter in P. t. verus females. DISCUSSION Current data show that within sexes, mean ECV is similar between P. t. verus and P. t. schweinfurthii. This suggests that average brain size in chimpanzees has remained unchanged for ~0.7 million years, in contrast to orangutans (Pongo) and humans.
Collapse
Affiliation(s)
- Richard W Wrangham
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Steven Worthington
- Institute for Quantitative Social Science, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Stimpson CD, Smaers JB, Raghanti MA, Phillips KA, Jacobs B, Hopkins WD, Hof PR, Sherwood CC. Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. Brain Struct Funct 2024; 229:1823-1838. [PMID: 37889302 DOI: 10.1007/s00429-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
7
|
Burtsev M, Anokhin K, Bateson P. Facilitation of Evolution by Plasticity Scales with Phenotypic Complexity. Animals (Basel) 2024; 14:2804. [PMID: 39409753 PMCID: PMC11476054 DOI: 10.3390/ani14192804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Developmental plasticity enables organisms to cope with new environmental challenges. If deploying such plasticity is costly in terms of time or energy, the same adaptive behaviour could subsequently evolve through piecemeal genomic reorganisation that replaces the requirement to acquire that adaptation by individual plasticity. Here, we report a new dimension to the way in which plasticity can drive evolutionary change, leading to an ever-greater complexity in biological organisation. Plasticity dramatically accelerates the evolutionary accumulation of adaptive systems in model organisms with relatively low rates of mutation. The effect of plasticity on the evolutionary growth of complexity is even greater when the number of elements needed to construct a functional system is increased. These results suggest that, as the difficulty of challenges from the environment becomes greater, plasticity exerts an ever more powerful role in meeting those challenges and in opening up new avenues for the subsequent evolution of complex adaptations.
Collapse
Affiliation(s)
- Mikhail Burtsev
- London Institute for Mathematical Sciences, Royal Institution, London W1S 4BS, UK
| | - Konstantin Anokhin
- Institute for Advanced Brain Studies, Moscow State University, Moscow 119992, Russia
| | - Patrick Bateson
- Sub-Department of Animal Behaviour, University of Cambridge, Cambridge CB28 3AA, UK
| |
Collapse
|
8
|
Yiu E, Kosoy E, Gopnik A. Transmission Versus Truth, Imitation Versus Innovation: What Children Can Do That Large Language and Language-and-Vision Models Cannot (Yet). PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2024; 19:874-883. [PMID: 37883796 PMCID: PMC11373165 DOI: 10.1177/17456916231201401] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Much discussion about large language models and language-and-vision models has focused on whether these models are intelligent agents. We present an alternative perspective. First, we argue that these artificial intelligence (AI) models are cultural technologies that enhance cultural transmission and are efficient and powerful imitation engines. Second, we explore what AI models can tell us about imitation and innovation by testing whether they can be used to discover new tools and novel causal structures and contrasting their responses with those of human children. Our work serves as a first step in determining which particular representations and competences, as well as which kinds of knowledge or skill, can be derived from particular learning techniques and data. In particular, we explore which kinds of cognitive capacities can be enabled by statistical analysis of large-scale linguistic data. Critically, our findings suggest that machines may need more than large-scale language and image data to allow the kinds of innovation that a small child can produce.
Collapse
Affiliation(s)
- Eunice Yiu
- Department of Psychology, University of California, Berkeley
| | - Eliza Kosoy
- Department of Psychology, University of California, Berkeley
| | - Alison Gopnik
- Department of Psychology, University of California, Berkeley
| |
Collapse
|
9
|
Morita M, Nishikawa Y, Tokumasu Y. Human musical capacity and products should have been induced by the hominin-specific combination of several biosocial features: A three-phase scheme on socio-ecological, cognitive, and cultural evolution. Evol Anthropol 2024; 33:e22031. [PMID: 38757853 DOI: 10.1002/evan.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/18/2024]
Abstract
Various selection pressures have shaped human uniqueness, for instance, music. When and why did musical universality and diversity emerge? Our hypothesis is that "music" initially originated from manipulative calls with limited musical elements. Thereafter, vocalizations became more complex and flexible along with a greater degree of social learning. Finally, constructed musical instruments and the language faculty resulted in diverse and context-specific music. Music precursors correspond to vocal communication among nonhuman primates, songbirds, and cetaceans. To place this scenario in hominin history, a three-phase scheme for music evolution is presented herein. We emphasize (1) the evolution of sociality and life history in australopithecines, (2) the evolution of cognitive and learning abilities in early/middle Homo, and (3) cultural evolution, primarily in Homo sapiens. Human musical capacity and products should be due to the hominin-specific combination of several biosocial features, including bipedalism, stable pair bonding, alloparenting, expanded brain size, and sexual selection.
Collapse
Affiliation(s)
- Masahito Morita
- Evolutionary Anthropology Lab, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Department of Health Sciences of Mind and Body, University of Human Arts and Sciences, Saitama, Japan
| | - Yuri Nishikawa
- Evolutionary Anthropology Lab, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
- Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Yudai Tokumasu
- Evolutionary Anthropology Lab, Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
10
|
Wen C, Wang C, Guo X, Li H, Xiao H, Wen J, Dong S. Object use in insects. INSECT SCIENCE 2024; 31:1001-1014. [PMID: 37828914 DOI: 10.1111/1744-7917.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 10/14/2023]
Abstract
Insects are the most diverse group of organisms in the animal kingdom, and some species exhibit complex social behaviors. Although research on insect object use is still in its early stages, insects have already been shown to display rich object-use behaviors. This review focuses on patterns and behavioral flexibility in insect object-use behavior, and the role of cultural evolution in the development of object-use behaviors. Object use in insects is not widespread but has been documented in a diverse set of taxa. Some insects can use objects flexibly and display various object-use patterns. Like mammals and birds, insects use objects in diverse activities, including foraging, predator defense, courtship, and play. Intelligence, pre-existing manipulative behaviors, and anatomical structure affect innovations in object use. In addition, learning and imitation are the main mechanisms underlying the spread of object-use behaviors within populations. Given that insects are one of the major animal groups engaging in object use, studies of insect object use could provide general insights into object use in the animal kingdom.
Collapse
Affiliation(s)
- Chao Wen
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoli Guo
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Hongyu Li
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Haijun Xiao
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Junbao Wen
- Beijing Key Laboratory for Forest Pest Control, Beijing Forestry University, Beijing, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Bretas R, Tia B, Iriki A. The self-in-the-world map emerged in the primate brain as a basis for Homo sapiens abilities. Dev Growth Differ 2024; 66:342-348. [PMID: 39113583 PMCID: PMC11457509 DOI: 10.1111/dgd.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/02/2023] [Accepted: 07/22/2024] [Indexed: 08/22/2024]
Abstract
The brain in the genus Homo expanded rapidly during evolution, accelerated by a reciprocated interaction between neural, cognitive, and ecological niches (triadic niche construction, or TNC). This biologically costly expansion incubated latent cognitive capabilities that, with a quick and inexpensive rewiring of brain areas in a second phase of TNC, provided the basis for Homo sapiens specific abilities. The neural demands for perception of the human body in interaction with tools and the environment required highly integrated sensorimotor domains, inducing the parietal lobe expansion seen in humans. These newly expanded brain areas allowed connecting the sensations felt in the body to the actions in the world through the cognitive function of "projection". In this opinion article, we suggest that as a relationship of equivalence between body parts, tools and their external effects was established, mental mechanisms of self-objectification might have emerged as described previously, grounding notions of spatial organization, idealized objects, and their transformations, as well as socio-emotional states in the sensing agent through a self-in-the-world map. Therefore, human intelligence and its features such as symbolic thought, language, mentalizing, and complex technical and social behaviors could have stemmed from the explicit awareness of the causal relationship between the self and intentional modifications to the environment.
Collapse
Affiliation(s)
- Rafael Bretas
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Biosystems Dynamics ResearchKobeJapan
- Center for Information and Neural NetworksNICTSuitaOsakaJapan
| | - Banty Tia
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive DevelopmentRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| |
Collapse
|
12
|
Gorshkova E, Kyomen S, Kaucká M, Guenther A. Food quality influences behavioural flexibility and cognition in wild house mice. Sci Rep 2024; 14:16088. [PMID: 38997306 PMCID: PMC11245467 DOI: 10.1038/s41598-024-66792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024] Open
Abstract
Environmental change is frequent. To adjust and survive, animals need behavioural flexibility. Recently, cognitive flexibility has emerged as a driving force for adjusting to environmental change. Understanding how environmental factors, such as food quality, influence behavioural and/or more costly cognitive flexibility. Here, we investigate the effects of high-quality versus standard food as well as the effects of different housing conditions on both types of flexibility. Our results show that mice that experienced a poorer diet under seminatural conditions showed greater behavioural but not cognitive flexibility. For cage-housed mice, the results were less clear. However, mice fed a poorer diet performed better in innovative problem-solving, thus showing enhanced cognitive flexibility, which was not apparent in the reversal learning paradigm. The observed differences were most likely due to differences in motivation to obtain food rewards. Additionally, animals on poorer diet had lower brain volume, usually related to lower cognitive task performance at the between-species level. Thus, our study emphasises the importance of environmental conditions on behavioural flexibility at the within-species level, highlights that different test paradigms may lead to different conclusions, and finally shows that cage housing of wild animals may lead to patterns that do not necessarily reflect natural conditions.
Collapse
Affiliation(s)
- Ekaterina Gorshkova
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
- Zoology and Functional Morphology of Vertebrates, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Stella Kyomen
- RG Evolutionary Developmental Dynamics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Markéta Kaucká
- RG Evolutionary Developmental Dynamics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Anja Guenther
- RG Behavioural Ecology of Individual Differences, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| |
Collapse
|
13
|
Zhao M, Fong FTK, Whiten A, Nielsen M. Children's distinct drive to reproduce costly rituals. Child Dev 2024; 95:1161-1171. [PMID: 38108221 DOI: 10.1111/cdev.14061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Costly rituals are ubiquitous and adaptive. Yet, little is known about how children develop to acquire them. The current study examined children's imitation of costly rituals. Ninety-three 4-6 year olds (47 girls, 45% Oceanians, tested in 2022) were shown how to place tokens into a tube to earn stickers, using either a ritualistic or non-ritualistic costly action sequence. Children shown the ritualistic actions imitated faithfully at the expense of gaining stickers; conversely, those shown the non-ritualistic actions ignored them and obtained maximum reward. This highlights how preschool children are adept at and motivated to learn rituals, despite significant material cost. This study provides insights into the early development of cultural learning and the adaptive value of rituals in group cognition.
Collapse
Affiliation(s)
- Mingxuan Zhao
- Early Cognitive Development Centre, School of Psychology, University of Queensland, Brisbane, Queensland, Australia
| | - Frankie T K Fong
- Early Cognitive Development Centre, School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Andrew Whiten
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Mark Nielsen
- Early Cognitive Development Centre, School of Psychology, University of Queensland, Brisbane, Queensland, Australia
- Faculty of Humanities, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
14
|
Boussard A, Ahlkvist M, Corral-López A, Fong S, Fitzpatrick J, Kolm N. Relative telencephalon size does not affect collective motion in the guppy ( Poecilia reticulata). Behav Ecol 2024; 35:arae033. [PMID: 38779596 PMCID: PMC11110457 DOI: 10.1093/beheco/arae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Collective motion is common across all animal taxa, from swarming insects to schools of fish. The collective motion requires intricate behavioral integration among individuals, yet little is known about how evolutionary changes in brain morphology influence the ability for individuals to coordinate behavior in groups. In this study, we utilized guppies that were selectively bred for relative telencephalon size, an aspect of brain morphology that is normally associated with advanced cognitive functions, to examine its role in collective motion using an open-field assay. We analyzed high-resolution tracking data of same-sex shoals consisting of 8 individuals to assess different aspects of collective motion, such as alignment, attraction to nearby shoal members, and swimming speed. Our findings indicate that variation in collective motion in guppy shoals might not be strongly affected by variation in relative telencephalon size. Our study suggests that group dynamics in collectively moving animals are likely not driven by advanced cognitive functions but rather by fundamental cognitive processes stemming from relatively simple rules among neighboring individuals.
Collapse
Affiliation(s)
- Annika Boussard
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Mikaela Ahlkvist
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Alberto Corral-López
- Department of Ecology and Genetics, Uppsala University, Norbyvägen 18D, 752 36 Uppsala, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - John Fitzpatrick
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18B, 106 91 Stockholm, Sweden
| |
Collapse
|
15
|
van den Berg P, Vu T, Molleman L. Unpredictable benefits of social information can lead to the evolution of individual differences in social learning. Nat Commun 2024; 15:5138. [PMID: 38879619 PMCID: PMC11180142 DOI: 10.1038/s41467-024-49530-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Human ecological success is often attributed to our capacity for social learning, which facilitates the spread of adaptive behaviours through populations. All humans rely on social learning to acquire culture, but there is substantial variation across societies, between individuals and over developmental time. However, it is unclear why these differences exist. Here, we present an evolutionary model showing that individual variation in social learning can emerge if the benefits of social learning are unpredictable. Unpredictability selects for flexible developmental programmes that allow individuals to update their reliance on social learning based on previous experiences. This developmental flexibility, in turn, causes some individuals in a population to end up consistently relying more heavily on social learning than others. We demonstrate this core evolutionary mechanism across three scenarios of increasing complexity, investigating the impact of different sources of uncertainty about the usefulness of social learning. Our results show how evolution can shape how individuals learn to learn from others, with potentially profound effects on cultural diversity.
Collapse
Affiliation(s)
- Pieter van den Berg
- KU Leuven, Department of Biology, Leuven, Belgium.
- KU Leuven, Department of Microbial and Molecular Systems, Leuven, Belgium.
| | - TuongVan Vu
- Department of Clinical, Neuro-, & Developmental Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lucas Molleman
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Jin L, Jiang Y, Han L, Luan X, Liu X, Liao W. Big-brained alien birds tend to occur climatic niche shifts through enhanced behavioral innovation. Integr Zool 2024. [PMID: 38872346 DOI: 10.1111/1749-4877.12861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Identifying climatic niche shift and its influencing factors is of great significance in predicting the risk of alien species invasions accurately. Previous studies have attempted to identify the factors related to the niche shift of alien species in their invaded ranges, including changes in introduction history, selection of exact climate predictors, and anthropogenic factors. However, the effect of species-level traits on niche shift remains largely unexplored, especially those reflecting the species' adaptation ability to new environments. Based on the occurrence data of 117 successful alien bird invaders at a global scale, their native and invaded climatic niches were compared, and the potential influencing factors were identified. Our results show the niche overlap was low, with more than 75% of the non-native birds representing climatic niche shift (i.e. >10% niche expansion). In addition, 85% of the species showed a large proportion (mean ± SD, 39% ± 21%) of niche unfilling. Relative brain size (RBS) after accounting for body size had no direct effect on niche shift, but path analysis showed that RBS had an indirect effect on niche shift by acting on behavioral innovation primarily on technical innovation rather than consumer innovation. These findings suggested the incorporation of species' important behavioral adaptation traits may be promising to develop future prediction frameworks of biological invasion risk in response to the continued global change.
Collapse
Affiliation(s)
- Long Jin
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ying Jiang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| | - Lixia Han
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaofeng Luan
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, Sichuan, China
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, Sichuan, China
| |
Collapse
|
17
|
Ellington L, Mercier S, Motes-Rodrigo A, van de Waal E, Forss S. Urbanization does not increase "object curiosity" in vervet monkeys, but semi-urban individuals selectively explore food-related anthropogenic items. Curr Zool 2024; 70:383-393. [PMID: 39035753 PMCID: PMC11255996 DOI: 10.1093/cz/zoae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 07/23/2024] Open
Abstract
Urban environments expose animals to abundant anthropogenic materials and foods that facilitate foraging innovations in species with opportunistic diets and high behavioral flexibility. Neophilia and exploration tendency are believed to be important behavioral traits for animals thriving in urban environments. Vervet monkeys (Chlorocebus pygerythrus) are one of few primate species that have successfully adapted to urban environments, thus making them an ideal species to study these traits. Using a within-species cross-habitat approach, we compared neophilia and exploration of novel objects (jointly referred to as "object curiosity") between semi-urban, wild, and captive monkeys to shed light on the cognitive traits facilitating urban living. To measure "object curiosity," we exposed monkeys to various types of novel stimuli and compared their approaches and explorative behavior. Our results revealed differences in the number of approaches and explorative behavior toward novel stimuli between the habitat types considered. Captive vervet monkeys were significantly more explorative than both semi- urban and wild troops, suggesting that positive experiences with humans and lack of predation, rather than exposure to human materials per se, influence object curiosity. Across habitats, juvenile males were the most explorative age-sex class. This is likely due to males being the dispersing sex and juveniles being more motivated to learn about their environment. Additionally, we found that items potentially associated with human food, elicited stronger explorative responses in semi-urban monkeys than non-food related objects, suggesting that their motivation to explore might be driven by "anthrophilia", that is, their experience of rewarding foraging on similar anthropogenic food sources. We conclude that varying levels of exposure to humans, predation and pre-exposure to human food packaging explain variation in "object curiosity" in our sample of vervet monkeys.
Collapse
Affiliation(s)
- Lindsey Ellington
- Behavioural & Physiological Ecology, University of Groningen, P.O. Box 11103 9700 CC, Groningen, The Netherlands
| | - Stephanie Mercier
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Alba Motes-Rodrigo
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
| | - Erica van de Waal
- Department of Ecology and Evolution, University of Lausanne, Biophore - CH-1015, Lausanne, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Sofia Forss
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH- 8057, Zurich, Switzerland
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| |
Collapse
|
18
|
Chen WJ, Chen H, Li ZM, Huang WY, Wu JL. Acetylcholine muscarinic M1 receptors in the rodent prefrontal cortex modulate cognitive abilities to establish social hierarchy. Neuropsychopharmacology 2024; 49:974-982. [PMID: 38135842 PMCID: PMC11039707 DOI: 10.1038/s41386-023-01785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
In most social species, the attainment of social dominance is strongly affected by personality traits. Dominant individuals show better cognitive abilities, however, whether an individual's cognition can determine its social status has remained inconclusive. We found that mice show better cognitive abilities tend to possess a higher social rank after cohousing. The dynamic release of acetylcholine (ACh) in the prelimbic cortex (PL) is correlated with mouse dominance behavior. ACh enhanced the excitability of the PL neurons via acetylcholine muscarinic M1 receptors (M1). Inhibition of M1 impaired mice cognitive performance and induced losing in social competition. Mice with M1 deficiency in the PL performed worse on cognitive behavioral tests, and exhibited lower status when re-grouped with others. Elevating ACh level in the PL of subordinate mice induced winning. These results provide direct evidence for the involvement of M1 in social hierarchy and suggest that social rank can be tuned by altering cognition through cholinergic system.
Collapse
Affiliation(s)
- Wen-Jun Chen
- Medical Research and Experimental Center, Meizhou People's Hospital, Meizhou, 514031, China
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, China
| | - Hao Chen
- Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Zi-Ming Li
- Department of Neurobiology, Southern Medical University, Guangzhou, 510515, China
| | - Wei-Yuan Huang
- Orthopedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Jian-Lin Wu
- Medical Research and Experimental Center, Meizhou People's Hospital, Meizhou, 514031, China.
- Guangdong Engineering Technological Research Center of Clinical Molecular Diagnosis and Antibody Drugs, Meizhou, 514031, China.
| |
Collapse
|
19
|
Howard SR, Barron AB. Understanding the limits to animal cognition. Curr Biol 2024; 34:R294-R300. [PMID: 38593777 DOI: 10.1016/j.cub.2024.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The thriving field of comparative cognition examines the behaviour of diverse animals in cognitive terms. Comparative cognition research has primarily focused on the abilities of animals - what tasks they can do - rather than on the limits of their cognition - tasks that exceed an animal's cognitive abilities. We propose that understanding and identifying cognitive limits is as important as demonstrating the capacities of animal minds. Here, we identify challenges that have deterred the study of cognitive limits related to epistemic, practical and publication problems. The epistemic problem is concerned with how we can confidently infer a cognitive limit from null or negative results. The practical problem is how can we be certain our research has identified a cognitive limit rather than failures in tasks due to methodological or experimental design issues. The publication problem outlines the publication bias toward positive and exciting results over negative or null results in animal cognition. We propose solutions to these three challenges and examples of how to conduct research to confidently identify and confirm cognitive limits in animals. We believe a refocus on the cognitive limits of animals is the next step in the field of comparative cognition. Knowing the limits to the intelligence of different animals will aid us in appreciating the diversity of animal intelligence, and will resolve outstanding questions of how cognition evolves.
Collapse
Affiliation(s)
- Scarlett R Howard
- School of Biological Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew B Barron
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
20
|
Audet JN, Couture M, Lefebvre L, Jarvis ED. Problem-solving skills are predicted by technical innovations in the wild and brain size in passerines. Nat Ecol Evol 2024; 8:806-816. [PMID: 38388692 PMCID: PMC11009111 DOI: 10.1038/s41559-024-02342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Behavioural innovations can provide key advantages for animals in the wild, especially when ecological conditions change rapidly and unexpectedly. Innovation rates can be compared across taxa by compiling field reports of novel behaviours. Large-scale analyses have shown that innovativeness reduces extinction risk, increases colonization success and is associated with increased brain size and pallial neuron numbers. However, appropriate laboratory measurements of innovativeness, necessary to conduct targeted experimental studies, have not been clearly established, despite decades of speculation on the most suitable assay. Here we implemented a battery of cognitive tasks on 203 birds of 15 passerine species and tested for relationships at the interspecific and intraspecific levels with ecological metrics of innovation and brain size. We found that species better at solving extractive foraging problems had higher technical innovation rates in the wild and larger brains. By contrast, performance on other cognitive tasks often subsumed under the term behavioural flexibility, namely, associative and reversal learning, as well as self-control, were not related to problem-solving, innovation in the wild or brain size. Our study yields robust support for problem-solving as an accurate experimental proxy of innovation and suggests that novel motor solutions are more important than self-control or learning of modified cues in generating technical innovations in the wild.
Collapse
Affiliation(s)
- Jean-Nicolas Audet
- The Rockefeller University Field Research Center, Millbrook, NY, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
| | - Mélanie Couture
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Louis Lefebvre
- Department of Biology, McGill University, Montreal, Quebec, Canada
- CREAF, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain
| | - Erich D Jarvis
- The Rockefeller University Field Research Center, Millbrook, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA
- The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| |
Collapse
|
21
|
Lin FC, Shaner PJL, Hsieh MY, Whiting MJ, Lin SM. Trained quantity discrimination in invasive red-eared slider and a comparison with the native stripe-necked turtle. Anim Cogn 2024; 27:26. [PMID: 38530499 PMCID: PMC10965720 DOI: 10.1007/s10071-024-01850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/26/2023] [Indexed: 03/28/2024]
Abstract
Little is known about the behavioral and cognitive traits that best predict invasion success. Evidence is mounting that cognitive performance correlates with survival and fecundity, two pivotal factors for the successful establishment of invasive populations. We assessed the quantity discrimination ability of the globally invasive red-eared slider (Trachemys scripta elegans). We further compared it to that of the native stripe-necked turtle (Mauremys sinensis), which has been previously evaluated for its superior quantity discrimination ability. Specifically, our experimental designs aimed to quantify the learning ability as numerosity pairs increased in difficulty (termed fixed numerosity tests), and the immediate response when turtles were presented with varied challenges concurrently in the same tests (termed mixed numerosity tests). Our findings reaffirm the remarkable ability of freshwater turtles to discern numerical differences as close as 9 vs 10 (ratio = 0.9), which was comparable to the stripe-necked turtle's performance. However, the red-eared slider exhibited a moderate decrease in performance in high ratio tests, indicating a potentially enhanced cognitive capacity to adapt to novel challenges. Our experimental design is repeatable and is adaptable to a range of freshwater turtles. These findings emphasize the potential importance of cognitive research to the underlying mechanisms of successful species invasions.
Collapse
Affiliation(s)
- Feng-Chun Lin
- Department of Zoology, University of Otago, Dunedin, New Zealand
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan
| | - Pei-Jen Lee Shaner
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien, Taiwan
| | | | - Martin J Whiting
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, No. 88, Tingzhou Road Section 4, Taipei, 116, Taiwan.
| |
Collapse
|
22
|
Young FJ, Alcalde Anton A, Melo-Flórez L, Couto A, Foley J, Monllor M, McMillan WO, Montgomery SH. Enhanced long-term memory and increased mushroom body plasticity in Heliconius butterflies. iScience 2024; 27:108949. [PMID: 38357666 PMCID: PMC10864207 DOI: 10.1016/j.isci.2024.108949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 11/27/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Heliconius butterflies exhibit expanded mushroom bodies, a key brain region for learning and memory in insects, and a novel foraging strategy unique among Lepidoptera - traplining for pollen. We tested visual long-term memory across six Heliconius and outgroup Heliconiini species. Heliconius species exhibited greater fidelity to learned colors after eight days without reinforcement, with further evidence of recall at 13 days. We also measured the plastic response of the mushroom body calyces over this time period, finding substantial post-eclosion expansion and synaptic pruning in the calyx of Heliconius erato, but not in the outgroup Heliconiini Dryas iulia. In Heliconius erato, visual associative learning experience specifically was associated with a greater retention of synapses and recall accuracy was positively correlated with synapse number. These results suggest that increases in the size of specific brain regions and changes in their plastic response to experience may coevolve to support novel behaviors.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Amaia Alcalde Anton
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - Antoine Couto
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Jessica Foley
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | | | - Stephen H. Montgomery
- Smithsonian Tropical Research Institute, Gamboa, Panama
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
23
|
Liao W, Jiang Y, Jin L, Lüpold S. How hibernation in frogs drives brain and reproductive evolution in opposite directions. eLife 2023; 12:RP88236. [PMID: 38085091 PMCID: PMC10715729 DOI: 10.7554/elife.88236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023] Open
Abstract
Environmental seasonality can promote the evolution of larger brains through cognitive and behavioral flexibility but can also hamper it when temporary food shortage is buffered by stored energy. Multiple hypotheses linking brain evolution with resource acquisition and allocation have been proposed for warm-blooded organisms, but it remains unclear how these extend to cold-blooded taxa whose metabolism is tightly linked to ambient temperature. Here, we integrated these hypotheses across frogs and toads in the context of varying brumation (hibernation) durations and their environmental correlates. We showed that protracted brumation covaried negatively with brain size but positively with reproductive investment, likely in response to brumation-dependent changes in the socio-ecological context and associated selection on different tissues. Our results provide novel insights into resource allocation strategies and possible constraints in trait diversification, which may have important implications for the adaptability of species under sustained environmental change.
Collapse
Affiliation(s)
- Wenbo Liao
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Ying Jiang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Long Jin
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal UniversitySichuanChina
- Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal UniversityNanchongChina
- Institute of Eco-Adaptation in Amphibians and Reptiles, China West Normal UniversityNanchongChina
| | - Stefan Lüpold
- Department of Evolutionary Biology and Environmental Studies, University of ZurichZurichSwitzerland
| |
Collapse
|
24
|
Lima T, Fam B, Tavares GM, Falótico T, Cantele C, Fanti L, Landau L, Viscardi LH, Vargas-Pinilla P, Barrientos-Diaz O, Pissinatti A, Sortica VA, Ottoni EB, Segatto ALA, Turchetto-Zolet AC, Bortolini MC. Insights into the evolutionary history of the most skilled tool-handling platyrrhini monkey: Sapajus libidinosus from the Serra da Capivara National Park. Genet Mol Biol 2023; 46:e20230165. [PMID: 37948505 PMCID: PMC10637428 DOI: 10.1590/1678-4685-gmb-2023-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/08/2023] [Indexed: 11/12/2023] Open
Abstract
Sapajus libidinosus members of the Pedra Furada group, living in the Serra da Capivara National Park, use stone tools in a wider variety of behaviors than any other living animal, except humans. To rescue the evolutionary history of the Caatinga S. libidinosus and identify factors that may have contributed to the emergence and maintenance of their tool-use culture, we conducted fieldwork seasons to obtain biological samples of these capuchin monkeys. UsingCYTBsequences, we show a discrete but constant population growth from the beginning of the Holocene to the present, overlapping the emergence of the Caatinga biome. Our habitat suitability reconstruction reports the presence of plants whose hard fruits, seeds, or roots are processed by capuchins using tools. TheS. libidinosusindividuals in the Caatinga were capable of dynamically developing and maintaining their autochthonous culture thanks to: a) cognitive capacity to generate and execute innovation under selective pressure; b) tolerance favoring learning and cultural inheritance; c) an unknown genetic repertoire that underpins the adaptive traits; d) a high degree of terrestriality; e) presence and abundance of natural resources, which makes some places "hot spots" for innovation, and cultural diversification within a relatively short time.
Collapse
Affiliation(s)
- Thaynara Lima
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Bibiana Fam
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Gustavo Medina Tavares
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Tiago Falótico
- Universidade de São Paulo, Escola de Artes, Ciências e Humanidades,
São Paulo, SP, Brazil
| | - Camila Cantele
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Lucca Fanti
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Luane Landau
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Lucas Henriques Viscardi
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
- Universidade Pontifícia Universidade Católica do Rio Grande do Sul,
Escola de Medicina, Programa de Pós-Graduação em Medicina e Ciências da Saúde, Porto
Alegre, RS, Brazil
| | - Pedro Vargas-Pinilla
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto,
Ribeirão Preto, SP, Brazil
| | - Ossman Barrientos-Diaz
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | | | - Vinicius A. Sortica
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
- Universidade de São Paulo, Medicina Preventiva da Faculdade de
Medicina, São Paulo, SP, Brazil
| | - Eduardo B. Ottoni
- Universidade de São Paulo, Instituto de Psicologia, Departamento de
Psicologia Experimental, São Paulo, SP, Brazil
| | - Ana Lúcia A. Segatto
- Universidade Federal de Santa Maria, Centro de Ciências Naturais e
Exatas, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS,
Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| | - Maria Cátira Bortolini
- Universidade Federal do Rio Grande do Sul, Departamento de Genética,
Programa de Pós-Graduação em Genética e Biologia Molecular (PPGBM), Instituto de
Biociências, Porto Alegre, RS, Brazil
| |
Collapse
|
25
|
Button DJ, Zanno LE. Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Sci Rep 2023; 13:19224. [PMID: 37932280 PMCID: PMC10628235 DOI: 10.1038/s41598-023-45658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.
Collapse
Affiliation(s)
- David J Button
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
26
|
Creighton MJA, Nunn CL. Explaining the primate extinction crisis: predictors of extinction risk and active threats. Proc Biol Sci 2023; 290:20231441. [PMID: 37670584 PMCID: PMC10510445 DOI: 10.1098/rspb.2023.1441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/02/2023] [Indexed: 09/07/2023] Open
Abstract
Explaining why some species are disproportionately impacted by the extinction crisis is of critical importance for conservation biology as a science and for proactively protecting species that are likely to become threatened in the future. Using the most current data on threat status, population trends, and threat types for 446 primate species, we advance previous research on the determinants of extinction risk by including a wider array of phenotypic traits as predictors, filling gaps in these trait data using multiple imputation, and investigating the mechanisms that connect organismal traits to extinction risk. Our Bayesian phylogenetically controlled analyses reveal that insular species exhibit higher threat status, while those that are more omnivorous and live in larger groups have lower threat status. The same traits are not linked to risk when repeating our analyses with older IUCN data, which may suggest that the traits influencing species risk are changing as anthropogenic effects continue to transform natural landscapes. We also show that non-insular, larger-bodied, and arboreal species are more susceptible to key threats responsible for primate population declines. Collectively, these results provide new insights to the determinants of primate extinction and identify the mechanisms (i.e. threats) that link traits to extinction risk.
Collapse
Affiliation(s)
| | - Charles L. Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
- Global Health Institute, Duke University, Durham, NC, USA
| |
Collapse
|
27
|
Clark FE, Greggor AL, Montgomery SH, Plotnik JM. The endangered brain: actively preserving ex-situ animal behaviour and cognition will benefit in-situ conservation. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230707. [PMID: 37650055 PMCID: PMC10465207 DOI: 10.1098/rsos.230707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
Endangered species have small, unsustainable population sizes that are geographically or genetically restricted. Ex-situ conservation programmes are therefore faced with the challenge of breeding sufficiently sized, genetically diverse populations earmarked for reintroduction that have the behavioural skills to survive and breed in the wild. Yet, maintaining historically beneficial behaviours may be insufficient, as research continues to suggest that certain cognitive-behavioural skills and flexibility are necessary to cope with human-induced rapid environmental change (HIREC). This paper begins by reviewing interdisciplinary studies on the 'captivity effect' in laboratory, farmed, domesticated and feral vertebrates and finds that captivity imposes rapid yet often reversible changes to the brain, cognition and behaviour. However, research on this effect in ex-situ conservation sites is lacking. This paper reveals an apparent mismatch between ex-situ enrichment aims and the cognitive-behavioural skills possessed by animals currently coping with HIREC. After synthesizing literature across neuroscience, behavioural biology, comparative cognition and field conservation, it seems that ex-situ endangered species deemed for reintroduction may have better chances of coping with HIREC if their natural cognition and behavioural repertoires are actively preserved. Evaluating the effects of environmental challenges rather than captivity per se is recommended, in addition to using targeted cognitive enrichment.
Collapse
Affiliation(s)
- Fay E. Clark
- School of Psychological Science, University of Bristol, Bristol, UK
| | | | | | - Joshua M. Plotnik
- Department of Psychology, Hunter College, City University of New York, New York, NY, USA
- Department of Psychology, The Graduate Center, City University of New York, New York, NY, USA
| |
Collapse
|
28
|
Webster MM. Social learning in non-grouping animals. Biol Rev Camb Philos Soc 2023; 98:1329-1344. [PMID: 36992613 DOI: 10.1111/brv.12954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023]
Abstract
Social learning is widespread in the animal kingdom and is involved in behaviours from navigation and predator avoidance to mate choice and foraging. While social learning has been extensively studied in group-living species, this article presents a literature review demonstrating that social learning is also seen in a range of non-grouping animals, including arthropods, fishes and tetrapod groups, and in a variety of behavioural contexts. We should not be surprised by this pattern, since non-grouping animals are not necessarily non-social, and stand to benefit from attending to and responding to social information in the same ways that group-living species do. The article goes on to ask what non-grouping species can tell us about the evolution and development of social learning. First, while social learning may be based on the same cognitive processes as other kinds of learning, albeit with social stimuli, sensory organs and brain regions associated with detection and motivation to respond to social information may be under selection. Non-grouping species may provide useful comparison taxa in phylogenetic analyses investigating if and how the social environment drives selection on these input channels. Second, non-grouping species may be ideal candidates for exploring how ontogenetic experience of social cues shapes the development of social learning, allowing researchers to avoid some of the negative welfare implications associated with raising group-living animals under restricted social conditions. Finally, while non-grouping species may be capable of learning socially under experimental conditions, there is a need to consider how non-grouping restricts access to learning opportunities under natural conditions and whether this places a functional constraint on what non-grouping animals actually learn socially in the wild.
Collapse
Affiliation(s)
- Mike M Webster
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
29
|
Barron AB, Mourmourakis F. The Relationship between Cognition and Brain Size or Neuron Number. BRAIN, BEHAVIOR AND EVOLUTION 2023; 99:109-122. [PMID: 37487478 DOI: 10.1159/000532013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
The comparative approach is a powerful way to explore the relationship between brain structure and cognitive function. Thus far, the field has been dominated by the assumption that a bigger brain somehow means better cognition. Correlations between differences in brain size or neuron number between species and differences in specific cognitive abilities exist, but these correlations are very noisy. Extreme differences exist between clades in the relationship between either brain size or neuron number and specific cognitive abilities. This means that correlations become weaker, not stronger, as the taxonomic diversity of sampled groups increases. Cognition is the outcome of neural networks. Here we propose that considering plausible neural network models will advance our understanding of the complex relationships between neuron number and different aspects of cognition. Computational modelling of networks suggests that adding pathways, or layers, or changing patterns of connectivity in a network can all have different specific consequences for cognition. Consequently, models of computational architecture can help us hypothesise how and why differences in neuron number might be related to differences in cognition. As methods in connectomics continue to improve and more structural information on animal brains becomes available, we are learning more about natural network structures in brains, and we can develop more biologically plausible models of cognitive architecture. Natural animal diversity then becomes a powerful resource to both test the assumptions of these models and explore hypotheses for how neural network structure and network size might delimit cognitive function.
Collapse
Affiliation(s)
- Andrew B Barron
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Faelan Mourmourakis
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Grabowski M, Kopperud BT, Tsuboi M, Hansen TF. Both Diet and Sociality Affect Primate Brain-Size Evolution. Syst Biol 2023; 72:404-418. [PMID: 36454664 PMCID: PMC10275546 DOI: 10.1093/sysbio/syac075] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2023] Open
Abstract
Increased brain size in humans and other primates is hypothesized to confer cognitive benefits but brings costs associated with growing and maintaining energetically expensive neural tissue. Previous studies have argued that changes in either diet or levels of sociality led to shifts in brain size, but results were equivocal. Here we test these hypotheses using phylogenetic comparative methods designed to jointly account for and estimate the effects of adaptation and phylogeny. Using the largest current sample of primate brain and body sizes with observation error, complemented by newly compiled diet and sociality data, we show that both diet and sociality have influenced the evolution of brain size. Shifting from simple to more complex levels of sociality resulted in relatively larger brains, while shifting to a more folivorous diet led to relatively smaller brains. While our results support the role of sociality, they modify a range of ecological hypotheses centered on the importance of frugivory, and instead indicate that digestive costs associated with increased folivory may have resulted in relatively smaller brains. [adaptation; allometry; bayou; evolutionary trend; energetic constraints; phylogenetic comparative methods; primate brain size; Slouch; social-brain hypothesis.].
Collapse
Affiliation(s)
- Mark Grabowski
- Research Centre in Evolutionary Anthropology and Palaeoecology, Liverpool John Moores University, 3 Byrom Street, Liverpool L3 3AF, UK
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| | - Bjørn T Kopperud
- GeoBio-Center LMU, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Richard-Wagner Straße 10, 80333 Munich, Germany
| | - Masahito Tsuboi
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
- Department of Biology, Lund University, Ekologihuset, Sölvegatan 37, 223 62 Lund, Sweden
| | - Thomas F Hansen
- Department of Biosciences, University of Oslo, Blindernveien 31, 0371 Oslo, Norway
| |
Collapse
|
31
|
Pinho JS, Cunliffe V, Kareklas K, Petri G, Oliveira RF. Social and asocial learning in zebrafish are encoded by a shared brain network that is differentially modulated by local activation. Commun Biol 2023; 6:633. [PMID: 37308619 DOI: 10.1038/s42003-023-04999-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
Group living animals use social and asocial cues to predict the presence of reward or punishment in the environment through associative learning. The degree to which social and asocial learning share the same mechanisms is still a matter of debate. We have used a classical conditioning paradigm in zebrafish, in which a social (fish image) or an asocial (circle image) conditioned stimulus (CS) have been paired with an unconditioned stimulus (US=food), and we have used the expression of the immediate early gene c-fos to map the neural circuits associated with each learning type. Our results show that the learning performance is similar to social and asocial CSs. However, the brain regions activated in each learning type are distinct and a community analysis of brain network data reveals segregated functional submodules, which seem to be associated with different cognitive functions involved in the learning tasks. These results suggest that, despite localized differences in brain activity between social and asocial learning, they share a common learning module and social learning also recruits a specific social stimulus integration module. Therefore, our results support the occurrence of a common general-purpose learning module, that is differentially modulated by localized activation in social and asocial learning.
Collapse
Affiliation(s)
- Júlia S Pinho
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
- IMIM - Institut Hospital del Mar d'Investigacions Mèdiques, Barcelona, Spain
| | | | - Kyriacos Kareklas
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Giovanni Petri
- ISI Foundation and ISI Global Science Foundation, Torino, Italy
| | - Rui F Oliveira
- Integrative Behavioural Biology Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
- ISPA-Instituto Universitário, Lisboa, Portugal.
- Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
32
|
Triki Z, Fong S, Amcoff M, Vàsquez-Nilsson S, Kolm N. Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS NEXUS 2023; 2:pgad129. [PMID: 37346268 PMCID: PMC10281379 DOI: 10.1093/pnasnexus/pgad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.
Collapse
Affiliation(s)
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | | | | |
Collapse
|
33
|
Frankenhuis WE, Gopnik A. Early adversity and the development of explore-exploit tradeoffs. Trends Cogn Sci 2023:S1364-6613(23)00091-8. [PMID: 37142526 DOI: 10.1016/j.tics.2023.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 05/06/2023]
Abstract
Childhood adversity can have wide-ranging and long-lasting effects on later life. But what are the mechanisms that are responsible for these effects? This article brings together the cognitive science literature on explore-exploit tradeoffs, the empirical literature on early adversity, and the literature in evolutionary biology on 'life history' to explain how early experience influences later life. We propose one potential mechanism: early experiences influence 'hyperparameters' that determine the balance between exploration and exploitation. Adversity might accelerate a shift from exploration to exploitation, with broad and enduring effects on the adult brain and mind. These effects may be produced by life-history adaptations that use early experience to tailor development and learning to the likely future states of an organism and its environment.
Collapse
Affiliation(s)
- Willem E Frankenhuis
- Department of Psychology, Utrecht University, Utrecht, The Netherlands; Max Planck Institute for the Study of Crime, Security and Law, Freiburg, Germany.
| | - Alison Gopnik
- Department of Psychology and Berkeley Artificial Intelligence Research, University of California at Berkeley, CA, USA
| |
Collapse
|
34
|
Caicoya AL, Schaffer A, Holland R, von Fersen L, Colell M, Amici F. Innovation across 13 ungulate species: problem solvers are less integrated in the social group and less neophobic. Proc Biol Sci 2023; 290:20222384. [PMID: 37015274 PMCID: PMC10072937 DOI: 10.1098/rspb.2022.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/06/2023] Open
Abstract
Innovation is the ability to solve new problems or find novel solutions to familiar problems, and it is known to provide animals with crucial fitness benefits. Although this ability has been extensively studied in some taxa, the factors that predict innovation within and across species are still largely unclear. In this study, we used a novel foraging task to test 111 individuals belonging to 13 ungulate species-a still understudied taxon. To solve the task, individuals had to open transparent and opaque cups with food rewards, by removing their cover. We assessed whether individual factors (neophobia, social integration, sex, age, rank) and socio-ecological factors (dietary breadth, fission-fusion dynamics, domestication, group size) predicted participation and performance in the task. Using a phylogenetic approach, we showed that success was higher for less neophobic and socially less integrated individuals. Moreover, less neophobic individuals, individuals of domesticated species and having higher fission-fusion dynamics were more likely to participate in the task. These results are in line with recent literature suggesting a central role of sociality and personality traits to successfully deal with novel challenges, and confirm ungulates as a promising taxon to test evolutionary theories with a comparative approach.
Collapse
Affiliation(s)
- Alvaro L. Caicoya
- Department of Clinical Psychology and Psychobiology, Faculty of Psychology, University of Barcelona, 08007 Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, 08021 Barcelona, Spain
| | - Alina Schaffer
- Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany
- Zoo Leipzig, 04015 Leipzig, Germany
| | - Ruben Holland
- Research Group Human Biology and Primate Cognition, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Lorenzo von Fersen
- Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Montserrat Colell
- Institute of Neurosciences, University of Barcelona, 08021 Barcelona, Spain
- Behavioral Ecology Research Group, Institute of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Federica Amici
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
- Nuremberg Zoo, 90480 Nuremberg, Germany
| |
Collapse
|
35
|
Longman DP, Dolan E, Wells JCK, Stock JT. Patterns of energy allocation during energetic scarcity; evolutionary insights from ultra-endurance events. Comp Biochem Physiol A Mol Integr Physiol 2023; 281:111422. [PMID: 37031854 DOI: 10.1016/j.cbpa.2023.111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Exercise physiologists and evolutionary biologists share a research interest in determining patterns of energy allocation during times of acute or chronic energetic scarcity.. Within sport and exercise science, this information has important implications for athlete health and performance. For evolutionary biologists, this would shed new light on our adaptive capabilities as a phenotypically plastic species. In recent years, evolutionary biologists have begun recruiting athletes as study participants and using contemporary sports as a model for studying evolution. This approach, known as human athletic palaeobiology, has identified ultra-endurance events as a valuable experimental model to investigate patterns of energy allocation during conditions of elevated energy demand, which are generally accompanied by an energy deficit. This energetic stress provokes detectable functional trade-offs in energy allocation between physiological processes. Early results from this modelsuggest thatlimited resources are preferentially allocated to processes which could be considered to confer the greatest immediate survival advantage (including immune and cognitive function). This aligns with evolutionary perspectives regarding energetic trade-offs during periods of acute and chronic energetic scarcity. Here, we discuss energy allocation patterns during periods of energetic stress as an area of shared interest between exercise physiology and evolutionary biology. We propose that, by addressing the ultimate "why" questions, namely why certain traits were selected for during the human evolutionary journey, an evolutionary perspective can complement the exercise physiology literature and provide a deeper insight of the reasons underpinning the body's physiological response to conditions of energetic stress.
Collapse
Affiliation(s)
- Daniel P Longman
- School of Sport, Health and Exercise Sciences, Loughborough University, Loughborough LE11 3TU, United Kingdom.
| | - Eimear Dolan
- Applied Physiology and Nutrition Research Group, School of Physical Education and Sport, Rheumatology Division, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Jonathan C K Wells
- Childhood Nutrition Research Centre, UCL Institute of Child Health, London WC1N 1EH, United Kingdom
| | - Jay T Stock
- Department of Archaeology, University of Cambridge, Cambridge CB2 3QG, United Kingdom; Department of Anthropology, University of Western Ontario, Ontario, Canada
| |
Collapse
|
36
|
Nengovhela A, Ivy CM, Scott GR, Denys C, Taylor PJ. Counter-gradient variation and the expensive tissue hypothesis explain parallel brain size reductions at high elevation in cricetid and murid rodents. Sci Rep 2023; 13:5617. [PMID: 37024565 PMCID: PMC10079977 DOI: 10.1038/s41598-023-32498-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
To better understand functional morphological adaptations to high elevation (> 3000 m above sea level) life in both North American and African mountain-associated rodents, we used microCT scanning to acquire 3D images and a 3D morphometric approach to calculate endocranial volumes and skull lengths. This was done on 113 crania of low-elevation and high-elevation populations in species of North American cricetid mice (two Peromyscus species, n = 53), and African murid rodents of two tribes, Otomyini (five species, n = 49) and Praomyini (four species, n = 11). We tested two distinct hypotheses for how endocranial volume might vary in high-elevation populations: the expensive tissue hypothesis, which predicts that brain and endocranial volumes will be reduced to lessen the costs of growing and maintaining a large brain; and the brain-swelling hypothesis, which predicts that endocranial volumes will be increased either as a direct phenotypic effect or as an adaptation to accommodate brain swelling and thus minimize pathological symptoms of altitude sickness. After correcting for general allometric variation in cranial size, we found that in both North American Peromyscus mice and African laminate-toothed (Otomys) rats, highland rodents had smaller endocranial volumes than lower-elevation rodents, consistent with the expensive tissue hypothesis. In the former group, Peromyscus mice, crania were obtained not just from wild-caught mice from high and low elevations but also from those bred in common-garden laboratory conditions from parents caught from either high or low elevations. Our results in these mice showed that brain size responses to elevation might have a strong genetic basis, which counters an opposite but weaker environmental effect on brain volume. These results potentially suggest that selection may act to reduce brain volume across small mammals at high elevations but further experiments are needed to assess the generality of this conclusion and the nature of underlying mechanisms.
Collapse
Affiliation(s)
- Aluwani Nengovhela
- Department of Mammalogy, National Museum, Bloemfontein, 9300, South Africa.
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa.
| | - Catherine M Ivy
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Graham R Scott
- Department of Biology, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Christiane Denys
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, CP51, 57 Rue Cuvier, 75005, Paris, France
| | - Peter J Taylor
- Department of Zoology, School of Natural and Mathematical Sciences, University of Venda, Thohoyandou, South Africa
- Afromontane Unit, Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| |
Collapse
|
37
|
Extractive foraging behaviour in woodpeckers evolves in species that retain a large ancestral brain. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
38
|
Constanti Crosby L, Sayol F, Horswill C. Relative brain size is associated with natal dispersal rate and species' vulnerability to climate change in seabirds. OIKOS 2023. [DOI: 10.1111/oik.09698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
39
|
Innovative problem-solving in a small, wild canid. Anim Cogn 2023; 26:405-413. [PMID: 35994141 DOI: 10.1007/s10071-022-01678-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 08/02/2022] [Accepted: 08/12/2022] [Indexed: 11/01/2022]
Abstract
Innovation - the ability to solve problems in a novel way - is not only associated with cognitive abilities and relative brain size, but also by noncognitive traits, such as personality and motivation. We used a novel foraging task with three access options to determine how neophobia, exploration, and persistence influence innovation in 12 habituated bat-eared foxes (Otocyon megalotis) in the Kalahari Desert. Bat-eared foxes offer a unique system to understand cognition as they have the smallest relative brain size of measured canids and a specialized, termite-based diet, yet have displayed foraging innovations. Interestingly, most of our individuals solved the task at least once and six individuals solved the task in every trial. Neophobia did not influence success on the first trial, but both exploration and persistence influenced success across all trials. Those individuals that solved the puzzle over multiple trials became faster over time, suggesting that they learned how to open the box more efficiently. We found some variation in the method to open the puzzle box with six individuals solving the puzzle using two methods and one individual using all three methods. This is the first study to show innovation in a novel foraging task in wild bat-eared foxes.
Collapse
|
40
|
Abstract
Large brains provide adaptive cognitive benefits but require unusually high, near-constant energy inputs and become fully functional well after their growth is completed. Consequently, young of most larger-brained endotherms should not be able to independently support the growth and development of their own brains. This paradox is solved if the evolution of extended parental provisioning facilitated brain size evolution. Comparative studies indeed show that extended parental provisioning coevolved with brain size and that it may improve immature survival. The major role of extended parental provisioning supports the idea that the ability to sustain the costs of brains limited brain size evolution.
Collapse
|
41
|
Gräßle T, Crockford C, Eichner C, Girard‐Buttoz C, Jäger C, Kirilina E, Lipp I, Düx A, Edwards L, Jauch A, Kopp KS, Paquette M, Pine K, Haun DBM, McElreath R, Anwander A, Gunz P, Morawski M, Friederici AD, Weiskopf N, Leendertz FH, Wittig RM, Albig K, Amarasekaran B, Angedakin S, Anwander A, Aschoff D, Asiimwe C, Bailanda L, Beehner JC, Belais R, Bergman TJ, Blazey B, Bernhard A, Bock C, Carlier P, Chantrey J, Crockford C, Deschner T, Düx A, Edwards L, Eichner C, Escoubas G, Ettaj M, Fedurek P, Flores K, Francke R, Friederici AD, Girard‐Buttoz C, Fortun JG, GoneBi ZB, Gräßle T, Gruber‐Dujardin E, Gunz P, Hartel J, Haun DBM, Henshall M, Hobaiter C, Hofman N, Jaffe JE, Jäger C, Jauch A, Kahemere S, Kirilina E, Klopfleisch R, Knauf‐Witzens T, Kopp KS, Kouima GLM, Lange B, Langergraber K, Lawrenz A, Leendertz FH, Lipp I, Liptovszky M, Theron TL, Lumbu CP, Nzassi PM, Mätz‐Rensing K, McElreath R, McLennan M, Mezö Z, Moittie S, Møller T, Morawski M, Morgan D, Mugabe T, Muller M, Müller M, Njumboket I, Olofsson‐Sannö K, Ondzie A, Otali E, Paquette M, Pika S, Pine K, Pizarro A, Pléh K, Rendel J, Reichler‐Danielowski S, Robbins MM, Forero AR, Ruske K, Samuni L, Sanz C, Schüle A, Schwabe I, Schwalm K, Speede S, Southern L, Steiner J, Stidworthy M, Surbeck M, Szentiks C, Tanga T, Ulrich R, Unwin S, van de Waal E, Walker S, Weiskopf N, Wibbelt G, Wittig RM, Wood K, Zuberbühler K. Sourcing high tissue quality brains from deceased wild primates with known socio‐ecology. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tobias Gräßle
- Epidemiology of highly pathogenic microorganisms Robert Koch‐Institute Berlin Germany
- Helmholtz Institute for One Health Greifswald Germany
| | - Catherine Crockford
- Ape Social Mind Lab Institute of Cognitive Science Marc Jeannerod, UMR 5229, CNRS Lyon France
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire Abidjan Ivory Coast
| | - Cornelius Eichner
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Cédric Girard‐Buttoz
- Ape Social Mind Lab Institute of Cognitive Science Marc Jeannerod, UMR 5229, CNRS Lyon France
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire Abidjan Ivory Coast
| | - Carsten Jäger
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Paul Flechsig Institute ‐ Center of Neuropathology and Brain Research, Faculty of Medicine Universität Leipzig Germany
| | - Evgeniya Kirilina
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Center for Cognitive Neuroscience Berlin Freie Universität Berlin Berlin Germany
| | - Ilona Lipp
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Ariane Düx
- Epidemiology of highly pathogenic microorganisms Robert Koch‐Institute Berlin Germany
- Helmholtz Institute for One Health Greifswald Germany
| | - Luke Edwards
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Anna Jauch
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Kathrin S. Kopp
- Department of Comparative Cultural Psychology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Michael Paquette
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Kerrin Pine
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Daniel B. M. Haun
- Department of Comparative Cultural Psychology Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Richard McElreath
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Alfred Anwander
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Philipp Gunz
- Department of Human Evolution Max Planck Institute for Evolutionary Anthropology Leipzig Germany
| | - Markus Morawski
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Paul Flechsig Institute ‐ Center of Neuropathology and Brain Research, Faculty of Medicine Universität Leipzig Germany
| | - Angela D. Friederici
- Department of Neuropsychology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences Leipzig University Leipzig Germany
| | - Fabian H. Leendertz
- Epidemiology of highly pathogenic microorganisms Robert Koch‐Institute Berlin Germany
- Helmholtz Institute for One Health Greifswald Germany
| | - Roman M. Wittig
- Ape Social Mind Lab Institute of Cognitive Science Marc Jeannerod, UMR 5229, CNRS Lyon France
- Department of Human Behavior, Ecology and Culture Max Planck Institute for Evolutionary Anthropology Leipzig Germany
- Taï Chimpanzee Project Centre Suisse de Recherches Scientifiques en Côte d'Ivoire Abidjan Ivory Coast
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Large brains support numerous cognitive adaptations and therefore may appear to be highly beneficial. Nonetheless, the high energetic costs of brain tissue may have prevented the evolution of large brains in many species. This problem may also have a developmental dimension: juveniles, with their immature and therefore poorly performing brains, would face a major energetic hurdle if they were to pay for the construction of their own brain, especially in larger-brained species. Here, we explore the possible role of parental provisioning for the development and evolution of adult brain size in birds. A comparative analysis of 1,176 bird species shows that various measures of parental provisioning (precocial vs. altricial state at hatching, relative egg mass, time spent provisioning the young) strongly predict relative brain size across species. The parental provisioning hypothesis also provides an explanation for the well-documented but so far unexplained pattern that altricial birds have larger brains than precocial ones. We therefore conclude that the evolution of parental provisioning allowed species to overcome the seemingly insurmountable energetic constraint on growing large brains, which in turn enabled bird species to increase survival and population stability. Because including adult eco- and socio-cognitive predictors only marginally improved the explanatory value of our models, these findings also suggest that the traditionally assessed cognitive abilities largely support successful parental provisioning. Our results therefore indicate that the cognitive adaptations underlying successful parental provisioning also provide the behavioral flexibility facilitating reproductive success and survival.
Collapse
|
43
|
Poissonnier LA, Tait C, Lihoreau M. What is really social about social insect cognition? Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1001045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
It is often assumed that social life imposes specific cognitive demands for animals to communicate, cooperate and compete, ultimately requiring larger brains. The “social brain” hypothesis is supported by data in primates and some other vertebrates, but doubts have been raised over its applicability to other taxa, and in particular insects. Here, we review recent advances in insect cognition research and ask whether we can identify cognitive capacities that are specific to social species. One difficulty involved in testing the social brain hypothesis in insects is that many of the model species used in cognition studies are highly social (eusocial), and comparatively little work has been done in insects that live in less integrated social structures or that are solitary. As more species are studied, it is becoming clear that insects share a rich cognitive repertoire and that these abilities are not directly related to their level of social complexity. Moreover, some of the cognitive mechanisms involved in many social interactions may not differ from those involved in non-social behaviors. We discuss the need for a more comparative and neurobiologically grounded research agenda to better understand the evolution of insect brains and cognition.
Collapse
|
44
|
Hardie JL, Cooney CR. Sociality, ecology and developmental constraints predict variation in brain size across birds. J Evol Biol 2023; 36:144-155. [PMID: 36357968 PMCID: PMC10100238 DOI: 10.1111/jeb.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/12/2022]
Abstract
Conflicting theories have been proposed to explain variation in relative brain size across the animal kingdom. Ecological theories argue that the cognitive demands of seasonal or unpredictable environments have selected for increases in relative brain size, whereas the 'social brain hypothesis' argues that social complexity is the primary driver of brain size evolution. Here, we use a comparative approach to test the relative importance of ecology (diet, foraging niche and migration), sociality (social bond, cooperative breeding and territoriality) and developmental mode in shaping brain size across 1886 bird species. Across all birds, we find a highly significant effect of developmental mode and foraging niche on brain size, suggesting that developmental constraints and selection for complex motor skills whilst foraging generally imposes important selection on brain size in birds. We also find effects of social bonding and territoriality on brain size, but the direction of these effects do not support the social brain hypothesis. At the same time, we find extensive heterogeneity among major avian clades in the relative importance of different variables, implying that the significance of particular ecological and social factors for driving brain size evolution is often clade- and context-specific. Overall, our results reveal the important and complex ways in which ecological and social selection pressures and developmental constraints shape brain size evolution across birds.
Collapse
Affiliation(s)
- Jasmine L Hardie
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Christopher R Cooney
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
45
|
Howell KJ, Walsh MR. Transplant experiments demonstrate that larger brains are favoured in high-competition environments in Trinidadian killifish. Ecol Lett 2023; 26:53-62. [PMID: 36262097 DOI: 10.1111/ele.14133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 12/27/2022]
Abstract
The extent to which the evolution of a larger brain is adaptive remains controversial. Trinidadian killifish (Anablepsoides hartii) are found in sites that differ in predation intensity; fish that experience decreased predation and increased intraspecific competition exhibit larger brains. We evaluated the connection between brain size and fitness (survival and growth) when killifish are found in their native habitats and when fish are transplanted from sites with predators to high-competition sites that lack predators. Selection for a larger brain was absent within locally adapted populations. Conversely, there was a strong positive relationship between brain size and growth in transplanted but not resident fish in high-competition environments. We also observed significantly larger brain sizes in the transplanted fish that were recaptured at the end of the experiment versus those that were not. Our results provide experimental support that larger brains increase fitness and are favoured in high-competition environments.
Collapse
Affiliation(s)
- Kaitlyn J Howell
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| | - Matthew R Walsh
- Department of Biology, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
46
|
Correia I, Gomes BDF, Villalobos F, Ferrari SF, Gouveia SF. Lessons from comparative primatology for understanding trait covariation and diversity in evolutionary ecology. Mamm Rev 2022. [DOI: 10.1111/mam.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isadora Correia
- Graduate Program in Ecology and Conservation Universidade Federal de Sergipe 49100‐000 São Cristóvão Sergipe Brazil
| | | | - Fabricio Villalobos
- Evolutionary Biology Network Instituto de Ecología A.C. ‐ INECOL, Xalapa Veracruz Mexico
| | - Stephen F. Ferrari
- Department of Ecology Universidade Federal de Sergipe São Cristóvão Sergipe Brazil
| | - Sidney F. Gouveia
- Department of Ecology Universidade Federal de Sergipe São Cristóvão Sergipe Brazil
| |
Collapse
|
47
|
Fu Y, Song Y, Yang C, Liu X, Liu Y, Huang Y. Relationship between brain size and digestive tract length support the expensive-tissue hypothesis in Feirana quadranus. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.982590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The brain is among the most energetically costly organs in the vertebrate body, while the size of the brain varies within species. The expensive-tissue hypothesis (ETH) predicts that increasing the size of another costly organ, such as the gut, should compensate for the cost of a small brain. Here, the ETH was tested by analyzing the relationship between brain size variation and digestive tract length in a Swelled-vented frog (Feirana quadranus). A total of 125 individuals across 10 populations ranging from 586 to 1,702 m a.s.l. from the Qinling-Daba Mountains were sampled. With the increase in altitude, the brain size decreases and the digestive tract length increases. Different brain regions do not change their relative size in a consistent manner. The sizes of telencephalon and cerebellum decrease with the increase in altitude, while the olfactory nerve increases its size at high altitudes. However, the olfactory bulb and optic tectum have no significant relationship with altitude. After controlling for snout-vent length (SVL), a significant negative correlation could be found between brain size and digestive tract length in F. quadranus. Therefore, the intraspecific variation of brain size follows the general patterns of ETH in this species. The results suggest that annual mean temperature and annual precipitation are environmental factors influencing the adaptive evolution of brain size and digestive tract length. This study also suggests that food composition, activity times, and habitat complexity are the potential reasons driving the adaptive evolution of brain size and digestive tract length.
Collapse
|
48
|
Shultz S, Dunbar RIM. Socioecological complexity in primate groups and its cognitive correlates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210296. [PMID: 35934968 PMCID: PMC9358314 DOI: 10.1098/rstb.2021.0296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/21/2022] [Indexed: 11/12/2022] Open
Abstract
Characterizing non-human primate social complexity and its cognitive bases has proved challenging. Using principal component analyses, we show that primate social, ecological and reproductive behaviours condense into two components: socioecological complexity (including most social and ecological variables) and reproductive cooperation (comprising mainly a suite of behaviours associated with pairbonded monogamy). We contextualize these results using a meta-analysis of 44 published analyses of primate brain evolution. These studies yield two main consistent results: cognition, sociality and cooperative behaviours are associated with absolute brain volume, neocortex size and neocortex ratio, whereas diet composition and life history are consistently associated with relative brain size. We use a path analysis to evaluate the causal relationships among these variables, demonstrating that social group size is predicted by the neocortex, whereas ecological traits are predicted by the volume of brain structures other than the neocortex. That a range of social and technical behaviours covary, and are correlated with social group size and brain size, suggests that primate cognition has evolved along a continuum resulting in an increasingly flexible, domain-general capacity to solve a range of socioecological challenges culminating in a capacity for, and reliance on, innovation and social information use in the great apes and humans. This article is part of the theme issue 'Cognition, communication and social bonds in primates'.
Collapse
Affiliation(s)
- Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
49
|
Girard-Buttoz C, Bortolato T, Laporte M, Grampp M, Zuberbühler K, Wittig RM, Crockford C. Population-specific call order in chimpanzee greeting vocal sequences. iScience 2022; 25:104851. [PMID: 36034222 PMCID: PMC9399282 DOI: 10.1016/j.isci.2022.104851] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/01/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
Primates rarely learn new vocalizations, but they can learn to use their vocalizations in different contexts. Such "vocal usage learning," particularly in vocal sequences, is a hallmark of human language, but remains understudied in non-human primates. We assess usage learning in four wild chimpanzee communities of Taï and Budongo Forests by investigating population differences in call ordering of a greeting vocal sequence. Whilst in all groups, these sequences consisted of pant-hoots (long-distance contact call) and pant-grunts (short-distance submissive call), the order of the two calls differed across populations. Taï chimpanzees consistently commenced greetings with pant-hoots, whereas Budongo chimpanzees started with pant-grunts. We discuss different hypotheses to explain this pattern and conclude that higher intra-group aggression in Budongo may have led to a local pattern of individuals signaling submission first. This highlights how within-species variation in social dynamics may lead to flexibility in call order production, possibly acquired via usage learning.
Collapse
Affiliation(s)
- Cédric Girard-Buttoz
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Tatiana Bortolato
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Marion Laporte
- Histoire naturelle de l'Homme préhistorique, UMR 7194, PaleoFED, Muséum National d'Histoire Naturelle, 17 place du Trocadéro et du 11 Novembre, 75116 Paris, France
- Institut des Sciences du Calcul et des Données, Sorbonne Université, Paris, France
| | - Mathilde Grampp
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Klaus Zuberbühler
- Universite de Neuchatel, Institut de Biologie, Cognition Compare, Neuchatel, Switzerland
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Scotland
- Budongo Conservation Field Station, Masindi, Uganda
| | - Roman M. Wittig
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| | - Catherine Crockford
- The Ape Social Mind Lab, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229, CNRS, 67 Boulevard Pinel, Bron, Lyon 69675 France
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
- Taï Chimpanzee Project, Centre Suisse de Recherches Scientifiques, Abidjan, Ivory Coast
| |
Collapse
|
50
|
Lynch LM, Allen KL. Relative Brain Volume of Carnivorans Has Evolved in Correlation with Environmental and Dietary Variables Differentially among Clades. BRAIN, BEHAVIOR AND EVOLUTION 2022; 97:284-297. [PMID: 35235933 DOI: 10.1159/000523787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
Abstract
Carnivorans possess relatively large brains compared to most other mammalian clades. Factors like environmental complexity (Cognitive Buffer Hypothesis) and diet quality (Expensive-Tissue Hypothesis) have been proposed as mechanisms for encephalization in other large-brained clades. We examine whether the Cognitive Buffer and Expensive-Tissue Hypotheses account for brain size variation within Carnivora. Under these hypotheses, we predict a positive correlation between brain size and environmental complexity or protein consumption. Relative endocranial volume (phylogenetic generalized least-squares residual from species' mean body mass) and 9 environmental and dietary variables were collected from the literature for 148 species of terrestrial and marine carnivorans. We found that the correlation between relative brain volume and environment and diet differed among clades, a trend consistent with other larger brained vertebrates (i.e., Primates, Aves). Mustelidae and Procyonidae demonstrate larger brains in species with higher-quality diets, consistent with the Expensive-Tissue Hypothesis, while in Herpestidae, correlations between relative brain size and environment are consistent with the Cognitive Buffer Hypothesis. Our results indicate that carnivorans may have evolved relatively larger brains under similar selective pressures as primates despite the considerable differences in life history and behavior between these two clades.
Collapse
Affiliation(s)
- Leigha M Lynch
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.,Midwestern University, Glendale, Arizona, USA
| | - Kari L Allen
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|