1
|
Németh BZ, Kiss B, Sahin-Tóth M, Magyar C, Pál G. The High-Affinity Chymotrypsin Inhibitor Eglin C Poorly Inhibits Human Chymotrypsin-Like Protease: Gln192 and Lys218 Are Key Determinants. Proteins 2025; 93:543-554. [PMID: 39301701 DOI: 10.1002/prot.26750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/17/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Abstract
Eglin C, a small protein from the medicinal leech, has been long considered a general high-affinity inhibitor of chymotrypsins and elastases. Here, we demonstrate that eglin C inhibits human chymotrypsin-like protease (CTRL) weaker by several orders of magnitude than other chymotrypsins. In order to identify the underlying structural aspects of this unique deviation, we performed comparative molecular dynamics simulations on experimental and AlphaFold model structures of bovine CTRA and human CTRL. Our results indicate that in CTRL, the primary determinants of the observed weak inhibition are amino-acid positions 192 and 218 (using conventional chymotrypsin numbering), which participate in shaping the S1 substrate-binding pocket and thereby affect the stability of the protease-inhibitor complexes.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, California, Los Angeles, USA
| | - Csaba Magyar
- Institute of Molecular Life Sciences, Protein Bioinformatics Research Group, Hungarian Research Network, Budapest, Hungary
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
2
|
Chvanov M, Voronina S, Jefferson M, Mayer U, Sutton R, Criddle DN, Wileman T, Tepikin AV. Deletion of the WD40 domain of ATG16L1 exacerbates acute pancreatitis, abolishes LAP-like non-canonical autophagy and slows trypsin degradation. Autophagy 2025; 21:210-222. [PMID: 39216469 DOI: 10.1080/15548627.2024.2392478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
The WD40 domain (WDD) of ATG16L1 plays a pivotal role in non-canonical autophagy. This study examined the role of recently identified LAP-like non-canonical autophagy (LNCA) in acute pancreatitis. LNCA involves rapid single-membrane LC3 conjugation to endocytic vacuoles in pancreatic acinar cells. The rationale for this study was the previously observed presence of trypsin in the organelles undergoing LNCA; aberrant trypsin formation is an important factor in pancreatitis development. Here we report that the deletion of WDD (attained in ATG16L1[E230] mice) eliminated LNCA, aggravated caerulein-induced acute pancreatitis and suppressed the fast trypsin degradation observed in both a rapid caerulein-induced disease model and in caerulein-treated isolated pancreatic acinar cells. These experiments indicate that LNCA is a WDD-dependent mechanism and suggest that it plays not an activating but a protective role in acute pancreatitis. Furthermore, palmitoleic acid, another inducer of experimental acute pancreatitis, strongly inhibited LNCA, suggesting a novel mechanism of pancreatic lipotoxicity.Abbreviation: AMY: amylase; AP: acute pancreatitis; CASM: conjugation of Atg8 to single membranes; CCK: cholecystokinin; FAEE model: fatty acid and ethanol model; IL6: interleukin 6; LA: linoleic acid; LAP: LC3-associated phagocytosis; LMPO: lung myeloperoxidase; LNCA: LAP-like non-canonical autophagy; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MPO: myeloperoxidase; PMPO: pancreatic myeloperoxidase; POA: palmitoleic acid; WDD: WD40 domain; WT: wild type.
Collapse
Affiliation(s)
- Michael Chvanov
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Svetlana Voronina
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Matthew Jefferson
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Robert Sutton
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
- Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - David N Criddle
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Thomas Wileman
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Alexei V Tepikin
- Department of Molecular & Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
3
|
Gukovskaya AS, Lerch MM, Mayerle J, Sendler M, Ji B, Saluja AK, Gorelick FS, Gukovsky I. Trypsin in pancreatitis: The culprit, a mediator, or epiphenomenon? World J Gastroenterol 2024; 30:4417-4438. [PMID: 39534420 PMCID: PMC11551668 DOI: 10.3748/wjg.v30.i41.4417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 10/23/2024] Open
Abstract
Pancreatitis is a common, life-threatening inflammatory disease of the exocrine pancreas. Its pathogenesis remains obscure, and no specific or effective treatment is available. Gallstones and alcohol excess are major etiologies of pancreatitis; in a small portion of patients the disease is hereditary. Pancreatitis is believed to be initiated by injured acinar cells (the main exocrine pancreas cell type), leading to parenchymal necrosis and local and systemic inflammation. The primary function of these cells is to produce, store, and secrete a variety of enzymes that break down all categories of nutrients. Most digestive enzymes, including all proteases, are secreted by acinar cells as inactive proforms (zymogens) and in physiological conditions are only activated when reaching the intestine. The generation of trypsin from inactive trypsinogen in the intestine plays a critical role in physiological activation of other zymogens. It was proposed that pancreatitis results from proteolytic autodigestion of the gland, mediated by premature/inappropriate trypsinogen activation within acinar cells. The intra-acinar trypsinogen activation is observed in experimental models of acute and chronic pancreatitis, and in human disease. On the basis of these observations, it has been considered the central pathogenic mechanism of pancreatitis - a concept with a century-old history. This review summarizes the data on trypsinogen activation in experimental and genetic rodent models of pancreatitis, particularly the more recent genetically engineered mouse models that mimic mutations associated with hereditary pancreatitis; analyzes the mechanisms mediating trypsinogen activation and protecting the pancreas against its' damaging effects; discusses the gaps in our knowledge, potential therapeutic approaches, and directions for future research. We conclude that trypsin is not the culprit in the disease pathogenesis but, at most, a mediator of some pancreatitis responses. Therefore, the search for effective therapies should focus on approaches to prevent or normalize other intra-acinar pathologic processes, such as defective autophagy leading to parenchymal cell death and unrelenting inflammation.
Collapse
Affiliation(s)
- Anna S Gukovskaya
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| | - Markus M Lerch
- Department of Medicine, Ludwig Maximilian University Hospital, Munich 81377, Germany
| | - Julia Mayerle
- Department of Medicine II, Ludwig Maximilian University of Munich, Munich 81377, Germany
| | - Matthias Sendler
- Department of Medicine A, University of Greifswald, Greifswald 17475, Germany
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, United States
| | - Ashok K Saluja
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Fred S Gorelick
- Departments of Cell Biology and Internal Medicine, Yale University School of Medicine and VA West Haven, New Haven, CT 06519, United States
| | - Ilya Gukovsky
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90073, United States
- Department of Medicine, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, United States
| |
Collapse
|
4
|
Upadhaya AH, Mirgane HA, Pandey SP, Patil VS, Bhosale SV, Singh PK. Electrostatically Engineered Tetraphenylethylene-Based Fluorescence Sensor for Protamine and Trypsin: Leveraging Aggregation-Induced Emission for Enhanced Sensitivity and Selectivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19357-19369. [PMID: 39241011 DOI: 10.1021/acs.langmuir.4c01315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
The accurate detection of Protamine and Trypsin, two biomolecules with significant clinical and biological relevance, presents a substantial challenge because of their structural peculiarities, low abundance in physiological fluids, and potential interference from other substances. Protamine, a cationic protein, is crucial for counteracting heparin overdoses, whereas Trypsin, a serine protease, is integral to protein digestion and enzyme activation. This study introduces a novel fluorescence sensor based on a (4-(1,2,2-tris(4-phosphonophenyl)vinyl)phenyl)phosphonic acid octasodium salt (TPPE), leveraging aggregation-induced emission (AIE) characteristics and electrostatic interactions to achieve selective and sensitive detection of these biomolecules. Through comprehensive optical characterization, including ground-state absorption, steady-state, and time-resolved emission spectroscopy, the interaction mechanisms and aggregation dynamics of TPPE with Protamine and Trypsin were elucidated. The sensor exhibits very high sensitivity (LOD: 1.45 nM for Protamine and 32 pM for Trypsin), selectivity, and stability, successfully operating in complex biological matrices, such as human serum and urine. Importantly, this sensor design underscores the synergy between the AIE phenomena and biomolecular interactions, offering a promising alternative for analytical applications in biomedical research and clinical diagnostics. The principles outlined herein open new avenues for the development of other AIE-based sensors, expanding the toolkit available for detecting a wide range of biomolecules using similar design strategies.
Collapse
Affiliation(s)
- Aditi H Upadhaya
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
- SVKM's Shri C. B. Patel Research Centre, Vile Parle, Mumbai, Maharashtra 400056, India
| | - Harshad A Mirgane
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Shrishti P Pandey
- Department of Biotechnology, Mithibai College of Arts, Chauhan Institute of Science & Amrutben Jivanlal College of Commerce and Economics, Vile Parle (W) 400 056, India
| | - Vrushali S Patil
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sheshanath V Bhosale
- Department of Chemistry, School of Chemical Sciences, Central University of Karnataka, Kalaburagi 585367, Karnataka, India
| | - Prabhat K Singh
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400085, India
| |
Collapse
|
5
|
Lee Y, Lee K. Pancreatic Diseases: Genetics and Modeling Using Human Pluripotent Stem Cells. Int J Stem Cells 2024; 17:253-269. [PMID: 38664226 PMCID: PMC11361847 DOI: 10.15283/ijsc24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 08/31/2024] Open
Abstract
Pancreas serves endocrine and exocrine functions in the body; thus, their pathology can cause a broad range of irreparable consequences. Endocrine functions include the production of hormones such as insulin and glucagon, while exocrine functions involve the secretion of digestive enzymes. Disruption of these functions can lead to conditions like diabetes mellitus and exocrine pancreatic insufficiency. Also, the symptoms and causality of pancreatic cancer very greatly depends on their origin: pancreatic ductal adenocarcinoma is one of the most fatal cancer; however, most of tumor derived from endocrine part of pancreas are benign. Pancreatitis, an inflammation of the pancreatic tissues, is caused by excessive alcohol consumption, the bile duct obstruction by gallstones, and the premature activation of digestive enzymes in the pancreas. Hereditary pancreatic diseases, such as maturity-onset diabetes of the young and hereditary pancreatitis, can be a candidate for disease modeling using human pluripotent stem cells (hPSCs), due to their strong genetic influence. hPSC-derived pancreatic differentiation has been established for cell replacement therapy for diabetic patients and is robustly used for disease modeling. The disease modeling platform that allows interactions between immune cells and pancreatic cells is necessary to perform in-depth investigation of disease pathogenesis.
Collapse
Affiliation(s)
- Yuri Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Kihyun Lee
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
6
|
Stefanovics R, Sándor M, Demcsák A, Berke G, Németh BC, Zhang W, Abu-El-Haija M, Sahin-Tóth M. Novel chymotrypsin C (CTRC) variants from real-world genetic testing of pediatric chronic pancreatitis cases. Pancreatology 2024; 24:690-697. [PMID: 38876922 PMCID: PMC11529566 DOI: 10.1016/j.pan.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Chymotrypsin C (CTRC) protects the pancreas against unwanted intrapancreatic trypsin activity through degradation of trypsinogen. Loss-of-function CTRC variants increase the risk for chronic pancreatitis (CP). The aim of the present study was to characterize novel CTRC variants found during genetic testing of CP cases at a pediatric pancreatitis center. METHODS We used next-generation sequencing to screen patients. We analyzed the functional effects of CTRC variants in HEK 293T cells and using purified enzymes. RESULTS In 5 separate cases, we detected 5 novel heterozygous CTRC variants: c.407C>T (p.Thr136Ile), c.550G>A (p.Ala184Thr), c.627Cdup (p.Ser210Leufs∗?, where the naming indicates a frame shift with no stop codon), c.628T>C (p.Ser210Pro), and c.779A>G (p.Asp260Gly). Functional studies revealed that with the exception of p.Ser210Leufs∗?, the CTRC variants were secreted normally from transfected cells. Enzyme activity of purified variants p.Thr136Ile, p.Ala184Thr, and p.Asp260Gly was similar to that of wild-type CTRC, whereas variant p.Ser210Pro was inactive. The frame-shift variant p.Ser210Leufs∗? was not secreted but accumulated intracellularly, and induced endoplasmic reticulum stress, as judged by elevated mRNA levels of HSPA5 and DDIT3, and increased mRNA splicing of XBP1. CONCLUSIONS CTRC variants p.Ser210Pro and p.Ser210Leufs∗? abolish CTRC function and should be classified as pathogenic. Mechanistically, variant p.Ser210Pro directly affects the amino acid at the bottom of the substrate-binding pocket while the frame-shift variant promotes misfolding and thereby blocks enzyme secretion. Importantly, 3 of the 5 novel CTRC variants proved to be benign, indicating that functional analysis is indispensable for reliable determination of pathogenicity and the correct interpretation of genetic test results.
Collapse
Affiliation(s)
- Regina Stefanovics
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA; Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary; Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Máté Sándor
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Gergő Berke
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Balázs Csaba Németh
- Hungarian Centre of Excellence for Molecular Medicine - University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary; Center for Gastroenterology, Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Wenying Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Maisam Abu-El-Haija
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Takeuchi C, Sato J, Yamamichi N, Kageyama-Yahara N, Sasaki A, Akahane T, Aoki R, Nakajima S, Ito M, Yamamichi M, Liu YY, Sakuma N, Takahashi Y, Sakaguchi Y, Tsuji Y, Sakurai K, Tomida S, Niimi K, Ushijima T, Fujishiro M. Marked intestinal trans-differentiation by autoimmune gastritis along with ectopic pancreatic and pulmonary trans-differentiation. J Gastroenterol 2024; 59:95-108. [PMID: 37962678 PMCID: PMC10810929 DOI: 10.1007/s00535-023-02055-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
BACKGROUND Autoimmune gastritis (AIG) is a prevalent chronic inflammatory disease with oncogenic potential that causes destruction of parietal cells and severe mucosal atrophy. We aimed to explore the distinctive gene expression profiles, activated signaling pathways, and their underlying mechanisms. METHODS A comprehensive gene expression analysis was conducted using biopsy specimens from AIG, Helicobacter pylori-associated gastritis (HPG), and non-inflammatory normal stomachs. Gastric cancer cell lines were cultured under acidic (pH 6.5) conditions to evaluate changes in gene expression. RESULTS Gastric mucosa with AIG had a unique gene expression profile compared with that with HPG and normal mucosa, such as extensively low expression of ATP4A and high expression of GAST and PAPPA2, which are involved in neuroendocrine tumorigenesis. Additionally, the mucosa with AIG and HPG showed the downregulation of stomach-specific genes and upregulation of small intestine-specific genes; however, intestinal trans-differentiation was much more prominent in AIG samples, likely in a CDX-dependent manner. Furthermore, AIG induced ectopic expression of pancreatic digestion-related genes, PNLIP, CEL, CTRB1, and CTRC; and a master regulator gene of the lung, NKX2-1/TTF1 with alveolar fluid secretion-related genes, SFTPB and SFTPC. Mechanistically, acidic conditions led to the downregulation of master regulator and stemness control genes of small intestine, suggesting that increased environmental pH may cause abnormal intestinal differentiation in the stomach. CONCLUSIONS AIG induces diverse trans-differentiation in the gastric mucosa, characterized by the transactivation of genes specific to the small intestine, pancreas, and lung. Increased environmental pH owing to AIG may cause abnormal differentiation of the gastric mucosa.
Collapse
Affiliation(s)
- Chihiro Takeuchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Junichi Sato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Nobutake Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan.
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan.
| | - Natsuko Kageyama-Yahara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Akiko Sasaki
- Department of Gastroenterology, Medicine Center, Shonan Kamakura General Hospital, Kanagawa, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Nara, Japan
| | - Rika Aoki
- Tokushima Health Screening Center, Tokushima, Japan
| | - Shigemi Nakajima
- Department of General Medicine, Japan Community Healthcare Organization Shiga Hospital, Consortium for Community Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Masayoshi Ito
- Department of Gastroenterology, Yotsuya Medical Cube, Tokyo, Japan
| | - Mitsue Yamamichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yu-Yu Liu
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Nobuyuki Sakuma
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Yu Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoshiki Sakaguchi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yosuke Tsuji
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Kouhei Sakurai
- Department of Pathology, Fujita Health University School of Medicine, Aichi, Japan
| | - Shuta Tomida
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Keiko Niimi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
- Center for Epidemiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
- Department of Epigenomics, Institute for Advanced Life Sciences, Hoshi University, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| |
Collapse
|
8
|
Baş H, Dişibeyaz S, Öztaş E, Aydemir Y, Temel T, Çilingir O, Durak Aras B, Artan S. Genetic Investigations in Turkish Idiopathic Pancreatitis Patients Show Unique Characteristics. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2023; 34:1240-1248. [PMID: 37823318 PMCID: PMC10765213 DOI: 10.5152/tjg.2023.22773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND/AIMS Pancreatitis is one of the leading causes of digestive system-related hospital admissions, and it has a genetic background in a considerable portion of the patients. In this study, we aimed to investigate the genetic risk factors of idiopathic pancreatitis in Turkish patients and the contribution of copy number variations to the pathogenesis. MATERIALS AND METHODS Idiopathic pancreatitis is defined as failure to detect risk factors despite comprehensive clinical assessments. Next-generation sequencing and multiple ligand-dependent probe amplification of PRSS1, SPINK1, CTRC, and CFTR were performed. For further genotype-phenotype correlations, patients were also questioned for the age of onset, family history, and pancreatic divisum. RESULTS A total of 68 idiopathic pancreatitis cases were enrolled. Variants with potential clinical significance of PRSS1 were identified in 13.4%, SPINK1 in 6.3%, CTRC in 4.7%, and CFTR in 26.5% of the patients. No copy number variants were seen in any of these genes. At least 7.4% of the participants had complex genetic etiology involving 2 genes. CONCLUSIONS At least 42.6% of the participants had a potential genetic risk factor. Five novel genetic variants were identified, and distinctive genetic risk factors of Turkish population were shown. The results showed that genetic etiology was frequent in pancreatitis and it was even more prominent in patients with early-onset disease. Considering that genetic risk factors may be informative for decisionmaking in the treatment options in addition to providing extensive prognostic value and familial genetic consultation; clinicians need to be more eager to offer genetic tests to pancreatitis patients.
Collapse
Affiliation(s)
- Hasan Baş
- Department of Medical Genetics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
- Department of Medical Genetics, SBÜ Diyarbakır Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | - Selçuk Dişibeyaz
- Department of Internal Medicine, Division of Gastroenterology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Erkin Öztaş
- Department of Internal Medicine, Division of Gastroenterology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Yusuf Aydemir
- Division of Gastroenterology and Hepatology, Department of Pediatrics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Tuncer Temel
- Department of Internal Medicine, Division of Gastroenterology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Oğuz Çilingir
- Department of Medical Genetics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Beyhan Durak Aras
- Department of Medical Genetics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Sevilhan Artan
- Department of Medical Genetics, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
9
|
Németh BZ, Nagy ZA, Kiss B, Gellén G, Schlosser G, Demcsák A, Geisz A, Hegyi E, Sahin-Tóth M, Pál G. Substrate specificity of human chymotrypsin-like protease (CTRL) characterized by phage display-selected small-protein inhibitors. Pancreatology 2023; 23:742-749. [PMID: 37604733 PMCID: PMC10528761 DOI: 10.1016/j.pan.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Chymotrypsin-like protease (CTRL) is one of the four chymotrypsin isoforms expressed in the human exocrine pancreas. Human genetic and experimental evidence indicate that chymotrypsins B1, B2, and C (CTRB1, CTRB2 and CTRC) are important not only for protein digestion but also for protecting the pancreas against pancreatitis by degrading potentially harmful trypsinogen. CTRL has not been reported to play a similar role, possibly due to its low abundance and/or different substrate specificity. To address this problem, we investigated the specificity of the substrate-binding groove of CTRL by evolving the substrate-like canonical loop of the Schistocerca gregaria proteinase inhibitor 2 (SGPI-2), a small-protein reversible chymotrypsin inhibitor to bind CTRL. We found that phage-associated SGPI-2 variants with strong affinity to CTRL were similar to those evolved previously against CTRB1, CTRB2 or bovine chymotrypsin A (bCTRA), indicating comparable substrate specificity. When tested as recombinant proteins, SGPI-2 variants inhibited CTRL with similar or slightly weaker affinity than bCTRA, confirming that CTRL is a typical chymotrypsin. Interestingly, an SGPI-2 variant selected with a Thr29His mutation in its reactive loop was found to inhibit CTRL strongly, but it was digested rapidly by bCTRA. Finally, CTRL was shown to degrade human anionic trypsinogen, however, at a much slower rate than CTRB2, suggesting that CTRL may not have a significant role in the pancreatic defense mechanisms against inappropriate trypsinogen activation and pancreatitis.
Collapse
Affiliation(s)
- Bálint Zoltán Németh
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Zoltán Attila Nagy
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Bence Kiss
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary
| | - Gabriella Gellén
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Gitta Schlosser
- Department of Analytical Chemistry, MTA-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/A, Budapest, H-1117, Budapest, Hungary
| | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrea Geisz
- Department of Surgery, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Medical School, H-7624, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gábor Pál
- Department of Biochemistry, ELTE Eötvös Loránd University, Pázmány Péter Sétány 1/C, H-1117, Budapest, Hungary.
| |
Collapse
|
10
|
Berke G, Beer S, Gede N, Takáts A, Szentesi A, Hegyi P, Rosendahl J, Sahin-Tóth M, Németh BC, Hegyi E. Risk of chronic pancreatitis in carriers of the c.180C>T (p.Gly60=) CTRC variant: case-control studies and meta-analysis. Pancreatology 2023; 23:481-490. [PMID: 37321941 PMCID: PMC10586708 DOI: 10.1016/j.pan.2023.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/06/2023] [Accepted: 05/28/2023] [Indexed: 06/17/2023]
Abstract
Chymotrypsin C (CTRC) is a digestive serine protease produced by the pancreas that regulates intrapancreatic trypsin activity and provides a defensive mechanism against chronic pancreatitis (CP). CTRC exerts its protective effect by promoting degradation of trypsinogen, the precursor to trypsin. Loss-of-function missense and microdeletion variants of CTRC are found in around 4% of CP cases and increase disease risk by approximately 3-7-fold. In addition, a commonly occurring synonymous CTRC variant c.180C>T (p.Gly60=) was reported to increase CP risk in various cohorts but a global analysis of its impact has been lacking. Here, we analyzed the frequency and effect size of variant c.180C>T in Hungarian and pan-European cohorts, and performed meta-analysis of the new and published genetic association data. When allele frequency was considered, meta-analysis revealed an overall frequency of 14.2% in patients and 8.7% in controls (allelic odds ratio (OR) 2.18, 95% confidence interval (CI) 1.72-2.75). When genotypes were examined, c.180TT homozygosity was observed in 3.9% of CP patients and in 1.2% of controls, and c.180CT heterozygosity was present in 22.9% of CP patients and in 15.5% of controls. Relative to the c.180CC genotype, the genotypic OR values were 5.29 (95% CI 2.63-10.64), and 1.94 (95% CI 1.57-2.38), respectively, indicating stronger CP risk in homozygous carriers. Finally, we obtained preliminary evidence that the variant is associated with reduced CTRC mRNA levels in the pancreas. Taken together, the results indicate that CTRC variant c.180C>T is a clinically relevant risk factor, and should be considered when genetic etiology of CP is investigated.
Collapse
Affiliation(s)
- Gergő Berke
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Sebastian Beer
- Division of Gastroenterology, Medical Department II, University of Leipzig Medical Center, Leipzig, Germany
| | - Noémi Gede
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Amanda Takáts
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Andrea Szentesi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary; Centre for Translational Medicine, Semmelweis University, Budapest, Hungary; Division of Pancreatic Diseases, Heart and Vascular Centre, Semmelweis University, Budapest, Hungary
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle (Saale), Germany
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Balázs Csaba Németh
- Department of Medicine, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary; Hungarian Centre of Excellence for Molecular Medicine, University of Szeged, Translational Pancreatology Research Group, Szeged, Hungary
| | - Eszter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
11
|
Masson E, Zou WB, Pu N, Rebours V, Génin E, Wu H, Lin JH, Wang YC, Abrantes A, Aguilera Munoz L, Albouys J, Alric L, Amiot X, Archambeaud I, Audiau S, Bastide L, Baudon J, Bellaiche G, Bellon S, Bertrand V, Bideau K, Billiemaz K, Billioud C, Bonnefoy S, Borderon C, Bournet B, Breton E, Brugel M, Buscail L, Cadiot G, Camus M, Causse X, Chamouard P, Chaput U, Cholet F, Ciocan DM, Clavel C, Coffin B, Coimet-Berger L, Creveaux I, Culetto A, Daboussi O, Mestier LDE, Degand T, D'Engremont C, Denis B, Dermine S, Desgrippes R, D'Aubigny AD, Enaud R, Fabre A, Gargot D, Gelsi E, Gentilcore E, Gincul R, Ginglinger-Favre E, Giovannini M, Gomercic C, Gondran H, Grainville T, Grandval P, Grasset D, Grimaldi S, Grimbert S, Hagege H, Heissat S, Hentic O, Herber-Mayne A, Hervouet M, Hoibian S, Jacques J, Jais B, Kaassis M, Koch S, Lacaze E, Lacroute J, Lamireau T, Laurent L, Guillou XLE, Rhun MLE, Leblanc S, Levy P, Lievre A, Lorenzo D, Maire F, Marcel K, Matias C, Mauillon J, Morgant S, Moussata D, Muller N, Nambot S, Napoleon B, Olivier A, Pagenault M, Pelletier AL, Pennec O, Pinard F, Pioche M, Prost B, Queneherve L, Rebours V, Reboux N, Rekik S, Riachi G, Rohmer B, Roquelaure B, Hezode IR, Rostain F, Saurin JC, Servais L, Stan-Iuga R, Subtil C, Texier C, Thomassin L, Tougeron D, Tsakiris L, Valats JC, Vuitton L, Wallenhorst T, Wangerme M, Zanaldi H, Zerbib F. Classification of PRSS1 variants responsible for chronic pancreatitis: An expert perspective from the Franco-Chinese GREPAN study group. Pancreatology 2023; 23:491-506. [PMID: 37581535 DOI: 10.1016/j.pan.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/06/2023] [Accepted: 04/13/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND PRSS1 was the first reported chronic pancreatitis (CP) gene. The existence of both gain-of-function (GoF) and gain-of-proteotoxicity (GoP) pathological PRSS1 variants, together with the fact that PRSS1 variants have been identified in CP subtypes spanning the range from monogenic to multifactorial, has made the classification of PRSS1 variants very challenging. METHODS All currently reported PRSS1 variants (derived primarily from two databases) were manually reviewed with respect to their clinical genetics, functional analysis and population allele frequency. They were classified by variant type and pathological mechanism within the framework of our recently proposed ACMG/AMP guidelines-based seven-category system. RESULTS The total number of distinct germline PRSS1 variants included for analysis was 100, comprising 3 copy number variants (CNVs), 12 5' and 3' variants, 19 intronic variants, 5 nonsense variants, 1 frameshift deletion variant, 6 synonymous variants, 1 in-frame duplication, 3 gene conversions and 50 missense variants. Based upon a combination of clinical genetic and functional analysis, population data and in silico analysis, we classified 26 variants (all 3 CNVs, the in-frame duplication, all 3 gene conversions and 19 missense) as "pathogenic", 3 variants (missense) as "likely pathogenic", 5 variants (four missense and one promoter) as "predisposing", 13 variants (all missense) as "unknown significance", 2 variants (missense) as "likely benign", and all remaining 51 variants as "benign". CONCLUSIONS We describe an expert classification of the 100 PRSS1 variants reported to date. The results have immediate implications for reclassifying many ClinVar-registered PRSS1 variants as well as providing optimal guidelines/standards for reporting PRSS1 variants.
Collapse
Affiliation(s)
- Emmanuelle Masson
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Na Pu
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Department of Critical Care Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Vinciane Rebours
- Pancreatology and Digestive Oncology Department, Beaujon Hospital, APHP - Clichy, Université Paris Cité, Paris, France
| | - Emmanuelle Génin
- Univ Brest, Inserm, EFS, UMR 1078, GGB, F-29200, Brest, France; Service de Génétique Médicale et de Biologie de la Reproduction, CHRU Brest, F-29200, Brest, France
| | - Hao Wu
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jin-Huan Lin
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Yuan-Chen Wang
- Department of Gastroenterology, Changhai Hospital, The Secondary Military Medical University, Shanghai, China; Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Marc Hervouet
- Hôpital d'instruction des armées Percy, Clamart, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jancsó Z, Morales Granda NC, Demcsák A, Sahin-Tóth M. Mouse model of PRSS1 p.R122H-related hereditary pancreatitis highlights context-dependent effect of autolysis-site mutation. Pancreatology 2023; 23:131-142. [PMID: 36797199 PMCID: PMC10492521 DOI: 10.1016/j.pan.2023.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/12/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Mutation p.R122H in human cationic trypsinogen (PRSS1) is the most frequently identified cause of hereditary pancreatitis. The mutation blocks protective degradation of trypsinogen by chymotrypsin C (CTRC), which involves an obligatory trypsin-mediated cleavage at Arg122. Previously, we found that C57BL/6N mice are naturally deficient in CTRC, and trypsinogen degradation is catalyzed by chymotrypsin B1 (CTRB1). Here, we used biochemical experiments to demonstrate that the cognate p.R123H mutation in mouse cationic trypsinogen (isoform T7) only partially prevented CTRB1-mediated degradation. We generated a novel C57BL/6N mouse strain harboring the p.R123H mutation in the native T7 trypsinogen locus. T7R123H mice developed no spontaneous pancreatitis, and severity parameters of cerulein-induced pancreatitis trended only slightly higher than those of C57BL/6N mice. However, when treated with cerulein for 2 days, more edema and higher trypsin activity was seen in the pancreas of T7R123H mice compared to C57BL/6N controls. Furthermore, about 40% of T7R123H mice progressed to atrophic pancreatitis in 3 days, whereas C57BL/6N animals showed full histological recovery. Taken together, the observations indicate that mutation p.R123H inefficiently blocks chymotrypsin-mediated degradation of mouse cationic trypsinogen, and modestly increases cerulein-induced intrapancreatic trypsin activity and pancreatitis severity. The findings support the notion that the pathogenic effect of the PRSS1 p.R122H mutation in hereditary pancreatitis is dependent on its ability to defuse chymotrypsin-dependent defenses.
Collapse
Affiliation(s)
- Zsanett Jancsó
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | | | - Alexandra Demcsák
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Miklós Sahin-Tóth
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Goudshelwar R, Adimoolam BM, Lakhtakia S, Thota JR, Sripadi P, Rupula K, Reddy DN, Sasikala M. Alterations in the pH of pancreatic juice are associated with chymotrypsin C inactivation and lithostathine precipitation in chronic pancreatitis patients: a proteomic approach. Clin Proteomics 2022; 19:49. [PMID: 36572850 PMCID: PMC9791725 DOI: 10.1186/s12014-022-09384-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The progression of chronic pancreatitis (CP), an inflammatory disease of the pancreas, causes pancreatic stones to form within the pancreatic ductal lumen/parenchyma, which occurs via protein plug formation. Pain is the most common symptom that necessitates clinical attention, and pain relief is the therapeutic goal for these patients. Endoscopic therapy and surgery are complimentary forms of therapy for pain relief. This study was envisaged to clarify the mechanism by which protein plug/soft stones form in pancreatic ducts prior to undergoing calcification. METHODS Protein plugs were obtained from twenty CP patients undergoing therapeutic ERCP for stone removal. Pancreatic juice was obtained from five CP patients without stones. Proteins were isolated by TCA/acetone precipitation, SDS PAGE and 2-D gel electrophoresis to determine the protein profile. Protein spots from the 2-D gel were excised and subjected to matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) for identification. The effect of altered pH and elevated concentrations of trypsin on pancreatic juice protein was assessed by SDS‒PAGE to determine the protein profile. Differentially expressed protein bands were excised and subjected to MALDI-TOF. In silico analysis was performed by docking lithostathine with the calcite molecule using AutoDock Vina and PyMOL to clarify their interaction during stone formation. RESULTS Twenty-three and twenty-nine spots from 2D gels of protein plugs and pancreatic juice, respectively, revealed that lithostathine (Reg1A) was the only protein in the protein plugs, whereas digestive enzymes and lithostathine were identified in pancreatic juice. Altered pH levels and increased trypsin concentrations in the pancreatic juice caused a protein to degrade via an unknown mechanism, and this protein was identified as chymotrypsin C (CTRC) by MALDI-TOF. Docking studies showed that the binding affinity of calcite was higher with the cleaved lithostathine, explaining the deposition of calcium that was observed around the protein plugs after calcified stones were formed through precipitation. CONCLUSION Our results suggest that chymotrypsin C (CTRC) is degraded in an acidic environment, leading to the precipitation of lithostathine in the ductal lumen.
Collapse
Affiliation(s)
- Renuka Goudshelwar
- grid.410866.d0000 0004 1803 177XBiochemistry Labs, Translational Research Centre, Asian Healthcare Foundation, AIG Hospitals, Gachibowli, Hyderabad, 500032 Telangana India
| | - Bala Manikanta Adimoolam
- grid.417636.10000 0004 0636 1405Center for Mass Spectrometry, CSIR–Indian Institute Of Chemical Technology, Uppal Rd, IICT Colony, Tarnaka, Hyderabad, 500007 Telangana India
| | - Sundeep Lakhtakia
- grid.410866.d0000 0004 1803 177XDepartment of Medical Gastroenterology, AIG Hospitals, Gachibowli, Hyderabad, 500032 Telangana India
| | - Jagadeshwar Reddy Thota
- grid.417636.10000 0004 0636 1405Center for Mass Spectrometry, CSIR–Indian Institute Of Chemical Technology, Uppal Rd, IICT Colony, Tarnaka, Hyderabad, 500007 Telangana India
| | - Prabhakar Sripadi
- grid.417636.10000 0004 0636 1405Center for Mass Spectrometry, CSIR–Indian Institute Of Chemical Technology, Uppal Rd, IICT Colony, Tarnaka, Hyderabad, 500007 Telangana India
| | - Karuna Rupula
- grid.412419.b0000 0001 1456 3750Department of Biochemistry, University College of Science, Osmania University, Osmania University Main Rd, Hyderabad, 500007 Telangana India
| | - D Nageshwar Reddy
- grid.410866.d0000 0004 1803 177XDepartment of Medical Gastroenterology, AIG Hospitals, Gachibowli, Hyderabad, 500032 Telangana India
| | - Mitnala Sasikala
- grid.410866.d0000 0004 1803 177XBiochemistry Labs, Translational Research Centre, Asian Healthcare Foundation, AIG Hospitals, Gachibowli, Hyderabad, 500032 Telangana India
| |
Collapse
|
14
|
Thiel F, Reiser M, Weiss FU. A rare PRSS1 p.S127C mutation is associated with chronic pancreatitis and causes misfolding-induced ER-stress. Pancreatology 2022; 22:1112-1119. [PMID: 36369231 DOI: 10.1016/j.pan.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND /Objectives: Sequence variants in several genes have been identified as being associated with an increased inherited risk to develop chronic pancreatitis (CP). In a genetic survey of a CP patient we identified in the PRSS1gene a new c.380C > G sequence variation, giving rise to a non-synonymous p.S127C mutation. Functional studies were performed to analyze the associated pathophysiology of the variant. METHODS Following generation of an expression vector for the new PRSS1 variant we compared its expression, secretion and catalytic activity with already known PRSS1 risk variants in HEK 293T cells. The intracellular protein accumulation and induction of endoplasmic reticulum (ER)-stress was analyzed. RESULTS Prediction tool analysis indicated a probably deleterious effect of the p.S127C variant on protein function which was confirmed by detection of a secretion defect in HEK293T cells leading to intracellular protein accumulation. While protein misfolding was associated with reduced trypsin activity, the increased expression of BIP and presence of spliced XBP1 indicated that the p.S127C variant induces ER stress and activates the UPR signaling pathway. CONCLUSIONS The disease mechanism of the PRSS1 p.S127C variant involves defective protein secretion and the induction of ER-stress due to accumulation of presumably misfolded trypsinogen within the ER. The new variant should be considered disease-causing with an incomplete penetrance. Our results confirm that in addition to dysregulated trypsin-activity or reduced fluid secretion, ER-stress induction is an important trigger for acinar cell damage and the development of recurrent or chronic pancreatic inflammation.
Collapse
Affiliation(s)
- Franziska Thiel
- Department of Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Markus Reiser
- Klinikum Vest GmbH - Paracelsus-Klinik Marl, Marl, Germany
| | - Frank Ulrich Weiss
- Department of Medicine, University Medicine Greifswald, Greifswald, Germany.
| |
Collapse
|
15
|
Shimosegawa T. Between early and established chronic pancreatitis: A proposal of "acinar-ductal hybrid mechanism". Pancreatology 2022; 22:831-837. [PMID: 36163223 DOI: 10.1016/j.pan.2022.09.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES The recently proposed "new mechanistic definition of chronic pancreatitis (CP)" categorized early CP as a reversible condition. However, there is no clear explanation regarding the pathological condition of early CP, the reason for the development of the disease in only a small portion of the patients with risk factors, and the mechanism for transition from a reversible pathological condition to an irreversible one. METHODS Based on the available information, a mechanism that could provide answers to the queries associated with CP was proposed. RESULTS Acinar-ductal coordination is very important for the physiological secretion of pancreatic juice. Inflammation originating from acinar cells undermines the function of proximal ducts and leads to a vicious cycle of sustained inflammation by increasing the viscosity and decreasing the alkalinity of pancreatic juice. Persistent elevation of ductal pressure due to stagnation of pancreatic juice caused by protein plugs, stones, or fibrous scar of ducts converts the reversible pathological condition of early CP to an irreversible one. Diagnostic criteria for early CP proposed by Japanese researchers have enabled to the recognition of patients showing a progression from early to established CP. However, most patients diagnosed with early CP do not experience progression of the disease, suggesting the inadequate specificity of the criteria. CONCLUSION The "acinar-ductal hybrid mechanism" may explain the pathological condition and progression of early CP. To diagnose early CP more accurately, it is essential to discover specific biomarkers that can discriminate "early CP" from "acute pancreatitis (AP)/recurrent acute pancreatitis (RAP)" and "established CP." Therapeutic intervention in clinical practices through various new approaches is expected to improve the prognosis of patients with CP.
Collapse
Affiliation(s)
- Tooru Shimosegawa
- Department of Gastroenterology, South-Miyagi Medical Center, 38-1 Aza-nishi, Ohgawara, Shibata-gun, Miyagi, 989-1253, Japan; Department of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aobaku, Sendai, Miyagi, 980-8574, Japan.
| |
Collapse
|
16
|
The Pancreas and Known Factors of Acute Pancreatitis. J Clin Med 2022; 11:jcm11195565. [PMID: 36233433 PMCID: PMC9571992 DOI: 10.3390/jcm11195565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/11/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatitis is regarded by clinicians as one of the most complicated and clinically challenging of all disorders affecting the abdomen. It is classified on the basis of clinical, morphological, and histological criteria. Causes of acute pancreatitis can easily be identified in 75–85% of patients. The main causes of acute, recurrent acute, and chronic pancreatitis are gallstone migration and alcohol abuse. Other causes are uncommon, controversial, or unexplained. For instance, cofactors of all forms of pancreatitis are pancreas divisum and hypertriglyceridemia. Another factor that should be considered is a complication of endoscopic retrograde cholangiopancreatography: post-endoscopic retrograde cholangiopancreatography acute pancreatitis. The aim of this study is to present the known risk factors for acute pancreatitis, beginning with an account of the morphology, physiology, and development of the pancreas.
Collapse
|
17
|
Voronina S, Chvanov M, De Faveri F, Mayer U, Wileman T, Criddle D, Tepikin A. Autophagy, Acute Pancreatitis and the Metamorphoses of a Trypsinogen-Activating Organelle. Cells 2022; 11:cells11162514. [PMID: 36010591 PMCID: PMC9406838 DOI: 10.3390/cells11162514] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 01/18/2023] Open
Abstract
Recent studies have highlighted the importance of autophagy and particularly non-canonical autophagy in the development and progression of acute pancreatitis (a frequent disease with considerable morbidity and significant mortality). An important early event in the development of acute pancreatitis is the intrapancreatic activation of trypsinogen, (i.e., formation of trypsin) leading to the autodigestion of the organ. Another prominent phenomenon associated with the initiation of this disease is vacuolisation and specifically the formation of giant endocytic vacuoles in pancreatic acinar cells. These organelles develop in acinar cells exposed to several inducers of acute pancreatitis (including taurolithocholic acid and high concentrations of secretagogues cholecystokinin and acetylcholine). Notably, early trypsinogen activation occurs in the endocytic vacuoles. These trypsinogen-activating organelles undergo activation, long-distance trafficking, and non-canonical autophagy. In this review, we will discuss the role of autophagy in acute pancreatitis and particularly focus on the recently discovered LAP-like non-canonical autophagy (LNCA) of endocytic vacuoles.
Collapse
Affiliation(s)
- Svetlana Voronina
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Michael Chvanov
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Francesca De Faveri
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Ulrike Mayer
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Tom Wileman
- Quadram Institute Bioscience and Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - David Criddle
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
| | - Alexei Tepikin
- Department of Molecular Physiology and Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence:
| |
Collapse
|
18
|
Sahin-Tóth M. Hereditary Pancreatitis-25 Years of an Evolving Paradigm: Frank Brooks Memorial Lecture 2021. Pancreas 2022; 51:297-301. [PMID: 35775637 PMCID: PMC9348779 DOI: 10.1097/mpa.0000000000002031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT The identification of the genetic basis of hereditary pancreatitis in 1996 confirmed the critical role of trypsinogen in this disease and opened a new avenue of research on pancreatitis-associated genetic risk factors and their mechanism of action. Through the following 25 years, the ensuing discoveries fundamentally changed our understanding of pancreatitis pathogenesis, clarified the role of trypsinogen autoactivation in disease onset and progression, and set the stage for future therapeutic interventions. This Frank Brooks Memorial Lecture was delivered on November 4, 2021, at the 52nd Annual Meeting of the American Pancreatic Association, held in Miami Beach, Florida.
Collapse
Affiliation(s)
- Miklós Sahin-Tóth
- From the Department of Surgery, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
19
|
Inherited pancreatic exocrine insufficiency and pancreatitis: When children transition to adult care. Best Pract Res Clin Gastroenterol 2021; 56-57:101782. [PMID: 35331395 DOI: 10.1016/j.bpg.2021.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/09/2021] [Accepted: 12/07/2021] [Indexed: 01/31/2023]
Abstract
Hereditary pancreatitis (HP) encompasses two distinct disease groups: the first manifests as congenital exocrine pancreatic insufficiency (EPI), and the second includes hereditary forms of pancreatitis. EPI represents the ultimate expression of gland function loss. Cystic fibrosis is by far the most frequent aetiology of early-onset EPI; genetics and a growing understanding of the disease mechanisms have paved the way for innovative and personalized treatment approaches. Efforts are ongoing to further decipher the pathophysiology and explore new therapies for other causes of EPI. HP occurs in patients carrying mutations in genes encoding digestive proteases or proteins playing an important role in proper pancreatic function and homeostasis. Improved sequencing techniques have led to the discovery of several causal and disease promoting genes. Most forms of HP have a paediatric onset but complications usually manifest during adulthood. Surveillance in experienced centres is mandatory to diagnose and address these complications in a timely manner.
Collapse
|
20
|
Toldi V, Kassay N, Szabó A. Missense PNLIP mutations impeding pancreatic lipase secretion cause protein misfolding and endoplasmic reticulum stress. Pancreatology 2021; 21:1317-1325. [PMID: 34373204 DOI: 10.1016/j.pan.2021.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVE Mutation-induced misfolding of digestive enzymes has been shown to cause chronic pancreatitis. Recently, heterozygous pancreatic lipase (PNLIP) mutations leading to reduced secretion were identified. The aim of the present study was to investigate whether PNLIP mutants with a secretion defect result in endoplasmic reticulum (ER) stress in cell culture models. METHODS We introduced the coding DNA for wild-type and A174P, G233E, C254R and V454F mutant PNLIP into two mammalian cell lines and carried out functional assays to assess PNLIP expression, secretion and ER stress. RESULTS We found that wild-type PNLIP was readily secreted from the investigated cell lines. In contrast, none of the lipase mutants were detectable in the conditioned media. PNLIP variants accumulated in the cells as intracellular protein aggregates probably due to misfolding in the ER. Consistent with this notion, PNLIP mutants induced ER stress, as indicated by increased mRNA levels of spliced X-box Binding Protein 1 (XBP1) and the ER chaperone Immunoglobulin Binding Protein (BiP). CONCLUSION The results indicate that PNLIP mutations associated with a lipase secretion defect cause ER stress and thereby may increase the risk for chronic pancreatitis.
Collapse
Affiliation(s)
- Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Doctoral School of Molecular, Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Norbert Kassay
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
21
|
Abstract
Long-term alcohol consumption and gene mutations are the most important causes of chronic pancreatitis. In addition to mutations in acinar genes, such as digestive enzymes and their inhibitors, defects in genes that primarily or exclusively affect the duct cells have also been described in recent years. Genetic changes are found not only in patients with a positive family history (hereditary pancreatitis) but also in so-called idiopathic and, to a lesser extent, in alcoholic chronic pancreatitis. The coming years will likely show that there are very complex interactions between environmental influences and numerous genetic factors.
Collapse
Affiliation(s)
- Jonas Rosendahl
- Klinik für Innere Medizin I, Universitätsklinikum Halle (Saale), Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Deutschland.
| | - Heiko Witt
- Pädiatrische Ernährungsmedizin, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), Gregor-Mendel-Straße 2, 85354, Freising, Deutschland.
| |
Collapse
|
22
|
Tomomura A, Bandow K, Tomomura M. Purification and Biological Function of Caldecrin. MEDICINES (BASEL, SWITZERLAND) 2021; 8:41. [PMID: 34436220 PMCID: PMC8398347 DOI: 10.3390/medicines8080041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Blood calcium homeostasis is critical for biological function. Caldecrin, or chymotrypsin-like elastase, was originally identified in the pancreas as a serum calcium-decreasing factor. The serum calcium-decreasing activity of caldecrin requires the trypsin-mediated activation of the protein. Protease activity-deficient mature caldecrin can also reduce serum calcium concentration, indicating that structural processing is necessary for serum calcium-decreasing activity. Caldecrin suppresses the differentiation of bone-resorbing osteoclasts from bone marrow macrophages (BMMs) by inhibiting receptor activator of NF-κB ligand (RANKL)-induced nuclear factor of activated T-cell cytoplasmic 1 expression via the Syk-PLCγ-Ca2+ oscillation-calcineurin signaling pathway. It also suppresses mature osteoclastic bone resorption by RANKL-stimulated TRAF6-c-Src-Syk-calcium entry and actin ring formation. Caldecrin inhibits lipopolysaccharide (LPS)-induced osteoclast formation in RANKL-primed BMMs by inducing the NF-κB negative regulator A20. In addition, caldecrin suppresses LPS-mediated M1 macrophage polarization through the immunoreceptor triggering receptor expressed on myeloid cells (TREM) 2, suggesting that caldecrin may function as an anti-osteoclastogenic and anti-inflammatory factor via TREM2. The ectopic intramuscular expression of caldecrin cDNA prevents bone resorption in ovariectomized mice, and the administration of caldecrin protein also prevents skeletal muscle destruction in dystrophic mice. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease and a possible therapeutic target for skeletal and inflammatory diseases.
Collapse
Affiliation(s)
- Akito Tomomura
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Kenjiro Bandow
- Division of Biochemistry, Department of Oral Biology & Tissue Engineering, Meikai University School of Dentistry, 1-1 Keyakidai, Sakado, Saitama 350-0283, Japan;
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, 1-1 Akemi, Urayasu, Chiba 279-8550, Japan;
| |
Collapse
|
23
|
González-Titos A, Hernández-Camarero P, Barungi S, Marchal JA, Kenyon J, Perán M. Trypsinogen and chymotrypsinogen: potent anti-tumor agents. Expert Opin Biol Ther 2021; 21:1609-1621. [PMID: 33896307 DOI: 10.1080/14712598.2021.1922666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Trypsinogen and chymotrypsinogen have been used clinically in tissue repair due to their ability to resolve inflammatory symptoms. Recently, novel evidence has supported the anti-tumourigenic potential of a mixture of trypsinogen and chymotrypsinogen.Areas covered: First, we analyze the structure of these proteases and the effects of pancreatic proteinases on tissue repair, inflammation and the immune system. Second, we summarize studies that provided evidence of the effects of pancreatic (pro)enzymes on tumor cells both in vitro and in vivo and some successful clinical applications of pancreatic (pro)enzymes. Finally, we study pancreatic (pro)enzymes potential molecular targets, such as the proteinase-activated receptors (PARs).Expert opinion: This novel therapy has been shown to have effective antitumor effects. Treatment with these (pro) enzymes sensitizes Cancer Stem Cells (CSCs) which may allow chemotherapy and radiotherapy to be more effective, which could positively affect the recovery of cancer patients.
Collapse
Affiliation(s)
| | | | - Shivan Barungi
- Department of Health Sciences, University of Jaén, Jaén, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain.,Biosanitary Research Institute of Granada (Ibs. GRANADA), University Hospitals of Granada-University of Granada, Granada, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| | - Julian Kenyon
- The Dove Clinic for Integrated Medicine, Twyford, UK
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain.,Excellence Research Unit "Modeling Nature" (Mnat), University of Granada, Granada, Spain
| |
Collapse
|
24
|
Burgos M, Philippe R, Antigny F, Buscaglia P, Masson E, Mukherjee S, Dubar P, Le Maréchal C, Campeotto F, Lebonvallet N, Frieden M, Llopis J, Domingo B, Stathopulos PB, Ikura M, Brooks W, Guida W, Chen JM, Ferec C, Capiod T, Mignen O. The p.E152K-STIM1 mutation deregulates Ca 2+ signaling contributing to chronic pancreatitis. J Cell Sci 2021; 134:jcs.244012. [PMID: 33468626 DOI: 10.1242/jcs.244012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 12/24/2020] [Indexed: 11/20/2022] Open
Abstract
Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Miguel Burgos
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain.,Complejo Hospitalario Universitario de Albacete (UI-CHUA), 02002 Albacete, Spain
| | - Reginald Philippe
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Fabrice Antigny
- Univ. Paris-Sud, Faculté de Médecine, Université Paris-Saclay, 94270 Le Kremlin Bicêtre, France.,Inserm UMR_S 999, Hôpital Marie Lannelongue, 92350 Le Plessis Robinson, France.,Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Paul Buscaglia
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France.,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| | - Emmanuelle Masson
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Sreya Mukherjee
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Pauline Dubar
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | | | - Florence Campeotto
- Hôpital Necker, AP-HP, Service de Gastroentérologie et Explorations Fonctionnelles Digestives Pédiatriques, Paris Descartes-Sorbonne Paris Cité Université, Institut Imagine, 75015 Paris, France
| | - Nicolas Lebonvallet
- Laboratory of Interactions Keratinocytes Neurons (EA4685), University of Western Brittany, F-29200 Brest, France
| | - Maud Frieden
- Department of Cell Physiology and Metabolism, Geneva Medical Center, CH-1211 Geneva, Switzerland
| | - Juan Llopis
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Beatriz Domingo
- Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, 02002 Albacete, Spain
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, London, ON N6A 5C1, Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2M9, Canada
| | - Wesley Brooks
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Wayne Guida
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Jian-Min Chen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Claude Ferec
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Thierry Capiod
- INSERM Unit 1151, Institut Necker Enfants Malades (INEM), Université Paris Descartes, Paris 75014, France
| | - Olivier Mignen
- Université de Brest, INSERM, EFS, UMR 1078, GGB, F-29200 Brest, France .,UMR1227, Lymphocytes B et Autoimmunité, Université de Brest, INSERM, CHU de Brest, BP824, F29609 Brest, France
| |
Collapse
|
25
|
Role of trypsin and protease-activated receptor-2 in ovarian cancer. PLoS One 2020; 15:e0232253. [PMID: 32365084 PMCID: PMC7197761 DOI: 10.1371/journal.pone.0232253] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/12/2020] [Indexed: 01/28/2023] Open
Abstract
Proteases have been implicated in the tumorigenesis and aggressiveness of a variety of cancer types. In fact, proteases have proven to be very clinically useful as tumor biomarkers in the blood of patients. Proteases are typically involved in complex systems of substrates, activators, and inhibitors, thus making our ability to establish their exact function in cancer more difficult. Trypsin, perhaps the most famous of proteases, has been shown to play a role in cancer progression, but its functional role in ovarian cancer has not been much studied. PAR2, a transmembrane receptor that is known to be activated by trypsin, has been reported to be associated with ovarian cancer. Here, we found that stimulation of ovarian cancer cell lines with trypsin or PAR2 activating peptide markedly increased MAPK signaling and cell proliferation. Additionally, HE4, a WAP-family glycoprotein and ovarian cancer biomarker, was found to inhibit trypsin degradation, thereby retaining its activity. Patient data seemed to support this phenomenon, as the serum of ovarian cancer patients with high HE4 expression, revealed significantly elevated trypsin levels. These data support the hypothesis that trypsin plays a tumorigenic role in ovarian cancer, which can be mediated by its receptor PAR2, and potentiated by HE4.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The aim was to review evidence about diabetes secondary to hereditary pancreatitis, seeking novel diagnostic and treatment features. RECENT FINDINGS Hereditary pancreatitis (HP) is an autosomal dominant condition, characterized by recurrent episodes of acute pancreatitis, progression to fibrosis, and chronic pancreatitis. Clinical presentation includes diabetes of the exocrine pancreas (DEP). HP prevalence ranges from 0.3 to 0.57 per 100,000 people, with up to 80% of these develop DEP. This condition often requires specific interventions: with regard to metabolic control, metformin is the first choice for those with mild DEP, and for those in advanced disease, insulin is considered the first-line therapy. Insulin analogues and insulin pump therapy are preferred due to the brittle glycemic pattern and risk of hypoglycemia. In case of exocrine insufficiency, pancreatic enzyme replacement therapy is recommended. Pancreatic polypeptide administration is a promising novel treatment feature. DEP due to HP appears to be a misdiagnosed condition. The requirement of specific management demonstrates the importance of this matter; therefore, appropriate recognition and classification are important.
Collapse
Affiliation(s)
- Gabriel Xavier Ramalho
- School of Medicine, Faculty of Education and Health Sciences, University Center of Brasilia (UniCEUB), Brasilia, Brazil
| | - Marcio Garrison Dytz
- School of Medicine, Faculty of Education and Health Sciences, University Center of Brasilia (UniCEUB), Brasilia, Brazil.
- Endocrinology Division, Department of Intern Medicine, Sobradinho Regional Hospital, Brasilia, Brazil.
- Endocrinology and Metabolism Medical Residency, Superior School of Health Sciences (ESCS), Brasilia, Brazil.
- Institute of Diabetes and Endocrinology of Brasilia, SHS Qd. 6 Cj. A Bl. E Sl 1119, Brasilia, DF, 70316-902, Brazil.
| |
Collapse
|
27
|
Toldi V, Szabó A, Sahin-Tóth M. Inactivation of mesotrypsin by chymotrypsin C prevents trypsin inhibitor degradation. J Biol Chem 2020; 295:3447-3455. [PMID: 32014997 DOI: 10.1074/jbc.ra120.012526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Indexed: 01/27/2023] Open
Abstract
Mesotrypsin is an unusual human trypsin isoform with inhibitor resistance and the ability to degrade trypsin inhibitors. Degradation of the protective serine protease inhibitor Kazal type 1 (SPINK1) by mesotrypsin in the pancreas may contribute to the pathogenesis of pancreatitis. Here we tested the hypothesis that the regulatory digestive protease chymotrypsin C (CTRC) mitigates the harmful effects of mesotrypsin by cleaving the autolysis loop. As human trypsins are post-translationally sulfated in the autolysis loop, we also assessed the effect of this modification. We found that mesotrypsin cleaved in the autolysis loop by CTRC exhibited catalytic impairment on short peptides due to a 10-fold increase in Km , it digested β-casein poorly and bound soybean trypsin inhibitor with 10-fold decreased affinity. Importantly, CTRC-cleaved mesotrypsin degraded SPINK1 with markedly reduced efficiency. Sulfation increased mesotrypsin activity but accelerated CTRC-mediated cleavage of the autolysis loop and did not protect against the detrimental effect of CTRC cleavage. The observations indicate that CTRC-mediated cleavage of the autolysis loop in mesotrypsin decreases protease activity and thereby protects the pancreas against unwanted SPINK1 degradation. The findings expand the role of CTRC as a key defense mechanism against pancreatitis through regulation of intrapancreatic trypsin activity.
Collapse
Affiliation(s)
- Vanda Toldi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - András Szabó
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118.
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Center for Exocrine Disorders, Boston University, Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118; Department of Surgery, University of California Los Angeles, Los Angeles, California 90095.
| |
Collapse
|
28
|
Abstract
Chronic pancreatitis (CP) is a pancreatic disease with poor prognosis characterized clinically by abdominal pain, morphologically by pancreatic stones/calcification, duct dilatation and atrophy, and functionally by pancreatic exocrine and endocrine insufficiency. CP is also known as a risk factor for the development of pancreatic cancer. CP has long been understood based on a fixed disease concept deduced from the clinical and morphological features of the end-stage disease. However, identification of causal genes for hereditary pancreatitis and success in the isolation and culture of pancreatic stellate cells have advanced the understanding of the underlying pathological mechanisms, the early-stage pathophysiology, and the mechanisms behind pancreatic fibrosis. These advances have led to moves aimed at improving patient prognosis through prevention of disease progression by early diagnosis and early therapeutic intervention. The strategy for preventing disease progression has included a proposal for diagnostic criteria for early CP and introduction of a new definition of CP in consideration of the pathological mechanisms. Our group has been committed deeply to these studies and has provided a large amount of information to the world.
Collapse
|
29
|
Goettig P, Brandstetter H, Magdolen V. Surface loops of trypsin-like serine proteases as determinants of function. Biochimie 2019; 166:52-76. [PMID: 31505212 PMCID: PMC7615277 DOI: 10.1016/j.biochi.2019.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Trypsin and chymotrypsin-like serine proteases from family S1 (clan PA) constitute the largest protease group in humans and more generally in vertebrates. The prototypes chymotrypsin, trypsin and elastase represent simple digestive proteases in the gut, where they cleave nearly any protein. Multidomain trypsin-like proteases are key players in the tightly controlled blood coagulation and complement systems, as well as related proteases that are secreted from diverse immune cells. Some serine proteases are expressed in nearly all tissues and fluids of the human body, such as the human kallikreins and kallikrein-related peptidases with specialization for often unique substrates and accurate timing of activity. HtrA and membrane-anchored serine proteases fulfill important physiological tasks with emerging roles in cancer. The high diversity of all family members, which share the tandem β-barrel architecture of the chymotrypsin-fold in the catalytic domain, is conferred by the large differences of eight surface loops, surrounding the active site. The length of these loops alters with insertions and deletions, resulting in remarkably different three-dimensional arrangements. In addition, metal binding sites for Na+, Ca2+ and Zn2+ serve as regulatory elements, as do N-glycosylation sites. Depending on the individual tasks of the protease, the surface loops determine substrate specificity, control the turnover and allow regulation of activation, activity and degradation by other proteins, which are often serine proteases themselves. Most intriguingly, in some serine proteases, the surface loops interact as allosteric network, partially tuned by protein co-factors. Knowledge of these subtle and complicated molecular motions may allow nowadays for new and specific pharmaceutical or medical approaches.
Collapse
Affiliation(s)
- Peter Goettig
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria.
| | - Hans Brandstetter
- Division of Structural Biology, Department of Biosciences, University of Salzburg, Billrothstrasse 11, 5020, Salzburg, Austria
| | - Viktor Magdolen
- Clinical Research Unit, Department of Obstetrics and Gynecology, School of Medicine, Technical University of Munich, Ismaninger Strasse 22, 81675, München, Germany
| |
Collapse
|
30
|
Muller N, Sarantitis I, Rouanet M, de Mestier L, Halloran C, Greenhalf W, Férec C, Masson E, Ruszniewski P, Lévy P, Neoptolemos J, Buscail L, Rebours V. Natural history of SPINK1 germline mutation related-pancreatitis. EBioMedicine 2019; 48:581-591. [PMID: 31628023 PMCID: PMC6838417 DOI: 10.1016/j.ebiom.2019.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The aim was to describe genetic, clinical and morphological features in a large, multicentre European cohort of patients with SPINK1 related pancreatitis, in comparison with patients with idiopathic pancreatitis (IP). METHODS All SPINK1 mutation carriers with pancreatic symptoms from two French and one English centers were included. Patients with IP were included in a control group. Genetic, clinical, radiological and biochemical data were collected. FINDINGS 209 and 302 patients were included in the SPINK1 and control groups (median follow-up: 8.3 years (3.7-17.4) vs 5.3 (2.5-8.8)). The median age at onset of symptoms was 20.1 years (17.5-22.8) in the SPINK1 group versus 41.2 (35.2-45.2). The age of exocrine pancreatic insufficiency (EPI) onset in the SPINK1 group was 49.5 (44.5-54.6) years vs. 65.2 (62.1-68.3), p < 0.001. SPINK1 patients with EPI were 5.3%, 14.7%, 28.3% and 52.4% at 20, 30, 40 and 50 years. Diabetes occurred 37.7 (33.3-42.1) years following the onset of symptoms in the SPINK1 group vs. 30.6 (17.3-43.8) (p = 0.002). SPINK1 patients with diabetes were 7.8%, 13.4%, 26.3% and 43.4% at 30, 40, 50 and 60 years. Seven patients (3.3%) developed pancreatic cancer in the SPINK1 group (versus 3 (0.99%), p = 0.1), at a median age of 60 vs 66 years. The cancer risk was 0.8% before 50 years, 11.9%, 27.7%, 51.8% at 60, 70 and 80 years and was 12 times higher than in controls (Cox HR 12.0 (3.0-47.8), p < 0.001). INTERPRETATION SPINK1 related pancreatitis is associated with earlier onset and pancreatic insufficiencies. p.N34S SPINK1 may well be associated with cancer.
Collapse
Affiliation(s)
- Nelly Muller
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - Ioannis Sarantitis
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Royal Liverpool University Hospital, Liverpool, England United Kingdom
| | - Marie Rouanet
- Department of Gastroenterology and Pancreatology, INSERM U1037, University of Toulouse 3, CHU Rangueil, Toulouse, France
| | - Louis de Mestier
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Royal Liverpool University Hospital, Liverpool, England United Kingdom
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Royal Liverpool University Hospital, Liverpool, England United Kingdom
| | - Claude Férec
- UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, INSERM, EFS - Bretagne, Université de Brest, CHRU Brest, Brest, France
| | - Emmanuelle Masson
- UMR1078 Génétique, Génomique Fonctionnelle et Biotechnologies, INSERM, EFS - Bretagne, Université de Brest, CHRU Brest, Brest, France
| | - Philippe Ruszniewski
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - Philippe Lévy
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France
| | - John Neoptolemos
- Department of General Surgery and transplantation, University of Heidelberg, Heidelberg, Germany
| | - Louis Buscail
- Department of Gastroenterology and Pancreatology, INSERM U1037, University of Toulouse 3, CHU Rangueil, Toulouse, France
| | - Vinciane Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, APHP, Clichy, and Paris-Diderot University, Paris, France.
| |
Collapse
|
31
|
CaMKII/proteasome/cytosolic calcium/cathepsin B axis was present in tryspin activation induced by nicardipine. Biosci Rep 2019; 39:BSR20190516. [PMID: 31221819 PMCID: PMC6603279 DOI: 10.1042/bsr20190516] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/16/2022] Open
Abstract
Premature trypsinogen activation is the early event of acute pancreatitis. Therefore, the studies on the processes of trypsinogen activation induced by compounds are important to understand mechanism underly acute pancreatitis under various conditions. Calcium overload in the early stage of acute pancreatitis was previously found to cause intracellular trypsinogen activation; however, treatment of acute pancreatitis using calcium channel blockers did not produced consistent results. Proteasome activity that could be inhibited by some calcium channel blocker has recently been reported to affect the development of acute pancreatitis; however, the associated mechanism were not fully understood. Here, the roles of nicardipine were investigated in trypsinogen activation in pancreatic acinar cells. The results showed that nicardipine could increase cathepsin B activity that caused trypsinogen activation, but higher concentration of nicardipine or prolonged treatment had an opposite effect. The effects of short time treatment of nicardipine at low concentration were studied here. Proteasome inhibition was observed under nicardipine treatment that contributed to the up-regulation in cytosolic calcium. Increased cytosolic calcium from ER induced by nicardipine resulted in the release and activation of cathepsin B. Meanwhile, calcium chelator inhibited cathepsin B as well as trypsinogen activation. Consistently, proteasome activator protected acinar cells from injury induced by nicardipine. Moreover, proteasome inhibition caused by nicardipine depended on CaMKII. In conclusion, CaMKII down-regulation/proteasome inhibition/cytosolic calcium up-regulation/cathepsin B activation/trypsinogen activation axis was present in pancreatic acinar cells injury under nicardipine treatment.
Collapse
|
32
|
Geisz A, Jancsó Z, Németh BC, Hegyi E, Sahin-Tóth M. Natural single-nucleotide deletion in chymotrypsinogen C gene increases severity of secretagogue-induced pancreatitis in C57BL/6 mice. JCI Insight 2019; 4:e129717. [PMID: 31211695 DOI: 10.1172/jci.insight.129717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genetic susceptibility to chronic pancreatitis in humans is frequently associated with mutations that increase activation of the digestive protease trypsin. Intrapancreatic trypsin activation is an early event in experimental acute pancreatitis in rodents, suggesting that trypsin is a key driver of pathology. In contrast to trypsin, the pancreatic protease chymotrypsin serves a protective function by mitigating trypsin activation through degradation. In humans, loss-of-function mutations in chymotrypsin C (CTRC) are common risk factors for chronic pancreatitis; however, the pathogenic effect of CTRC deficiency has not been corroborated in animal models yet. Here we report that C57BL/6 mice that are widely used for genetic manipulations do not express functional CTRC due to a single-nucleotide deletion in exon 2 of the Ctrc gene. We restored a functional Ctrc locus in C57BL/6N mice and demonstrated that in the novel Ctrc+ strain the severity of cerulein-induced experimental acute and chronic pancreatitis was significantly ameliorated. Improved disease parameters were associated with reduced intrapancreatic trypsin activation suggesting a causal link between CTRC-mediated trypsinogen degradation and protection against pancreatitis. Taken together with prior human genetic and biochemical studies, the observations provide conclusive evidence for the protective role of CTRC against pancreatitis.
Collapse
Affiliation(s)
- Andrea Geisz
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Zsanett Jancsó
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Balázs Csaba Németh
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Eszter Hegyi
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA.,Department of Surgery, UCLA, Los Angeles, California, USA
| |
Collapse
|
33
|
Mayerle J, Sendler M, Hegyi E, Beyer G, Lerch MM, Sahin-Tóth M. Genetics, Cell Biology, and Pathophysiology of Pancreatitis. Gastroenterology 2019; 156:1951-1968.e1. [PMID: 30660731 PMCID: PMC6903413 DOI: 10.1053/j.gastro.2018.11.081] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 02/07/2023]
Abstract
Since the discovery of the first trypsinogen mutation in families with hereditary pancreatitis, pancreatic genetics has made rapid progress. The identification of mutations in genes involved in the digestive protease-antiprotease pathway has lent additional support to the notion that pancreatitis is a disease of autodigestion. Clinical and experimental observations have provided compelling evidence that premature intrapancreatic activation of digestive proteases is critical in pancreatitis onset. However, disease course and severity are mostly governed by inflammatory cells that drive local and systemic immune responses. In this article, we review the genetics, cell biology, and immunology of pancreatitis with a focus on protease activation pathways and other early events.
Collapse
Affiliation(s)
- Julia Mayerle
- Medical Department II, University Hospital, LMU, Munich, Germany,Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Matthias Sendler
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Eszter Hegyi
- Institute for Translational Medicine, University of Pécs, Hungary
| | - Georg Beyer
- Medical Department II, University Hospital, LMU, Munich, Germany
| | - Markus M. Lerch
- Department of Medicine A, University Medicine Greifswald, Greifswald, Germany
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA 02118
| |
Collapse
|
34
|
Jancsó Z, Oracz G, Kujko AA, Kolodziejczyk E, Radisky ES, Rygiel AM, Sahin-Tóth M. Novel Pathogenic PRSS1 Variant p.Glu190Lys in a Case of Chronic Pancreatitis. Front Genet 2019; 10:46. [PMID: 30792736 PMCID: PMC6375306 DOI: 10.3389/fgene.2019.00046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Mutations in the PRSS1 (serine protease 1) gene encoding human cationic trypsinogen cause hereditary pancreatitis or may be associated with sporadic chronic pancreatitis. The mutations exert their pathogenic effect either by increasing intra-pancreatic trypsinogen activation (trypsin pathway) or by causing proenzyme misfolding and endoplasmic reticulum stress (misfolding pathway). Here we report a novel heterozygous c.568G>A (p.Glu190Lys) variant identified in a case with chronic pancreatitis. The parents of the index patient had no history of pancreatitis but were unavailable for genetic testing. Functional characterization revealed 2.5-fold increased autoactivation of the mutant trypsinogen relative to wild type. Unlike many other clinically relevant PRSS1 mutations, p.Glu190Lys did not alter the chymotrypsin C (CTRC)-dependent degradation of trypsinogen nor did it increase CTRC-mediated processing of the trypsinogen activation peptide. Cellular secretion of the mutant protein was unchanged indicating normal folding behavior. Based on the genetic and functional evidence, we classify the p.Glu190Lys PRSS1 variant as likely pathogenic, which stimulates autoactivation of cationic trypsinogen independently of CTRC.
Collapse
Affiliation(s)
- Zsanett Jancsó
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| | - Grzegorz Oracz
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | | | - Eliwira Kolodziejczyk
- Department of Gastroenterology, Hepatology, Feeding Disorders and Pediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, FL, United States
| | | | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Genetic mutations are the primary cause for acute recurrent (ARP) and chronic pancreatitis in children. Further, our medical approach for many diseases is changing from a one-drug therapy to more individualized therapeutic strategies. In respect to the therapeutic management of ARP/chronic pancreatitis, this entails an understanding of the individual, mainly genetic, risk factors that led to pancreatitis disease. RECENT FINDINGS New pancreatitis-associated genes are continuously emerging from increasingly large genetic cohort studies. Furthermore, newer research findings demonstrate that multiple genetic and nongenetic factors are required to increase the individual risk for developing ARP/chronic pancreatitis. Last, there is new exciting development towards targeted pancreatitis therapy in the future. SUMMARY This review introduces the current concept of ARP/chronic pancreatitis as a complex disease caused by multiple genetic and nongenetic factors. This warrants careful evaluation of these patients and ideally consultation of a pancreas expert to help understand individual genetic risk profiles and to provide more effective patient consultation.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Genetic mutations in genes within and outside of the trypsin-dependent pathologic pathway have been found to be associated with chronic pancreatitis. This review highlights recent developments. RECENT FINDINGS CTRB1-CTRB2 has been identified as a new risk locus for chronic pancreatitis and the disease mechanism may involve trypsin degradation. Misfolding mutations in PRSS1, CPA1, and CEL, as well as environmental stress factors like tobacco and alcohol can trigger endoplasmic reticulum stress (ER-Stress). SUMMARY Protein misfolding as well as enzyme activity changes due to altered autoactivation, intracellular degradation, or enzyme inhibition represent the most important pathological mechanisms of chronic pancreatitis to date. Analysis of composite risk patterns by next-generation sequencing will help elucidate complex gene interactions and identify new potential therapeutic targets.
Collapse
|
37
|
Sofia VM, Surace C, Terlizzi V, Da Sacco L, Alghisi F, Angiolillo A, Braggion C, Cirilli N, Colombo C, Di Lullo A, Padoan R, Quattrucci S, Raia V, Tuccio G, Zarrilli F, Tomaiuolo AC, Novelli A, Lucidi V, Lucarelli M, Castaldo G, Angioni A. Trans-heterozygosity for mutations enhances the risk of recurrent/chronic pancreatitis in patients with Cystic Fibrosis. Mol Med 2018; 24:38. [PMID: 30134826 PMCID: PMC6062922 DOI: 10.1186/s10020-018-0041-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 07/16/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Recurrent (RP) and chronic pancreatitis (CP) may complicate Cystic Fibrosis (CF). It is still unknown if mutations in genes involved in the intrapancreatic activation of trypsin (IPAT) or in the pancreatic secretion pathway (PSP) may enhance the risk for RP/CP in patients with CF. METHODS We enrolled: 48 patients affected by CF complicated by RP/CP and, as controls 35 patients with CF without pancreatitis and 80 unrelated healthy subjects. We tested a panel of 8 genes involved in the IPAT, i.e. PRSS1, PRSS2, SPINK1, CTRC, CASR, CFTR, CTSB and KRT8 and 23 additional genes implicated in the PSP. RESULTS We found 14/48 patients (29.2%) with mutations in genes involved in IPAT in the group of CF patients with RP/CP, while mutations in such genes were found in 2/35 (5.7%) patients with CF without pancreatitis and in 3/80 (3.8%) healthy subjects (p < 0.001). Thus, we found mutations in 12 genes of the PSP in 11/48 (22.9%) patients with CF and RP/CP. Overall, 19/48 (39.6%) patients with CF and RP/CP showed one or more mutations in the genes involved in the IPAT and in the PSP while such figure was 4/35 (11.4%) for patients with CF without pancreatitis and 11/80 (13.7%) for healthy controls (p < 0.001). CONCLUSIONS The trans-heterozygous association between CFTR mutations in genes involved in the pathways of pancreatic enzyme activation and the pancreatic secretion may be risk factors for the development of recurrent or chronic pancreatitis in patients with CF.
Collapse
Affiliation(s)
- Valentina Maria Sofia
- Laboratory of Medical Genetics Unit, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Cecilia Surace
- Laboratory of Medical Genetics Unit, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Vito Terlizzi
- Department of Pediatrics, Tuscany Regional Centre for Cystic Fibrosis, Anna Meyer Children's Hospital, Florence, Italy
| | - Letizia Da Sacco
- Multifactorial Diseases and Complex Phenotypes Research Area, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Federico Alghisi
- Cystic Fibrosis Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Cesare Braggion
- Department of Pediatrics, Tuscany Regional Centre for Cystic Fibrosis, Anna Meyer Children's Hospital, Florence, Italy
| | - Natalia Cirilli
- Regional Cystic Fibrosis Centre, United Hospitals, Mother - Child Department, Ancona, Italy
| | - Carla Colombo
- Cystic Fibrosis Regional Centre (Lombardia), IRCCS Ca' Granda Foundation, University of Milan, Milan, Italy
| | - Antonella Di Lullo
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Neuroscience, ORL Section, University of Naples Federico II, Naples, Italy
| | - Rita Padoan
- Cystic Fibrosis Support Centre, Pediatric Department, Children's Hospital, ASST Spedali Civili, Brescia, Italy
| | - Serena Quattrucci
- Cystic Fibrosis Regional Centre (Lazio), Sapienza University and Policlinico Umberto I, Rome, Italy
| | - Valeria Raia
- Cystic Fibrosis Regional Centre (Campania), Department of Medical Transalational Sciences, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Giuseppe Tuccio
- Cystic Fibrosis Regional Centre, Soverato Hospital, Catanzaro, Italy
| | - Federica Zarrilli
- Department of Biosciences and Territory, University of Molise, Isernia, Italy
| | - Anna Cristina Tomaiuolo
- Laboratory of Medical Genetics Unit, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Antonio Novelli
- Laboratory of Medical Genetics Unit, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - Marco Lucarelli
- Department of Cellular Biotechnologies and Hematology, Sapienza University of Rome, Rome, Italy.,Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Adriano Angioni
- Laboratory of Medical Genetics Unit, "Bambino Gesù" Children's Hospital, IRCCS, Viale di San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
38
|
Chymotrypsinogen C Genetic Variants, Including c.180TT, Are Strongly Associated With Chronic Pancreatitis in Pediatric Patients. J Pediatr Gastroenterol Nutr 2017; 65:652-657. [PMID: 28968289 DOI: 10.1097/mpg.0000000000001767] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Genetic studies in adults/adolescent patients with chronic pancreatitis (CP) identified chymotrypsinogen C (CTRC) genetic variants but their association with CP risk has been difficult to replicate. To evaluate the risk of CP associated with CTRC variants in CP pediatric patients-control study. METHODS The distribution of CTRC variants in CP pediatric cohort (n = 136, median age at CP onset 8 years) with no history of alcohol/smoking abuse was compared with controls (n = 401, median age 45). RESULTS We showed that p.Arg254Trp (4.6%) and p.Lys247_Arg254del (5.3%) heterozygous mutations are frequent and significantly associated with CP risk in pediatric patients (odds ratio [OR] = 19.1; 95% CI 2.8-160; P = 0.001 and OR = 5.5; 95% CI 1.6-19.4; P = 0.001, respectively). For the first time, we demonstrated that the c.180TT genotype of common p.Gly60Gly variant is strong, an independent CP risk factor (OR = 23; 95% CI 7.7-70; P < 0.001) with effect size comparable to p.Arg254Trp mutation. The other novel observation is that common c.493+51C>A variant, both CA and AA genotype, is significantly underrepresented in CP compared with controls (15% vs 35%; OR = 0.33; 95% CI 0.19-0.59; P < 0.001 and 2.8% vs 11%; OR = 0.24; 95% CI 0.06-0.85; P = 0.027, respectively). CONCLUSIONS Our study provides evidence that CTRC variants, including c.180TT (p.Gly60Gly) are strong CP risk factors. The c.493+51C>A variant may play a protective role against CP development.
Collapse
|
39
|
Abstract
Genetic investigations have provided unique insight into the mechanism of chronic pancreatitis in humans and firmly established that uncontrolled trypsin activity is a central pathogenic factor. Mutations in the PRSS1, SPINK1, and CTRC genes promote increased activation of trypsinogen to trypsin by stimulation of autoactivation or by impairing protective trypsinogen degradation and/or trypsin inhibition. Here we review key genetic and biochemical features of the trypsin-dependent pathological pathway in chronic pancreatitis.
Collapse
Affiliation(s)
- Eszter Hegyi
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Evans-433, Boston, MA, 02118, USA
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, 72 East Concord Street, Evans-433, Boston, MA, 02118, USA.
| |
Collapse
|
40
|
Boulling A, Masson E, Zou WB, Paliwal S, Wu H, Issarapu P, Bhaskar S, Génin E, Cooper DN, Li ZS, Chandak GR, Liao Z, Chen JM, Férec C. Identification of a functional enhancer variant within the chronic pancreatitis-associated SPINK1 c.101A>G (p.Asn34Ser)-containing haplotype. Hum Mutat 2017; 38:1014-1024. [PMID: 28556356 DOI: 10.1002/humu.23269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 02/06/2023]
Abstract
The haplotype harboring the SPINK1 c.101A>G (p.Asn34Ser) variant (also known as rs17107315:T>C) represents the most important heritable risk factor for idiopathic chronic pancreatitis identified to date. The causal variant contained within this risk haplotype has however remained stubbornly elusive. Herein, we set out to resolve this enigma by employing a hypothesis-driven approach. First, we searched for variants in strong linkage disequilibrium (LD) with rs17107315:T>C using HaploReg v4.1. Second, we identified two candidate SNPs by visual inspection of sequences spanning all 25 SNPs found to be in LD with rs17107315:T>C, guided by prior knowledge of pancreas-specific transcription factors and their cognate binding sites. Third, employing a novel cis-regulatory module (CRM)-guided approach to further filter the two candidate SNPs yielded a solitary candidate causal variant. Finally, combining data from phylogenetic conservation and chromatin accessibility, cotransfection transactivation experiments, and population genetic studies, we suggest that rs142703147:C>A, which disrupts a PTF1L-binding site within an evolutionarily conserved HNF1A-PTF1L CRM located ∼4 kb upstream of the SPINK1 promoter, contributes to the aforementioned chronic pancreatitis risk haplotype. Further studies are required not only to improve the characterization of this functional SNP but also to identify other functional components that might contribute to this high-risk haplotype.
Collapse
Affiliation(s)
- Arnaud Boulling
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Sumit Paliwal
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Hao Wu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Prachand Issarapu
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Seema Bhaskar
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Emmanuelle Génin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Giriraj R Chandak
- Genomic Research on Complex Diseases (GRC Group), CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, The Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Régional Universitaire (CHRU) Brest, Hôpital Morvan, Brest, France
| |
Collapse
|
41
|
Wu H, Zhou DZ, Berki D, Geisz A, Zou WB, Sun XT, Hu LH, Zhao ZH, Zhao AJ, He L, Cooper DN, Férec C, Chen JM, Li ZS, Sahin-Tóth M, Liao Z. No significant enrichment of rare functionally defective CPA1 variants in a large Chinese idiopathic chronic pancreatitis cohort. Hum Mutat 2017; 38:959-963. [PMID: 28497564 DOI: 10.1002/humu.23254] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 11/06/2022]
Abstract
Rare functionally defective carboxypeptidase A1 (CPA1) variants have been reported to predispose to nonalcoholic chronic pancreatitis, mainly the idiopathic subtype. However, independent replication has so far been lacking, particularly in Asian cohorts where initial studies employed small sample sizes. Herein we performed targeted next-generation sequencing of the CPA1 gene in 1,112 Han Chinese idiopathic chronic pancreatitis (ICP) patients-the largest ICP cohort so far analyzed in a single population-and 1,580 controls. Sanger sequencing was used to validate called variants, and the CPA1 activity and secretion of all newly found variants were measured. A total of 18 rare CPA1 variants were characterized, 11 of which have not been previously described. However, no significant association was noted with ICP irrespective of whether all rare variants [20 out of 1,112 (1.8%) in patients vs. 24 out of 1,580 (1.52%) in controls; P = 0.57] or functionally impaired variants [three out of 1,112 (0.27%) in patients vs. two out of 1,580 (0.13%) in controls; P = 0.68] were considered.
Collapse
Affiliation(s)
- Hao Wu
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France
| | - Dai-Zhan Zhou
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Dorottya Berki
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Andrea Geisz
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Wen-Bin Zou
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China.,Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France
| | - Xiao-Tian Sun
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Liang-Hao Hu
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Zhen-Hua Zhao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - An-Jing Zhao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Lin He
- Key Laboratory of Developmental Genetics and Neuropsychiatric Diseases (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France.,Laboratoire de Génétique Moléculaire et d'Histocompatibilité, Centre Hospitalier Universitaire (CHU) Brest, Hôpital Morvan, Brest, France
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1078, Brest, France.,Etablissement Français du Sang (EFS) - Bretagne, Brest, France.,Faculté de Médecine et des Sciences de la Santé, Université de Bretagne Occidentale (UBO), Brest, France
| | - Zhao-Shen Li
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| | - Miklós Sahin-Tóth
- Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts
| | - Zhuan Liao
- Department of Gastroenterology, Changhai Hospital, the Second Military Medical University, Shanghai, China.,Shanghai Institute of Pancreatic Diseases, Shanghai, China
| |
Collapse
|
42
|
Koziel D, Gluszek S, Kowalik A, Chlopek M. CTRC gene polymorphism (p.G60=; c.180 C > T) in acute pancreatitis. BMC Gastroenterol 2017; 17:13. [PMID: 28095786 PMCID: PMC5240263 DOI: 10.1186/s12876-016-0566-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The aim of the study was to determine the relationship between the presence of p.G60 = polymorphism (c.180C > T; rs497078) CTRC and the incidence together with the clinical course of acute pancreatitis (AP). METHODS Two hundred ninety-nine people suffering from AP and 417 healthy volunteers were subjected to the study. DNA was isolated from blood samples. RESULTS CTRC p.G60 = polymorphism (c.180C > T) occurred more frequently in the AP group (p = 0.015). The CT and TT genotype was found in 27.8% of the AP patients and in 19.9% of the healthy subjects (p = 0.017). No significant correlation was found between having the CT and TT genotype and the severity of the AP clinical course. In 6 patients (2%) with the CT genotype, a SPINK1 gene mutation was found, while in the control group it was found in 3 patients (0.7%), (p > 0.05). All patients with the present SPINK1 mutation with the CT genotype had a moderate or a severe course of the disease (p = 0.0007). CONCLUSIONS CTRC polymorphism Hetero p.G60=; c.180C > T increases the risk of an AP occurrence and together with the SPINK 1 mutation, may be responsible for a more severe course of the disease.
Collapse
Affiliation(s)
- Dorota Koziel
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland.
| | - Stanislaw Gluszek
- Faculty of Medicine and Health Sciences, Jan Kochanowski University, Kielce, Poland.,Clinic General Oncological and Endocrinological Surgery, Regional Hospital, Kielce, Poland
| | - Artur Kowalik
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland
| | - Malgorzata Chlopek
- Department of Molecular Diagnostics, Holy Cross Cancer Centre, Kielce, Poland
| |
Collapse
|
43
|
Boulling A, Abrantes A, Masson E, Cooper DN, Robaszkiewicz M, Chen JM, Férec C. Discovery and Functional Annotation ofPRSS1Promoter Variants in Chronic Pancreatitis. Hum Mutat 2016; 37:1149-1152. [DOI: 10.1002/humu.23053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/20/2016] [Accepted: 07/14/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Arnaud Boulling
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078, Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
- Etablissement Français du sang (EFS) - Bretagne; Brest France
| | - Amandine Abrantes
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078, Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Morvan; Brest France
- Service de Gastro-Entérologie; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Cavale Blanche; Brest France
| | - Emmanuelle Masson
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078, Brest France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Morvan; Brest France
| | - David N. Cooper
- Institute of Medical Genetics, School of Medicine; Cardiff University; Cardiff United Kingdom
| | - Michel Robaszkiewicz
- Service de Gastro-Entérologie; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Cavale Blanche; Brest France
| | - Jian-Min Chen
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078, Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
- Etablissement Français du sang (EFS) - Bretagne; Brest France
| | - Claude Férec
- Institut National de la Santé et de la Recherche Médicale (INSERM); U1078, Brest France
- Faculté de Médecine et des Sciences de la Santé; Université de Bretagne Occidentale (UBO); Brest France
- Etablissement Français du sang (EFS) - Bretagne; Brest France
- Laboratoire de Génétique Moléculaire et d'Histocompatibilité; Centre Hospitalier Régional Universitaire (CHRU) Brest; Hôpital Morvan; Brest France
| |
Collapse
|
44
|
Szabó A, Pilsak C, Bence M, Witt H, Sahin-Tóth M. Complex Formation of Human Proelastases with Procarboxypeptidases A1 and A2. J Biol Chem 2016; 291:17706-16. [PMID: 27358403 DOI: 10.1074/jbc.m116.743237] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Indexed: 01/16/2023] Open
Abstract
The pancreas secretes digestive proenzymes typically in their monomeric form. A notable exception is the ternary complex formed by proproteinase E, chymotrypsinogen C, and procarboxypeptidase A (proCPA) in cattle and other ruminants. In the human and pig pancreas binary complexes of proCPA with proelastases were found. To characterize complex formation among human pancreatic protease zymogens in a systematic manner, we performed binding experiments using recombinant proelastases CELA2A, CELA3A, and CELA3B; chymotrypsinogens CTRB1, CTRB2, CTRC, and CTRL1; and procarboxypeptidases CPA1, CPA2, and CPB1. We found that proCELA3B bound not only to proCPA1 (KD 43 nm) but even more tightly to proCPA2 (KD 18 nm), whereas proCELA2A bound weakly to proCPA1 only (KD 152 nm). Surprisingly, proCELA3A, which shares 92% identity with proCELA3B, did not form stable complexes due to the evolutionary replacement of Ala(241) with Gly. The polymorphic nature of position 241 in both CELA3A (∼4% Ala(241) alleles) and CELA3B (∼2% Gly(241) alleles) points to individual variations in complex formation. The functional effect of complex formation was delayed procarboxypeptidase activation due to increased affinity of the inhibitory activation peptide, whereas proelastase activation was unchanged. We conclude that complex formation among human pancreatic protease zymogens is limited to a subset of proelastases and procarboxypeptidases. Complex formation stabilizes the inhibitory activation peptide of procarboxypeptidases and thereby increases zymogen stability and controls activation.
Collapse
Affiliation(s)
- András Szabó
- From the Department of Molecular and Cell Biology and
| | - Claudia Pilsak
- From the Department of Molecular and Cell Biology and the Paediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), 85354 Freising, Germany, and
| | - Melinda Bence
- From the Department of Molecular and Cell Biology and
| | - Heiko Witt
- the Paediatric Nutritional Medicine, Klinikum rechts der Isar (MRI), Else Kröner-Fresenius-Zentrum für Ernährungsmedizin (EKFZ), Technische Universität München (TUM), 85354 Freising, Germany, and the ZIEL-Institute for Food and Health, 85354 Freising, Germany
| | - Miklós Sahin-Tóth
- From the Department of Molecular and Cell Biology and Center for Exocrine Disorders, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118,
| |
Collapse
|
45
|
Liu C, Yang W, Devidas M, Cheng C, Pei D, Smith C, Carroll WL, Raetz EA, Bowman WP, Larsen EC, Maloney KW, Martin PL, Mattano LA, Winick NJ, Mardis ER, Fulton RS, Bhojwani D, Howard SC, Jeha S, Pui CH, Hunger SP, Evans WE, Loh ML, Relling MV. Clinical and Genetic Risk Factors for Acute Pancreatitis in Patients With Acute Lymphoblastic Leukemia. J Clin Oncol 2016; 34:2133-40. [PMID: 27114598 DOI: 10.1200/jco.2015.64.5812] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Acute pancreatitis is one of the common causes of asparaginase intolerance. The mechanism is unknown, and genetic predisposition to asparaginase-induced pancreatitis has not been previously identified. METHODS To determine clinical risk factors for asparaginase-induced pancreatitis, we studied a cohort of 5,185 children and young adults with acute lymphoblastic leukemia, including 117 (2.3%) who were diagnosed with at least one episode of acute pancreatitis during therapy. A genome-wide association study was performed in the cohort and in an independent case-control group of 213 patients to identify genetic risk factors. RESULTS Risk factors associated with pancreatitis included genetically defined Native American ancestry (P < .001), older age (P < .001), and higher cumulative dose of asparaginase (P < .001). No common variants reached genome-wide significance in the genome-wide association study, but a rare nonsense variant rs199695765 in CPA2, encoding carboxypeptidase A2, was highly associated with pancreatitis (hazard ratio, 587; 95% CI, 66.8 to 5166; P = 9.0 × 10(-9)). A gene-level analysis showed an excess of additional CPA2 variants in patients who did versus those who did not develop pancreatitis (P = .001). Sixteen CPA2 single-nucleotide polymorphisms were associated (P < .05) with pancreatitis, and 13 of 24 patients who carried at least one of these variants developed pancreatitis. Biologic functions that were overrepresented by common variants modestly associated with pancreatitis included purine metabolism and cytoskeleton regulation. CONCLUSION Older age, higher exposure to asparaginase, and higher Native American ancestry were independent risk factors for pancreatitis in patients with acute lymphoblastic leukemia. Those who inherit a nonsense rare variant in the CPA2 gene had a markedly increased risk of asparaginase-induced pancreatitis.
Collapse
Affiliation(s)
- Chengcheng Liu
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Wenjian Yang
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Meenakshi Devidas
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Cheng Cheng
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deqing Pei
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Colton Smith
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - William L Carroll
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth A Raetz
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - W Paul Bowman
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Eric C Larsen
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Kelly W Maloney
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul L Martin
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leonard A Mattano
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Naomi J Winick
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elaine R Mardis
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Robert S Fulton
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deepa Bhojwani
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Scott C Howard
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sima Jeha
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ching-Hon Pui
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stephen P Hunger
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - William E Evans
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mignon L Loh
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mary V Relling
- Chengcheng Liu, Wenjian Yang, Cheng Cheng, Deqing Pei, Colton Smith, Sima Jeha, Ching-Hon Pui, William E. Evans, and Mary V. Relling, St Jude Children's Research Hospital; Scott C. Howard, University of Memphis, Memphis, TN; Meenakshi Devidas, University of Florida, Gainesville, FL; William L. Carroll, New York University Langone Medical Center, New York, NY; Elizabeth A. Raetz, University of Utah, Salt Lake City, UT; W. Paul Bowman, Cook Children's Hospital, Ft Worth; Naomi J. Winick, University of Texas Southwestern Medical Center, Dallas, TX; Eric C. Larsen, Maine Children's Cancer Program, Scarborough, ME; Kelly W. Maloney, University of Colorado Denver, Aurora, CO; Paul L. Martin, Duke University, Durham, NC; Leonard A. Mattano Jr, HARP Pharma Consulting, Mystic, CT; Elaine R. Mardis and Robert S. Fulton, The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO; Deepa Bhojwani, Children's Hospital of Los Angeles, Los Angeles; Mignon L. Loh, University of California San Francisco Medical Center-Parnassus, San Francisco, CA; and Stephen P. Hunger, Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
46
|
Jancsó Z, Sahin-Tóth M. Tighter Control by Chymotrypsin C (CTRC) Explains Lack of Association between Human Anionic Trypsinogen and Hereditary Pancreatitis. J Biol Chem 2016; 291:12897-905. [PMID: 27129265 DOI: 10.1074/jbc.m116.725374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Indexed: 01/28/2023] Open
Abstract
The human pancreas expresses two major trypsinogen isoforms, cationic trypsinogen (PRSS1) and anionic trypsinogen (PRSS2). Mutations in PRSS1 cause hereditary pancreatitis by altering cleavage of regulatory nick sites by chymotrypsin C (CTRC) resulting in reduced trypsinogen degradation and increased autoactivation. Despite 90% identity with PRSS1 and a strong propensity for autoactivation, mutations in PRSS2 are not found in hereditary pancreatitis suggesting that activation of this isoform is more tightly regulated. Here, we demonstrated that CTRC promoted degradation and thereby markedly suppressed autoactivation of human anionic trypsinogen more effectively than previously observed with cationic trypsinogen. Increased sensitivity of anionic trypsinogen to CTRC-mediated degradation was due to an additional cleavage site at Leu-148 in the autolysis loop and the lack of the conserved Cys-139-Cys-206 disulfide bond. Significant stabilization of anionic trypsinogen against degradation was achieved by simultaneous mutations of CTRC cleavage sites Leu-81 and Leu-148, autolytic cleavage site Arg-122, and restoration of the missing disulfide bridge. This stands in stark contrast to cationic trypsinogen where single mutations of either Leu-81 or Arg-122 resulted in almost complete resistance to CTRC-mediated degradation. Finally, processing of the trypsinogen activation peptide at Phe-18 by CTRC inhibited autoactivation of anionic trypsinogen, although cationic trypsinogen was strongly stimulated. Taken together, the observations indicate that human anionic trypsinogen is controlled by CTRC in a manner that individual natural mutations are unlikely to increase stability enough to promote intra-pancreatic activation. This unique biochemical property of anionic trypsinogen explains the lack of association of PRSS2 mutations with hereditary pancreatitis.
Collapse
Affiliation(s)
- Zsanett Jancsó
- From the Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Miklós Sahin-Tóth
- From the Center for Exocrine Disorders, Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts 02118
| |
Collapse
|
47
|
Balázs A, Hegyi P, Sahin-Tóth M. Pathogenic cellular role of the p.L104P human cationic trypsinogen variant in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol 2016; 310:G477-86. [PMID: 26822915 PMCID: PMC4824176 DOI: 10.1152/ajpgi.00444.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Mutations in the PRSS1 gene encoding human cationic trypsinogen are associated with hereditary and sporadic chronic pancreatitis. High-penetrance PRSS1 mutations found in hereditary pancreatitis alter activation and/or degradation of cationic trypsinogen, thereby promoting intrapancreatic trypsinogen activation. In contrast, a number of rare PRSS1 variants identified in subjects with sporadic chronic pancreatitis cause misfolding and endoplasmic reticulum (ER) stress. Mutation p.L104P is unique among natural PRSS1 variants, since it affects the substrate binding site of trypsin. The aim of the present study was to establish the clinical significance of variant p.L104P through functional analysis. We found that p.L104P trypsin exhibited decreased activity on peptide and protein substrates; however, autoactivation was slightly accelerated. Remarkably, binding of the physiological trypsin inhibitor serine protease inhibitor Kazal type 1 (SPINK1) was decreased by 70-fold. In the presence of the trypsinogen-degrading enzyme chymotrypsin C, mutant p.L104P autoactivated to higher trypsin levels than wild-type trypsinogen. This apparent resistance to degradation was due to slower cleavage at Arg(122) rather than Leu(81) Finally, secretion of mutant p.L104P from transfected cells was markedly reduced due to intracellular retention and aggregation with concomitant elevation of ER stress markers. We conclude that PRSS1 variant p.L104P exhibits a variety of phenotypic changes that can increase risk for chronic pancreatitis. Mutation-induced misfolding and associated ER stress are the dominant effects that support a direct pathogenic role in chronic pancreatitis.
Collapse
Affiliation(s)
- Anita Balázs
- 1Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts; ,2First Department of Medicine, University of Szeged, Szeged, Hungary;
| | - Péter Hegyi
- 2First Department of Medicine, University of Szeged, Szeged, Hungary; ,3MTA-SZTE Translational Gastroenterology Research Group, Szeged, Hungary; and ,4Institute for Translational Medicine and 1st Department of Medicine, University of Pécs, Pécs, Hungary
| | - Miklós Sahin-Tóth
- Department of Molecular and Cell Biology, Boston University Henry M. Goldman School of Dental Medicine, Boston, Massachusetts;
| |
Collapse
|
48
|
Tomomura M, Tomomura A. Caldecrin: A pancreas-derived hypocalcemic factor, regulates osteoclast formation and function. World J Biol Chem 2015; 6:358-365. [PMID: 26629319 PMCID: PMC4656912 DOI: 10.4331/wjbc.v6.i4.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/31/2015] [Accepted: 09/30/2015] [Indexed: 02/05/2023] Open
Abstract
Caldecrin was originally isolated from the pancreas as a factor that reduced serum calcium levels. This secreted serine protease has chymotrypsin-like activity and is also known as chymotrypsin C; it belongs to the elastase family. Although intravenous administration of caldecrin decreases the serum calcium concentration even when its protease activity is blocked, this effect does require cleavage of caldecrin’s pro-peptide by trypsin, converting it to the mature enzyme. Ectopic intramuscular expression of caldecrin prevented bone resorption in ovariectomized mice. Caldecrin inhibited parathyroid hormone-stimulated calcium release from fetal mouse long bone organ cultures. Furthermore, caldecrin suppressed the formation of osteoclasts from bone marrow cells by inhibiting the receptor activator of nuclear factor-κ B ligand (RANKL)-stimulated phospholipase Cγ-calcium oscillation-calcineurin-nuclear factor of activated T-cells, cytoplasmic 1 pathway. Caldecrin also suppressed the bone resorption activity of mature osteoclasts by preventing RANKL-stimulated Src activation, calcium entry, and actin ring formation. In vivo and in vitro studies have indicated that caldecrin is a unique multifunctional protease with anti-osteoclastogenic activities that are distinct from its protease activity. Caldecrin might be a potential therapeutic target for the treatment of osteolytic diseases such as osteoporosis and osteoarthritis. This mini-review describes caldecrin’s historical background and its mechanisms of action.
Collapse
|
49
|
Rygiel AM, Beer S, Simon P, Wertheim-Tysarowska K, Oracz G, Kucharzik T, Tysarowski A, Niepokój K, Kierkus J, Jurek M, Gawliński P, Poznański J, Bal J, Lerch MM, Sahin-Tóth M, Weiss FU. Gene conversion between cationic trypsinogen (PRSS1) and the pseudogene trypsinogen 6 (PRSS3P2) in patients with chronic pancreatitis. Hum Mutat 2015; 36:350-6. [PMID: 25546417 DOI: 10.1002/humu.22747] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/18/2014] [Indexed: 01/20/2023]
Abstract
Mutations of the human cationic trypsinogen gene (PRSS1) are frequently found in association with hereditary pancreatitis. The most frequent variants p.N29I and p.R122H are recognized as disease-causing mutations. Three pseudogene paralogs in the human trypsinogen family, including trypsinogen 6 (PRSS3P2), carry sequence variations in exon 3 that mimic the p.R122H mutation. In routine genetic testing of patients with chronic pancreatitis, we identified in two unrelated individuals similar gene conversion events of 24-71 nucleotides length between exon 3 of the PRSS1 (acceptor) and PRSS3P2 (donor) genes. The converted allele resulted in three nonsynonymous alterations c.343T>A (p.S115T), c.347G>C (p.R116P), and c.365_366delinsAT (p.R122H). Functional analysis of the conversion triple mutant revealed markedly increased autoactivation resulting in high and sustained trypsin activity in the presence of chymotrypsin C. This activation phenotype was identical to that of the p.R122H mutant. In addition, cellular secretion of the triple mutant from transfected HEK 293T cells was increased about twofold and this effect was attributable to mutation p.R116P. Our observations confirm and extend the notion that recombination events between members of the trypsinogen family can generate high-risk PRSS1 alleles. The pathogenic phenotype of the novel conversion is explained by a unique combination of increased trypsinogen activation and secretion.
Collapse
|
50
|
Report of 2 CTRC Intronic Mutations Associated With Acute or Chronic Pancreatitis and Delineation of Their Pathogenic Molecular Mechanisms. Pancreas 2015; 44:999-1001. [PMID: 26166474 DOI: 10.1097/mpa.0000000000000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|