1
|
Roy A, Sudhamalla B. ATAD2 and TWIST1 Interaction Promotes MYC Activation in Colorectal Carcinoma. Biochemistry 2024. [PMID: 39686835 DOI: 10.1021/acs.biochem.4c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) is significantly up-regulated in many cancer types and contributes to poor patient outcomes. ATAD2 exhibits a multidomain architecture comprising an N-terminal acidic domain, two AAA+ ATPase domains, a bromodomain, and a C-terminal domain. The AAA+ ATPase domain facilitates protein oligomerization and ATP binding, while the bromodomain recognizes acetylated lysine in histones and nonhistone proteins. ATAD2 involvement in cancer extends across multiple signaling pathways, such as Rb-E2F1, PI3K/AKT, and TGF-β1/Smad3, which promotes cell proliferation and cancer progression. Herein, we report that ATAD2 directly interacts with TWIST1, and both N-terminal regions of proteins mediate the interaction. Immunofluorescence experiments suggested that ATAD2 and TWIST1 primarily colocalize in the nucleus. Notably, our qPCR results revealed the functional significance of ATAD2-TWIST1 interaction by demonstrating their synergistic effect on the transcriptional activation of MYC in colorectal carcinoma cell lines. Moreover, the ChIP-qPCR result further indicates that ATAD2 and TWIST1 significantly localize in the promoter of the MYC gene. In addition, analysis of The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) data suggests a correlation between ATAD2, TWIST1, and MYC overexpression and poor survival rates in colorectal carcinoma. Lastly, the overexpression of ATAD2 and TWIST1 enhances cell proliferation, emphasizing their role in colorectal carcinoma progression through MYC activation. Together, these results suggest that ATAD2 is a crucial factor in TWIST1-dependent MYC gene activation, resulting in an active ATAD2-TWIST1-MYC axis that contributes to colon cancer cell proliferation.
Collapse
Affiliation(s)
- Anirban Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Babu Sudhamalla
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
2
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|
3
|
Cho C, Ganser C, Uchihashi T, Kato K, Song JJ. Structure of the human ATAD2 AAA+ histone chaperone reveals mechanism of regulation and inter-subunit communication. Commun Biol 2023; 6:993. [PMID: 37770645 PMCID: PMC10539301 DOI: 10.1038/s42003-023-05373-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 09/19/2023] [Indexed: 09/30/2023] Open
Abstract
ATAD2 is a non-canonical ATP-dependent histone chaperone and a major cancer target. Despite widespread efforts to design drugs targeting the ATAD2 bromodomain, little is known about the overall structural organization and regulation of ATAD2. Here, we present the 3.1 Å cryo-EM structure of human ATAD2 in the ATP state, showing a shallow hexameric spiral that binds a peptide substrate at the central pore. The spiral conformation is locked by an N-terminal linker domain (LD) that wedges between the seam subunits, thus limiting ATP-dependent symmetry breaking of the AAA+ ring. In contrast, structures of the ATAD2-histone H3/H4 complex show the LD undocked from the seam, suggesting that H3/H4 binding unlocks the AAA+ spiral by allosterically releasing the LD. These findings, together with the discovery of an inter-subunit signaling mechanism, reveal a unique regulatory mechanism for ATAD2 and lay the foundation for developing new ATAD2 inhibitors.
Collapse
Affiliation(s)
- Carol Cho
- Department of Biological Sciences, KAIST Stem Cell Center, Basic Science 4.0 Institute, and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| | - Christian Ganser
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Department of Physics and Institute for Glyco-core Research (iGCORE), Nagoya University, Chikusa-ku, Furo-cho, Nagoya, Aichi, 464-8602, Japan
| | - Koichi Kato
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya, Aichi, 467-8603, Japan
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Ji-Joon Song
- Department of Biological Sciences, KAIST Stem Cell Center, Basic Science 4.0 Institute, and KI for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea.
| |
Collapse
|
4
|
Bardani E, Kallemi P, Tselika M, Katsarou K, Kalantidis K. Spotlight on Plant Bromodomain Proteins. BIOLOGY 2023; 12:1076. [PMID: 37626962 PMCID: PMC10451976 DOI: 10.3390/biology12081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023]
Abstract
Bromodomain-containing proteins (BRD-proteins) are the "readers" of histone lysine acetylation, translating chromatin state into gene expression. They act alone or as components of larger complexes and exhibit diverse functions to regulate gene expression; they participate in chromatin remodeling complexes, mediate histone modifications, serve as scaffolds to recruit transcriptional regulators or act themselves as transcriptional co-activators or repressors. Human BRD-proteins have been extensively studied and have gained interest as potential drug targets for various diseases, whereas in plants, this group of proteins is still not well investigated. In this review, we aimed to concentrate scientific knowledge on these chromatin "readers" with a focus on Arabidopsis. We organized plant BRD-proteins into groups based on their functions and domain architecture and summarized the published work regarding their interactions, activity and diverse functions. Overall, it seems that plant BRD-proteins are indispensable components and fine-tuners of the complex network plants have built to regulate development, flowering, hormone signaling and response to various biotic or abiotic stresses. This work will facilitate the understanding of their roles in plants and highlight BRD-proteins with yet undiscovered functions.
Collapse
Affiliation(s)
- Eirini Bardani
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Paraskevi Kallemi
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Martha Tselika
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
| | - Konstantina Katsarou
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Voutes University Campus, 71500 Heraklion, Greece; (E.B.); (P.K.); (M.T.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Greece
| |
Collapse
|
5
|
Fu J, Zhang J, Chen X, Liu Z, Yang X, He Z, Hao Y, Liu B, Yao D. ATPase family AAA domain-containing protein 2 (ATAD2): From an epigenetic modulator to cancer therapeutic target. Theranostics 2023; 13:787-809. [PMID: 36632213 PMCID: PMC9830439 DOI: 10.7150/thno.78840] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2) has been widely reported to be a new emerging oncogene that is closely associated with epigenetic modifications in human cancers. As a coactivator of transcription factors, ATAD2 can participate in epigenetic modifications and regulate the expression of downstream oncogenes or tumor suppressors, which may be supported by the enhancer of zeste homologue 2. Moreover, the dominant structure (AAA + ATPase and bromine domains) can make ATAD2 a potential therapeutic target in cancer, and some relevant small-molecule inhibitors, such as GSK8814 and AZ13824374, have also been discovered. Thus, in this review, we focus on summarizing the structural features and biological functions of ATAD2 from an epigenetic modulator to a cancer therapeutic target, and further discuss the existing small-molecule inhibitors targeting ATAD2 to improve potential cancer therapy. Together, these inspiring findings would shed new light on ATAD2 as a promising druggable target in cancer and provide a clue on the development of candidate anticancer drugs.
Collapse
Affiliation(s)
- Jiahui Fu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xuetao Yang
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Zhendan He
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China
| | - Yue Hao
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen 518060, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen, 518118, China.,✉ Corresponding authors: E-mail addresses: (Yue Hao); (Bo Liu), or (Dahong Yao). Tel./Fax. (+86)-28-85164063
| |
Collapse
|
6
|
Dutta M, Mohapatra D, Mohapatra AP, Senapati S, Roychowdhury A. ATAD2 suppression enhances the combinatorial effect of gemcitabine and radiation in pancreatic cancer cells. Biochem Biophys Res Commun 2022; 635:179-186. [DOI: 10.1016/j.bbrc.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 09/22/2022] [Accepted: 10/05/2022] [Indexed: 11/25/2022]
|
7
|
Shukla S, Lazarchuk P, Pavlova MN, Sidorova JM. Genome-wide survey of D/E repeats in human proteins uncovers their instability and aids in identifying their role in the chromatin regulator ATAD2. iScience 2022; 25:105464. [PMCID: PMC9672403 DOI: 10.1016/j.isci.2022.105464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 11/15/2022] Open
Abstract
D/E repeats are stretches of aspartic and/or glutamic acid residues found in over 150 human proteins. We examined genomic stability of D/E repeats and functional characteristics of D/E repeat-containing proteins vis-à-vis the proteins with poly-Q or poly-A repeats, which are known to undergo pathologic expansions. Mining of tumor sequencing data revealed that D/E repeat-coding regions are similar to those coding poly-Qs and poly-As in increased incidence of trinucleotide insertions/deletions but differ in types and incidence of substitutions. D/E repeat-containing proteins preferentially function in chromatin metabolism and are the more likely to be nuclear and interact with core histones, the longer their repeats are. One of the longest D/E repeats of unknown function is in ATAD2, a bromodomain family ATPase frequently overexpressed in tumors. We demonstrate that D/E repeat deletion in ATAD2 suppresses its binding to nascent and mature chromatin and to the constitutive pericentromeric heterochromatin, where ATAD2 represses satellite transcription. Many human proteins contain runs of aspartic/glutamic acid residues (D/E repeats) D/E repeats show increased incidence of in-frame insertions/deletions in tumors Nuclear and histone-interacting proteins often have long D/E repeats D/E repeat of the oncogene ATAD2 controls its binding to pericentric chromatin
Collapse
Affiliation(s)
- Shalabh Shukla
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Pavlo Lazarchuk
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Maria N. Pavlova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
| | - Julia M. Sidorova
- Department of Laboratory Medicine and Pathology, University of Washington, 1959 NE Pacific St., Box 357705, Seattle, WA 98195, USA
- Corresponding author
| |
Collapse
|
8
|
miR-302 Suppresses the Proliferation, Migration, and Invasion of Breast Cancer Cells by Downregulating ATAD2. Cancers (Basel) 2022; 14:cancers14184345. [PMID: 36139505 PMCID: PMC9497224 DOI: 10.3390/cancers14184345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Simple Summary ATPase family AAA domain-containing protein 2 (ATAD2) overexpression is associated with poor survival and disease recurrence in multiple cancers. The current study aimed to investigate the expression and function of ATAD2 in breast cancer. Our results showed that ATAD2 expression was upregulated in human breast cancer tissues and cell lines, while ATAD2 knockdown inhibited the proliferation, migration, and invasion of breast cancer cells. Moreover, we provide evidence suggesting that miR-302 directly targets ATAD2 and thus modulates cancer cell proliferation, migration, and invasion in vitro. Moreover, ATAD2 overexpression rescued the inhibition of tumor growth caused by miR-302 in xenograft mice. These findings indicate that miR-302 plays a crucial role in inhibiting the malignant phenotypes of breast cancer cells by targeting ATAD2. Abstract Breast cancer is the most common malignant tumor in women. The ATPase family AAA domain-containing protein 2 (ATAD2) contains an ATPase domain and a bromodomain, and is abnormally expressed in various human cancers, including breast cancer. However, the molecular mechanisms underlying the regulation of ATAD2 expression in breast cancer remain unclear. This study aimed to investigate the expression and function of ATAD2 in breast cancer. We found that ATAD2 was highly expressed in human breast cancer tissues and cell lines. ATAD2 depletion via RNA interference inhibited the proliferation, migration, and invasive ability of the SKBR3 and T47D breast cancer cell lines. Furthermore, Western blot analysis and luciferase assay results revealed that ATAD2 is a putative target of miR-302. Transfection with miR-302 mimics markedly reduced cell migration and invasion. These inhibitory effects of miR-302 were restored by ATAD2 overexpression. Moreover, miR-302 overexpression in SKBR3 and T47D cells suppressed tumor growth in the xenograft mouse model. However, ATAD2 overexpression rescued the decreased tumor growth seen after miR-302 overexpression. Our findings indicate that miR-302 plays a prominent role in inhibiting the cancer cell behavior associated with tumor progression by targeting ATAD2, and could thus be a valuable target for breast cancer therapy.
Collapse
|
9
|
Tumor-Promoting ATAD2 and Its Preclinical Challenges. Biomolecules 2022; 12:biom12081040. [PMID: 36008934 PMCID: PMC9405547 DOI: 10.3390/biom12081040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has received extensive attention in recent years as one prospective oncogene with tumor-promoting features in many malignancies. ATAD2 is a highly conserved bromodomain family protein that exerts its biological functions by mainly AAA ATPase and bromodomain. ATAD2 acts as an epigenetic decoder and transcription factor or co-activator, which is engaged in cellular activities, such as transcriptional regulation, DNA replication, and protein modification. ATAD2 has been reported to be highly expressed in a variety of human malignancies, including gastrointestinal malignancies, reproductive malignancies, urological malignancies, lung cancer, and other types of malignancies. ATAD2 is involved in the activation of multiple oncogenic signaling pathways and is closely associated with tumorigenesis, progression, chemoresistance, and poor prognosis, but the oncogenic mechanisms vary in different cancer types. Moreover, the direct targeting of ATAD2’s bromodomain may be a very challenging task. In this review, we summarized the role of ATAD2 in various types of malignancies and pointed out the pharmacological direction.
Collapse
|
10
|
Hao S, Li F, Jiang P, Gao J. Effect of chronic intermittent hypoxia-induced HIF-1α/ATAD2 expression on lung cancer stemness. Cell Mol Biol Lett 2022; 27:44. [PMID: 35672694 PMCID: PMC9172155 DOI: 10.1186/s11658-022-00345-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022] Open
Abstract
Background Obstructive sleep apnea is associated with increased lung cancer incidence and mortality. Cancer stem cells (CSCs) are characterized by their self-renewing ability, which contributes to metastasis, recurrence, and drug resistance. ATPase family AAA domain-containing protein 2 (ATAD2) induces malignancy in different types of tumors. However, a correlation between ATAD2 expression and CSCs in lung cancer has not yet been reported. Methods The relative messenger RNA (mRNA) levels of ATAD2, CD44, CD133, and hypoxia-inducible factor (HIF)-1α were determined using reverse-transcription quantitative polymerase chain reaction. ATAD2 protein levels were determined using Western blotting. Cell counting kit-8, 5-ethynyl-2′-deoxyuridine (EdU), and colony formation assays were performed to analyze the proliferation of lung cancer cells. Transwell migration and invasion assays were performed to evaluate cell migration and invasion, respectively. Tumor sphere formation analysis was used to determine tumor spheroid capacity. The link between ATAD2 and HIF-1α was verified using a dual-luciferase reporter assay. Immunofluorescence staining was performed to assess mitochondrial reactive oxygen species (mtROS) production. Flow cytometry analysis was conducted to determine the CD133 and CD44 positive cell ratio. Results We evaluated the relative expression of ATAD2 in four lung cancer cell lines (A549, SPC-A1, H460, and H1299 cells) and found increased mRNA and protein levels of ATAD2 in lung cancer samples. ATAD2 overexpression was a poor prognostic factor for lung cancer patients. Loss of ATAD2 reduced lung cancer cell viability and proliferation. Additionally, ATAD2 knockdown repressed lung cancer cell migration, invasion, stem-cell-like properties, and mtROS production. Chronic intermittent hypoxia (CIH)-induced HIF-1α expression significantly activated ATAD2 during lung cancer progression. Conclusions This study found that CIH induced HIF-1α expression, which acts as a transcriptional activator of ATAD2. The present study also suggests a novel mechanism by which the integrity of CIH-triggered HIF-1α/ATAD2 may determine lung cancer aggressiveness via the interplay of mtROS and stemness in lung cancer cells. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00345-5.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fan Li
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Pan Jiang
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jian Gao
- Department of Nutrition, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
11
|
Haitani T, Kobayashi M, Koyasu S, Akamatsu S, Suwa T, Onodera Y, Nam JM, Nguyen PTL, Menju T, Date H, Ogawa O, Harada H. Proteolysis of a histone acetyl reader, ATAD2, induces chemoresistance of cancer cells under severe hypoxia by inhibiting cell cycle progression in S phase. Cancer Lett 2022; 528:76-84. [PMID: 34973392 DOI: 10.1016/j.canlet.2021.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 12/01/2021] [Accepted: 12/26/2021] [Indexed: 11/27/2022]
Abstract
Cancer cells acquire chemoresistance in hypoxic regions of solid tumors, which is suggested to be at least partly due to reduction of their proliferative activity. However, molecular mechanisms behind it have not been fully elucidated. Here, we revealed the importance of active proteolysis of a histone acetylation reader, ATPase family AAA domain containing 2 (ATAD2), under hypoxia. We found that inactivation of an O2/Fe2+/α-ketoglutarate-dependent dioxygenase triggered ATAD2 proteolysis by the proteasome system upon severe hypoxia in a hypoxia-inducible factors (HIFs)-independent manner. Consistently, ATAD2 expression levels were markedly lower in perinecrotic hypoxic regions in both xenografted and clinical tumor tissues. The ATAD2 proteolysis was accompanied by a decrease in the amount of acetylated histone H3 lysine 27 and inhibited cell cycle progression from the early to late S phase under severe hypoxia. The retardation of S phase progression induced chemoresistance, which was blocked by overexpression of ATAD2. Together, these results indicate that ATAD2 proteolysis upon severe hypoxia induces chemoresistance of cancer cells through heterochromatinization and the subsequent retardation of S phase progression; therefore, inhibition of ATAD2 proteolysis is expected to be a strategy to overcome chemoresistance of hypoxic tumor cells.
Collapse
Affiliation(s)
- Takao Haitani
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Minoru Kobayashi
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Sho Koyasu
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tatsuya Suwa
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Jin-Min Nam
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Phuong Thi Lien Nguyen
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshi Menju
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hiroshi Harada
- Laboratory of Cancer Cell Biology, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan; Department of Genome Dynamics, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
12
|
Ekin U, Yuzugullu H, Ozen C, Korhan P, Bagirsakci E, Yilmaz F, Yuzugullu OG, Uzuner H, Alotaibi H, Kirmizibayrak PB, Atabey N, Karakülah G, Ozturk M. Evaluation of ATAD2 as a Potential Target in Hepatocellular Carcinoma. J Gastrointest Cancer 2021; 52:1356-1369. [PMID: 34738187 DOI: 10.1007/s12029-021-00732-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide with lack of effective systemic chemotherapy. In this study, we aimed to evaluate the value of ATPase family AAA domain-containing protein 2 (ATAD2) as a biomarker and potential therapeutic target for HCC. METHODS The expression of ATAD2 was tested in different HCC patient cohorts by immunohistochemistry and comparative transcriptional analysis. The co-expression of ATAD2 and proliferation markers was compared during liver regeneration and malignancy with different bioinformatics tools. The cellular effects of ATAD2 inactivation in liver malignancy was tested on cell cycle, apoptosis, and colony formation ability as well as tumor formation using RNA interference. The genes affected by ATAD2 inactivation in three different HCC cell lines were identified by global gene expression profiling and bioinformatics tools. RESULTS ATAD2 overexpression is closely correlated with HCC tumor stage. There was gradual increase from dysplasia, well-differentiated and poorly-differentiated HCC, respectively. We also observed transient upregulation of ATAD2 expression during rat liver regeneration in parallel to changes in Ki-67 expression. ATAD2 knockdown resulted in apoptosis and decreased cell survival in vitro and decreased tumor formation in some HCC cell lines. However, three other HCC cell lines tested were not affected. Similarly, gene expression response to ATAD2 inactivation in different HCC cell lines was highly heterogeneous. CONCLUSIONS ATAD2 is a potential proliferation marker for liver regeneration and HCC. It may also serve as a therapeutic target despite heterogeneous response of malignant cells.
Collapse
Affiliation(s)
- Umut Ekin
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Haluk Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Cigdem Ozen
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Present Address: Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Bioinformatics group, Dresden, Germany
| | - Peyda Korhan
- Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Funda Yilmaz
- Department of Pathology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Ozge Gursoy Yuzugullu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Institut Albert Bonniot, Grenoble, France
| | - Hamdiye Uzuner
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Hani Alotaibi
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | | | - Nese Atabey
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey
| | - Gökhan Karakülah
- Izmir Biomedicine and Genome Center, Izmir, Turkey.,Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Mehmet Ozturk
- Izmir Biomedicine and Genome Center, Izmir, Turkey. .,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey. .,Institut Albert Bonniot, Grenoble, France. .,Faculty of Medicine, Izmir Tinaztepe University, Izmir, Turkey.
| |
Collapse
|
13
|
Holdgate GA, Bardelle C, Lanne A, Read J, O'Donovan DH, Smith JM, Selmi N, Sheppard R. Drug discovery for epigenetics targets. Drug Discov Today 2021; 27:1088-1098. [PMID: 34728375 DOI: 10.1016/j.drudis.2021.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/19/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022]
Abstract
Dysregulation of the epigenome is associated with the onset and progression of several diseases, including cancer, autoimmune, cardiovascular, and neurological disorders. Members from the three families of epigenetic proteins (readers, writers, and erasers) have been shown to be druggable using small-molecule inhibitors. Increasing knowledge of the role of epigenetics in disease and the reversibility of these modifications explain why pharmacological intervention is an attractive strategy for tackling epigenetic-based disease. In this review, we provide an overview of epigenetics drug targets, focus on approaches used for initial hit identification, and describe the subsequent role of structure-guided chemistry optimisation of initial hits to clinical candidates. We also highlight current challenges and future potential for epigenetics-based therapies.
Collapse
Affiliation(s)
- Geoffrey A Holdgate
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK.
| | - Catherine Bardelle
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Alice Lanne
- High-throughput Screening, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Alderley Park, UK
| | - Jon Read
- Structure and Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Nidhal Selmi
- iLAB, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Robert Sheppard
- Medicinal Chemistry, Cardiovascular, Renal, Metabolism R&D, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
14
|
Evans CM, Phillips M, Malone KL, Tonelli M, Cornilescu G, Cornilescu C, Holton SJ, Gorjánácz M, Wang L, Carlson S, Gay JC, Nix JC, Demeler B, Markley JL, Glass KC. Coordination of Di-Acetylated Histone Ligands by the ATAD2 Bromodomain. Int J Mol Sci 2021; 22:9128. [PMID: 34502039 PMCID: PMC8430952 DOI: 10.3390/ijms22179128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The ATPase Family, AAA domain-containing protein 2 (ATAD2) bromodomain (BRD) has a canonical bromodomain structure consisting of four α-helices. ATAD2 functions as a co-activator of the androgen and estrogen receptors as well as the MYC and E2F transcription factors. ATAD2 also functions during DNA replication, recognizing newly synthesized histones. In addition, ATAD2 is shown to be up-regulated in multiple forms of cancer including breast, lung, gastric, endometrial, renal, and prostate. Furthermore, up-regulation of ATAD2 is strongly correlated with poor prognosis in many types of cancer, making the ATAD2 bromodomain an innovative target for cancer therapeutics. In this study, we describe the recognition of histone acetyllysine modifications by the ATAD2 bromodomain. Residue-specific information on the complex formed between the histone tail and the ATAD2 bromodomain, obtained through nuclear magnetic resonance spectroscopy (NMR) and X-ray crystallography, illustrates key residues lining the binding pocket, which are involved in coordination of di-acetylated histone tails. Analytical ultracentrifugation, NMR relaxation data, and isothermal titration calorimetry further confirm the monomeric state of the functionally active ATAD2 bromodomain in complex with di-acetylated histone ligands. Overall, we describe histone tail recognition by ATAD2 BRD and illustrate that one acetyllysine group is primarily engaged by the conserved asparagine (N1064), the "RVF" shelf residues, and the flexible ZA loop. Coordination of a second acetyllysine group also occurs within the same binding pocket but is essentially governed by unique hydrophobic and electrostatic interactions making the di-acetyllysine histone coordination more specific than previously presumed.
Collapse
Affiliation(s)
- Chiara M. Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Margaret Phillips
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Kiera L. Malone
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Gabriel Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Claudia Cornilescu
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Simon J. Holton
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Mátyás Gorjánácz
- Bayer AG, Pharmaceuticals, Research & Early Development Oncology, 13353 Berlin, Germany; (S.J.H.); (M.G.)
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jamie C. Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
| | - Jay C. Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, CA 94720, USA;
| | - Borries Demeler
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (L.W.); (B.D.)
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - John L. Markley
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA; (M.T.); (G.C.); (C.C.); (J.L.M.)
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; (C.M.E.); (M.P.); (K.L.M.); (S.C.); (J.C.G.)
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
15
|
Hajrah NH, Abdul WM, Abdul-Hameed ZH, Alarif WM, Al-Abbas NSA, Ayyad SEN, Omer AMS, Mutawakil MZ, Hall N, Obaid AY, Bora RS, Sabir JSM, Saini KS. Gene Expression Profiling to Delineate the Anticancer Potential of a New Alkaloid Isopicrinine From Rhazya stricta. Integr Cancer Ther 2021; 19:1534735420920711. [PMID: 32463309 PMCID: PMC7262827 DOI: 10.1177/1534735420920711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background:Rhazya stricta has been used as a folkloric medicinal herb for
treating various diseases such as diabetes, inflammatory disorders, and sore
throat. Several studies have revealed the potential of this plant as an
important source of phytochemicals with anticancer properties.
Objective: The present study was designed to isolate a novel
anticancer compound from Rhazya stricta and elucidate its
mechanism of action using genomics approach. Methods:Rhazya stricta leaves extract was prepared, and several
alkaloids were purified and characterized. These alkaloids were screened for
their anticancer potential. One of the alkaloids, termed as isopicrinine, showed
efficient cytotoxicity against MCF7 breast cancer cell line and was selected for
further analysis. RNA-Seq transcription profiling was conducted to identify the
affected genes and cellular pathways in MCF7 cells after treatment with
isopicrinine alkaloid. Results: In vitro studies revealed that
newly identified isopicrinine alkaloid possess efficient anticancer activity.
Exposure of MCF7 cells with isopicrinine affected the expression of various
genes involved in p53 signaling pathway. One of the crucial proapoptotic genes,
significantly upregulated in MCF7 after exposure to alkaloid, was
PUMA (p53 upregulated modulator of apoptosis), which is
involved in p53-dependent and -independent apoptosis. Moreover, exposure of
sublethal dose of isopicrinine alkaloid in breast cancer cell line led to the
downregulation of survivin, which is involved in negative regulation of
apoptosis. Besides, several genes involved in mitosis and cell proliferation
were significantly downregulated. Conclusion: In this article, we
report the determination of a new alkaloid isopicrinine from the aerial parts of
Rhazya stricta with anticancer property. This compound has
the potential to be developed as a drug for curing cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Neil Hall
- The Earlham Institute, Norwich Research Park, Norwich, UK
| | | | - Roop Singh Bora
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| | | | - Kulvinder Singh Saini
- King Abdulaziz University, Jeddah, Saudi Arabia.,Eternal University, Baru Sahib, Himachal Pradesh, India
| |
Collapse
|
16
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
17
|
Zhang G, Li S, Cheng KW, Chou TF. AAA ATPases as therapeutic targets: Structure, functions, and small-molecule inhibitors. Eur J Med Chem 2021; 219:113446. [PMID: 33873056 PMCID: PMC8165034 DOI: 10.1016/j.ejmech.2021.113446] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 01/07/2023]
Abstract
ATPases Associated with Diverse Cellular Activity (AAA ATPase) are essential enzymes found in all organisms. They are involved in various processes such as DNA replication, protein degradation, membrane fusion, microtubule serving, peroxisome biogenesis, signal transduction, and the regulation of gene expression. Due to the importance of AAA ATPases, several researchers identified and developed small-molecule inhibitors against these enzymes. We discuss six AAA ATPases that are potential drug targets and have well-developed inhibitors. We compare available structures that suggest significant differences of the ATP binding pockets among the AAA ATPases with or without ligand. The distances from ADP to the His20 in the His-Ser-His motif and the Arg finger (Arg353 or Arg378) in both RUVBL1/2 complex structures bound with or without ADP have significant differences, suggesting dramatically different interactions of the binding site with ADP. Taken together, the inhibitors of six well-studied AAA ATPases and their structural information suggest further development of specific AAA ATPase inhibitors due to difference in their structures. Future chemical biology coupled with proteomic approaches could be employed to develop variant specific, complex specific, and pathway specific inhibitors or activators for AAA ATPase proteins.
Collapse
Affiliation(s)
- Gang Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, United States.
| |
Collapse
|
18
|
Gilad Y, Eliaz Y, Yu Y, Dean AM, Han SJ, Qin L, O’Malley BW, Lonard DM. A genome-scale CRISPR Cas9 dropout screen identifies synthetically lethal targets in SRC-3 inhibited cancer cells. Commun Biol 2021; 4:399. [PMID: 33767353 PMCID: PMC7994904 DOI: 10.1038/s42003-021-01929-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023] Open
Abstract
Steroid receptor coactivator 3 (SRC-3/NCoA3/AIB1), is a key regulator of gene transcription and it plays a central role in breast cancer (BC) tumorigenesis, making it a potential therapeutic target. Beyond its function as an important regulator of estrogen receptor transcriptional activity, SRC-3 also functions as a coactivator for a wide range of other transcription factors, suggesting SRC-3 inhibition can be beneficial in hormone-independent cancers as well. The recent discovery of a potent SRC-3 small molecule inhibitor, SI-2, enabled the further development of additional related compounds. SI-12 is an improved version of SI-2 that like SI-2 has anti-proliferative activity in various cancer types, including BC. Here, we sought to identify gene targets, that when inhibited in the presence of SI-12, would lead to enhanced BC cell cytotoxicity. We performed a genome-scale CRISPR-Cas9 screen in MCF-7 BC cells under conditions of pharmacological pressure with SI-12. A parallel screen was performed with an ER inhibitor, fulvestrant, to shed light on both common and distinct activities between SRC-3 and ERα inhibition. Bearing in mind the key role of SRC-3 in tumorigenesis of other types of cancer, we extended our study by validating potential hits identified from the MCF-7 screen in other cancer cell lines.
Collapse
Affiliation(s)
- Yosi Gilad
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Yossi Eliaz
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX USA
| | - Yang Yu
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Adam M. Dean
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - San Jung Han
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Li Qin
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - Bert W. O’Malley
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| | - David M. Lonard
- grid.39382.330000 0001 2160 926XDepartment of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
19
|
Cao LJ, Zhang YJ, Dong SQ, Li XZ, Tong XT, Chen D, Wu ZY, Zheng XH, Xue WQ, Jia WH, Zhang JB. ATAD2 interacts with C/EBPβ to promote esophageal squamous cell carcinoma metastasis via TGF-β1/Smad3 signaling. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:109. [PMID: 33757572 PMCID: PMC7986551 DOI: 10.1186/s13046-021-01905-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 03/08/2021] [Indexed: 12/27/2022]
Abstract
Background Distant metastasis is the leading cause of death for esophageal squamous cell carcinoma (ESCC) with limited treatment options and unsatisfactory effectiveness. Bromodomain (BRD) containing proteins are emerging targets for cancer therapy with promising effects. As a unique member of BRD family, the function and molecular mechanism of ATAD2 in cancer development is seldomly investigated. Methods The clinical impact of ATAD2 was assessed both at RNA and protein level in 75 and 112 ESCC patients separately. The biological function of ATAD2 was investigated in vitro and in vivo. Signaling pathway and downstream effectors of ATAD2 were identified by RNA sequencing, luciferase reporter, co-immunoprecipitation, chromatin immunoprecipitation, immunofluorescence and western blot assay. Results We found that elevated ATAD2 expression was significantly associated with lymph node metastasis, advanced clinical stage as well as poor survival of ESCC patients. Silencing ATAD2 significantly suppressed ESCC cell migration and invasion in vitro, and inhibited tumor growth and lung metastasis in vivo. Mechanically, we identified a new cofactor, C/EBPβ. ATAD2 directly interacted with C/EBPβ and promoted its nuclear translocation, which directly bound to the promoter region of TGF-β1 and activated its expression. Further, we demonstrated that TGF-β1 activated its downstream effectors in a Smad3 dependent manner. In addition, we further found that ATAD2 promoted ESCC metastasis through TGF-β signaling induced Snail expression and the subsequent epithelial-mesenchymal transition. Conclusion Our findings demonstrated the pro-metastatic function of ATAD2 and uncovered the new molecular mechanism by regulating C/EBPβ/TGF-β1/Smad3/Snail signaling pathway, thus providing a potential target for the treatment of ESCC metastasis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01905-x.
Collapse
Affiliation(s)
- Lian-Jing Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Si-Qi Dong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xia-Ting Tong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Dong Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zi-Yi Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine,Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
20
|
Nayak A, Dutta M, Roychowdhury A. Emerging oncogene ATAD2: Signaling cascades and therapeutic initiatives. Life Sci 2021; 276:119322. [PMID: 33711386 DOI: 10.1016/j.lfs.2021.119322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 02/27/2021] [Indexed: 12/11/2022]
Abstract
ATAD2 is a promising oncoprotein with tumor-promoting functions in many cancers. It is a valid cancer drug-target and a potential cancer-biomarker for multiple malignancies. As a cancer/testis antigen (CTA), ATAD2 could also be a probable candidate for immunotherapy. It is a unique CTA that belongs to both AAA+ ATPase and bromodomain family proteins. Since 2007, several research groups have been reported on the pleiotropic oncogenic functions of ATAD2 in diverse signaling pathways, including Rb/E2F-cMyc pathway, steroid hormone signaling pathway, p53 and p38-MAPK-mediated apoptotic pathway, AKT pathway, hedgehog signaling pathway, HIF1α signaling pathway, and Epithelial to Mesenchymal Transition (EMT) pathway in various cancers. In all these pathways, ATAD2 participates in chromatin dynamics, DNA replication, and gene transcription, demonstrating its role as an epigenetic reader and transcription factor or coactivator to promote tumorigenesis. However, despite the progress, an overall mechanism of ATAD2-mediated oncogenesis in diverse origin is elusive. In this review, we summarize the accumulated evidence to envision the overall ATAD2 signaling networks during carcinogenesis and highlight the area where missing links await further research. Besides, the structure-function aspect of ATAD2 is also discussed. Since the efforts have already been initiated to explore targeted drug molecules and RNA-based therapeutic alternatives against ATAD2, their potency and prospects have been elucidated. Together, we believe this is a well-rounded review on ATAD2, facilitating a new drift in ATAD2 research, essential for its clinical implication as a biomarker and/or cancer drug-target.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Madhuri Dutta
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India.
| |
Collapse
|
21
|
Kang Y, Cho C, Lee KS, Song JJ, Lee JY. Single-Molecule Imaging Reveals the Mechanism Underlying Histone Loading of Schizosaccharomyces pombe AAA+ ATPase Abo1. Mol Cells 2021; 44:79-87. [PMID: 33658433 PMCID: PMC7941004 DOI: 10.14348/molcells.2021.2242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 11/27/2022] Open
Abstract
Chromatin dynamics is essential for maintaining genomic integrity and regulating gene expression. Conserved bromodomain-containing AAA+ ATPases play important roles in nucleosome organization as histone chaperones. Recently, the high-resolution cryo-electron microscopy structures of Schizosaccharomyces pombe Abo1 revealed that it forms a hexameric ring and undergoes a conformational change upon ATP hydrolysis. In addition, single-molecule imaging demonstrated that Abo1 loads H3-H4 histones onto DNA in an ATP hydrolysis-dependent manner. However, the molecular mechanism by which Abo1 loads histones remains unknown. Here, we investigated the details concerning Abo1-mediated histone loading onto DNA and the Abo1- DNA interaction using single-molecule imaging techniques and biochemical assays. We show that Abo1 does not load H2A-H2B histones. Interestingly, Abo1 deposits multiple copies of H3-H4 histones as the DNA length increases and requires at least 80 bp DNA. Unexpectedly, Abo1 weakly binds DNA regardless of ATP, and neither histone nor DNA stimulates the ATP hydrolysis activity of Abo1. Based on our results, we propose an allosteric communication model in which the ATP hydrolysis of Abo1 changes the configuration of histones to facilitate their deposition onto DNA.
Collapse
Affiliation(s)
- Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- These authors contributed equally to this work
| | - Carol Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- These authors contributed equally to this work
| | - Kyung Suk Lee
- Department of Physics Education, Kongju National University, Gongju 32588, Korea
| | - Ji-Joon Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ja Yil Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Korea
| |
Collapse
|
22
|
Nayak A, Kumar S, Singh SP, Bhattacharyya A, Dixit A, Roychowdhury A. Oncogenic potential of ATAD2 in stomach cancer and insights into the protein-protein interactions at its AAA + ATPase domain and bromodomain. J Biomol Struct Dyn 2021; 40:5606-5622. [PMID: 33438526 DOI: 10.1080/07391102.2021.1871959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
ATAD2 has recently been shown to promote stomach cancer. However, nothing is known about the functional network of ATAD2 in stomach carcinogenesis. This study illustrates the oncogenic potential of ATAD2 and the participation of its ATPase and bromodomain in stomach malignancy. Expression of ATAD2 in stomach cancer is analyzed by in silico and in vitro techniques including western blot and immunofluorescence microscopy of stomach cancer cells (SCCs) and tissues. The oncogenic potential of ATAD2 is examined thoroughly using genetic alterations, driver gene prediction, survival analysis, identification of interacting partners, and analysis of canonical pathways. To understand the protein-protein interactions (PPI) at residue level, molecular docking and molecular dynamics simulations (1200 ns) are performed. Enhanced expression of ATAD2 is observed in H. pylori-infected SCCs, patient biopsy tissues, and all stages and grades of stomach cancer. High expression of ATAD2 is found to be negatively correlated with the survival of stomach cancer patients. ATAD2 is a cancer driver gene with 37 mutational sites and a predictable factor for stomach cancer prognosis with high accuracy. The top canonical pathways of ATAD2 indicate its participation in stomach malignancy. The ATAD2-PPI in stomach cancer identify top-ranked partners; ESR1, SUMO2, SPTN2, and MYC show preference for the bromodomain whereas NCOA3 and HDA11 have preference for the ATPase domain of ATAD2. The oncogenic characterization of ATAD2 provides strong evidence to consider ATAD2 as a stomach cancer biomarker. These studies offer an insight for the first time into the ATAD2-PPI interface presenting a novel target for cancer therapeutics. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditi Nayak
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Sugandh Kumar
- Institute of Life Sciences, Bhubaneswar, Odisha, India
| | | | - Asima Bhattacharyya
- School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, Khurda, Odisha, India
| | | | - Anasuya Roychowdhury
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
23
|
MYBL2 amplification in breast cancer: Molecular mechanisms and therapeutic potential. Biochim Biophys Acta Rev Cancer 2020; 1874:188407. [DOI: 10.1016/j.bbcan.2020.188407] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023]
|
24
|
Yao D, Zhang J, Wang J, Pan D, He Z. Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. J Enzyme Inhib Med Chem 2020; 35:713-725. [PMID: 32174193 PMCID: PMC7144325 DOI: 10.1080/14756366.2020.1740924] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
ATAD2 has been reported to play an important role in the processes of numerous cancers and validated to be a potential therapeutic target. This work is to discover potent ATAD2 inhibitors and elucidate the underlying mechanisms in breast cancer. A novel ATAD2 bromodomain inhibitor (AM879) was discovered by combining structure-based virtual screening with biochemical analyses. AM879 presents potent inhibitory activity towards ATAD2 bromodomain (IC50 = 3565 nM), presenting no inhibitory activity against BRD2-4. Moreover, AM879 inhibited MDA-MB-231 cells proliferation with IC50 value of 2.43 µM, suppressed the expression of c-Myc, and induced significant apoptosis. Additionally, AM978 could induce autophagy via PI3K-AKT-mTOR signalling in MDA-MB-231 cells. This study demonstrates the development of potent ATAD2 inhibitors with novel scaffolds for breast cancer therapy.
Collapse
Affiliation(s)
- Dahong Yao
- Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural small molecule Drugs, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Shenzhen University Health Science Center, Shenzhen, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jinhui Wang
- Shenzhen Honghui Bio-Pharmaceutical Co. Ltd., Shenzhen, China
| | - Dabo Pan
- Institute of Traditional Chinese Medicine & Natural Products, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Zhendan He
- Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Novel Natural Health Care Products, Innovation Platform for Natural small molecule Drugs, Engineering Laboratory of Shenzhen Natural small molecule Innovative Drugs, Shenzhen University Health Science Center, Shenzhen, China
| |
Collapse
|
25
|
Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, Batra J, Richards AL, Stevenson E, Gordon DE, Rojc A, Obernier K, Fabius JM, Soucheray M, Miorin L, Moreno E, Koh C, Tran QD, Hardy A, Robinot R, Vallet T, Nilsson-Payant BE, Hernandez-Armenta C, Dunham A, Weigang S, Knerr J, Modak M, Quintero D, Zhou Y, Dugourd A, Valdeolivas A, Patil T, Li Q, Hüttenhain R, Cakir M, Muralidharan M, Kim M, Jang G, Tutuncuoglu B, Hiatt J, Guo JZ, Xu J, Bouhaddou S, Mathy CJP, Gaulton A, Manners EJ, Félix E, Shi Y, Goff M, Lim JK, McBride T, O'Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, De Wit E, Leach AR, Kortemme T, Shoichet B, Ott M, Saez-Rodriguez J, tenOever BR, Mullins RD, Fischer ER, Kochs G, Grosse R, García-Sastre A, Vignuzzi M, Johnson JR, Shokat KM, Swaney DL, Beltrao P, Krogan NJ. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020; 182:685-712.e19. [PMID: 32645325 PMCID: PMC7321036 DOI: 10.1016/j.cell.2020.06.034] [Citation(s) in RCA: 742] [Impact Index Per Article: 148.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
The causative agent of the coronavirus disease 2019 (COVID-19) pandemic, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected millions and killed hundreds of thousands of people worldwide, highlighting an urgent need to develop antiviral therapies. Here we present a quantitative mass spectrometry-based phosphoproteomics survey of SARS-CoV-2 infection in Vero E6 cells, revealing dramatic rewiring of phosphorylation on host and viral proteins. SARS-CoV-2 infection promoted casein kinase II (CK2) and p38 MAPK activation, production of diverse cytokines, and shutdown of mitotic kinases, resulting in cell cycle arrest. Infection also stimulated a marked induction of CK2-containing filopodial protrusions possessing budding viral particles. Eighty-seven drugs and compounds were identified by mapping global phosphorylation profiles to dysregulated kinases and pathways. We found pharmacologic inhibition of the p38, CK2, CDK, AXL, and PIKFYVE kinases to possess antiviral efficacy, representing potential COVID-19 therapies.
Collapse
Affiliation(s)
- Mehdi Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Danish Memon
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Kris M White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Veronica V Rezelj
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Miguel Correa Marrero
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin J Polacco
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James E Melnyk
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Svenja Ulferts
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Robyn M Kaake
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jyoti Batra
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alicia L Richards
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Erica Stevenson
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - David E Gordon
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ajda Rojc
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kirsten Obernier
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jacqueline M Fabius
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Margaret Soucheray
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena Moreno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cassandra Koh
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Quang Dinh Tran
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Alexandra Hardy
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | - Rémy Robinot
- Virus & Immunity Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France; Vaccine Research Institute, 94000 Creteil, France
| | - Thomas Vallet
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France
| | | | - Claudia Hernandez-Armenta
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Alistair Dunham
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sebastian Weigang
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany
| | - Julian Knerr
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany
| | - Maya Modak
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Diego Quintero
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Yuan Zhou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Aurelien Dugourd
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alberto Valdeolivas
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Trupti Patil
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qiongyu Li
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ruth Hüttenhain
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Merve Cakir
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monita Muralidharan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Minkyu Kim
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Beril Tutuncuoglu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Joseph Hiatt
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey Z Guo
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiewei Xu
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sophia Bouhaddou
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA
| | - Christopher J P Mathy
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Anna Gaulton
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Emma J Manners
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Eloy Félix
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Ying Shi
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | - Marisa Goff
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jean K Lim
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | | | | | | | | | - Emmie De Wit
- NIH/NIAID/Rocky Mountain Laboratories, Hamilton, MT 59840, USA
| | - Andrew R Leach
- European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Tanja Kortemme
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian Shoichet
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie Ott
- J. David Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julio Saez-Rodriguez
- Institute for Computational Biomedicine, Bioquant, Heidelberg University, Faculty of Medicine, and Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - R Dyche Mullins
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute
| | | | - Georg Kochs
- Institute of Virology, Medical Center - University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany
| | - Robert Grosse
- Institute for Clinical and Experimental Pharmacology and Toxicology, University of Freiburg, Freiburg 79104, Germany; Faculty of Medicine, University of Freiburg, Freiburg 79008, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), Freiburg 79104, Germany.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS UMR 3569, Institut Pasteur, 75724 Paris, Cedex 15, France.
| | - Jeffery R Johnson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Kevan M Shokat
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute.
| | - Danielle L Swaney
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Pedro Beltrao
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; European Molecular Biology Laboratory (EMBL), European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Nevan J Krogan
- QBI COVID-19 Research Group (QCRG), San Francisco, CA 94158, USA; Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA 94158, USA; J. David Gladstone Institutes, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
26
|
Integrated Bioinformatics Analysis of the Clinical Value and Biological Function of ATAD2 in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8657468. [PMID: 32462022 PMCID: PMC7225861 DOI: 10.1155/2020/8657468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023]
Abstract
ATPase family AAA domain-containing protein 2 (ATAD2), a chromatin regulator and an oncogenic transcription cofactor, is frequently overexpressed in many cancers, particularly in hepatocellular carcinoma (HCC). By integrating open-access online mRNA datasets and our institutional tissue data on HCC, the clinical role and functions of ATAD2 were analyzed by bioinformatic algorithms. We systematically examined ATAD2 expression in HCC based on a large sample population, integrating data from our institution and the GEO, Oncomine, and TCGA datasets. Aberrant ATAD2 expression related to pathways was identified by bioinformatic algorithms. The effects of ATAD2 downregulation on the cycle cell were also determined. A pooled analysis from 28 datasets indicated that ATAD2 overexpression was found in HCC (SMD = 8.88, 95% CI: 5.96–11.81, P < 0.001) and was correlated with poor survival. Subgroup analysis of Asian patients with a serum alpha-fetoprotein (AFP) concentration < 200 ng/ml in stage I + II showed that the ATAD2-high group had a more unfavorable overall survival (OS) rate than the ATAD2-low group. The receiver operating characteristic curve indicated that the efficiency of ATAD2 for HCC diagnosis was considerable (area under the curve = 0.89, 95% CI: 0.86–0.91). Functional analysis based on bioinformatic algorithms demonstrated that ATAD2 participates in cell division, mitotic nuclear division, DNA replication, repair, and cell cycle processes. ATAD2 knockout in HCC cells downregulated cyclin C and cyclin D1 protein levels and resulted in G1/S phase arrest in vitro. The kinesin family member C1 (KIFC1), shugoshin 1 (SGO1), GINS complex subunit 1 (GINS1), and TPX2 microtubule nucleation factor (TPX2) genes were closely related to ATAD2 upregulation. ATAD2 may interact with TTK protein kinase (TTK) to accelerate HCC carcinogenesis. ATAD2 plays a vital role in HCC carcinogenesis by disturbing the interaction between chromatin proteins and DNA. Targeting ATAD2 represents a promising method for the development of therapeutic treatments for cancer.
Collapse
|
27
|
Lucas SCC, Atkinson SJ, Bamborough P, Barnett H, Chung CW, Gordon L, Mitchell DJ, Phillipou A, Prinjha RK, Sheppard RJ, Tomkinson NCO, Watson RJ, Demont EH. Optimization of Potent ATAD2 and CECR2 Bromodomain Inhibitors with an Atypical Binding Mode. J Med Chem 2020; 63:5212-5241. [DOI: 10.1021/acs.jmedchem.0c00021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Simon C. C. Lucas
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | | | | | | | | | | | | | | | | - Nicholas C. O. Tomkinson
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | | | | |
Collapse
|
28
|
Recent advances in bioimaging with high-speed atomic force microscopy. Biophys Rev 2020; 12:363-369. [PMID: 32172451 DOI: 10.1007/s12551-020-00670-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
Among various microscopic techniques for characterizing protein structures and functions, high-speed atomic force microscopy (HS-AFM) is a unique technique in that it allows direct visualization of structural changes and molecular interactions of proteins without any labeling in a liquid environment. Since the development of the HS-AFM was first reported in 2001, it has been applied to analyze the dynamics of various types of proteins, including motor proteins, membrane proteins, DNA-binding proteins, amyloid proteins, and artificial proteins. This method has now become a versatile tool indispensable for biophysical research. This short review summarizes some bioimaging applications of HS-AFM reported in the last few years and novel applications of HS-AFM utilizing the unique ability of AFM to gain mechanical properties of samples in addition to structural information.
Collapse
|
29
|
The ATAD2/ANCCA homolog Yta7 cooperates with Scm3 HJURP to deposit Cse4 CENP-A at the centromere in yeast. Proc Natl Acad Sci U S A 2020; 117:5386-5393. [PMID: 32079723 DOI: 10.1073/pnas.1917814117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The AAA+ ATPase and bromodomain factor ATAD2/ANCCA is overexpressed in many types of cancer, but how it contributes to tumorigenesis is not understood. Here, we report that the Saccharomyces cerevisiae homolog Yta7ATAD2 is a deposition factor for the centromeric histone H3 variant Cse4CENP-A at the centromere in yeast. Yta7ATAD2 regulates the levels of centromeric Cse4CENP-A in that yta7∆ causes reduced Cse4CENP-A deposition, whereas YTA7 overexpression causes increased Cse4CENP-A deposition. Yta7ATAD2 coimmunoprecipitates with Cse4CENP-A and is associated with the centromere, arguing for a direct role of Yta7ATAD2 in Cse4CENP-A deposition. Furthermore, increasing centromeric Cse4CENP-A levels by YTA7 overexpression requires the activity of Scm3HJURP, the centromeric nucleosome assembly factor. Importantly, Yta7ATAD2 interacts in vivo with Scm3HJURP, indicating that Yta7ATAD2 is a cochaperone for Scm3HJURP The absence of Yta7 causes defects in growth and chromosome segregation with mutations in components of the inner kinetochore (CTF19/CCAN, Mif2CENP-C, Cbf1). Since Yta7ATAD2 is an AAA+ ATPase and potential hexameric unfoldase, our results suggest that it may unfold the Cse4CENP-A histone and hand it over to Scm3HJURP for subsequent deposition in the centromeric nucleosome. Furthermore, our findings suggest that ATAD2 overexpression may enhance malignant transformation in humans by misregulating centromeric CENP-A levels, thus leading to defects in kinetochore assembly and chromosome segregation.
Collapse
|
30
|
Sun T, Du B, Diao Y, Li X, Chen S, Li Y. ATAD2 expression increases [18F]Fluorodeoxyglucose uptake value in lung adenocarcinoma via AKT-GLUT1/HK2 pathway. BMB Rep 2020. [PMID: 31186081 PMCID: PMC6675242 DOI: 10.5483/bmbrep.2019.52.7.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
[18F]Fluorodeoxyglucose (FDG) PET/CT imaging has been widely used in the diagnosis of malignant tumors. ATPase family AAA domain-containing protein 2 (ATAD2) plays important roles in tumor growth, invasion and metastasis. However, the relationship between [18F]FDG accumulation and ATAD2 expression remains largely unknown. This study aimed to investigate the correlation between ATAD2 expression and [18F]FDG uptake in lung adenocarcinoma (LUAD), and elucidate its underlying molecular mechanisms. The results showed that ATAD2 expression was positively correlated with maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), glucose transporter type 1 (GLUT1) expression and hexokinase2 (HK2) expression in LUAD tissues. In addition, ATAD2 knockdown significantly inhibited the proliferation, tumorigenicity, migration, [18F]FDG uptake and lactate production of LUAD cells, while, ATAD2 overexpression exhibited the opposite effects. Furthermore, ATAD2 modulated the glycometabolism of LUAD via AKT-GLUT1/HK2 pathway, as assessed using LY294002 (an inhibitor of PI3K/AKT pathway). In summary, to explore the correlation between ATAD2 expression and glycometabolism is expected to bring good news for anti-energy metabolism therapy of cancers.
Collapse
Affiliation(s)
- Tong Sun
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Bulin Du
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yao Diao
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Xuena Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Song Chen
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| | - Yaming Li
- Department of Nuclear Medicine, The first Hospital of China Medical University, Liaoning 110001, China
| |
Collapse
|
31
|
Nayak A, Roy AD, Rout N, Singh SP, Bhattacharyya A, Roychowdhury A. HIF1α-dependent upregulation of ATAD2 promotes proliferation and migration of stomach cancer cells in response to hypoxia. Biochem Biophys Res Commun 2020; 523:916-923. [PMID: 31959473 DOI: 10.1016/j.bbrc.2019.12.130] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/21/2019] [Indexed: 12/20/2022]
Abstract
Stomach cancer is a difficult-to-treat disease. Lack of detection markers and limited understanding of the disease mechanisms contribute to the aggressive nature of stomach cancer cells (SCCs). Recently, an ATPase, ATAD2 has been found to be highly expressed in stomach cancer contributing to increased malignancy. However, nothing is known about the mechanism of ATAD2 upregulation and its involvement in stomach carcinogenesis. Since hypoxic microenvironment plays a crucial role in the progression of solid tumors like stomach cancer; we have examined the regulation and function of ATAD2 expression in hypoxic SCCs. ATAD2 is induced in hypoxia-treated SCCs. Stomach adenocarcinoma and metastatic tissues with high HIF1α level also show enhanced ATAD2 expression. In the absence of hypoxia-inducible factor HIF1α, ATAD2 protein level is found to be less indicating towards a potential correlation between them. We identify the presence of HIF1α-binding site (HBS) and HIF1α ancillary site (HAS) in the ATAD2 promoter. Using both in vitro and in vivo binding studies, we confirm that HIF1α binds with the ATAD2 promoter in hypoxic condition. ATAD2 upregulation promotes proliferation and migration of SCCs exposed to hypoxia. Thus, we identify ATAD2 as a hypoxia-responsive and HIF1α-regulated gene and elucidate that upregulated expression of ATAD2 enhances tumor-promoting functions in hypoxic SCCs. Therefore, we propose ATAD2 as a promising therapeutic target for stomach cancer.
Collapse
Affiliation(s)
- Aditi Nayak
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India
| | - Arjama Dhar Roy
- Cancer and Molecular Signaling Lab, School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via: Jatni, Dist. Khurda, Odisha, 752050, India
| | - Niranjan Rout
- Oncopathology, Acharya Harihar Regional Cancer Centre, Cuttack, 753007, Odisha, India
| | | | - Asima Bhattacharyya
- Cancer and Molecular Signaling Lab, School of Biological Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, P.O. Bhimpur-Padanpur, Via: Jatni, Dist. Khurda, Odisha, 752050, India.
| | - Anasuya Roychowdhury
- Biochemistry and Cell Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
32
|
Cho C, Jang J, Kang Y, Watanabe H, Uchihashi T, Kim SJ, Kato K, Lee JY, Song JJ. Structural basis of nucleosome assembly by the Abo1 AAA+ ATPase histone chaperone. Nat Commun 2019; 10:5764. [PMID: 31848341 PMCID: PMC6917787 DOI: 10.1038/s41467-019-13743-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
The fundamental unit of chromatin, the nucleosome, is an intricate structure that requires histone chaperones for assembly. ATAD2 AAA+ ATPases are a family of histone chaperones that regulate nucleosome density and chromatin dynamics. Here, we demonstrate that the fission yeast ATAD2 homolog, Abo1, deposits histone H3-H4 onto DNA in an ATP-hydrolysis-dependent manner by in vitro reconstitution and single-tethered DNA curtain assays. We present cryo-EM structures of an ATAD2 family ATPase to atomic resolution in three different nucleotide states, revealing unique structural features required for histone loading on DNA, and directly visualize the transitions of Abo1 from an asymmetric spiral (ATP-state) to a symmetric ring (ADP- and apo-states) using high-speed atomic force microscopy (HS-AFM). Furthermore, we find that the acidic pore of ATP-Abo1 binds a peptide substrate which is suggestive of a histone tail. Based on these results, we propose a model whereby Abo1 facilitates H3-H4 loading by utilizing ATP.
Collapse
Affiliation(s)
- Carol Cho
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| | - Juwon Jang
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Yujin Kang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hiroki Watanabe
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Department of Physics, Nagoya University, Nagoya, Japan
| | - Seung Joong Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Koichi Kato
- Institute for Molecular Science (IMS), National Institutes of Natural Sciences, Okazaki, Japan.,Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan.,Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Ja Yil Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Korea.
| | - Ji-Joon Song
- Department of Biological Sciences and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.
| |
Collapse
|
33
|
Brocca G, Ferraresso S, Zamboni C, Martinez-Merlo EM, Ferro S, Goldschmidt MH, Castagnaro M. Array Comparative Genomic Hybridization Analysis Reveals Significantly Enriched Pathways in Canine Oral Melanoma. Front Oncol 2019; 9:1397. [PMID: 31921654 PMCID: PMC6920211 DOI: 10.3389/fonc.2019.01397] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/26/2019] [Indexed: 12/28/2022] Open
Abstract
Human Mucosal Melanoma (hMM) is an aggressive neoplasm of neuroectodermal origin with distinctive features from the more common cutaneous form of malignant melanoma (cMM). At the molecular level, hMMs are characterized by large chromosomal aberrations rather than single-nucleotide mutations, typically observed in cMM. Given the scarcity of available cases, there have been many attempts to establish a reliable animal model. In pet dogs, Canine Oral Melanoma (COM) is the most common malignant tumor of the oral cavity, sharing clinical and histological aspects with hMM. To improve the knowledge about COM's genomic DNA alterations, in the present work, formalin-fixed, paraffin-embedded (FFPE) samples of COM from different European archives were collected to set up an array Comparative Genomic Hybridization (aCGH) analysis to estimate recurrent Copy Number Aberrations (CNAs). DNA was extracted in parallel from tumor and healthy fractions and 19 specimens were successfully submitted to labeling and competitive hybridization. Data were statistically analyzed through GISTIC2.0 and a pathway-enrichment analysis was performed with ClueGO. Recurrent gained regions were detected, affecting chromosomes CFA 10, 13 and 30, while lost regions involved chromosomes CFA 10, 11, 22, and 30. In particular, CFA 13 showed a whole-chromosome gain in 37% of the samples, while CFA 22 showed a whole-chromosome loss in 25%. A distinctive sigmoidal trend was observed in CFA 10 and 30 in 25 and 30% of the samples, respectively. Comparative analysis revealed that COM and hMM share common chromosomal changes in 32 regions. MAPK- and PI3K-related genes were the most frequently involved, while pathway analysis revealed statistically significant perturbation of cancer-related biological processes such as immune response, drug metabolism, melanocytes homeostasis, and neo-angiogenesis. The latter is a new evidence of a significant involvement of neovascularization-related pathways in COMs and can provide the rationale for future application in anti-cancer targeted therapies.
Collapse
Affiliation(s)
- Ginevra Brocca
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Serena Ferraresso
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Clarissa Zamboni
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | | | - Silvia Ferro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - Michael H Goldschmidt
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Massimo Castagnaro
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| |
Collapse
|
34
|
Liu Q, Liu H, Li L, Dong X, Ru X, Fan X, Wen T, Liu J. ATAD2 predicts poor outcomes in patients with ovarian cancer and is a marker of proliferation. Int J Oncol 2019; 56:219-231. [PMID: 31746426 PMCID: PMC6910177 DOI: 10.3892/ijo.2019.4913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022] Open
Abstract
The oncogene ATPase family AAA domain-containing protein 2 (ATAD2) has been demonstrated to promote malignancy in a number of different types of tumor; however, its expression and role in ovarian cancer (OC) remain unknown. In the present study, it was demonstrated that ATAD2 acts as both a marker and a driver of cell proliferation in OC. Immunohistochemistry (IHC) and bioinformatics analyses were used to evaluate ATAD2 expression in OC, and multi-omics integrated analyses were used to dissect which factor resulted in its upregulation. Multiplex IHC assay was used to reveal the specific expression of ATAD2 in proliferating OC cells. CRISPR-Cas9-mediated gene editing was performed to investigate the effect of ATAD2 deletion on OC proliferation. The results demonstrated that ATAD2 is elevated in primary OC tissues compared with the adjacent normal tissue and metastases from the stomach. Genetic copy number amplification is a primary cause resulting in upregulation of ATAD2, and this was most frequently observed in OC. High ATAD2 expression was associated with advanced progression and predicted an unfavorable prognosis. ATAD2 could be used to identify cases of OC with a high proliferation signature and could label proliferating cells in OC. CRISPR-Cas9-mediated ATAD2 deletion resulted in a significant decrease in both cell proliferation and colony formation ability. Mechanistically, ATAD2-knockdown resulted in deactivation of the mitogen-activated protein kinase (MAPK) pathways, particularly the JNK-MAPK pathway, resulting in suppression of proliferation. Collectively, the data from the present study demonstrated that the ATD2 gene was frequently amplified and protein expression levels were upregulated in OC. Therefore, ATAD2 may serve as an attractive diagnostic and prognostic OC marker, which may be used to identify patients with primary OC, whom are most likely to benefit from ATAD2 gene-targeted proliferation intervention therapies.
Collapse
Affiliation(s)
- Qun Liu
- Department of Obstetrics and Gynecology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, P.R. China
| | - Heshu Liu
- Department of Oncology, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Lina Li
- Medical Research Center, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiaomei Dong
- Department of Pathology, The First People's Hospital of Tancheng, Linyi, Shandong 276100, P.R. China
| | - Xiaoli Ru
- Department of Gynecology and Obstetrics, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Xiana Fan
- Medical Research Center, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Tao Wen
- Medical Research Center, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Jian Liu
- Medical Research Center, Beijing Chao‑Yang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
35
|
Anti-tumor activity of BET inhibitors in androgen-receptor-expressing triple-negative breast cancer. Sci Rep 2019; 9:13305. [PMID: 31527644 PMCID: PMC6746817 DOI: 10.1038/s41598-019-49366-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease comprising several subtypes. Androgen-receptor (AR) signaling has been targeted by several investigational agents in luminal AR subtype TNBCs. Bromodomain (BRD) and extra-terminal motif (BET) protein inhibitors have been shown to attenuate AR signaling in metastatic castration-resistant prostate cancer and to overcome enzalutamide resistance. We demonstrated potent anti-tumor effects of the BET inhibitor JQ1 against AR-positive TNBC cell lines using cell viability and cell cycle analysis. To reveal the mechanisms of JQ1 effects, multiplex gene expression analysis and immunoblotting assays were used. We examined in vivo effects of JQ1 in a xenograft model of AR expressing TNBC. JQ1 exhibited its anti-proliferative activity by inducing apoptosis and cell cycle arrest. JQ1 activity was not mediated by MYC downregulation. Instead, JQ1 blocked the interactions among the ATPase-family AAA-domain-containing 2 protein (ATAD2), BRD2, BRD4, and AR; effectively suppressing the expression of AR associated targets. In addition, JQ1 showed significant anti-tumor activity in vivo in TNBC xenograft mouse models as a monotherapy and in combination with anti-AR therapy. Taken together, our results showed that the BET inhibitor JQ1 is a promising therapeutic agent for the treatment of AR-positive TNBC.
Collapse
|
36
|
Han HJ, Huang QY, Huang LJ, Chang F, Diao QZ. Prognostic value of ATPase family, AAA+ domain containing 2 expression in human cancers: A systematic review and meta-analysis. Medicine (Baltimore) 2019; 98:e17180. [PMID: 31574824 PMCID: PMC6775384 DOI: 10.1097/md.0000000000017180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND ATPase family, AAA+ domain containing 2 (ATAD2) is also known as AAA+ nuclear coregulator cancer-associated protein or PRO2000. ATAD2 has been reported as a prognostic factor in different cancer types, but the association between ATAD2 high expression and survival is still unclear. Thereby, this meta-analysis was performed to evaluate the prognostic value of ATAD2 high expression in human cancers. METHODS All of the studies included were retrieved from PubMed, EMBASE, and Cochrane Library electronic databases. The clinical outcomes were evaluated by calculating hazard ratio (HR) with their 95% confidence interval (CI). RESULTS Thirteen studies including 2689 patients were eligible for this analysis. The pooled results showed that ATAD2 over-expression was significantly associated with shorter overall survival (OS) (HR = 2.32, 95% CI = 1.77-3.02), as well as shorter recurrence-free survival (RFS), disease-free survival (DFS), and disease-specific survival (DSS) (HR = 1.83, 95% CI = 1.51-2.23) among human cancers. Subgroup analyses for OS were implemented in terms of region, tumor type, and sample size and the results were coincident with overall pooled results. Begg funnel plot and Egger test showed the presence of publication bias for OS. Sensitivity analysis indicated that both results were not affected for removing any study. CONCLUSION ATAD2 would be likely to act as a prognostic biomarker for the patients of different cancer types and provide a guide on clinical treatment. Prospective clinical studies are needed to support these findings.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Zhi Diao
- The Department of Clinical Laboratory Medicine, Yongchuan Hospital, Chongqing Medical University, Yongchuan, Chongqing, China
| |
Collapse
|
37
|
Bamborough P, Chung CW, Demont EH, Bridges AM, Craggs PD, Dixon DP, Francis P, Furze RC, Grandi P, Jones EJ, Karamshi B, Locke K, Lucas SCC, Michon AM, Mitchell DJ, Pogány P, Prinjha RK, Rau C, Roa AM, Roberts AD, Sheppard RJ, Watson RJ. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J Med Chem 2019; 62:7506-7525. [PMID: 31398032 DOI: 10.1021/acs.jmedchem.9b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paola Grandi
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | | | | | | | | | | | | | | | | | - Christina Rau
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | - Ana Maria Roa
- GlaxoSmithKline Tres Cantos , 28760 Tres Cantos , Madrid , Spain
| | | | | | | |
Collapse
|
38
|
Meng X, Zhao Y, Liu J, Wang L, Dong Z, Zhang T, Gu X, Zheng Z. Comprehensive analysis of histone modification-associated genes on differential gene expression and prognosis in gastric cancer. Exp Ther Med 2019; 18:2219-2230. [PMID: 31452712 DOI: 10.3892/etm.2019.7808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
Accumulating evidence suggests that the epigenetic alterations caused by histone modifications have important roles in the genesis of gastric cancer (GC), particularly the well-studied acetylation and methylation modifications. In the present study, a Bioinformatics analysis of the expression of histone modification-associated genes in GC and normal tissues was performed by using datasets from Oncomine, the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). The clinical data of GC patients were downloaded from TCGA to determine the association between histone modification-associated gene expression and clinicopathological parameters or survival of GC. Finally, lysine acetyltransferase 2A (KAT2A), nuclear receptor coactivator 1 (NCOA1), SMYD family member 5 (SMYD5), protein arginine methyltransferase 1 (PRMT1) and PRDF1-RIZ (PR)/Su(var)3-9, enhancer-of-zeste and trithorax (SET) domain 16 (PRDM16) were screened; KAT2A, SMYD5 and PRMT1 were upregulated, while PRDM16 expression was downregulated in GC. Analysis of the GEO and Oncomine datasets revealed that NCOA1 was upregulated, which was contrary to the result obtained with the TCGA stomach adenocarcinoma dataset. Aberrant expression of KAT2A, NCOA1, SMYD5 and PRMT1 was more obvious in gastric intestinal-type adenocarcinoma; low NCOA1 expression was associated with better overall survival of GC patients [hazard ratio (HR)=0.690, 95% CI=0.570-0.840, P<0.001] and was an independent predictor for patients diagnosed with GC (HR=0.639, 95% CI=0.437-0.933, P=0.020). Correlation analysis and protein-protein interaction network analysis indicated a close association between ATAD2 and estrogen receptor 1 (ESR1), PRMT1, NCOA1 and KAT2A. In conclusion, differential expression of KAT2A, NCOA1, SMYD5, PRMT1 and PRDM16 was identified in GC vs. normal tissues, low NCOA1 expression was associated with poor survival of GC and ATAD2 may interact with ESR1 to regulate NCOA1 and PRMT1 in GC.
Collapse
Affiliation(s)
- Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jingwei Liu
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Lu Wang
- Department of Ultrasonography, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Zhe Dong
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaohu Gu
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
39
|
Mapping Bromodomains in breast cancer and association with clinical outcome. Sci Rep 2019; 9:5734. [PMID: 30952871 PMCID: PMC6450889 DOI: 10.1038/s41598-019-41934-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
A specific family of proteins that participate in epigenetic regulation is the bromodomain (BRD) family of proteins. In this work, we aimed to explore the expression of the BRD family at a transcriptomic level in breast cancer, and its association with patient survival. mRNA level data from normal breast and tumor tissues were extracted from public datasets. Gene set enrichment analysis (GSEA) was performed to identify relevant biological functions. The KM Plotter Online tool was used to evaluate the relationship between the presence of different genes and patient clinical outcome. mRNA level data from HER2+ breast cancer patients sensible and resistant to trastuzumab were also evaluated. The BRD family was an enriched function. In HER2 positive tumors the combined analyses of BRD2, BAZ1A, TRIM33 and ZMYND8 showed a detrimental relapse free survival (RFS). Similarly, the combined analysis of BRD2, BAZ1A, PHIP, TRIM33, KMT2A, ASH1L, PBRM1, correlated with an extremely poor overall survival (OS). The prognosis was confirmed using an independent dataset from TCGA. Finally, no relation between expression of BRD genes and response to trastuzumab was observed in the HER2 population. Upregulation of some BRD genes is associated with detrimental outcome in HER2 positive tumors, regardless trastuzumab treatment.
Collapse
|
40
|
Ji S, Su X, Zhang H, Han Z, Zhao Y, Liu Q. MicroRNA-372 functions as a tumor suppressor in cell invasion, migration and epithelial-mesenchymal transition by targeting ATAD2 in renal cell carcinoma. Oncol Lett 2018; 17:2400-2408. [PMID: 30719113 PMCID: PMC6350190 DOI: 10.3892/ol.2018.9871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022] Open
Abstract
In recent years, renal cell carcinoma (RCC) has exhibited an increasing incidence and mortality rate worldwide. Accumulating evidence has identified that microRNAs (miRNAs) function as negative or positive regulators of many malignant tumors; however, the roles of miR-372 in RCC remain unclear. The focus of the present study was the functions of miR-372 in RCC metastasis and EMT. Data revealed that miR-372 expression levels were significantly downregulated in RCC tissue samples and cells. Moreover, the decreased expression levels were strongly associated with the poor survival rates and adverse clinical characteristics of RCC patients. Accordingly, miR-372 overexpression markedly inhibited RCC cell invasion, migration and EMT. In terms of the potential mechanisms, ATAD2, the expression of which was inversely correlated with miR-372 expression in RCC, was identified as a direct functional target of miR-372. Notably, ATAD2 silence exerted suppressive functions in RCC cells, being similar to the effects of miR-372 overexpression. In conclusion, findings of this study indicate that miR-372 repressed RCC EMT and metastasis via targeting ATAD2, suggesting that the miR-372/ATAD2 axis may be therapeutic biomarkers for RCC.
Collapse
Affiliation(s)
- Shiqi Ji
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Xiaolin Su
- Department of Emergency, Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing 100021, P.R. China
| | - Haijian Zhang
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Zhixing Han
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Yuqian Zhao
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| | - Qingjun Liu
- Department of Urology, Beijing Ditan Hospital Capital Medical University, Capital Medical University, Beijing 100015, P.R. China
| |
Collapse
|
41
|
Gay JC, Eckenroth BE, Evans CM, Langini C, Carlson S, Lloyd JT, Caflisch A, Glass KC. Disulfide bridge formation influences ligand recognition by the ATAD2 bromodomain. Proteins 2018; 87:157-167. [PMID: 30520161 DOI: 10.1002/prot.25636] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/09/2018] [Accepted: 11/29/2018] [Indexed: 12/28/2022]
Abstract
The ATPase family, AAA domain-containing protein 2 (ATAD2) has a C-terminal bromodomain, which functions as a chromatin reader domain recognizing acetylated lysine on the histone tails within the nucleosome. ATAD2 is overexpressed in many cancers and its expression is correlated with poor patient outcomes, making it an attractive therapeutic target and potential biomarker. We solved the crystal structure of the ATAD2 bromodomain and found that it contains a disulfide bridge near the base of the acetyllysine binding pocket (Cys1057-Cys1079). Site-directed mutagenesis revealed that removal of a free C-terminal cysteine (C1101) residue greatly improved the solubility of the ATAD2 bromodomain in vitro. Isothermal titration calorimetry experiments in combination with the Ellman's assay demonstrated that formation of an intramolecular disulfide bridge negatively impacts the ligand binding affinities and alters the thermodynamic parameters of the ATAD2 bromodomain interaction with a histone H4K5ac peptide as well as a small molecule bromodomain ligand. Molecular dynamics simulations indicate that the formation of the disulfide bridge in the ATAD2 bromodomain does not alter the structure of the folded state or flexibility of the acetyllysine binding pocket. However, consideration of this unique structural feature should be taken into account when examining ligand-binding affinity, or in the design of new bromodomain inhibitor compounds that interact with this acetyllysine reader module.
Collapse
Affiliation(s)
- Jamie C Gay
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont
| | - Chiara M Evans
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Cassiano Langini
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Samuel Carlson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
42
|
Nucleosome Positioning by an Evolutionarily Conserved Chromatin Remodeler Prevents Aberrant DNA Methylation in Neurospora. Genetics 2018; 211:563-578. [PMID: 30554169 DOI: 10.1534/genetics.118.301711] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023] Open
Abstract
In the filamentous fungus Neurospora crassa, constitutive heterochromatin is marked by tri-methylation of histone H3 lysine 9 (H3K9me3) and DNA methylation. We identified mutations in the Neurospora defective in methylation-1 (dim-1) gene that cause defects in cytosine methylation and implicate a putative AAA-ATPase chromatin remodeler. Although it was well-established that chromatin remodelers can affect transcription by influencing DNA accessibility with nucleosomes, little was known about the role of remodelers on chromatin that is normally not transcribed, including regions of constitutive heterochromatin. We found that dim-1 mutants display both reduced DNA methylation in heterochromatic regions as well as increased DNA methylation and H3K9me3 in some intergenic regions associated with highly expressed genes. Deletion of dim-1 leads to atypically spaced nucleosomes throughout the genome and numerous changes in gene expression. DIM-1 localizes to both heterochromatin and intergenic regions that become hyper-methylated in dim-1 strains. Our findings indicate that DIM-1 normally positions nucleosomes in both heterochromatin and euchromatin and that the standard arrangement and density of nucleosomes is required for the proper function of heterochromatin machinery.
Collapse
|
43
|
Bamborough P, Chung CW, Furze RC, Grandi P, Michon AM, Watson RJ, Mitchell DJ, Barnett H, Prinjha RK, Rau C, Sheppard RJ, Werner T, Demont EH. Aiming to Miss a Moving Target: Bromo and Extra Terminal Domain (BET) Selectivity in Constrained ATAD2 Inhibitors. J Med Chem 2018; 61:8321-8336. [PMID: 30226378 DOI: 10.1021/acs.jmedchem.8b00862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of its class. In our recent disclosure of the first chemical probe against this bromodomain, GSK8814 (6), we described the use of a conformationally constrained methoxy piperidine to gain selectivity over the BET bromodomains. Here we describe an orthogonal conformational restriction strategy of the piperidine ring to give potent and selective tropane inhibitors and show structural insights into why this was more challenging than expected. Greater understanding of why different rational approaches succeeded or failed should help in the future design of selectivity in the bromodomain family.
Collapse
Affiliation(s)
| | | | | | - Paola Grandi
- Molecular Discovery Research, Cellzome GmbH , GlaxoSmithKline , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | - Anne-Marie Michon
- Molecular Discovery Research, Cellzome GmbH , GlaxoSmithKline , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | | | | | | | | | - Christina Rau
- Molecular Discovery Research, Cellzome GmbH , GlaxoSmithKline , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | | | - Thilo Werner
- Molecular Discovery Research, Cellzome GmbH , GlaxoSmithKline , Meyerhofstrasse 1 , 69117 Heidelberg , Germany
| | | |
Collapse
|
44
|
NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death Dis 2018. [PMID: 29515109 PMCID: PMC5841310 DOI: 10.1038/s41419-018-0418-z] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nuclear paraspeckle assembly transcript 1 (NEAT1), a long non-coding RNA (lncRNA), is a core structural component of paraspeckles and is essential for paraspeckle formation. NEAT1 comprises two different isoforms: NEAT1_1 (3.7 kb) and NEAT1_2 (23 kb). Recently, NEAT1 has been shown to have oncogenic roles and to facilitate tumorigenesis in various human cancers. However, the function of NEAT1 in papillary thyroid cancer (PTC) is not well understood. The relative expression levels of NEAT1_2, ATPase family AAA domain-containing protein 2 (ATAD2), and microRNA-106b-5p (miR-106b-5p) were assessed via quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR). Four PTC cell lines were used to detect the relative expression of NEAT1_2. The effects of NEAT1_2 on PTC cells were studied by RNA interference approaches in vitro. The effects of NEAT1_2 on downstream proteins were detected by western blotting. The underlying mechanism was clarified by a rescue experiment, and three dual-luciferase reporter assays. NEAT1_2 expression was markedly increased in PTC tissues and the PTC cell lines (K1 and TPC1). The relative expression level of NEAT1_2 was positively associated with TNM stage and tumor size. NEAT1_2 knockdown led to a significant inhibition of growth and metastasis, and induced apoptosis in PTC cells. Knockdown of NEAT1_2 significantly inhibited malignant biological behavior by downregulating the oncogene ATAD2. In addition, NEAT1_2 could act as a competing endogenous RNA to regulate the expression of ATAD2 through downregulating miR-106b-5p. Taken together, our results indicated that NEAT1_2 is overexpressed in PTC. NEAT1_2 could function as a competing endogenous RNA to regulate ATAD2 expression by sponging miR-106b-5p in PTC. Targeting NEAT1_2 could be a promising therapeutic strategy for patients with PTC.
Collapse
|
45
|
Koo SJ, Fernández-Montalván AE, Badock V, Ott CJ, Holton SJ, von Ahsen O, Toedling J, Vittori S, Bradner JE, Gorjánácz M. ATAD2 is an epigenetic reader of newly synthesized histone marks during DNA replication. Oncotarget 2018; 7:70323-70335. [PMID: 27612420 PMCID: PMC5342555 DOI: 10.18632/oncotarget.11855] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/21/2016] [Indexed: 02/02/2023] Open
Abstract
ATAD2 (ATPase family AAA domain-containing protein 2) is a chromatin regulator harboring an AAA+ ATPase domain and a bromodomain, previously proposed to function as an oncogenic transcription co-factor. Here we suggest that ATAD2 is also required for DNA replication. ATAD2 is co-expressed with genes involved in DNA replication in various cancer types and predominantly expressed in S phase cells where it localized on nascent chromatin (replication sites). Our extensive biochemical and cellular analyses revealed that ATAD2 is recruited to replication sites through a direct interaction with di-acetylated histone H4 at K5 and K12, indicative of newly synthesized histones during replication-coupled chromatin reassembly. Similar to ATAD2-depletion, ectopic expression of ATAD2 mutants that are deficient in binding to these di-acetylation marks resulted in reduced DNA replication and impaired loading of PCNA onto chromatin, suggesting relevance of ATAD2 in DNA replication. Taken together, our data show a novel function of ATAD2 in cancer and for the first time identify a reader of newly synthesized histone di-acetylation-marks during replication.
Collapse
Affiliation(s)
| | | | | | - Christopher J Ott
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Sarah Vittori
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James E Bradner
- Center for the Science of Therapeutics, Broad Institute, Cambridge, MA, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA.,Present address: Novartis Institute for BioMedical Research, Cambridge, MA, USA
| | | |
Collapse
|
46
|
Abstract
Several oncogenic factors have been involved in prostate cancer progression. However, therapeutic approaches still focus on suppression of androgen receptor (AR) signaling. In fact, whereas the full-length AR incorporates a ligand-binding domain, which has become a drug target for competitive inhibitors, other transcription factors often do not have tractable binding pockets that aid drug development. Consequently drug development efforts have turned to transcription co-regulators, often chromatin-modifying enzymes or factors that bind to epigenetic modifications to chromatin. Bromodomain (BRD)-containing proteins fall into the latter category and significant progress has been made in developing small molecule inhibitors that target a particular subgroup of BRD-containing proteins known as the Bromodomain and extra-terminal (BET) family proteins. These inhibitors have proven particularly effective in inactivating c-Myc in lymphoma but more recently members of the BET family have also been identified as AR-interacting proteins raising the prospect of using these inhibitors as an alternative strategy for targeting AR-driven cancers. In this review we will provide an overview of BRD-containing proteins and the potential for exploiting them as biomarkers and drug targets in prostate cancer.
Collapse
Affiliation(s)
- Alfonso Urbanucci
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Ian G Mills
- Centre for Molecular Medicine Norway, Nordic European Molecular Biology Laboratory Partnership, University of Oslo, Forskningsparken, Oslo, Norway; Department of Molecular Oncology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway; Prostate Cancer UK/Movember Centre of Excellence for Prostate Cancer, Centre for Cancer Research and Cell Biology, Queen's University of Belfast, BT9 7AE Belfast, UK
| |
Collapse
|
47
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
48
|
Hussain M, Zhou Y, Song Y, Hameed HMA, Jiang H, Tu Y, Zhang J. ATAD2 in cancer: a pharmacologically challenging but tractable target. Expert Opin Ther Targets 2017; 22:85-96. [PMID: 29148850 DOI: 10.1080/14728222.2018.1406921] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION ATAD2 protein is an emerging oncogene that has strongly been linked to the etiology of multiple advanced human cancers. Therapeutically, despite the fact that genetic suppression/knockdown studies have validated it as a compelling drug target for future therapeutic development, recent druggability assessment data suggest that direct targeting of ATAD2's bromodomain (BRD) may be a very challenging task. ATAD2's BRD has been predicted as a 'difficult to drug' or 'least druggable' target due to the concern that its binding pocket, and the areas around it, seem to be unfeasible for ligand binding. Areas covered: In this review, after shedding light on the multifaceted roles of ATAD2 in normal physiology as well as in cancer-etiology, we discuss technical challenges rendered by ATAD2's BRD active site and the recent drug discovery efforts to find small molecule inhibitors against it. Expert opinion: The identification of a novel low-nanomolar semi-permeable chemical probe against ATAD2's BRD by recent drug discovery campaign has demonstrated it to be a pharmacologically tractable target. Nevertheless, the development of high quality bioavailable inhibitors against ATAD2 is still a pending task. Moreover, ATAD2 may also potentially be utilized as a promising target for future development of RNAi-based therapy to treat cancers.
Collapse
Affiliation(s)
- Muzammal Hussain
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Yang Zhou
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Yu Song
- e Basic Medical College of Beihua University , Jilin , China
| | - H M Adnan Hameed
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,c University of Chinese Academy of Sciences , Beijing , PR China
| | - Hao Jiang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| | - Yaoquan Tu
- d Division of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology (KTH), AlbaNova University Center , Stockholm , Sweden
| | - Jiancun Zhang
- a State Key Laboratory of Respiratory Disease , Guangzhou Institutes of Biomedicine and Heath, Chinese Academy of Sciences , Guangzhou , PR China.,b Guangdong Provincial Key Laboratory of Biocomputing, Institute of Chemical Biology , Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences , Guangzhou China
| |
Collapse
|
49
|
Lloyd JT, Glass KC. Biological function and histone recognition of family IV bromodomain-containing proteins. J Cell Physiol 2017; 233:1877-1886. [PMID: 28500727 DOI: 10.1002/jcp.26010] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022]
Abstract
Bromodomain proteins function as epigenetic readers that recognize acetylated histone tails to facilitate the transcription of target genes. There are approximately 60 known human bromodomains, which are divided into eight sub-families based on structural conservation. The bromodomain-containing proteins in family IV include seven members (BRPF1, BRPF2, BRPF3, BRD7, BRD9, ATAD2, and ATAD2b). The bromodomains of each of these proteins recognize and bind acetyllysine residues on histone tails protruding from the nucleosome. However, the histone marks recognized by each bromodomain protein can be very different. The BRPF1 subunit of the MOZ histone acetyltransferase (HAT) recognizes acetylated histones H2AK5ac, H4K12ac, H3K14ac, H4K8ac, and H4K5ac. While the bromodomain of BRD7, a member of the SWI/SNF complex, was shown to preferentially recognize acetylated histones H3K9ac, H3K14ac, H4K8ac, H4K12ac, and H4K16ac. The bromodomains of BRPF2 and BRPF3 have similar sequences, and function as part of the HBO1 HAT complex, but there is limited data on which histone ligands they bind. Similarly, there is little known about the histone targets of the BRD9 and ATAD2b bromodomain proteins. Interestingly, the ATAD2 bromodomain was recently shown to preferentially bind to the di-acetylated H4K5acK12ac mark found in newly synthesized histones following DNA replication. However, despite the physiological importance of the family IV bromodomains, little is known about how they function at the molecular or atomic level. In this review, we summarize our understanding of how family IV bromodomains recognize and select for acetyllysine marks and discuss the importance of acetylated histone recognition for their biological functions.
Collapse
Affiliation(s)
- Jonathan T Lloyd
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| | - Karen C Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont
| |
Collapse
|
50
|
Fujisawa T, Filippakopoulos P. Functions of bromodomain-containing proteins and their roles in homeostasis and cancer. Nat Rev Mol Cell Biol 2017; 18:246-262. [PMID: 28053347 DOI: 10.1038/nrm.2016.143] [Citation(s) in RCA: 398] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.
Collapse
Affiliation(s)
- Takao Fujisawa
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford
| | - Panagis Filippakopoulos
- Ludwig Institute for Cancer Research, Old Road Campus Research Building, Roosevelt Drive, Oxford.,Structural Genomics Consortium, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| |
Collapse
|