1
|
Yu Q, Zhao J, Yang A, Li X. MLLT6/ATF2 Axis Restrains Breast Cancer Progression by Driving DDIT3/4 Expression. Mol Cancer Res 2024; 22:796-811. [PMID: 38757913 DOI: 10.1158/1541-7786.mcr-23-0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/11/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
Epigenetic deregulation is strongly associated with tumor progression. The identification of natural tumor suppressors to overcome cancer metastasis is urgent for cancer therapy. We investigate whether myeloid/lymphoid or mixed-lineage leukemia translocated (MLLT) family members contribute to breast cancer progression and found that high MLLT6 expression predicted a better prognosis and that gradually decreased MLLT6 expression was accompanied by breast cancer malignancy. MLLT6 was downregulated by hypoxia-induced enrichment of DNMT1 at the MLLT6 promoter. The results of in vitro functional experiments indicated that MLLT6 depletion promoted colony formation and cell migration, probably by hampering apoptosis. RNA profiling revealed that the apoptotic pathway was downregulated following stable knockdown of MLLT6. DNA damage-inducible transcript 3/4 (DDIT3/4) were among the top 10 downregulated genes and may have expression patterns similar to that of MLLT6. Restoring DDIT3/4 expression in cells with MLLT6 depletion blocked colony formation and cell migration and attenuated the successful colonization of breast cancer cells in vivo. We also determined that the transcription factor activating transcription factor 2 is a binding partner of MLLT6 and participates in the MLLT6/ATF2 axis, which was reinforced by inhibition of AKT signaling, in turn inducing DDIT3/4 expression by establishing an active chromatin structure at the DDIT3/4 gene promoters. As MLLT6 promotes breast cancer cell apoptosis by inducing DDIT3/4 expression during metastasis, it could be a novel tumor suppressor. Implications: Control of MLLT6 expression via inhibition of PI3K/AKT kinase activity is a potential therapeutic approach for the management of metastatic breast cancer.
Collapse
Affiliation(s)
- Qing Yu
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Jiayi Zhao
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| | - Anli Yang
- Department of Breast Oncology, Sun Yat-Sen University Cancer Centre, State Key Laboratory of Oncology in South China, Collaborative Innovation Centre for Cancer Medicine, Guangzhou, China
| | - Xiangxin Li
- Department of Clinical Laboratory, Foshan Women and Children Hospital, Foshan, China
| |
Collapse
|
2
|
Zhang X, Li Z, Zhang X, Yuan Z, Zhang L, Miao P. ATF family members as therapeutic targets in cancer: From mechanisms to pharmacological interventions. Pharmacol Res 2024; 208:107355. [PMID: 39179052 DOI: 10.1016/j.phrs.2024.107355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
The activating transcription factor (ATF)/ cAMP-response element binding protein (CREB) family represents a large group of basic zone leucine zip (bZIP) transcription factors (TFs) with a variety of physiological functions, such as endoplasmic reticulum (ER) stress, amino acid stress, heat stress, oxidative stress, integrated stress response (ISR) and thus inducing cell survival or apoptosis. Interestingly, ATF family has been increasingly implicated in autophagy and ferroptosis in recent years. Thus, the ATF family is important for homeostasis and its dysregulation may promote disease progression including cancer. Current therapeutic approaches to modulate the ATF family include direct modulators, upstream modulators, post-translational modifications (PTMs) modulators. This review summarizes the structural domain and the PTMs feature of the ATF/CREB family and comprehensively explores the molecular regulatory mechanisms. On this basis, their pathways affecting proliferation, metastasis, and drug resistance in various types of cancer cells are sorted out and discussed. We then systematically summarize the status of the therapeutic applications of existing ATF family modulators and finally look forward to the future prospect of clinical applications in the treatment of tumors by modulating the ATF family.
Collapse
Affiliation(s)
- Xueyao Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xiaochun Zhang
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ziyue Yuan
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Peng Miao
- Department of Anus and Intestine Surgery, Department of Cardiology, and Department of Respiratory and Critical Care Medicine, The First Hospital of China Medical University, Shenyang 110001, China.
| |
Collapse
|
3
|
Amarah A, Elsabagh AA, Ouda A, Karen O, Ferih K, Elmakaty I, Malki MI. Emerging roles of activating transcription factor 2 in the development of breast cancer: a comprehensive review. PRECISION CLINICAL MEDICINE 2023; 6:pbad028. [PMID: 37955015 PMCID: PMC10639104 DOI: 10.1093/pcmedi/pbad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Activating transcription factor 2 (ATF2) is a member of the leucine zipper family of DNA binding proteins that are responsible for regulating various genes that play an essential role in major biological and cellular functions. Since ATF2 plays a vital role in cellular proliferation and apoptosis, it is believed that it greatly affects the development of breast cancers. However, its exact role in breast cancer is incompletely understood. It remains a subject of debate, ambiguity, and continuous research. Several studies have suggested the role of ATF2 as an oncogene, promoting cellular proliferation and worsening the outcome of cancers. In contrast, other studies have postulated that ATF2 plays a tumor suppressive role in estrogen receptor-positive breast cancer. The ambiguity surrounding its role in breast cancer is the reason why there is an influx of recent studies and research in this area. In this narrative review, we investigate several studies that have been published about the role of ATF2 in breast cancer. We also explore studies that have examined the association between ATF2 and endocrine therapy resistance. ATF2 has been suggested to modulate estrogen receptor (ER) expression and activity, potentially affecting tamoxifen sensitivity in breast cancer cells. Therefore, the role of ATF2 in DNA repair mechanisms and drug resistance has been deeply explored in this review. Additionally, there are numerous ongoing clinical trials exploring the effect of targeting ATF2 pathways and mechanisms on the outcome of breast cancers, some of which we have discussed. The studies and clinical trials that are being conducted to understand the multifaceted role of ATF2 and its signaling pathways may provide valuable insight for developing efficient targeted therapeutic solutions to enhance the outcomes of breast cancer and overcome endocrine resistance. We suggest further research to elucidate the dual roles of ATF2 in breast cancer and potential therapeutic therapies for its treatment.
Collapse
Affiliation(s)
- Ahmed Amarah
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ahmed Adel Elsabagh
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Amr Ouda
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Omar Karen
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khaled Ferih
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ibrahim Elmakaty
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Imad Malki
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
4
|
Ma M, Xu L, Cui W, Huang Y, Chi G. FIBP is a prognostic biomarker and correlated with clinicalpathological characteristics and immune infiltrates in acute myeloid leukemia. Discov Oncol 2023; 14:97. [PMID: 37310595 DOI: 10.1007/s12672-023-00723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023] Open
Abstract
Acute myeloid leukemia (AML) is one of the most common hematological malignancy that has a high recurrence rate. FIBP was reported to be highly expressed in multiple tumor types. However, its expression and role in acute myeloid leukemia remains largely unknown. The aim of this study was to clarify the role and value of FIBP in the diagnosis and prognosis, and to analyze its correlation with immune infiltration in acute myeloid leukemia by The Cancer Genome Atlas (TCGA) dataset. FIBP was highly expressed in AML samples compared to normal samples. The differentially expressed genes were identified between high and low expression of FIBP. The high FIBP expression group had poorer overall survival. FIBP was closely correlated with CD4, IL-10 and IL-2. The enrichment analysis indicated DEGs were mainly related to leukocyte migration, leukocyte cell-cell adhesion, myeloid leukocyte differentiation, endothelial cell proliferation and T cell tolerance induction. FIBP expression has significant correlation with infiltrating levels of various immune cells. FIBP could be a potential targeted therapy and prognostic biomarker associated with immune infiltrates for AML.
Collapse
Affiliation(s)
- Muya Ma
- Department of Hematology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Lingling Xu
- Department of Hematology, Yantai Yuhuangding Hospital, The Affiliated Hospital of Qingdao University, Shandong, 264000, Yantai, China
| | - Wenhua Cui
- Department of Hematology, Changzhi People's Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yan Huang
- Department of Biochemistry, Changzhi Medical College, Changazhi, 046000, Shanxi, China
| | - Gang Chi
- Department of Biochemistry, Changzhi Medical College, Changazhi, 046000, Shanxi, China.
| |
Collapse
|
5
|
Xu X, Li Y, Wu Y, Wang M, Lu Y, Fang Z, Wang H, Li Y. Increased ATF2 expression predicts poor prognosis and inhibits sorafenib-induced ferroptosis in gastric cancer. Redox Biol 2022; 59:102564. [PMID: 36473315 PMCID: PMC9723522 DOI: 10.1016/j.redox.2022.102564] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Sorafenib, a tyrosine kinase inhibitor, has an important antitumor effect as a ferroptosis inducer in multiple cancers, including gastric cancer (GC). However, the status of sorafenib as a ferroptosis inducer has recently been questioned. There is very limited information about the relationship between ferroptosis and ATF2, and the role of ATF2 in sorafenib-induced ferroptosis has not been studied. In this study, we investigated the role and underlying molecular mechanisms of ATF2 in sorafenib-induced ferroptosis in GC. We found that ATF2 was significantly upregulated in GC tissues and predicted a poor clinical prognosis. Silencing ATF2 significantly inhibited the malignant phenotype of GC cells. In addition, we observed that ATF2 was activated during sorafenib-induced ferroptosis in GC cells. ATF2 knockdown promoted sorafenib-induced ferroptosis, while ATF2 overexpression showed the opposite results in GC cells. Using ChIP-Seq and RNA-Seq, we identified HSPH1 as a target of ATF2 and further validated it by ChIP‒qPCR analysis. HSPH1 can interact with SLC7A11 (cystine/glutamate transporter) and increase its protein stability. Importantly, knockdown of HSPH1 partly reversed the effects caused by ATF2 overexpression on sorafenib-induced ferroptosis in GC cells. In addition, the results from the tumor xenograft model showed that ATF2 knockdown can effectively enhance sorafenib sensitivity in vivo. Collectively, our study reveals a novel mechanism by which sorafenib induces ferroptosis in GC.
Collapse
Affiliation(s)
- Xin Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Yaxian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Youliang Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingliang Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Ziqing Fang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China,Anhui Medical University, Hefei, 230022, China
| | - Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
6
|
Xu L, Wang J, Zhang D, Song L, Wu H, Wang J, Miao J, Guo H, Fang S, Si L, Chen J, Wu Y, Wu Y, Wang L, Zhang N, Chard L, Wang Y, Cheng Z. The two-faced role of ATF2 on cisplatin response in gastric cancer depends on p53 context. Cell Biosci 2022; 12:77. [PMID: 35641966 PMCID: PMC9153165 DOI: 10.1186/s13578-022-00802-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 12/24/2022] Open
Abstract
Background Activating transcription factor-2 (ATF2) is a member of the basic leucine zipper family of DNA-binding proteins, which exhibits both oncogenic and tumor suppression activity in different tumors. However, the molecular mechanism of its dual function in cancer chemotherapy especially in gastric cancer has still not been elucidated. Methods The protein expression and location of ATF2 in gastric cancer tissues was detected with immunohistochemistry assay, and the clinical significance was analyzed using TCGA and GEO database. The activation and impact of ATF2 in cisplatin treated cells were evaluated with western blot, incucyte live cell analysis, clone formation and tumor xenografts assays. Interaction between ATF2 and p53 was confirmed with immunoprecipitation and GST-pull down. Potential molecular mechanism of ATF2 in different p53 status cells was analyzed with RNA sequencing and real-time quantitative PCR. Results ATF2 mainly located in the nucleus of cancer cells, higher ATF2 level was associated with poor five-year survival of gastric patients, especially in those undergone chemotherapy treatment. Cisplatin treatment significantly activated ATF2 in p53 mutant cells. ATF2 could interact with the trans-activation domain of p53 and enhance cisplatin sensitivity in p53 wild type cell lines, while promoted cell survival in mutant p53 cancer cells by affecting ERK1/2 pathway. Conclusions This study confirmed the effect of ATF2 on cisplatin sensitivity was associated with the functional status of p53 in gastric cancer cells. Integrated analysis of ATF2 expression and P53 status could be used to evaluate the chemotherapy sensitivity and prognosis of gastric cancer patients. Supplementary information The online version contains supplementary material available at 10.1186/s13578-022-00802-w.
Collapse
|
7
|
Chen M, Liu Y, Yang Y, Qiu Y, Wang Z, Li X, Zhang W. Emerging roles of activating transcription factor (ATF) family members in tumourigenesis and immunity: Implications in cancer immunotherapy. Genes Dis 2022; 9:981-999. [PMID: 35685455 PMCID: PMC9170601 DOI: 10.1016/j.gendis.2021.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 04/20/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Activating transcription factors, ATFs, are a group of bZIP transcription factors that act as homodimers or heterodimers with a range of other bZIP factors. In general, ATFs respond to extracellular signals, indicating their important roles in maintaining homeostasis. The ATF family includes ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7. Consistent with the diversity of cellular processes reported to be regulated by ATFs, the functions of ATFs are also diverse. ATFs play an important role in cell proliferation, apoptosis, differentiation and inflammation-related pathological processes. The expression and phosphorylation status of ATFs are also related to neurodegenerative diseases and polycystic kidney disease. Various miRNAs target ATFs to regulate cancer proliferation, apoptosis, autophagy, sensitivity and resistance to radiotherapy and chemotherapy. Moreover, ATFs are necessary to maintain cell redox homeostasis. Therefore, deepening our understanding of the regulation and function of ATFs will provide insights into the basic regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into genomic responses through transcription factors. Under pathological conditions, especially in cancer biology and response to treatment, the characterization of ATF dysfunction is important for understanding how to therapeutically utilize ATF2 or other pathways controlled by transcription factors. In this review, we will demonstrate how ATF1, ATF2, ATF3, ATF4, ATF5, ATF6, and ATF7 function in promoting or suppressing cancer development and identify their roles in tumour immunotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenling Zhang
- Corresponding author. Department of Medical Laboratory Science, the Third Xiangya Hospital, Central South University, Tongzipo Road 172, Yuelu District, Changsha, Hunan 410013, PR China.
| |
Collapse
|
8
|
XPF -673C>T variation is associated with the susceptibility to breast cancer. Cancer Epidemiol 2021; 74:102007. [PMID: 34416547 DOI: 10.1016/j.canep.2021.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
PURPOSE XPF variations might decrease the DNA repair capacity and further contribute to cancer development. This study aimed to investigate the association of XPF polymorphisms with risk of developing breast cancer. METHODS TCGA, the Human Protein Atlas and Kaplan-Meier plotter were used to analyze the expression of XPF in breast cancer tissues and its effect on the survival of breast cancer patients. The expression of XPF in breast cancer tissues was detected by qRT-PCR. This case-control study included 467 breast cancer patients and 467 healthy controls. The genotype of genetic variation was detected by polymerase chain reaction restriction fragment length polymorphism. Odds ratios and 95 % confidence intervals were calculated. Correlations between XPF variation and clinicopathological parameters were assessed through Kendall's Tau-b test. The relationship between XPF gene function variation and XPF gene expression was analyzed by GTEx. RESULTS The expression of XPF in breast cancer tissues is higher than that in normal tissues. Breast cancer patients with high XPF expression have a higher relapse free survival rate (HR = 0.88, 95 % CI = 0.80-0.97), but have no effect on the overall survival rate (logrank P = 0.28). XPF -673C > T variant can reduce the risk of breast cancer patients (OR = 0.35, 95 %CI = 0.20-0.63 for codominant mode; OR = 0.66, 95 %CI = 0.51-0.85 for dominant model; OR = 0.40, 95 %CI = 0.23-0.70 for recessive model). The XPF 11985 GG genotype reduced the risk of early breast cancer (OR = 0.49, 95 %CI = 0.24-0.97), but not the risk of advanced breast cancer (OR = 1.20, 95 % CI = 0.58-2.48). XPF 11985A > G variant can also reduce the risk of ERBB2 expression in patients (OR = 0.50, 95 %CI = 0.27-0.94). There is no correlation between XPF -673C > T/XPF11985A > G variants and ER and PR. XPF -673C > T variant can reduce XPF expression (P < 0.05). CONCLUSIONS Genetic variations of XPF gene may affect its expression and the risk of breast cancer in the Chinese population.
Collapse
|
9
|
Liu J, Li K, Wang R, Chen S, Wu J, Li X, Ning Q, Yang G, Pang Y. The interplay between ATF2 and NEAT1 contributes to lung adenocarcinoma progression. Cancer Cell Int 2020; 20:594. [PMID: 33298086 PMCID: PMC7727147 DOI: 10.1186/s12935-020-01697-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Background Activating transcription factor 2 (ATF2), a member of the activator protein 1 (AP-1) transcription factor family, has been shown to be involved in the pathobiology of numerous cancers. However, the biological role and mechanism of ATF2 in lung adenocarcinoma (LUAD) remains to be elucidated. Methods The expression of ATF2, NEAT1 and miR-26a-5p in LUAD tissues and cell lines was detected by qRT-PCR and western blotting. The interaction between ATF2, NEAT1, and miR-26a-5p was validated by chromatin immunoprecipitation, luciferase reporter assay and RNA immunoprecipitation. Cell proliferation, invasion and tumorigenesis of LUAD cells were analyzed by using CCK8, transwell invasion assay and xenograft tumor model. Results We confirmed that ATF2 expression was increased in LUAD tissues compared with normal adjacent lung tissues. Functional experiments showed that ATF2 positively regulated cell proliferation and invasion in LUAD cells. Moreover, we identified that NEAT1 expression was increased in LUAD tissues and positively correlated with ATF2 expression. Mechanistically, ATF2 could bind to the promoter of NEAT1 to promote its transcription. Rescue experiments showed that ATF2 exerted its oncogenic function in LUAD, at least, partly through NEAT1 upregulation. In turn, NEAT1 could positively regulate ATF2 expression and form a positive feedback loop in LUAD cells. Furthermore, we demonstrated that NEAT1 positively regulated ATF2 expression via sponging miR-26a-5p. Conclusion ATF2 and NEAT1 form a positive feedback loop mediated by miR-26a-5p and coordinately contribute to LUAD progression.
Collapse
Affiliation(s)
- Jian Liu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xian, 710061, Shaanxi, China.,Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Kai Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Rui Wang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Sisi Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jie Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiang Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Qian Ning
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xian, 710061, Shaanxi, China
| | - Ganghua Yang
- Department of Geriatric Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xian, Shaanxi, 710061, People's Republic of China.
| | - Yamei Pang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xian, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Giannoudis A, Malki MI, Rudraraju B, Mohhamed H, Menon S, Liloglou T, Ali S, Carroll JS, Palmieri C. Activating transcription factor-2 (ATF2) is a key determinant of resistance to endocrine treatment in an in vitro model of breast cancer. Breast Cancer Res 2020; 22:126. [PMID: 33198803 PMCID: PMC7667764 DOI: 10.1186/s13058-020-01359-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Activating transcription factor-2 (ATF2), a member of the leucine zipper family of DNA binding proteins, has been implicated as a tumour suppressor in breast cancer. However, its exact role in breast cancer endocrine resistance is still unclear. We have previously shown that silencing of ATF2 leads to a loss in the growth-inhibitory effects of tamoxifen in the oestrogen receptor (ER)-positive, tamoxifen-sensitive MCF7 cell line and highlighted that this multi-faceted transcription factor is key to the effects of tamoxifen in an endocrine sensitive model. In this work, we explored further the in vitro role of ATF2 in defining the resistance to endocrine treatment. MATERIALS AND METHODS We knocked down ATF2 in TAMR, LCC2 and LCC9 tamoxifen-resistant breast cancer cell lines as well as the parental tamoxifen sensitive MCF7 cell line and investigated the effects on growth, colony formation and cell migration. We also performed a microarray gene expression profiling (Illumina Human HT12_v4) to explore alterations in gene expression between MCF7 and TAMRs after ATF2 silencing and confirmed gene expression changes by quantitative RT-PCR. RESULTS By silencing ATF2, we observed a significant growth reduction of TAMR, LCC2 and LCC9 with no such effect observed with the parental MCF7 cells. ATF2 silencing was also associated with a significant inhibition of TAMR, LCC2 and LCC9 cell migration and colony formation. Interestingly, knockdown of ATF2 enhanced the levels of ER and ER-regulated genes, TFF1, GREB1, NCOA3 and PGR, in TAMR cells both at RNA and protein levels. Microarray gene expression identified a number of genes known to mediate tamoxifen resistance, to be differentially regulated by ATF2 in TAMR in relation to the parental MCF7 cells. Moreover, differential pathway analysis confirmed enhanced ER activity after ATF2 knockdown in TAMR cells. CONCLUSION These data demonstrate that ATF2 silencing may overcome endocrine resistance and highlights further the dual role of this transcription factor that can mediate endocrine sensitivity and resistance by modulating ER expression and activity.
Collapse
Affiliation(s)
- Athina Giannoudis
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - Mohammed Imad Malki
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Hisham Mohhamed
- Cancer Early Detection Advanced Research Center, Oregon Health and Science University, Knight Cancer Institute School of Medicine, Portland, USA
| | - Suraj Menon
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Triantafillos Liloglou
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK
| | - Simak Ali
- Department of Surgery and Cancer, Imperial College London, Faculty of Medicine, London, UK
| | - Jason S Carroll
- Cancer Research UK, Cambridge Research Institute, University of Cambridge, Cambridge, UK
| | - Carlo Palmieri
- Department of Molecular and Clinical Cancer Medicine, The Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, L69 3GE, UK.
- The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
11
|
Wang L, Chen Y, Mi Y, Qiao J, Jin H, Li J, Lu Z, Wang Q, Zou Z. ATF2 inhibits ani-tumor effects of BET inhibitor in a negative feedback manner by attenuating ferroptosis. Biochem Biophys Res Commun 2020; 558:216-223. [PMID: 33008584 DOI: 10.1016/j.bbrc.2020.08.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022]
Abstract
BET inhibitor (BETi) has potential therapeutic effects on human cancer especially in breast cancer. However, the detailed mechanisms remain unclear. Herein, we found that BETi JQ1 and I-BET-151 (I-BET) activated ATF2 through JNK1/2 pathway in breast cancer cells MDA-MB-231 (MB-231). In addition, overexpression of ATF2 blocked the reduction of cell viability induced by JQ1 or I-BET in breast cancer MB-231 and BT-549 cells, cervical cancer HeLa cells and lung cancer A549 cells. The induction of cell death by BETi was also attenuated by ATF2 in MB-231 and BT-549 cells. By contrast, depletion of ATF2 increased cancer cell sensitivity to BETi. In MB-231 cells xenograft model, ATF2 significantly inhibited the anti-tumor effects of JQ1. By detection of the oxidized form gluthione, malondialdehyde and lipid ROS, we showed that overexpression of ATF2 inhibited ferroptosis induced by BETi, whereas depletion of ATF2 promoted ferroptosis by BETi. Furthermore, the underlying mechanisms of ATF2-reduced ferroptosis were investigated. Overexpressed and depleted ATF2 were found to significantly upregulate and downregulate NRF2 protein and mRNA expression, respectively. The significantly positive correlations between NRF2 and ATF2 gene expression were found in breast, lung and cervical cancer tissues from TCGA database. In NRF2-depleted MB-231 cells, ATF2 failed to attenuate JQ1-stimulated ferroptosis. All these results suggested that ATF2 inhibited BETi-induced ferroptosis by increasing NRF2 expression. Altogether, our findings illustrated ATF2 suppressed ani-tumor effects of BETi in a negative feedback manner by attenuating ferroptosis. BETi combined with ATF2 or NRF2 inhibitor might be a novel strategy for treatment of human cancer.
Collapse
Affiliation(s)
- Lina Wang
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China; MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Yanjun Mi
- Department of Medical Oncology, Xiamen Cancer Hospital, First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Jianghua Qiao
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Huan Jin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Juntao Li
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Zhenduo Lu
- Department of Breast Disease, Henan Breast Cancer Center, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital. Zhengzhou, 450008, China
| | - Qiming Wang
- Department of Clinical Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
12
|
Huebner K, Procházka J, Monteiro AC, Mahadevan V, Schneider-Stock R. The activating transcription factor 2: an influencer of cancer progression. Mutagenesis 2020; 34:375-389. [PMID: 31799611 PMCID: PMC6923166 DOI: 10.1093/mutage/gez041] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/18/2019] [Indexed: 12/26/2022] Open
Abstract
In contrast to the continuous increase in survival rates for many cancer entities, colorectal cancer (CRC) and pancreatic cancer are predicted to be ranked among the top 3 cancer-related deaths in the European Union by 2025. Especially, fighting metastasis still constitutes an obstacle to be overcome in CRC and pancreatic cancer. As described by Fearon and Vogelstein, the development of CRC is based on sequential mutations leading to the activation of proto-oncogenes and the inactivation of tumour suppressor genes. In pancreatic cancer, genetic alterations also attribute to tumour development and progression. Recent findings have identified new potentially important transcription factors in CRC, among those the activating transcription factor 2 (ATF2). ATF2 is a basic leucine zipper protein and is involved in physiological and developmental processes, as well as in tumorigenesis. The mutation burden of ATF2 in CRC and pancreatic cancer is rather negligible; however, previous studies in other tumours indicated that ATF2 expression level and subcellular localisation impact tumour progression and patient prognosis. In a tissue- and stimulus-dependent manner, ATF2 is activated by upstream kinases, dimerises and induces target gene expression. Dependent on its dimerisation partner, ATF2 homodimers or heterodimers bind to cAMP-response elements or activator protein 1 consensus motifs. Pioneering work has been performed in melanoma in which the dual role of ATF2 is best understood. Even though there is increasing interest in ATF2 recently, only little is known about its involvement in CRC and pancreatic cancer. In this review, we summarise the current understanding of the underestimated ‘cancer gene chameleon’ ATF2 in apoptosis, epithelial-to-mesenchymal transition and microRNA regulation and highlight its functions in CRC and pancreatic cancer. We further provide a novel ATF2 3D structure with key phosphorylation sites and an updated overview of all so-far available mouse models to study ATF2 in vivo.
Collapse
Affiliation(s)
- Kerstin Huebner
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Jan Procházka
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the ASCR, Prague, Czech Republic
| | - Ana C Monteiro
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Vijayalakshmi Mahadevan
- Institute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City Phase I, Bangalore, India
| | - Regine Schneider-Stock
- Experimental Tumorpathology, Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
13
|
|
14
|
Meijer BJ, Giugliano FP, Baan B, van der Meer JHM, Meisner S, van Roest M, Koelink PJ, de Boer RJ, Jones N, Breitwieser W, van der Wel NN, Wildenberg ME, van den Brink GR, Heijmans J, Muncan V. ATF2 and ATF7 Are Critical Mediators of Intestinal Epithelial Repair. Cell Mol Gastroenterol Hepatol 2020; 10:23-42. [PMID: 31958521 PMCID: PMC7210476 DOI: 10.1016/j.jcmgh.2020.01.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Activation factor-1 transcription factor family members activating transcription factors 2 and 7 (ATF2 and ATF7) have highly redundant functions owing to highly homologous DNA binding sites. Their role in intestinal epithelial homeostasis and repair is unknown. Here, we assessed the role of these proteins in these conditions in an intestine-specific mouse model. METHODS We performed in vivo and ex vivo experiments using Villin-CreERT2Atf2fl/flAtf7ko/ko mice. We investigated the effects of intestinal epithelium-specific deletion of the Atf2 DNA binding region in Atf7-/- mice on cellular proliferation, differentiation, apoptosis, and epithelial barrier function under homeostatic conditions. Subsequently, we exposed mice to 2% dextran sulfate sodium (DSS) for 7 days and 12 Gy whole-body irradiation and assessed the response to epithelial damage. RESULTS Activating phosphorylation of ATF2 and ATF7 was detected mainly in the crypts of the small intestine and the lower crypt region of the colonic epithelium. Under homeostatic conditions, no major phenotypic changes were detectable in the intestine of ATF mutant mice. However, on DSS exposure or whole-body irradiation, the intestinal epithelium showed a clearly impaired regenerative response. Mutant mice developed severe ulceration and inflammation associated with increased epithelial apoptosis on DSS exposure and were less able to regenerate colonic crypts on irradiation. In vitro, organoids derived from double-mutant epithelium had a growth disadvantage compared with wild-type organoids, impaired wound healing capacity in scratch assay, and increased sensitivity to tumor necrosis factor-α-induced damage. CONCLUSIONS ATF2 and ATF7 are dispensable for epithelial homeostasis, but are required to maintain epithelial regenerative capacity and protect against cell death during intestinal epithelial damage and repair.
Collapse
Affiliation(s)
- Bartolomeus J Meijer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands.
| | - Francesca P Giugliano
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart Baan
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Jonathan H M van der Meer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Sander Meisner
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Ruben J de Boer
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Nic Jones
- Department of Cell Regulation, Cancer Research United Kingdom Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Wolfgang Breitwieser
- Department of Cell Regulation, Cancer Research United Kingdom Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Nicole N van der Wel
- Department of Medical Biology, Electron Microscopy Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Manon E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands; Roche Innovation Center Basel, F. Hoffmann-La Roche Associate Group, Basel, Switzerland
| | - Jarom Heijmans
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands; Department of Internal Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology & Metabolism, Tytgat Institute for Liver and Intestinal Research, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Li M, Liu Y, Wei Y, Wu C, Meng H, Niu W, Zhou Y, Wang H, Wen Q, Fan S, Li Z, Li X, Zhou J, Cao K, Xiong W, Zeng Z, Li X, Qiu Y, Li G, Zhou M. Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. J Biol Chem 2019; 294:6172-6187. [PMID: 30718276 DOI: 10.1074/jbc.ra118.006281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1) is a zinc-finger protein that plays critical roles in various biological processes by interacting with DNA and numerous protein partners. YY1 has been reported to play dual biological functions as either an oncogene or tumor suppressor in the development and progression of multiple cancers, but its role in human nasopharyngeal carcinoma (NPC) has not yet been revealed. In this study, we found that YY1 overexpression significantly inhibits cell proliferation and cell-cycle progression from G1 to S and promotes apoptosis in NPC cells. Moreover, we identified YY1 as a component of the c-Myc complex and observed that ectopic expression of YY1 inhibits c-Myc transcriptional activity, as well as the promoter activity and expression of the c-Myc target gene microRNA-141 (miR-141). Furthermore, restoring miR-141 expression could at least partially reverse the inhibitory effect of YY1 on cell proliferation and tumor growth and on the expression of some critical c-Myc targets, such as PTEN/AKT pathway components both in vitro and in vivo We also found that YY1 expression is reduced in NPC tissues, negatively correlates with miR-141 expression and clinical stages in NPC patients, and positively correlates with survival prognosis. Our results reveal a previously unappreciated mechanism in which the YY1/c-Myc/miR-141 axis plays a critical role in NPC progression and may provide some potential and valuable targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Mengna Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yukun Liu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yanmei Wei
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Chunchun Wu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Hanbing Meng
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Weihong Niu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yao Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Heran Wang
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013
| | - Qiuyuan Wen
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Songqing Fan
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Zheng Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078; the High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan 410013
| | - Xiayu Li
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianda Zhou
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Cao
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Zhaoyang Zeng
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Xiaoling Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yuanzheng Qiu
- the Department of Otolaryngology Head and Neck Surgery, the Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Guiyuan Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Ming Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078.
| |
Collapse
|
16
|
Rsu1-dependent control of PTEN expression is regulated via ATF2 and cJun. J Cell Commun Signal 2019; 13:331-341. [PMID: 30680530 DOI: 10.1007/s12079-018-00504-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 12/18/2018] [Indexed: 12/19/2022] Open
Abstract
The Rsu1 protein contributes to cell adhesion and migration via its association with the adaptor complex of Integrin linked kinase (ILK), PINCH, and Parvin (IPP), which binds to the cytoplasmic domain of β1 integrins joining integrins to the actin cytoskeleton. Rsu1 binding to PINCH in the IPP complex is required for EGF-induced adhesion, spreading and migration in MCF10A mammary epithelial cells. In addition, Rsu1 expression inhibits Jun kinase but is necessary for the activation of MKK4 and p38 Map kinase signaling essential for migration in MCF10A cells. The data reported here examines the links between MKK4-p38-ATF2 signaling and AKT regulation in MCF10A cells. Ectopic Rsu1 inhibited AKT1 phosphorylation while Rsu1 depletion induced AKT activation and AKT1 phosphorylation of MKK4 on serine 80, blocking MKK4 activity. Rsu1 depletion also reduced the RNA for lipid phosphatase PTEN thus implicating PTEN in modulating levels of activated AKT in these conditions. ChIP analysis of the PTEN promoter revealed that Rsu1 depletion prevented binding of ATF2 to a positive regulatory site in the PTEN promoter and the enhanced binding of cJun to a negatively regulatory PTEN promoter site. These results demonstrate a mechanism by which Rsu1 adhesion signaling alters the balance between MKK4-p38-ATF2 and cJun activation thus altering PTEN expression in MCF10A cells.
Collapse
|
17
|
Inoue S, Mizushima T, Ide H, Jiang G, Goto T, Nagata Y, Netto GJ, Miyamoto H. ATF2 promotes urothelial cancer outgrowth via cooperation with androgen receptor signaling. Endocr Connect 2018; 7:1397-1408. [PMID: 30521479 PMCID: PMC6280600 DOI: 10.1530/ec-18-0364] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022]
Abstract
We investigated the functional role of ATF2, a transcription factor normally activated via its phosphorylation in response to phospho-ERK/MAPK signals, in the outgrowth of urothelial cancer. In both neoplastic and non-neoplastic urothelial cells, the expression levels of androgen receptor (AR) correlated with those of phospho-ATF2. Dihydrotestosterone treatment in AR-positive bladder cancer cells also induced the expression of phospho-ATF2 and phospho-ERK as well as nuclear translocation and transcriptional activity of ATF2. Meanwhile, ATF2 knockdown via shRNA resulted in significant decreases in cell viability, migration and invasion of AR-positive bladder cancer lines, but not AR-negative lines, as well as significant increases and decreases in apoptosis or G0/G1 cell cycle phase and S or G2/M phase, respectively. Additionally, the growth of AR-positive tumors expressing ATF2-shRNA in xenograft-bearing mice was retarded, compared with that of control tumors. ATF2 knockdown also resulted in significant inhibition of neoplastic transformation induced by a chemical carcinogen 3-methylcholanthrene, as well as the expression of Bcl-2/cyclin-A2/cyclin-D1/JUN/MMP-2, in immortalized human normal urothelial SVHUC cells stably expressing AR, but not AR-negative SVHUC cells. Finally, immunohistochemistry in surgical specimens demonstrated significant elevation of ATF2/phospho-ATF2/phospho-ERK expression in bladder tumors, compared with non-neoplastic urothelial tissues. Multivariate analysis further showed that moderate/strong ATF2 expression and phospho-ATF2 positivity were independent predictors for recurrence of low-grade tumors (hazard ratio (HR) = 2.956, P = 0.045) and cancer-specific mortality of muscle-invasive tumors (HR = 5.317, P = 0.012), respectively. Thus, ATF2 appears to be activated in urothelial cells through the AR pathway and promotes the development and progression of urothelial cancer.
Collapse
Affiliation(s)
- Satoshi Inoue
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taichi Mizushima
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hiroki Ide
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guiyang Jiang
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Takuro Goto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Yujiro Nagata
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - George J Netto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hiroshi Miyamoto
- Department of Pathology & Laboratory Medicine, University of Rochester Medical Center, Rochester, New York, USA
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, New York, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Urology, University of Rochester Medical Center, Rochester, New York, USA
- Correspondence should be addressed to H Miyamoto:
| |
Collapse
|
18
|
Huang YF, Niu WB, Hu R, Wang LJ, Huang ZY, Ni SH, Wang MQ, Yang Y, Huang YS, Feng WJ, Xiao W, Zhu DJ, Xian SX, Lu L. FIBP knockdown attenuates growth and enhances chemotherapy in colorectal cancer via regulating GSK3β-related pathways. Oncogenesis 2018; 7:77. [PMID: 30275459 PMCID: PMC6167373 DOI: 10.1038/s41389-018-0088-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/15/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
Colorectal cancer stem cells (CSCs), characterized by self-renewal ability and high expression of proliferative genes, contribute to the chemoresistance of colorectal cancer (CRC). We aimed to identify the molecular mechanisms underlying CRC chemoresistance through comprehensive bioinformatics screenings and experimental confirmation of gene functions. We found that high expression of FGF1 intracellular binding protein (FIBP) was correlated with chemoresistance and poor prognosis in CRC patients. Therefore, the chemoresistant CRC cell line HCT116-CSC with high expression of the stem cell markers CD44 and CD133 was established for further phenotypic tests. FIBP knockdown inhibited proliferation, enhanced chemotherapy effects, and attenuated the stemness markers of CRC cells in vivo and in vitro. Through RNA-seq and gene set enrichment analysis, we identified cyclin D1 as a key downstream target in FIBP-regulated cell cycle progression and proliferation. Moreover, FIBP bound to GSK3β, inhibited its phosphorylation at Tyr216, and activated β-catenin/TCF/cyclin D1 signaling in HCT116-CSCs. Additional GSK3β knockdown reversed the FIBP silencing-induced inhibition of proliferation and decreased stemness marker expression in HCT116-CSCs. Furthermore, DNA methylation profiling suggested that FIBP regulated the stemness of CRC cells via methylation activity that was dependent on GSK3β but independent of β-catenin signaling. Our data illuminate the potential of FIBP as a novel therapeutic target for treating chemoresistant CRC through inhibition of GSK3β-related signaling.
Collapse
Affiliation(s)
- Yan-Feng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Shunde Hospital (The first People's Hospital of Shunde Foshan), Southern Medical University, 528300, Foshan, China
| | - Wen-Bo Niu
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China
| | - Rong Hu
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Zeng-Yan Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Ming-Qing Wang
- Cancer Research Institute, Southern Medical University, 510515, Guangzhou, China.,School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China
| | - Yi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Wen-Jun Feng
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, 510515, Guangzhou, China.
| | - Da-Jian Zhu
- Department of Gastrointestinal Surgery, Guangdong Medical University Affiliated Women and Children Hospital, 528300, Foshan, China.
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China. .,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China. .,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, 510407, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
SPOP promotes ATF2 ubiquitination and degradation to suppress prostate cancer progression. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:145. [PMID: 29996942 PMCID: PMC6042370 DOI: 10.1186/s13046-018-0809-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/25/2018] [Indexed: 11/24/2022]
Abstract
Background Next-generation sequencing of the exome and genome of prostate cancers has identified numerous genetic alterations. SPOP (Speckle-type POZ Protein) is one of the most frequently mutated genes in primary prostate cancer, suggesting that SPOP may be a potential driver of prostate cancer. The aim of this work was to investigate how SPOP mutations contribute to prostate cancer development and progression. Methods To identify molecular mediators of the tumor suppressive function of SPOP, we performed a yeast two-hybrid screen in a HeLa cDNA library using the full-length SPOP as bait. Immunoprecipitation and Western Blotting were used to analyze the interaction between SPOP and ATF2. Cell migration and invasion were determined by Transwell assays. Immunohistochemistry were used to analyze protein levels in patients’ tumor samples. Results Here we identified ATF2 as a bona fide substrate of the SPOP-CUL3-RBX1 E3 ubiquitin ligase complex. SPOP recognizes multiple Ser/Thr (S/T)-rich degrons in ATF2 and triggers ATF2 degradation via the ubiquitin-proteasome pathway. Strikingly, prostate cancer-associated mutants of SPOP are defective in promoting ATF2 degradation in prostate cancer cells and contribute to facilitating prostate cancer cell proliferation, migration and invasion. Conclusion SPOP promotes ATF2 ubiquitination and degradation, and ATF2 is an important mediator of SPOP inactivation-induced cell proliferation, migration and invasion. Electronic supplementary material The online version of this article (10.1186/s13046-018-0809-0) contains supplementary material, which is available to authorized users.
Collapse
|
20
|
Luo L, Cai L, Luo L, Tang Z, Meng X. Silencing activating transcription factor 2 promotes the anticancer activity of sorafenib in hepatocellular carcinoma cells. Mol Med Rep 2018; 17:8053-8060. [PMID: 29693700 PMCID: PMC5983979 DOI: 10.3892/mmr.2018.8921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/05/2017] [Indexed: 12/17/2022] Open
Abstract
The present study aimed to investigate the anticancer effect of sorafenib combined with silencing of activating transcription factor 2 (ATF2) in hepatocellular carcinoma (HCC) cells and to assess the underlying molecular mechanisms. Huh-7 HCC cell line was selected for the present study. Small interfering RNA (siRNA)-ATF2 sequence was constructed to silence ATF2 expression. The experiment was divided into 6 groups: i) Control; ii) vector; iii) sorafenib (6.8 µM); iv) vector+sorafenib; v) siRNA-ATF2; and vi) siRNA-ATF2+sorafenib groups. Cell proliferation, apoptosis, migration and invasion were detected following treatments with sorafenib and/or ATF2 silencing. Additionally, expression of tumor necrosis factor (TNF)-α and c-Jun N-terminal kinase 3 (JNK3) was detected using reverse transcription-quantitative polymerase chain reaction and western blotting. The current findings revealed that siRNA-ATF2 significantly reduced ATF2 expression. Cell proliferation, migration and invasion abilities in the sorafenib and siRNA-ATF2 groups were significantly reduced compared with the control group (P<0.05). Apoptotic rate in the sorafenib and siRNA-ATF2 groups was significantly increased compared with the control group (P<0.05). The mRNA and protein expression levels of ATF2 in the sorafenib or siRNA-ATF2 groups was significantly reduced when compared with control group. The phosphorylation of ATF2 was also reduced following sorafenib treatment or ATF2 silence. Although JNK3 mRNA expression level was not affected, the phosphorylation level of JNK3 was significantly promoted following sorafenib treatment or ATF2 silencing. Additionally, TNF-α mRNA and protein expression levels were increased following sorafenib treatment or ATF2 silencing. It is of note that siRNA-ATF2 treatment promoted the anticancer activity of sorafenib in Huh-7 cells. Additionally, siRNA-ATF2+sorafenib treatment combined additionally promoted TNF-α expression and phosphorylation of JNK3. Combined siRNA-ATF2 and sorafenib treatment had a greater anticancer effect compared with sorafenib or ATF2 silencing alone. The possible mechanism involved in the anticancer effect of sorafenib and ATF2 silencing may be associated with the activation of the TNF-α/JNK3 signaling pathway.
Collapse
Affiliation(s)
- Lifang Luo
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Lijing Cai
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Laibang Luo
- Department of General Surgery, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Zhimou Tang
- Department of Oncology, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaohui Meng
- Department of Pharmacy, Jiangxi Provincial People's Hospital, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
21
|
Song WJ, Dong Y, Luo C, Chen YY. p38MAPK family isoform p38α and activating transcription factor 2 are associated with the malignant phenotypes and poor prognosis of patients with ovarian adenocarcinoma. Pathol Res Pract 2017; 213:1282-1288. [PMID: 28916425 DOI: 10.1016/j.prp.2017.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 07/12/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022]
Abstract
This study was to identify the biomarkers for the malignancy and poor prognosis in patients with ovarian cancer. The protein expression of p38MAPK family isoform p38α (p38α) and activating transcription factor 2 (ATF2) was measured in 120 ovarian serous adenocarcinomas and 34 normal fallopian tubes using immunohistochemistry. Stable OV-90 cells expressing p38α and ATF2 inhibitor were established using shRNA lentivirus. Cell proliferation, invasion, and migration were analyzed in vitro. Tumor growth and chemosensitivity were investigated in xenograft tumor models. The percentage of positive p38α and ATF2 expression was significantly higher in ovarian serous adenocarcinomas than that in normal fallopian tubes. Positive p38α and ATF2 expression were significantly associated with high clinical stage (III/IV), lymph node metastasis, and shorter overall survival. Silencing of p38α and ATF2 gene expression in OV-90 cells significantly inhibited cell proliferation, migration, and invasion in vitro. OV-90 cells with p38α and ATF2 gene being silenced grew significantly slow and were significantly sensitive to the chemotherapy compared to cells with high p38α and ATF2 expression. p38α and ATF2 expression play a crucial role in the malignant phenotypes of ovarian tumor cells and are a marker for the poor prognosis of patients with ovarian serous adenocarcinomas.
Collapse
Affiliation(s)
- Wan-Juan Song
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yu Dong
- Maternal and Children's Hospital of Heping District, Shenyang, Laioling 110014, PR China
| | - Cheng Luo
- Department of Gynaecology and Obstetrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yuan-Yuan Chen
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, PR China.
| |
Collapse
|
22
|
Wang T, Yu Q, Li J, Hu B, Zhao Q, Ma C, Huang W, Zhuo L, Fang H, Liao L, Eugene Chin Y, Jiang Y. O-GlcNAcylation of fumarase maintains tumour growth under glucose deficiency. Nat Cell Biol 2017. [PMID: 28628081 DOI: 10.1038/ncb3562] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chromatin-associated fumarase (FH) affects histone methylation via its metabolic activity. However, whether this effect is involved in gene transcription remains to be clarified. In this study, we show that under glucose deprivation conditions, AMPK phosphorylates FH at Ser75, which in turn forms a complex with ATF2 and participates in promoter activation. FH-catalysed fumarate in promoter regions inhibits KDM2A demethylase activity, and thus maintains the H3K36me2 profile and facilitates gene expression for cell growth arrest. On the other hand, FH is found to be O-GlcNAcylated at the AMPK phosphorylation site; FH-ATF2-mediated downstream events are impeded by FH O-GlcNAcylation, especially in cancer cells that display robust O-GlcNAc transferase (OGT) activity. Consistently, the FH-Ser75 phosphorylation level inversely correlates with the OGT level and poor prognosis in pancreatic cancer patients. These findings uncover a previously uncharacterized mechanism underlying transcription regulation by FH and the linkage between dysregulated OGT activity and growth advantage of cancer cells under glucose deficiency.
Collapse
Affiliation(s)
- Ting Wang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Qiujing Yu
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Jingjie Li
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Bin Hu
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| | - Qin Zhao
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Chunmin Ma
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Wenhua Huang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Lingang Zhuo
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China
| | - Houqin Fang
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Lujian Liao
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Y Eugene Chin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Jiao Tong University School of Medicine, 320 Yueyang Road, Shanghai 200031, China
| | - Yuhui Jiang
- The Institute of Cell Metabolism, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200080, China.,Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200080, China
| |
Collapse
|
23
|
Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res 2017; 119:347-357. [PMID: 28212892 PMCID: PMC5457671 DOI: 10.1016/j.phrs.2017.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/16/2023]
Abstract
Stringent transcriptional regulation is crucial for normal cellular biology and organismal development. Perturbations in the proper regulation of transcription factors can result in numerous pathologies, including cancer. Thus, understanding how transcription factors are regulated and how they are dysregulated in disease states is key to the therapeutic targeting of these factors and/or the pathways that they regulate. Activating transcription factor 2 (ATF2) has been studied in a number of developmental and pathological conditions. Recent findings have shed light on the transcriptional, post-transcriptional, and post-translational regulatory mechanisms that influence ATF2 function, and thus, the transcriptional programs coordinated by ATF2. Given our current knowledge of its multiple levels of regulation and function, ATF2 represents a paradigm for the mechanistic complexity that can regulate transcription factor function. Thus, increasing our understanding of the regulation and function of ATF2 will provide insights into fundamental regulatory mechanisms that influence how cells integrate extracellular and intracellular signals into a genomic response through transcription factors. Characterization of ATF2 dysfunction in the context of pathological conditions, particularly in cancer biology and response to therapy, will be important in understanding how pathways controlled by ATF2 or other transcription factors might be therapeutically exploited. In this review, we provide an overview of the currently known upstream regulators and downstream targets of ATF2.
Collapse
Affiliation(s)
- Gregory Watson
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | - Ze'ev A Ronai
- Tumor Initiation and Maintenance Program, Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, 3109601, Israel
| | - Eric Lau
- Department of Tumor Biology and Program in Chemical Biology and Molecular Medicine, H. Lee Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
24
|
Li M, Wu X, Liu N, Li X, Meng F, Song S. Silencing of ATF2 inhibits growth of pancreatic cancer cells and enhances sensitivity to chemotherapy. Cell Biol Int 2017; 41:599-610. [PMID: 28318081 DOI: 10.1002/cbin.10760] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/04/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Mu Li
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Xingda Wu
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Ning Liu
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Xiaoying Li
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Fanbin Meng
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| | - Shaowei Song
- Department of General Surgery; Pancreatic Surgery; The First Affiliated Hospital of China Medical University; Shenyang 110001 People's Republic of China
| |
Collapse
|
25
|
Mechanism of early dissemination and metastasis in Her2 + mammary cancer. Nature 2016; 540:588-592. [PMID: 27974798 DOI: 10.1038/nature20609] [Citation(s) in RCA: 395] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 11/03/2016] [Indexed: 12/18/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths; metastatic lesions develop from disseminated cancer cells (DCCs) that can remain dormant. Metastasis-initiating cells are thought to originate from a subpopulation present in progressed, invasive tumours. However, DCCs detected in patients before the manifestation of breast-cancer metastasis contain fewer genetic abnormalities than primary tumours or than DCCs from patients with metastases. These findings, and those in pancreatic cancer and melanoma models, indicate that dissemination might occur during the early stages of tumour evolution. However, the mechanisms that might allow early disseminated cancer cells (eDCCs) to complete all steps of metastasis are unknown. Here we show that, in early lesions in mice and before any apparent primary tumour masses are detected, there is a sub-population of Her2+p-p38lop-Atf2loTwist1hiE-cadlo early cancer cells that is invasive and can spread to target organs. Intra-vital imaging and organoid studies of early lesions showed that Her2+ eDCC precursors invaded locally, intravasated and lodged in target organs. Her2+ eDCCs activated a Wnt-dependent epithelial-mesenchymal transition (EMT)-like dissemination program but without complete loss of the epithelial phenotype, which was reversed by Her2 or Wnt inhibition. Notably, although the majority of eDCCs were Twist1hiE-cadlo and dormant, they eventually initiated metastasis. Our work identifies a mechanism for early dissemination in which Her2 aberrantly activates a program similar to mammary ductal branching that generates eDCCs that are capable of forming metastasis after a dormancy phase.
Collapse
|
26
|
Li H, Zheng L, Mo Y, Gong Q, Jiang A, Zhao J. Voltage-Dependent Anion Channel 1(VDAC1) Participates the Apoptosis of the Mitochondrial Dysfunction in Desminopathy. PLoS One 2016; 11:e0167908. [PMID: 27941998 PMCID: PMC5152834 DOI: 10.1371/journal.pone.0167908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022] Open
Abstract
Desminopathies caused by the mutation in the gene coding for desmin are genetically protein aggregation myopathies. Mitochondrial dysfunction is one of pathological changes in the desminopathies at the earliest stage. The molecular mechanisms of mitochondria dysfunction in desminopathies remain exclusive. VDAC1 regulates mitochondrial uptake across the outer membrane and mitochondrial outer membrane permeabilization (MOMP). Relationships between desminopathies and Voltage-dependent anion channel 1 (VDAC1) remain unclear. Here we successfully constructed the desminopathy rat model, evaluated with conventional stains, containing hematoxylin and eosin (HE), Gomori Trichrome (MGT), (PAS), red oil (ORO), NADH-TR, SDH staining and immunohistochemistry. Immunofluorescence results showed that VDAC1 was accumulated in the desmin highly stained area of muscle fibers of desminopathy patients or desminopathy rat model compared to the normal ones. Meanwhile apoptosis related proteins bax and ATF2 were involved in desminopathy patients and desminopathy rat model, but not bcl-2, bcl-xl or HK2.VDAC1 and desmin are closely relevant in the tissue splices of deminopathies patients and rats with desminopathy at protein lever. Moreover, apoptotic proteins are also involved in the desminopathies, like bax, ATF2, but not bcl-2, bcl-xl or HK2. This pathological analysis presents the correlation between VDAC1 and desmin, and apoptosis related proteins are correlated in the desminopathy. Furthermore, we provide a rat model of desminopathy for the investigation of desmin related myopathy.
Collapse
Affiliation(s)
- Huanyin Li
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Lan Zheng
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Yanqing Mo
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Qi Gong
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Aihua Jiang
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
| | - Jing Zhao
- Department of Internal Neurology, Central Hospital of Minhang District, Shanghai (Minhang Hospital, Fudan University), Minhang District, Shanghai, P.R.China
- * E-mail:
| |
Collapse
|
27
|
Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1. Oncotarget 2016; 6:36338-53. [PMID: 26462148 PMCID: PMC4742181 DOI: 10.18632/oncotarget.5537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/29/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. METHODS Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. RESULTS The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. CONCLUSION These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy.
Collapse
|
28
|
Kim YJ, Kim HJ, Kim HL, Kim HJ, Kim HS, Lee TR, Shin DW, Seo YR. A Protective Mechanism of Visible Red Light in Normal Human Dermal Fibroblasts: Enhancement of GADD45A-Mediated DNA Repair Activity. J Invest Dermatol 2016; 137:466-474. [PMID: 27729279 DOI: 10.1016/j.jid.2016.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 07/16/2016] [Accepted: 07/21/2016] [Indexed: 01/21/2023]
Abstract
The phototherapeutic effects of visible red light on skin have been extensively investigated, but the underlying biological mechanisms remain poorly understood. We aimed to elucidate the protective mechanism of visible red light in terms of DNA repair of UV-induced oxidative damage in normal human dermal fibroblasts. The protective effect of visible red light on UV-induced DNA damage was identified by several assays in both two-dimensional and three-dimensional cell culture systems. With regard to the protective mechanism of visible red light, our data showed alterations in base excision repair mediated by growth arrest and DNA damage inducible, alpha (GADD45A). We also observed an enhancement of the physical activity of GADD45A and apurinic/apyrimidinic endonuclease 1 (APE1) by visible red light. Moreover, UV-induced DNA damages were diminished by visible red light in an APE1-dependent manner. On the basis of the decrease in GADD45A-APE1 interaction in the activating transcription factor-2 (ATF2)-knockdown system, we suggest a role for ATF2 modulation in GADD45A-mediated DNA repair upon visible red light exposure. Thus, the enhancement of GADD45A-mediated base excision repair modulated by ATF2 might be a potential protective mechanism of visible red light.
Collapse
Affiliation(s)
- Yeo Jin Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyoung-June Kim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hye Lim Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyo Jeong Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Hyun Soo Kim
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Young Rok Seo
- Department of Life Science, Institute of Environmental Medicine, Dongguk University Biomedi Campus, Goyang-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
29
|
Wu DS, Chen C, Wu ZJ, Liu B, Gao L, Yang Q, Chen W, Chen JM, Bao Y, Qu L, Wang LH. ATF2 predicts poor prognosis and promotes malignant phenotypes in renal cell carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:108. [PMID: 27377902 PMCID: PMC4932740 DOI: 10.1186/s13046-016-0383-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/23/2016] [Indexed: 01/02/2023]
Abstract
Background Activating transcription factor 2 (ATF2) is a basic helix-loop-helix transcription factor, which has been shown to participate in the pathobiology of numerous cancers. However, the role of ATF2 in renal cell carcinoma (RCC) remains unclear. Methods ATF2 knockdown and overexpression studies were performed in RCC cells to evaluate changes in cell viability, cell cycle, apoptosis, migration and invasion. Xenograft models were used to examine the tumorigenic and metastatic capability of RCC cells upon ATF2 suppression. The expression of ATF2 in human RCC samples was determined using immunohistochemistry on a tissue microarray. Results ATF2 knockdown in RCC cells reduced their proliferative and metastatic potentials, whereas ATF2 overexpression enhanced these properties. Mechanistic studies revealed that the transcription of CyclinB1, CyclinD1, Snail and Vimentin was directly regulated by ATF2 in RCC cells. Moreover, ATF2 was shown to be highly expressed in RCC tissues, especially in tumors with metastases. High expression of ATF2 correlated with aggressive clinico-pathological characteristics and predicted poor prognosis of RCC patients. Conclusions ATF2 exerts an oncogenic role in RCC and could serve as an important prognostic biomarker. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0383-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deng-Shuang Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Cheng Chen
- Department of Medical Oncology, Jinling Hospital, Nanjing University Clinical School of Medicine, Nanjing, 210002, China
| | - Zhen-Jie Wu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Bing Liu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Li Gao
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Qing Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Wei Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Department of Urology, No. 203 Hospital of People's Liberation Army, Qiqihaer, 161000, Heilongjiang, China
| | - Jun-Ming Chen
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.,Department of Urology, Henan Provincial Corps Hospital of Chinese People's Armed Police Force, Zhengzhou, 450052, China
| | - Yi Bao
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Le Qu
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China. .,Department of Urology, Jinling Hospital, Nanjing University Clinical School of Medicine, 305 East Zhongshan Road, Nanjing, 210002, China.
| | - Lin-Hui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, 415 Fengyang Road, Shanghai, 200003, China.
| |
Collapse
|
30
|
A Transcriptionally Inactive ATF2 Variant Drives Melanomagenesis. Cell Rep 2016; 15:1884-92. [PMID: 27210757 DOI: 10.1016/j.celrep.2016.04.072] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/15/2016] [Accepted: 04/19/2016] [Indexed: 11/20/2022] Open
Abstract
Melanoma is one of the most lethal cutaneous malignancies, characterized by chemoresistance and a striking propensity to metastasize. The transcription factor ATF2 elicits oncogenic activities in melanoma, and its inhibition attenuates melanoma development. Here, we show that expression of a transcriptionally inactive form of Atf2 (Atf2(Δ8,9)) promotes development of melanoma in mouse models. Atf2(Δ8,9)-driven tumors show enhanced pigmentation, immune infiltration, and metastatic propensity. Similar to mouse Atf2(Δ8,9), we have identified a transcriptionally inactive human ATF2 splice variant 5 (ATF2(SV5)) that enhances the growth and migration capacity of cultured melanoma cells and immortalized melanocytes. ATF2(SV5) expression is elevated in human melanoma specimens and is associated with poor prognosis. These findings point to an oncogenic function for ATF2 in melanoma development that appears to be independent of its transcriptional activity.
Collapse
|
31
|
Zhang S, Gao L, Thakur A, Shi P, Liu F, Feng J, Wang T, Liang Y, Liu JJ, Chen M, Ren H. miRNA-204 suppresses human non-small cell lung cancer by targeting ATF2. Tumour Biol 2016; 37:11177-86. [PMID: 26935060 DOI: 10.1007/s13277-016-4906-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/22/2016] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) play a critical role in cancer development and progression. Deregulated expression of miR-204 has been reported in several cancers, but the mechanism through which miR-204 modulates human non-small cell lung cancer (NSCLC) is largely unknown. In this study, we investigate the expression and functional role of miR-204 in human NSCLC tissues and cell lines. RNA isolation, qRT-PCR, MTT, colony formation assay, cell cycle assay, cell apoptosis assay, cell migration assay, and Western blot were performed. Statistical analysis was performed using SPSS 18.0 software and statistical significance was accepted at p value <0.05. miR-204 level was significantly reduced in NSCLC tissues as compared to that of non-neoplastic tissues. Transient over-expression of miR-204 by transfecting with miR-204 mimics suppressed NSCLC cell proliferation, migration, and induced apoptosis and G1 arrest, whereas inhibition of miR-204 showed the converse effects. Additionally, activating transcription factor 2 (ATF2), an important transcription factor, was demonstrated as a potential target gene of miR-204. Subsequent investigations found a negative correlation between miR-204 level and ATF2 expression in NSCLC tissue samples. Moreover, we observed that miR-204 expression inversely affected endogenous ATF2 expression at both mRNA and protein levels in vitro. Taken together, miR-204 may act as a tumor suppressor by directly targeting ATF2 in NSCLC.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Lei Gao
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Asmitananda Thakur
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China.,Department of Internal Medicine, Life Guard Hospital, Biratnagar, Nepal.,S. R. Laboratory and Diagnostic Center, Biratnagar, Nepal
| | - Puyu Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Feng Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Ting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Yiqian Liang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China.,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China
| | - Johnson J Liu
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Mingwei Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China. .,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China.
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, 710061, People's Republic of China. .,Shaanxi Provincial Research Center for the Project of Prevention and Treatment of Respiratory Diseases, Xi'an, Shaanxi, People's Republic of China.
| |
Collapse
|
32
|
Thiel G, Rössler OG. Resveratrol stimulates cyclic AMP response element mediated gene transcription. Mol Nutr Food Res 2015; 60:256-65. [PMID: 26446263 DOI: 10.1002/mnfr.201500607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
SCOPE Many intracellular effects have been attributed to resveratrol, a polyphenolic phytoalexin found in grapes and in other plants, including the direct regulation of transcription. Here, we have analyzed the impact of resveratrol on gene transcription regulated by the cyclic AMP response element (CRE). METHODS AND RESULTS Transcription of a chromatin-embedded reporter gene with CREs in its regulatory region was significantly elevated in resveratrol-treated 293 human embryonic kidney cells, hepatoma cells and neural stem cells. The CRE thus functions as resveratrol-responsive element. The polyphenols quercetin and naringenin also stimulated CRE-mediated gene transcription, but not in the range of resveratrol. The polyphenol curcumin, in contrast, had no effect upon CRE-regulated transcription. In addition, resveratrol stimulation upregulated the transcriptional activation potentials of the CRE-binding proteins (CREB) and activating transcription factor 2 (ATF2). CONCLUSION CREB exhibits cytoprotective activity by stimulating CRE-regulated genes, while ATF2 has been identified as a tumor suppressor. The fact that resveratrol upregulates CRE-mediated gene transcription and enhances the transcriptional activation potentials of CREB and ATF2 suggests that cytoprotective and tumor suppressive activities of resveratrol may rely-at least in part-on the stimulation of CREB- and ATF2-controlled target genes.
Collapse
Affiliation(s)
- Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| |
Collapse
|
33
|
Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance. Toxicol Appl Pharmacol 2015; 287:178-190. [PMID: 26049102 DOI: 10.1016/j.taap.2015.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 01/18/2023]
Abstract
The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose-response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent with increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics.
Collapse
|
34
|
Li W, Zhang C, Ren A, Li T, Jin R, Li G, Gu X, Shi R, Zhao Y. Shikonin Suppresses Skin Carcinogenesis via Inhibiting Cell Proliferation. PLoS One 2015; 10:e0126459. [PMID: 25961580 PMCID: PMC4427333 DOI: 10.1371/journal.pone.0126459] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 04/02/2015] [Indexed: 01/01/2023] Open
Abstract
The M2 isoform of pyruvate kinase M2 (PKM2) has been shown to be up-regulated in human skin cancers. To test whether PKM2 may be a target for chemoprevention, shikonin, a natural product from the root of Lithospermum erythrorhizon and a specific inhibitor of PKM2, was used in a chemically-induced mouse skin carcinogenesis study. The results revealed that shikonin treatment suppressed skin tumor formation. Morphological examinations and immunohistochemical staining of the skin epidermal tissues suggested that shikonin inhibited cell proliferation without inducing apoptosis. Although shikonin alone suppressed PKM2 activity, it did not suppress tumor promoter-induced PKM2 activation in the skin epidermal tissues at the end of the skin carcinogenesis study. To reveal the potential chemopreventive mechanism of shikonin, an antibody microarray analysis was performed, and the results showed that the transcription factor ATF2 and its downstream target Cdk4 were up-regulated by chemical carcinogen treatment; whereas these up-regulations were suppressed by shikonin. In a promotable skin cell model, the nuclear levels of ATF2 were increased during tumor promotion, whereas this increase was inhibited by shikonin. Furthermore, knockdown of ATF2 decreased the expression levels of Cdk4 and Fra-1 (a key subunit of the activator protein 1. In summary, these results suggest that shikonin, rather than inhibiting PKM2 in vivo, suppresses the ATF2 pathway in skin carcinogenesis.
Collapse
Affiliation(s)
- Wenjuan Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Chunjing Zhang
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Amy Ren
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Teena Li
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Rong Jin
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Guohong Li
- Department of Neurosurgery, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Xin Gu
- Department of Pathology, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Runhua Shi
- Feist-Weiller Cancer Center, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, LSU Health Sciences Center in Shreveport, Shreveport, Louisiana, United States of America
| |
Collapse
|
35
|
Liu Z, Luo Q, Guo C. Bim and VDAC1 are hierarchically essential for mitochondrial ATF2 mediated cell death. Cancer Cell Int 2015; 15:34. [PMID: 25852302 PMCID: PMC4387661 DOI: 10.1186/s12935-015-0188-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 03/20/2015] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND ATF2 mediated cytochrome c release is the formation of a channel with some unknown factors larger than that of the individual proteins. BHS-only proteins (BH3s), such as Bim, could induce BAX and VDAC, forming a new channel. According to this facts, we can speculated that there is possible signal relationship with BH3s and ATF2, which is associated with mitochondrial-based death programs. METHODS The growth inhibitory effects of mitochondrial ATF2 were tested in cancer cell lines B16F10, A549, EG7, and LL2. Apoptosis was measured by flow cytometry. The effects of ATF2 and levels of apoptosis regulatory proteins were measured by Western blotting. The interaction of proteins were evaluated by immunoprecipitation analysis. The in vivo antitumor activity of mitochondrial ATF2 were tested in xenograft B16F10 models. RESULTS Genotoxic stress enabled mitochondrial ATF2 accumulation, perturbing the HK1-VDAC1 complex, increasing mitochondrial permeability, and promoting apoptosis. ATF2 inhibition strongly reduced the conformational activation of Bim, suggesting that Bim acts downstream of ATF2. Although Bim downregulation had no effect on ATF2 activation, Bim knockdown abolished VDAC1 activation; the failure of VDAC1 activation in Bim-depleted cells could be reversed by the BH3-only protein mimic ABT-737. We also demonstrate that silencing of ATF2 in B16F10 cells increases both the incidence and prevalence of tumor xenografts in vivo, whereas stably mitochondrial ATF2 transfection inhibited B16F10 tumor xenografts growth. CONCLUSIONS Altogether, these results show that ATF2 is a component of the apoptosis machinery that involves a hierarchical contribution of ATF2, Bim, and VDAC1. Our data offer new insight into the mechanism of mitochondrial ATF2 in mitochondrial apoptosis.
Collapse
Affiliation(s)
- Zhaoyun Liu
- Laboratory of Surgery, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Rd, Chongqing, 400014 P. R. China
| | - Qianfu Luo
- Laboratory of Surgery, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Rd, Chongqing, 400014 P. R. China
| | - Chunbao Guo
- Laboratory of Surgery, Children's Hospital of Chongqing Medical University, 136 Zhongshan 2nd Rd, Chongqing, 400014 P. R. China.,Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, P. R. China
| |
Collapse
|
36
|
Gozdecka M, Lyons S, Kondo S, Taylor J, Li Y, Walczynski J, Thiel G, Breitwieser W, Jones N. JNK suppresses tumor formation via a gene-expression program mediated by ATF2. Cell Rep 2014; 9:1361-74. [PMID: 25456131 DOI: 10.1016/j.celrep.2014.10.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 07/16/2014] [Accepted: 10/14/2014] [Indexed: 02/09/2023] Open
Abstract
JNK and p38 phosphorylate a diverse set of substrates and, consequently, can act in a context-dependent manner to either promote or inhibit tumor growth. Elucidating the functions of specific substrates of JNK and p38 is therefore critical for our understanding of these kinases in cancer. ATF2 is a phosphorylation-dependent transcription factor and substrate of both JNK and p38. Here, we show ATF2 suppresses tumor formation in an orthotopic model of liver cancer and cellular transformation in vitro. Furthermore, we find that suppression of tumorigenesis by JNK requires ATF2. We identify a transcriptional program activated by JNK via ATF2 and provide examples of JNK- and ATF2-dependent genes that block cellular transformation. Significantly, we also show that ATF2-dependent gene expression is frequently downregulated in human cancers, indicating that amelioration of JNK-ATF2-mediated suppression may be a common event during tumor development.
Collapse
Affiliation(s)
- Malgorzata Gozdecka
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK; Haematological Cancer Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Stephen Lyons
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Saki Kondo
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK; Laboratory of Molecular Genetics, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Janet Taylor
- Central Manchester NHS Trust and University of Manchester, the Nowgen Centre, 29 Grafton Street, Manchester M13 9WU, UK; Applied Computational Biology and Bioinformatics Group, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Yaoyong Li
- Applied Computational Biology and Bioinformatics Group, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Jacek Walczynski
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, University of Saarland Medical Center, Building 44, 66421 Homburg, Germany
| | - Wolfgang Breitwieser
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK
| | - Nic Jones
- Department of Cell Regulation, CRUK Manchester Institute, Paterson Building, University of Manchester, Manchester M20 4BX, UK.
| |
Collapse
|
37
|
Liss AS, Bose HR. Characterization of ATF2 in Rel/NFκB oncogenesis reveals its role in the regulation of Ras signaling. Small GTPases 2014; 2:89-94. [PMID: 21776408 DOI: 10.4161/sgtp.2.2.15310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 02/06/2023] Open
Abstract
The v-Rel oncoprotein is the acutely transforming member of the Rel/NFκB family of transcription factors. v-Rel transforms cells through the inappropriate activation and suppression of genes normally regulated by cellular Rel/NFκB family members. We have recently demonstrated that activation of Ha-Ras by v-Rel contributes to transformation. Characterization of AP-1 family members in v-Rel-mediated transformation revealed ectopic expression of ATF2 inhibited transformation by blocking Ha-Ras activity. This lack of Ha-Ras activity prevented downstream activation of the Raf-MEK-ERK pathway, a critical pathway for v-Rel-mediated transformation. Microarray analysis of cells treated with an inhibitor to the ERK pathway revealed a relatively small number of genes that are specifically regulated by ERK activity in cells expressing v-Rel. These studies suggest the main contribution of ERK activity is to temper the expression of genes in v-Rel transformed cells. The mechanism by which ATF2 regulates Ras-Raf-MEK-ERK signaling appears to be a context dependent event. The ectopic expression of ATF2 in cells that are not expressing v-Rel results in the activation of Ha-Ras. However, activation of downstream Raf-MEK-ERK signaling pathway is blocked, likely through the recruitment of inhibitory 14-3-3 proteins to c-Raf. These results suggest a diverse role for ATF2 in the regulation of the Ras-Raf-MEK-ERK pathway.
Collapse
Affiliation(s)
- Andrew S Liss
- Section of Molecular Genetics and Microbiology and the Institute of Cellular and Molecular Biology; University of Texas at Austin; Austin, TX USA
| | | |
Collapse
|
38
|
Rudraraju B, Droog M, Abdel-Fatah TMA, Zwart W, Giannoudis A, Malki MI, Moore D, Patel H, Shaw J, Ellis IO, Chan S, Brooke GN, Nevedomskaya E, Lo Nigro C, Carroll J, Coombes RC, Bevan C, Ali S, Palmieri C. Phosphorylation of activating transcription factor-2 (ATF-2) within the activation domain is a key determinant of sensitivity to tamoxifen in breast cancer. Breast Cancer Res Treat 2014; 147:295-309. [PMID: 25141981 DOI: 10.1007/s10549-014-3098-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
Activating transcription factor-2 (ATF-2) has been implicated as a tumour suppressor in breast cancer (BC). c-JUN N-terminal kinase (JNK) and p38 MAPK phosphorylate ATF-2 within the activation domain (AD), which is required for its transcriptional activity. To date, the role of ATF-2 in determining response to endocrine therapy has not been explored. Effects of ATF-2 loss in the oestrogen receptor (ER)-positive luminal BC cell line MCF7 were explored, as well as its role in response to tamoxifen treatment. Genome-wide chromatin binding patterns of ATF-2 when phosphorylated within the AD in MCF-7 cells were determined using ChIP-seq. The expression of ATF-2 and phosphorylated ATF-2 (pATF-2-Thr71) was determined in a series of 1,650 BC patients and correlated with clinico-pathological features and clinical outcome. Loss of ATF-2 diminished the growth-inhibitory effects of tamoxifen, while tamoxifen treatment induced ATF-2 phosphorylation within the AD, to regulate the expression of a set of 227 genes for proximal phospho-ATF-2 binding, involved in cell development, assembly and survival. Low expression of both ATF-2 and pATF-2-Thr71 was significantly associated with aggressive pathological features. Furthermore, pATF-2 was associated with both p-p38 and pJNK1/2 (< 0.0001). While expression of ATF-2 is not associated with outcome, pATF-2 is associated with longer disease-free (p = 0.002) and BC-specific survival in patients exposed to tamoxifen (p = 0.01). Furthermore, multivariate analysis confirmed pATF-2-Thr71 as an independent prognostic factor. ATF-2 is important for modulating the effect of tamoxifen and phosphorylation of ATF-2 within the AD at Thr71 predicts for improved outcome for ER-positive BC receiving tamoxifen.
Collapse
Affiliation(s)
- Bharath Rudraraju
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
MicroRNA-451 regulates activating transcription factor 2 expression and inhibits liver cancer cell migration. Oncol Rep 2014; 32:1021-8. [PMID: 24968707 DOI: 10.3892/or.2014.3296] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/11/2014] [Indexed: 11/05/2022] Open
Abstract
Accumulating evidence suggests that microRNAs (miRNAs) can function as oncogenes or as tumor suppressor genes depending on the tissue type or target. Therefore, clarification of the specific roles of miRNAs is vital for the diagnosis and treatment of cancer. In the present study, miR-451 was found to be downregulated in hepatocellular carcinoma (HCC) tissues when compared to that in adjacent tissues. Functional analysis showed that, in vitro, miR-451 inhibited the migration of hepatoma cell lines HepG2 and SK-Hep-1. Further investigation of the molecular mechanisms identified activating transcription factor 2 (ATF2) as a target of miR-451. miR-451 inhibited ATF2 expression by binding to the 3'UTR. An in vivo assay revealed a significant negative correlation between miR-451 and ATF2 in liver cancer tissues. According to previous findings reported in the literature, the opposing functions of ATF2 are related to its subcellular localization. In the nucleus, ATF2 displays oncogenic activities in melanoma. In the present study, ATF2 exhibited a higher expression level in the nucleus in tumoral tissues of HCC as detected by immunohistochemistry. In conclusion, in this study, we identified a potential target of miR-451, ATF2, and revealed a novel role of miR-451 in the inhibition of the migratory ability of hepatoma cell lines.
Collapse
|
40
|
Regulation of Gγ-globin gene by ATF2 and its associated proteins through the cAMP-response element. PLoS One 2013; 8:e78253. [PMID: 24223142 PMCID: PMC3819381 DOI: 10.1371/journal.pone.0078253] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/10/2013] [Indexed: 01/12/2023] Open
Abstract
The upstream Gγ-globin cAMP-response element (G-CRE) plays an important role in regulating Gγ-globin expression through binding of ATF2 and its DNA-binding partners defined in this study. ATF2 knockdown resulted in a significant reduction of γ-globin expression accompanied by decreased ATF2 binding to the G-CRE. By contrast, stable ATF2 expression in K562 cells increased γ-globin transcription which was reduced by ATF2 knockdown. Moreover, a similar effect of ATF2 on γ-globin expression was observed in primary erythroid progenitors. To understand the role of ATF2 in γ-globin expression, chromatographically purified G-CRE/ATF2-interacting proteins were subjected to mass spectrometry analysis; major binding partners included CREB1, cJun, Brg1, and histone deacetylases among others. Immunoprecipitation assays demonstrated interaction of these proteins with ATF2 and in vivo GCRE binding in CD34+ cells undergoing erythroid differentiation which was correlated with γ-globin expression during development. These results suggest synergism between developmental stage-specific recruitments of the ATF2 protein complex and expression of γ-globin during erythropoiesis. Microarray studies in K562 cells support ATF2 plays diverse roles in hematopoiesis and chromatin remodeling.
Collapse
|
41
|
Eke I, Storch K, Krause M, Cordes N. Cetuximab attenuates its cytotoxic and radiosensitizing potential by inducing fibronectin biosynthesis. Cancer Res 2013; 73:5869-79. [PMID: 23950208 DOI: 10.1158/0008-5472.can-13-0344] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Inherent and acquired resistance to targeted therapeutics continues to emerge as a major clinical obstacle. For example, resistance to EGF receptor targeting occurs commonly, more so than was expected, on the basis of preclinical work. Given emerging evidence that cancer cell-substrate interactions are important determinants of therapeutic sensitivity, we examined the impact of cell-fibronectin interactions on the efficacy of the EGF receptor antibody cetuximab, which is used widely for lung cancer treatment. Our results revealed the potential for cell-fibronectin interactions to induce radioresistance of human non-small cell lung cancer cells. Cell adhesion to fibronectin enhanced tumor cell radioresistance and attenuated the cytotoxic and radiosensitizing effects of cetuximab. Both in vitro and in vivo, we found that cetuximab treatment led to a remarkable induction of fibronectin biosynthesis. Mechanistic analyses revealed the induction was mediated by a p38-MAPK-ATF2 signaling pathway and that RNAi-mediated inhibition of fibronectin could elevate the cytotoxic and radiosensitizing potential of cetuximab. Taken together, our findings show how cell adhesion blunts cetuximab, which, by inducing fibronectin, generates a self-attenuating mechanism of drug resistance.
Collapse
Affiliation(s)
- Iris Eke
- Authors' Affiliations: OncoRay-National Center for Radiation Research in Oncology; Department of Radiation Oncology, Medical Faculty Carl Gustav Carus, Technische Universität Dresden; German Cancer Consortium (DKTK); German Cancer Research Center (DKFZ); and Institute of Radiooncology, Helmholtz Center Dresden-Rossendorf, Dresden, Germany
| | | | | | | |
Collapse
|
42
|
AP1 transcription factors in epidermal differentiation and skin cancer. J Skin Cancer 2013; 2013:537028. [PMID: 23762562 PMCID: PMC3676924 DOI: 10.1155/2013/537028] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 05/02/2013] [Indexed: 01/17/2023] Open
Abstract
AP1 (jun/fos) transcription factors (c-jun, junB, junD, c-fos, FosB, Fra-1, and Fra-2) are key regulators of epidermal keratinocyte survival and differentiation and important drivers of cancer development. Understanding the role of these factors in epidermis is complicated by the fact that each protein is expressed, at different levels, in multiple cells layers in differentiating epidermis, and because AP1 transcription factors regulate competing processes (i.e., proliferation, apoptosis, and differentiation). Various in vivo genetic approaches have been used to study these proteins including targeted and conditional knockdown, overexpression, and expression of dominant-negative inactivating AP1 transcription factors in epidermis. Taken together, these studies suggest that individual AP1 transcription factors have different functions in the epidermis and in cancer development and that altering AP1 transcription factor function in the basal versus suprabasal layers differentially influences the epidermal differentiation response and disease and cancer development.
Collapse
|
43
|
Varsano T, Lau E, Feng Y, Garrido M, Milan L, Heynen-Genel S, Hassig CA, Ronai ZA. Inhibition of melanoma growth by small molecules that promote the mitochondrial localization of ATF2. Clin Cancer Res 2013; 19:2710-22. [PMID: 23589174 DOI: 10.1158/1078-0432.ccr-12-2689] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Effective therapy for malignant melanoma, the leading cause of death from skin cancer, remains an area of significant unmet need in oncology. The elevated expression of PKCε in advanced metastatic melanoma results in the increased phosphorylation of the transcription factor ATF2 on threonine 52, which causes its nuclear localization and confers its oncogenic activities. The nuclear-to-mitochondrial translocation of ATF2 following genotoxic stress promotes apoptosis, a function that is largely lost in melanoma cells, due to its confined nuclear localization. Therefore, promoting the nuclear export of ATF2, which sensitizes melanoma cells to apoptosis, represents a novel therapeutic modality. EXPERIMENTAL DESIGN We conducted a pilot high-throughput screen of 3,800 compounds to identify small molecules that promote melanoma cell death by inducing the cytoplasmic localization of ATF2. The imaging-based ATF2 translocation assay was conducted using UACC903 melanoma cells that stably express doxycycline-inducible GFP-ATF2. RESULTS We identified two compounds (SBI-0089410 and SBI-0087702) that promoted the cytoplasmic localization of ATF2, reduced cell viability, inhibited colony formation, cell motility, and anchorage-free growth, and increased mitochondrial membrane permeability. SBI-0089410 inhibited the 12-O-tetradecanoylphorbol-l3-acetate (TPA)-induced membrane translocation of protein kinase C (PKC) isoforms, whereas both compounds decreased ATF2 phosphorylation by PKCε and ATF2 transcriptional activity. Overexpression of either constitutively active PKCε or phosphomimic mutant ATF2(T52E) attenuated the cellular effects of the compounds. CONCLUSION The imaging-based high-throughput screen provides a proof-of-concept for the identification of small molecules that block the oncogenic addiction to PKCε signaling by promoting ATF2 nuclear export, resulting in mitochondrial membrane leakage and melanoma cell death.
Collapse
Affiliation(s)
- Tal Varsano
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Regulation of Phosphatidylethanolamine Homeostasis—The Critical Role of CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2). Int J Mol Sci 2013; 14:2529-50. [PMID: 23354482 PMCID: PMC3588000 DOI: 10.3390/ijms14022529] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/02/2013] [Accepted: 01/17/2013] [Indexed: 12/21/2022] Open
Abstract
Phosphatidylethanolamine (PE) is the most abundant lipid on the protoplasmatic leaflet of cellular membranes. It has a pivotal role in cellular processes such as membrane fusion, cell cycle regulation, autophagy, and apoptosis. CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) is the main regulatory enzyme in de novo biosynthesis of PE from ethanolamine and diacylglycerol by the CDP-ethanolamine Kennedy pathway. The following is a summary of the current state of knowledge on Pcyt2 and how splicing and isoform specific differences could lead to variations in functional properties in this family of enzymes. Results from the most recent studies on Pcyt2 transcriptional regulation, promoter function, autophagy, and cell growth regulation are highlighted. Recent data obtained from Pcyt2 knockout mouse models is also presented, demonstrating the essentiality of this gene in embryonic development as well as the major physiological consequences of deletion of one Pcyt2 allele. Those include development of symptoms of the metabolic syndrome such as elevated lipogenesis and lipoprotein secretion, hypertriglyceridemia, liver steatosis, obesity, and insulin resistance. The objective of this review is to elucidate the nature of Pcyt2 regulation by linking its catalytic function with the regulation of lipid and energy homeostasis.
Collapse
|
45
|
Huang GL, Guo HQ, Yang F, Liu OF, Li BB, Liu XY, Lu Y, He ZW. Activating transcription factor 1 is a prognostic marker of colorectal cancer. Asian Pac J Cancer Prev 2012; 13:1053-7. [PMID: 22631637 DOI: 10.7314/apjcp.2012.13.3.1053] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Identifying cancer-related genes or proteins is critical in preventing and controlling colorectal cancer (CRC). This study was to investigate the clinicopathological and prognostic value of activating transcription factor 1 (ATF1) in CRC. METHODS Protein expression of ATF1 was detected using immunohistochemistry in 66 CRC tissues. Clinicopathological association of ATF1 in CRC was analyzed with chi-square test or Fisher's exact test. The prognostic value of ATF1 in CRC is estimated using the Kaplan-Meier analysis and Cox regression models. RESULTS The ATF1 protein expression was significantly lower in tumor tissues than corresponding normal tissues (51.5% and 71.1%, respectively, P = 0.038). No correlation was found between ATF1 expression and the investigated clinicopathological parameters, including gender, age, depth of invasion, lymph node status, metastasis, pathological stage, vascular tumoral emboli, peritumoral deposits, chemotherapy and original tumor site (all with P > 0.05). Patients with higher ATF1 expression levels have a significantly higher survival rate than that with lower expression (P = 0.026 for overall survival, P = 0.008 for progress free survival). Multivariate Cox regression model revealed that ATF1 expression and depth of invasion were the predictors of the overall survival (P = 0.008 and P = 0.028) and progress free survival (P = 0.002 and P = 0.005) in CRC. CONCLUSIONS Higher ATF1 expression is a predictor of a favorable outcome for the overall survival and progress free survival in CRC.
Collapse
Affiliation(s)
- Guo-Liang Huang
- Sino-American Cancer Research Institute, Guangdong Medical College, Dongguan, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Lau E, Ronai ZA. ATF2 - at the crossroad of nuclear and cytosolic functions. J Cell Sci 2012; 125:2815-24. [PMID: 22685333 DOI: 10.1242/jcs.095000] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
An increasing number of transcription factors have been shown to elicit oncogenic and tumor suppressor activities, depending on the tissue and cell context. Activating transcription factor 2 (ATF2; also known as cAMP-dependent transcription factor ATF-2) has oncogenic activities in melanoma and tumor suppressor activities in non-malignant skin tumors and breast cancer. Recent work has shown that the opposing functions of ATF2 are associated with its subcellular localization. In the nucleus, ATF2 contributes to global transcription and the DNA damage response, in addition to specific transcriptional activities that are related to cell development, proliferation and death. ATF2 can also translocate to the cytosol, primarily following exposure to severe genotoxic stress, where it impairs mitochondrial membrane potential and promotes mitochondrial-based cell death. Notably, phosphorylation of ATF2 by the epsilon isoform of protein kinase C (PKCε) is the master switch that controls its subcellular localization and function. Here, we summarize our current understanding of the regulation and function of ATF2 in both subcellular compartments. This mechanism of control of a non-genetically modified transcription factor represents a novel paradigm for 'oncogene addiction'.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92130, USA.
| | | |
Collapse
|
47
|
Abstract
MAPK (mitogen-activated protein kinase) pathways are among the most frequently deregulated signalling events in cancer. Among the critical targets of MAPK activities are members of the AP-1 (activator protein 1) transcription factor, a dimeric complex consisting of Jun, Fos, Maf and ATF (activating transcription factor) family DNA-binding proteins. Depending on the cellular context, the composition of the dimeric complexes determines the regulation of growth, survival or apoptosis. JNK (c-Jun N-terminal kinase), p38 and a number of Jun and Fos family proteins have been analysed for their involvement in oncogenic transformation and tumour formation. These data are also emerging for the ATF components of the AP-1 factor. The aim of the present review is to provide an overview of the functions of two ATF family proteins, ATF2 and ATF7, in mammalian development and their potential functions in tumour formation.
Collapse
|
48
|
Su L, Sampaio AV, Jones KB, Pacheco M, Goytain A, Lin S, Poulin N, Yi L, Rossi FM, Kast J, Capecchi MR, Underhill TM, Nielsen TO. Deconstruction of the SS18-SSX fusion oncoprotein complex: insights into disease etiology and therapeutics. Cancer Cell 2012; 21:333-47. [PMID: 22439931 PMCID: PMC3734954 DOI: 10.1016/j.ccr.2012.01.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 11/23/2011] [Accepted: 01/24/2012] [Indexed: 01/27/2023]
Abstract
Synovial sarcoma is a translocation-associated sarcoma where the underlying chromosomal event generates SS18-SSX fusion transcripts. In vitro and in vivo studies have shown that the SS18-SSX fusion oncoprotein is both necessary and sufficient to support tumorigenesis; however, its mechanism of action remains poorly defined. We have purified a core SS18-SSX complex and discovered that SS18-SSX serves as a bridge between activating transcription factor 2 (ATF2) and transducin-like enhancer of split 1 (TLE1), resulting in repression of ATF2 target genes. Disruption of these components by siRNA knockdown or treatment with HDAC inhibitors rescues target gene expression, leading to growth suppression and apoptosis. Together, these studies define a fundamental role for aberrant ATF2 transcriptional dysregulation in the etiology of synovial sarcoma.
Collapse
Affiliation(s)
- Le Su
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Arthur V. Sampaio
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Kevin B. Jones
- Department of Orthopaedics and Center for Children’s Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - Marina Pacheco
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Shujun Lin
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Neal Poulin
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Lin Yi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Fabio M. Rossi
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Juergen Kast
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Mario R. Capecchi
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, United States
| | - T. Michael Underhill
- Biomedical Research Centre, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Torsten O. Nielsen
- Department of Pathology and Laboratory Medicine, 2222 Health Sciences Mall, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
49
|
Lau E, Kluger H, Varsano T, Lee K, Scheffler I, Rimm DL, Ideker T, Ronai ZA. PKCε promotes oncogenic functions of ATF2 in the nucleus while blocking its apoptotic function at mitochondria. Cell 2012; 148:543-55. [PMID: 22304920 DOI: 10.1016/j.cell.2012.01.016] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 08/12/2011] [Accepted: 01/06/2012] [Indexed: 01/05/2023]
Abstract
The transcription factor ATF2 elicits oncogenic activities in melanoma and tumor suppressor activities in nonmalignant skin cancer. Here, we identify that ATF2 tumor suppressor function is determined by its ability to localize at the mitochondria, where it alters membrane permeability following genotoxic stress. The ability of ATF2 to reach the mitochondria is determined by PKCε, which directs ATF2 nuclear localization. Genotoxic stress attenuates PKCε effect on ATF2; enables ATF2 nuclear export and localization at the mitochondria, where it perturbs the HK1-VDAC1 complex; increases mitochondrial permeability; and promotes apoptosis. Significantly, high levels of PKCε, as seen in melanoma cells, block ATF2 nuclear export and function at the mitochondria, thereby attenuating apoptosis following exposure to genotoxic stress. In melanoma tumor samples, high PKCε levels associate with poor prognosis. Overall, our findings provide the framework for understanding how subcellular localization enables ATF2 oncogenic or tumor suppressor functions.
Collapse
Affiliation(s)
- Eric Lau
- Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Seong KH, Maekawa T, Ishii S. Inheritance and memory of stress-induced epigenome change: roles played by the ATF-2 family of transcription factors. Genes Cells 2012; 17:249-63. [PMID: 22380515 PMCID: PMC3444692 DOI: 10.1111/j.1365-2443.2012.01587.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Data on the inheritance-of-stress effect have been accumulating and some mechanistic insights, such as epigenetic regulation, have also been suggested. In particular, the modern view of Lamarckian inheritance appears to be affected by the finding that stress-induced epigenetic changes can be inherited. This review summarizes the current data on the inheritance of stress effect and possible mechanisms involved in this process. In particular, we focus on the stress-induced epigenetic changes mediated by the ATF-2 family of transcription factors.
Collapse
Affiliation(s)
- Ki-Hyeon Seong
- Laboratory of Molecular Genetics, RIKEN Tsukuba Institute, 3-1-1 Koyadai, Tsukuba, Ibaraki 305-0074, Japan
| | | | | |
Collapse
|