1
|
Esclapez J, Matarredona L, Zafrilla G, Camacho M, Bonete MJ, Zafrilla B. Optimization of Phycocyanobilin Synthesis in E. coli BL21: Biotechnological Insights and Challenges for Scalable Production. Genes (Basel) 2024; 15:1058. [PMID: 39202418 PMCID: PMC11353606 DOI: 10.3390/genes15081058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Phycocyanobilin (PCB) is a small chromophore found in certain phycobiliproteins, such as phycocyanins (PCs) and allophycocyanins (APCs). PCB, along with other phycobilins (PBs) and intermediates such as biliverdin (BV) or phycoerythrobilin (PEB), is attracting increasing biotechnological interest due to its fluorescent and medicinal properties that allow potential applications in biomedicine and the food industry. This study aims to optimize PCB synthesis in Escherichia coli BL21 (DE3) and scale the process to a pre-industrial level. Parameters such as optimal temperature, inducer concentration, initial OD600, and stirring speed were analyzed in shake flask cultures to maximize PCB production. The best results were obtained at a temperature of 28 °C, an IPTG concentration of 0.1 mM, an initial OD600 of 0.5, and an orbital shaking speed of 260 rpm. Furthermore, the optimized protocol was scaled up into a 2 L bioreactor batch, achieving a maximum PCB concentration of 3.8 mg/L. Analysis of the results revealed that biosynthesis of exogenous PBs in Escherichia coli BL21 (DE3) is highly dependent on the metabolic burden of the host. Several scenarios, such as too rapid growth, high inducer concentration, or mechanical stress, can advance entry into the stationary phase. That progressively halts pigment synthesis, leading, in some cases, to its excretion into the growth media and ultimately triggering rapid degradation by the host. These conclusions provide a promising protocol for scalable PCB production and highlight the main biotechnological challenges to increase the yields of the process.
Collapse
Affiliation(s)
- Julia Esclapez
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Laura Matarredona
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Guillermo Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
- Global BioTech SL, C/Padre Manjón Nº2, 03560 Alicante, Spain
| | - Mónica Camacho
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - María-José Bonete
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
| | - Basilio Zafrilla
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, Faculty of Science, University of Alicante, Carretera de San Vicente del Raspeig s/n, 03690 Alicante, Spain; (J.E.); (L.M.); (G.Z.); (M.C.)
- Global BioTech SL, C/Padre Manjón Nº2, 03560 Alicante, Spain
| |
Collapse
|
2
|
Tan S, Liu L, Jiao JY, Li MM, Hu CJ, Lv AP, Qi YL, Li YX, Rao YZ, Qu YN, Jiang HC, Soo RM, Evans PN, Hua ZS, Li WJ. Exploring the Origins and Evolution of Oxygenic and Anoxygenic Photosynthesis in Deeply Branched Cyanobacteriota. Mol Biol Evol 2024; 41:msae151. [PMID: 39041196 PMCID: PMC11304991 DOI: 10.1093/molbev/msae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/16/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024] Open
Abstract
Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth's history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
Collapse
Affiliation(s)
- Sha Tan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Lan Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Meng-Meng Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Chao-Jian Hu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Ai-Ping Lv
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yang-Zhi Rao
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yan-Ni Qu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong-Chen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Paul N Evans
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD 4072, Australia
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
- Guangdong Provincial Key Laboratory of Plant Stress Biology, Sun Yat-Sen University, Guangzhou 510275, PR China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510275, PR China
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| |
Collapse
|
3
|
Zhou LJ, Höppner A, Wang YQ, Hou JY, Scheer H, Zhao KH. Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift. PHOTOSYNTHESIS RESEARCH 2024:10.1007/s11120-023-01066-2. [PMID: 38182842 DOI: 10.1007/s11120-023-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.
Collapse
Affiliation(s)
- Li-Juan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Yi-Qing Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Jian-Yun Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China.
| |
Collapse
|
4
|
Krupnik T. Factors affecting light harvesting in the red alga Cyanidioschyzon merolae. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111854. [PMID: 37659734 DOI: 10.1016/j.plantsci.2023.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
The phycobilisome antennas, which contain phycobilin pigments instead of chlorophyll, are crucial for the photosynthetic activity of Cyanidioschyzon merolae cells, which thrive in an acidic and hot water environment. The accessible light intensity and quality, temperature, acidity, and other factors in this environment are quite different from those in the air available for terrestrial plants. Under these conditions, adaptation to the intensity and quality of light, as well as temperature, which are key factors in photosynthesis of higher plants, also affects this process in Cyanidioschyzon merolae cells. Adaptation to varying light conditions requires fast remodeling and re-tuning of their light-harvesting antennas (phycobilisomes) at multiple levels, from regulation of gene expression to structural reorganization of protein-pigment complexes. This review presents selected data on the structure of phycobilisomes, the genetic engineering of the constituent proteins, and the latest results and opinions on the adaptation of phycobilisomes to light intensity and quality, and temperature to photosynthetic activities. We pay special attention to the latest results of the C. merolae research.
Collapse
Affiliation(s)
- Tomasz Krupnik
- Department of Molecular Plant Physiology, Institute of Environmental Biology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw 02096, Poland.
| |
Collapse
|
5
|
Janis MK, Zou W, Zastrow ML. A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. Chembiochem 2023; 24:e202300358. [PMID: 37423892 PMCID: PMC10653908 DOI: 10.1002/cbic.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| |
Collapse
|
6
|
Jensen GC, Janis MK, Jara J, Abbasi N, Zastrow ML. Zinc-Induced Fluorescence Turn-On in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins. Biochemistry 2023; 62:2828-2840. [PMID: 37699411 PMCID: PMC11057272 DOI: 10.1021/acs.biochem.3c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cyanobacteriochrome (CBCR)-derived fluorescent proteins are a class of reporters that can bind bilin cofactors and fluoresce across the ultraviolet to the near-infrared spectrum. Derived from phytochrome-related photoreceptor proteins in cyanobacteria, many of these proteins use a single small GAF domain to autocatalytically bind a bilin and fluoresce. The second GAF domain of All1280 (All1280g2) from Nostoc sp. PCC7120 is a DXCF motif-containing protein that exhibits blue-light-responsive photochemistry when bound to its native cofactor, phycocyanobilin. All1280g2 can also bind non-photoswitching phycoerythrobilin (PEB), resulting in a highly fluorescent protein. Given the small size, high quantum yield, and that unlike green fluorescent proteins, bilin-binding proteins can be used in anaerobic organisms, the orange fluorescent All1280g2-PEB protein is a promising platform for designing new genetically encoded metal ion sensors. Here, we show that All1280g2-PEB undergoes a ∼5-fold reversible zinc-induced fluorescence enhancement with a blue-shifted emission maximum (572 to 517 nm), which is not observed for a related PEB-bound GAF from Synechocystis sp. PCC6803 (Slr1393g3). Zn2+ significantly enhances All1280g2-PEB fluorescence across a biologically relevant pH range from 6.0 to 9.0, with pH-dependent dissociation constants from 1 μM to ∼20-80 nM. Site-directed mutants aiming to sterically decrease and increase access to PEB show a decreased and similar amount of zinc-induced fluorescence enhancement. Mutation of the cysteine residue within the DXCF motif to alanine abolishes the zinc-induced fluorescence enhancement. Collectively, these results support the presence of a unique fluorescence-enhancing Zn2+ binding site in All1280g2-PEB likely involving coordination to the bilin cofactor and requiring a nearby cysteine residue.
Collapse
Affiliation(s)
- Gary C Jensen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Makena K Janis
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Jazzmin Jara
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Nasir Abbasi
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
7
|
Jensen GC, Janis MK, Jara J, Abbasi N, Zastrow ML. Zinc-Induced Fluorescence Turn-on in Native and Mutant Phycoerythrobilin-Binding Orange Fluorescent Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552977. [PMID: 37609204 PMCID: PMC10441388 DOI: 10.1101/2023.08.11.552977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Cyanobacteriochrome (CBCR)-derived fluorescent proteins are a class of reporters that can bind bilin cofactors and fluoresce across the ultraviolet to near-infrared spectrum. Derived from phytochrome-related photoreceptor proteins in cyanobacteria, many of these proteins use a single small GAF domain to autocatalytically bind a bilin and fluoresce. The second GAF domain of All1280 from Nostoc sp. PCC7120 is a DXCF motif-containing protein that exhibits blue light-responsive photochemistry when bound to its native cofactor, phycocyanobilin. GAF2 can also bind non-photoswitching phycoerythrobilin (PEB), resulting in a highly fluorescent protein. Given the small size, high quantum yield, and that, unlike green fluorescent proteins, bilin-binding proteins can be used in anaerobic organisms, the orange fluorescent GAF2-PEB protein is a promising platform for designing new genetically encoded metal ion sensors. Here we show that GAF2-PEB undergoes a ∼5-fold reversible zinc-induced fluorescence enhancement with blue-shifted emission maximum (572 to 517 nm), which is not observed for a related PEB-bound GAF from Synechocystis sp. PCC6803 (Slr1393g3). Zn 2+ significantly enhances GAF2-PEB fluorescence across a biologically relevant pH range from 6.0-9.0 and with pH-dependent µM to nM dissociation constants. Site-directed mutants aiming to sterically decrease and increase access to PEB show a decreased and similar amount of zinc-induced fluorescence enhancement, respectively. Mutation of the cysteine residue within the DXCF motif to alanine abolishes zinc-induced fluorescence enhancement. Collectively, these results support the presence of a fluorescence enhancing Zn 2+ binding site in GAF2-PEB likely involving coordination to the bilin cofactor and requiring a nearby cysteine residue.
Collapse
Affiliation(s)
- Gary C. Jensen
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Makena K. Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Jazzmin Jara
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Nasir Abbasi
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L. Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
8
|
Janis MK, Zou W, Zastrow ML. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540396. [PMID: 37214816 PMCID: PMC10197653 DOI: 10.1101/2023.05.11.540396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed in E. coli . Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
9
|
Jackson PJ, Hitchcock A, Brindley AA, Dickman MJ, Hunter CN. Absolute quantification of cellular levels of photosynthesis-related proteins in Synechocystis sp. PCC 6803. PHOTOSYNTHESIS RESEARCH 2023; 155:219-245. [PMID: 36542271 PMCID: PMC9958174 DOI: 10.1007/s11120-022-00990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Quantifying cellular components is a basic and important step for understanding how a cell works, how it responds to environmental changes, and for re-engineering cells to produce valuable metabolites and increased biomass. We quantified proteins in the model cyanobacterium Synechocystis sp. PCC 6803 given the general importance of cyanobacteria for global photosynthesis, for synthetic biology and biotechnology research, and their ancestral relationship to the chloroplasts of plants. Four mass spectrometry methods were used to quantify cellular components involved in the biosynthesis of chlorophyll, carotenoid and bilin pigments, membrane assembly, the light reactions of photosynthesis, fixation of carbon dioxide and nitrogen, and hydrogen and sulfur metabolism. Components of biosynthetic pathways, such as those for chlorophyll or for photosystem II assembly, range between 1000 and 10,000 copies per cell, but can be tenfold higher for CO2 fixation enzymes. The most abundant subunits are those for photosystem I, with around 100,000 copies per cell, approximately 2 to fivefold higher than for photosystem II and ATP synthase, and 5-20 fold more than for the cytochrome b6f complex. Disparities between numbers of pathway enzymes, between components of electron transfer chains, and between subunits within complexes indicate possible control points for biosynthetic processes, bioenergetic reactions and for the assembly of multisubunit complexes.
Collapse
Affiliation(s)
- Philip J Jackson
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK.
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Amanda A Brindley
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S1 3JD, UK
| | - C Neil Hunter
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
10
|
Guo R, Wang S, Niu NN, Xu YL, Zhu JX, Scheer H, Noy D, Zhao KH. Dichromic Allophycocyanin Trimer Covering a Broad Spectral Range (550-660 nm). Chemistry 2023; 29:e202203367. [PMID: 36382427 DOI: 10.1002/chem.202203367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/17/2022]
Abstract
Phycobilisomes, the light-harvesting complexes of cyanobacteria and red algae, are a resource for photosynthetic, photonic and fluorescence labeling elements. They cover an exceptionally broad spectral range, but the complex superstructure and assembly have been an obstacle. By replacing in Synechocystis sp. PCC 6803 the biliverdin reductases, we studied the role of chromophores in the assembly of the phycobilisome core. Introduction of the green-absorbing phycoerythrobilin instead of the red-absorbing phycocyanobilin inhibited aggregation. A novel, trimeric allophycocyanin (Dic-APC) was obtained. In the small (110 kDa) unit, the two chromophores, phycoerythrobilin and phytochromobilin, cover a wide spectral range (550 to 660 nm). Due to efficient energy transfer, it provides an efficient artificial light-harvesting element. Dic-APC was generated in vitro by using the contained core-linker, LC , for template-assisted purification and assembly. Labeling the linker provides a method for targeting Dic-APC.
Collapse
Affiliation(s)
- Rui Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Si Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Jun-Xun Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Dror Noy
- MIGAL-Galilee Research Institute S. Industrial Zone, Kiryat Shmona, Israel.,Faculty of Sciences and Technology, Tel-Hai Academic College, Upper Galilee, Israel
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| |
Collapse
|
11
|
Carrigee LA, Frick JP, Liu X, Karty JA, Trinidad JC, Tom IP, Yang X, Dufour L, Partensky F, Schluchter WM. The phycoerythrobilin isomerization activity of MpeV in Synechococcus sp. WH8020 is prevented by the presence of a histidine at position 141 within its phycoerythrin-I β-subunit substrate. Front Microbiol 2022; 13:1011189. [PMID: 36458192 PMCID: PMC9705338 DOI: 10.3389/fmicb.2022.1011189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Marine Synechococcus efficiently harvest available light for photosynthesis using complex antenna systems, called phycobilisomes, composed of an allophycocyanin core surrounded by rods, which in the open ocean are always constituted of phycocyanin and two phycoerythrin (PE) types: PEI and PEII. These cyanobacteria display a wide pigment diversity primarily resulting from differences in the ratio of the two chromophores bound to PEs, the green-light absorbing phycoerythrobilin and the blue-light absorbing phycourobilin. Prior to phycobiliprotein assembly, bilin lyases post-translationally catalyze the ligation of phycoerythrobilin to conserved cysteine residues on α- or β-subunits, whereas the closely related lyase-isomerases isomerize phycoerythrobilin to phycourobilin during the attachment reaction. MpeV was recently shown in Synechococcus sp. RS9916 to be a lyase-isomerase which doubly links phycourobilin to two cysteine residues (C50 and C61; hereafter C50, 61) on the β-subunit of both PEI and PEII. Here we show that Synechococcus sp. WH8020, which belongs to the same pigment type as RS9916, contains MpeV that demonstrates lyase-isomerase activity on the PEII β-subunit but only lyase activity on the PEI β-subunit. We also demonstrate that occurrence of a histidine at position 141 of the PEI β-subunit from WH8020, instead of a leucine in its counterpart from RS9916, prevents the isomerization activity by WH8020 MpeV, showing for the first time that both the substrate and the enzyme play a role in the isomerization reaction. We propose a structural-based mechanism for the role of H141 in blocking isomerization. More generally, the knowledge of the amino acid present at position 141 of the β-subunits may be used to predict which phycobilin is bound at C50, 61 of both PEI and PEII from marine Synechococcus strains.
Collapse
Affiliation(s)
- Lyndsay A. Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- Environmental Laboratory, Engineering and Research Development Center, US Army Corps of Engineers, Vicksburg, MS, United States
| | - Jacob P. Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Xindi Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
| | - Jonathan A. Karty
- Department of Chemistry, Indiana University, Bloomington, IN, United States
| | | | - Irin P. Tom
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois Chicago, Chicago, IL, United States
| | - Louison Dufour
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton Team, UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université, CNRS, Roscoff, France
| | - Wendy M. Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, United States
- *Correspondence: Wendy M. Schluchter,
| |
Collapse
|
12
|
Core and rod structures of a thermophilic cyanobacterial light-harvesting phycobilisome. Nat Commun 2022; 13:3389. [PMID: 35715389 PMCID: PMC9205905 DOI: 10.1038/s41467-022-30962-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanobacteria, glaucophytes, and rhodophytes utilize giant, light-harvesting phycobilisomes (PBSs) for capturing solar energy and conveying it to photosynthetic reaction centers. PBSs are compositionally and structurally diverse, and exceedingly complex, all of which pose a challenge for a comprehensive understanding of their function. To date, three detailed architectures of PBSs by cryo-electron microscopy (cryo-EM) have been described: a hemiellipsoidal type, a block-type from rhodophytes, and a cyanobacterial hemidiscoidal-type. Here, we report cryo-EM structures of a pentacylindrical allophycocyanin core and phycocyanin-containing rod of a thermophilic cyanobacterial hemidiscoidal PBS. The structures define the spatial arrangement of protein subunits and chromophores, crucial for deciphering the energy transfer mechanism. They reveal how the pentacylindrical core is formed, identify key interactions between linker proteins and the bilin chromophores, and indicate pathways for unidirectional energy transfer. Phycobilisome (PBS) absorbs solar energy and transfer the energy to photosynthetic membrane proteins. In this study, the structures of the pentacylindrical core and rod in PBS from a thermophilic cyanobacterium by cryo-electron microscopy.
Collapse
|
13
|
Tomazic N, Overkamp KE, Wegner H, Gu B, Mahler F, Aras M, Keller S, Pierik AJ, Hofmann E, Frankenberg-Dinkel N. Exchange of a single amino acid residue in the cryptophyte phycobiliprotein lyase GtCPES expands its substrate specificity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148493. [PMID: 34537203 DOI: 10.1016/j.bbabio.2021.148493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Cryptophytes are among the few eukaryotes employing phycobiliproteins (PBP) for light harvesting during oxygenic photosynthesis. In contrast to cyanobacterial PBP that are organized in membrane-associated phycobilisomes, those from cryptophytes are soluble within the chloroplast thylakoid lumen. Their light-harvesting capacity is due to covalent linkage of several open-chain tetrapyrrole chromophores (phycobilins). Guillardia theta utilizes the PBP phycoerythrin 545 with 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB) as chromophores. The assembly of PBPs in cryptophytes involves the action of PBP-lyases as shown for cyanobacterial PBP. PBP-lyases facilitate the attachment of the chromophore in the right configuration and stereochemistry. Here we present the functional characterization of the eukaryotic S-type PBP lyase GtCPES. We show GtCPES-mediated transfer and covalent attachment of PEB to the conserved Cys82 of the acceptor PBP β-subunit (PmCpeB) of Prochlorococcus marinus MED4. On the basis of the previously solved crystal structure, the GtCPES binding pocket was investigated using site-directed mutagenesis. Thereby, amino acid residues involved in phycobilin binding and transfer were identified. Interestingly, exchange of a single amino acid residue Met67 to Ala extended the substrate specificity to phycocyanobilin (PCB), most likely by enlarging the substrate-binding pocket. Variant GtCPES_M67A binds both PEB and PCB forming a stable, colored complex in vitro and produced in Escherichia coli. GtCPES_M67A is able to mediate PCB transfer to Cys82 of PmCpeB. Based on these findings, we postulate that this single amino acid residue has a crucial role for bilin binding specificity of S-type phycoerythrin lyases but additional factors regulate handover to the target protein.
Collapse
Affiliation(s)
- Natascha Tomazic
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Kristina E Overkamp
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Helen Wegner
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Bin Gu
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Florian Mahler
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany
| | - Marco Aras
- Microbiology, Faculty for Biology, Technische Universität Kaiserslautern (TUK), Germany
| | - Sandro Keller
- Molecular Biophysics, Technische Universität Kaiserslautern (TUK), Germany; Biophysics, Institute of Molecular Biosciences (IMB), NAWI Graz, University of Graz, Austria; Field of Excellence BioHealth, University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Antonio J Pierik
- Biochemistry, Faculty for Chemistry, Technische Universität Kaiserslautern (TUK), Germany
| | - Eckhard Hofmann
- Proteincrystallography, Faculty for Biology and Biotechnology, Ruhr-Universität Bochum, Germany
| | | |
Collapse
|
14
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
15
|
Carrigee LA, Frick JP, Karty JA, Garczarek L, Partensky F, Schluchter WM. MpeV is a lyase isomerase that ligates a doubly linked phycourobilin on the β-subunit of phycoerythrin I and II in marine Synechococcus. J Biol Chem 2021; 296:100031. [PMID: 33154169 PMCID: PMC7948978 DOI: 10.1074/jbc.ra120.015289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/06/2022] Open
Abstract
Synechococcus cyanobacteria are widespread in the marine environment, as the extensive pigment diversity within their light-harvesting phycobilisomes enables them to utilize various wavelengths of light for photosynthesis. The phycobilisomes of Synechococcus sp. RS9916 contain two forms of the protein phycoerythrin (PEI and PEII), each binding two chromophores, green-light absorbing phycoerythrobilin and blue-light absorbing phycourobilin. These chromophores are ligated to specific cysteines via bilin lyases, and some of these enzymes, called lyase isomerases, attach phycoerythrobilin and simultaneously isomerize it to phycourobilin. MpeV is a putative lyase isomerase whose role in PEI and PEII biosynthesis is not clear. We examined MpeV in RS9916 using recombinant protein expression, absorbance spectroscopy, and tandem mass spectrometry. Our results show that MpeV is the lyase isomerase that covalently attaches a doubly linked phycourobilin to two cysteine residues (C50, C61) on the β-subunit of both PEI (CpeB) and PEII (MpeB). MpeV activity requires that CpeB or MpeB is first chromophorylated by the lyase CpeS (which adds phycoerythrobilin to C82). Its activity is further enhanced by CpeZ (a homolog of a chaperone-like protein first characterized in Fremyella diplosiphon). MpeV showed no detectable activity on the α-subunits of PEI or PEII. The mechanism by which MpeV links the A and D rings of phycourobilin to C50 and C61 of CpeB was also explored using site-directed mutants, revealing that linkage at the A ring to C50 is a critical step in chromophore attachment, isomerization, and stability. These data provide novel insights into β-PE biosynthesis and advance our understanding of the mechanisms guiding lyase isomerases.
Collapse
Affiliation(s)
- Lyndsay A Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Laurence Garczarek
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Frédéric Partensky
- Ecology of Marine Plankton (ECOMAP) Team, Station Biologique, Sorbonne Université & CNRS, UMR 7144, Roscoff, France
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, USA.
| |
Collapse
|
16
|
Xu QZ, Goett-Zink L, Gärtner W, Zhao KH, Kottke T. Tongue Refolding in the Knotless Cyanobacterial Phytochrome All2699. Biochemistry 2020; 59:2047-2054. [DOI: 10.1021/acs.biochem.0c00209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qian-Zhao Xu
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lukas Goett-Zink
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstrasse 3, 04109 Leipzig, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tilman Kottke
- Physical and Biophysical Chemistry, Department of Chemistry, Bielefeld University, Universitaetsstrasse 25, 33615 Bielefeld, Germany
| |
Collapse
|
17
|
Hu PP, Hou JY, Xu YL, Niu NN, Zhao C, Lu L, Zhou M, Scheer H, Zhao KH. The role of lyases, NblA and NblB proteins and bilin chromophore transfer in restructuring the cyanobacterial light-harvesting complex ‡. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:529-540. [PMID: 31820831 DOI: 10.1111/tpj.14647] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Phycobilisomes are large light-harvesting complexes attached to the stromal side of thylakoids in cyanobacteria and red algae. They can be remodeled or degraded in response to changing light and nutritional status. Both the core and the peripheral rods of phycobilisomes contain biliproteins. During biliprotein biosynthesis, open-chain tetrapyrrole chromophores are attached covalently to the apoproteins by dedicated lyases. Another set of non-bleaching (Nb) proteins has been implicated in phycobilisome degradation, among them NblA and NblB. We report in vitro experiments with lyases, biliproteins and NblA/B which imply that the situation is more complex than currently discussed: lyases can also detach the chromophores and NblA and NblB can modulate lyase-catalyzed binding and detachment of chromophores in a complex fashion. We show: (i) NblA and NblB can interfere with chromophorylation as well as chromophore detachment of phycobiliprotein, they are generally inhibitors but in some cases enhance the reaction; (ii) NblA and NblB promote dissociation of whole phycobilisomes, cores and, in particular, allophycocyanin trimers; (iii) while NblA and NblB do not interact with each other, both interact with lyases, apo- and holo-biliproteins; (iv) they promote synergistically the lyase-catalyzed chromophorylation of the β-subunit of the major rod component, CPC; and (v) they modulate lyase-catalyzed and lyase-independent chromophore transfers among biliproteins, with the core protein, ApcF, the rod protein, CpcA, and sensory biliproteins (phytochromes, cyanobacteriochromes) acting as potential traps. The results indicate that NblA/B can cooperate with lyases in remodeling the phycobilisomes to balance the metabolic requirements of acclimating their light-harvesting capacity without straining the overall metabolic economy of the cell.
Collapse
Affiliation(s)
- Ping-Ping Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jian-Yun Hou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ya-Li Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Nan-Nan Niu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cheng Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lu Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, D-80638, München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| |
Collapse
|
18
|
Carrigee LA, Mahmoud RM, Sanfilippo JE, Frick JP, Strnat JA, Karty JA, Chen B, Kehoe DM, Schluchter WM. CpeY is a phycoerythrobilin lyase for cysteine 82 of the phycoerythrin I α-subunit in marine Synechococcus. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148215. [PMID: 32360311 DOI: 10.1016/j.bbabio.2020.148215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 11/15/2022]
Abstract
Marine Synechococcus are widespread in part because they are efficient at harvesting available light using their complex antenna, or phycobilisome, composed of multiple phycobiliproteins and bilin chromophores. Over 40% of Synechococcus strains are predicted to perform a type of chromatic acclimation that alters the ratio of two chromophores, green-light-absorbing phycoerythrobilin and blue-light-absorbing phycourobilin, to optimize light capture by phycoerythrin in the phycobilisome. Lyases are enzymes which catalyze the addition of bilin chromophores to specific cysteine residues on phycobiliproteins and are involved in chromatic acclimation. CpeY, a candidate lyase in the model strain Synechococcus sp. RS9916, added phycoerythrobilin to cysteine 82 of only the α subunit of phycoerythrin I (CpeA) in the presence or absence of the chaperone-like protein CpeZ in a recombinant protein expression system. These studies demonstrated that recombinant CpeY attaches phycoerythrobilin to as much as 72% of CpeA, making it one of the most efficient phycoerythrin lyases characterized to date. Phycobilisomes from a cpeY- mutant showed a near native bilin composition in all light conditions except for a slight replacement of phycoerythrobilin by phycourobilin at CpeA cysteine 82. This demonstrates that CpeY is not involved in any chromatic acclimation-driven chromophore changes and suggests that the chromophore attached at cysteine 82 of CpeA in the cpeY- mutant is ligated by an alternative phycoerythrobilin lyase. Although loss of CpeY does not greatly inhibit native phycobilisome assembly in vivo, the highly active recombinant CpeY can be used to generate large amounts of fluorescent CpeA for biotechnological uses.
Collapse
Affiliation(s)
- Lyndsay A Carrigee
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Rania M Mahmoud
- Department of Biology, Indiana University, Bloomington, IN 47405, USA; Department of Botany, Faculty of Science, University of Fayoum, Fayoum, Egypt
| | | | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Johann A Strnat
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Bo Chen
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
19
|
Adir N, Bar-Zvi S, Harris D. The amazing phycobilisome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148047. [PMID: 31306623 DOI: 10.1016/j.bbabio.2019.07.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/19/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
Abstract
Cyanobacteria and red-algae share a common light-harvesting complex which is different than all other complexes that serve as photosynthetic antennas - the Phycobilisome (PBS). The PBS is found attached to the stromal side of thylakoid membranes, filling up most of the gap between individual thylakoids. The PBS self assembles from similar homologous protein units that are soluble and contain conserved cysteine residues that covalently bind the light absorbing chromophores, linear tetra-pyrroles. Using similar construction principles, the PBS can be as large as 16.8 MDa (68×45×39nm), as small as 1.2 MDa (24 × 11.5 × 11.5 nm), and in some unique cases smaller still. The PBS can absorb light between 450 nm to 650 nm and in some cases beyond 700 nm, depending on the species, its composition and assembly. In this review, we will present new observations and structures that expand our understanding of the distinctive properties that make the PBS an amazing light harvesting system. At the end we will suggest why the PBS, for all of its excellent properties, was discarded by photosynthetic organisms that arose later in evolution such as green algae and higher plants.
Collapse
Affiliation(s)
- Noam Adir
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| | - Shira Bar-Zvi
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Dvir Harris
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
20
|
Kronfel CM, Biswas A, Frick JP, Gutu A, Blensdorf T, Karty JA, Kehoe DM, Schluchter WM. The roles of the chaperone-like protein CpeZ and the phycoerythrobilin lyase CpeY in phycoerythrin biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:549-561. [PMID: 31173730 DOI: 10.1016/j.bbabio.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/26/2019] [Accepted: 06/02/2019] [Indexed: 02/08/2023]
Abstract
Phycoerythrin (PE) present in the distal ends of light-harvesting phycobilisome rods in Fremyella diplosiphon (Tolypothrix sp. PCC 7601) contains five phycoerythrobilin (PEB) chromophores attached to six cysteine residues for efficient green light capture for photosynthesis. Chromophore ligation on PE subunits occurs through bilin lyase catalyzed reactions, but the characterization of the roles of all bilin lyases for phycoerythrin is not yet complete. To gain a more complete understanding about the individual functions of CpeZ and CpeY in PE biogenesis in cyanobacteria, we examined PE and phycobilisomes purified from wild type F. diplosiphon, cpeZ and cpeY knockout mutants. We find that the cpeZ and cpeY mutants accumulate less PE than wild type cells. We show that in the cpeZ mutant, chromophorylation of both PE subunits is affected, especially the Cys-80 and Cys-48/Cys-59 sites of CpeB, the beta-subunit of PE. The cpeY mutant showed reduced chromophorylation at Cys-82 of CpeA. We also show that, in vitro, CpeZ stabilizes PE subunits and assists in refolding of CpeB after denaturation. Taken together, we conclude that CpeZ acts as a chaperone-like protein, assisting in the folding/stability of PE subunits, allowing bilin lyases such as CpeY and CpeS to attach PEB to their PE subunit.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Avijit Biswas
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Jacob P Frick
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Andrian Gutu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Tyler Blensdorf
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Jonathan A Karty
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
21
|
Sun D, Zang X, Guo Y, Xiao D, Cao X, Liu Z, Zhang F, Jin Y, Shi J, Wang Z, Li R, Yangzong Z. Cloning of pcB and pcA Gene from Gracilariopsis lemaneiformis and Expression of a Fluorescent Phycocyanin in Heterologous Host. Genes (Basel) 2019; 10:genes10050322. [PMID: 31035529 PMCID: PMC6562448 DOI: 10.3390/genes10050322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
In order to study the assembly mechanism of phycocyanin in red algae, the apo-phycocyanin genes (pcB and pcA) were cloned from Gracilariopsis lemaneiformis. The full length of phycocyanin β-subunit (pcB) contained 519 nucleotides encoding a protein of 172 amino acids, and the full length of phycocyanin α-subunit(pcA) contained 489 nucleotides encoding a protein of 162 amino acids. Expression vector pACYCDuet-pcB-pcA was constructed and transformed into E. coli BL21 with pET-ho-pcyA (containing ho and pcyA gene to synthesize phycocyanobilin). The recombinant strain showed fluorescence activity, indicating the expression of optically active phycocyanin in E. coli. To further investigate the possible binding sites between phycocyanobilin and apo-phycocyanin, Cys-82 and Cys-153 of the β subunit and the Cys-84 of the α subunit were respectively mutated, and four mutants were obtained. All mutant strains had lower fluorescence intensity than the non-mutant strains, which indicated that these mutation sites could be the active binding sites between apo-phycocyanin and phycocyanobilin (PCB). This research provides a supplement for the comprehensive understanding of the assembly mechanism of optically active phycocyanin in red algae.
Collapse
Affiliation(s)
- Deguang Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Yalin Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Dongfang Xiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Xuexue Cao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhu Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Feng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Yuming Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Jiawei Shi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhendong Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhaxi Yangzong
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
22
|
Chen H, Jiang P. Metabolic engineering of Escherichia coli for efficient biosynthesis of fluorescent phycobiliprotein. Microb Cell Fact 2019; 18:58. [PMID: 30894191 PMCID: PMC6425641 DOI: 10.1186/s12934-019-1100-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 01/27/2023] Open
Abstract
Background Phycobiliproteins (PBPs) are light-harvesting protein found in cyanobacteria, red algae and the cryptomonads. They have been widely used as fluorescent labels in cytometry and immunofluorescence analysis. A number of PBPs has been produced in metabolically engineered Escherichia coli. However, the recombinant PBPs are incompletely chromophorylated, and the underlying mechanisms are not clear. Results and discussion In this work, a pathway for SLA-PEB [a fusion protein of streptavidin and allophycocyanin that covalently binds phycoerythrobilin (PEB)] biosynthesis in E. coli was constructed using a single-expression plasmid strategy. Compared with a previous E. coli strain transformed with dual plasmids, the E. coli strain transformed with a single plasmid showed increased plasmid stability and produced SLA-PEB with a higher chromophorylation ratio. To achieve full chromophorylation of SLA-PEB, directed evolution was employed to improve the catalytic performance of lyase CpcS. In addition, the catalytic abilities of heme oxygenases from different cyanobacteria were investigated based on biliverdin IXα and PEB accumulation. Upregulation of the heme biosynthetic pathway genes was also carried out to increase heme availability and PEB biosynthesis in E. coli. Fed-batch fermentation was conducted for the strain V5ALD, which produced recombinant SLA-PEB with a chromophorylation ratio of 96.7%. Conclusion In addition to reporting the highest chromophorylation ratio of recombinant PBPs to date, this work demonstrated strategies for improving the chromophorylation of recombinant protein, especially biliprotein with heme, or its derivatives as a prosthetic group. Electronic supplementary material The online version of this article (10.1186/s12934-019-1100-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Peng Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
23
|
Interplay between differentially expressed enzymes contributes to light color acclimation in marine Synechococcus. Proc Natl Acad Sci U S A 2019; 116:6457-6462. [PMID: 30846551 DOI: 10.1073/pnas.1810491116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marine Synechococcus, a globally important group of cyanobacteria, thrives in various light niches in part due to its varied photosynthetic light-harvesting pigments. Many Synechococcus strains use a process known as chromatic acclimation to optimize the ratio of two chromophores, green-light-absorbing phycoerythrobilin (PEB) and blue-light-absorbing phycourobilin (PUB), within their light-harvesting complexes. A full mechanistic understanding of how Synechococcus cells tune their PEB to PUB ratio during chromatic acclimation has not yet been obtained. Here, we show that interplay between two enzymes named MpeY and MpeZ controls differential PEB and PUB covalent attachment to the same cysteine residue. MpeY attaches PEB to the light-harvesting protein MpeA in green light, while MpeZ attaches PUB to MpeA in blue light. We demonstrate that the ratio of mpeY to mpeZ mRNA determines if PEB or PUB is attached. Additionally, strains encoding only MpeY or MpeZ do not acclimate. Examination of strains of Synechococcus isolated from across the globe indicates that the interplay between MpeY and MpeZ uncovered here is a critical feature of chromatic acclimation for marine Synechococcus worldwide.
Collapse
|
24
|
Phycobiliproteins: Molecular structure, production, applications, and prospects. Biotechnol Adv 2019; 37:340-353. [DOI: 10.1016/j.biotechadv.2019.01.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 12/15/2022]
|
25
|
Kronfel CM, Hernandez CV, Frick JP, Hernandez LS, Gutu A, Karty JA, Boutaghou MN, Kehoe DM, Cole RB, Schluchter WM. CpeF is the bilin lyase that ligates the doubly linked phycoerythrobilin on β-phycoerythrin in the cyanobacterium Fremyella diplosiphon. J Biol Chem 2019; 294:3987-3999. [PMID: 30670589 DOI: 10.1074/jbc.ra118.007221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/14/2019] [Indexed: 12/11/2022] Open
Abstract
Phycoerythrin (PE) is a green light-absorbing protein present in the light-harvesting complex of cyanobacteria and red algae. The spectral characteristics of PE are due to its prosthetic groups, or phycoerythrobilins (PEBs), that are covalently attached to the protein chain by specific bilin lyases. Only two PE lyases have been identified and characterized so far, and the other bilin lyases are unknown. Here, using in silico analyses, markerless deletion, biochemical assays with purified and recombinant proteins, and site-directed mutagenesis, we examined the role of a putative lyase-encoding gene, cpeF, in the cyanobacterium Fremyella diplosiphon. Analyzing the phenotype of the cpeF deletion, we found that cpeF is required for proper PE biogenesis, specifically for ligation of the doubly linked PEB to Cys-48/Cys-59 residues of the CpeB subunit of PE. We also show that in a heterologous host, CpeF can attach PEB to Cys-48/Cys-59 of CpeB, but only in the presence of the chaperone-like protein CpeZ. Additionally, we report that CpeF likely ligates the A ring of PEB to Cys-48 prior to the attachment of the D ring to Cys-59. We conclude that CpeF is the bilin lyase responsible for attachment of the doubly ligated PEB to Cys-48/Cys-59 of CpeB and together with other specific bilin lyases contributes to the post-translational modification and assembly of PE into mature light-harvesting complexes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Richard B Cole
- Chemistry, University of New Orleans, New Orleans, Louisiana 70148.,Sorbonne Universités-Paris 06, 75252 Paris, France
| | | |
Collapse
|
26
|
Hu P, Guo R, Zhou M, Gärtner W, Zhao K. The Red‐/Green‐Switching GAF3 of Cyanobacteriochrome Slr1393 from
Synechocystis
sp. PCC6803 Regulates the Activity of an Adenylyl Cyclase. Chembiochem 2018; 19:1887-1895. [DOI: 10.1002/cbic.201800323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ping‐Ping Hu
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Rui Guo
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Ming Zhou
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| | - Wolfgang Gärtner
- Institute for Analytical ChemistryUniversity of Leipzig Linnéstrasse 3 04103 Leipzig Germany
| | - Kai‐Hong Zhao
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural University Wuhan 430070 China
| |
Collapse
|
27
|
Biosynthesis of Fluorescent β Subunits of C-Phycocyanin from Spirulina subsalsa in Escherichia coli, and Their Antioxidant Properties. Molecules 2018; 23:molecules23061369. [PMID: 29882804 PMCID: PMC6100522 DOI: 10.3390/molecules23061369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022] Open
Abstract
Phycocyanin, which covalently binds phycocyanobilin chromophores, is not only a candidate fluorescent probe for biological imaging, but also a potential antioxidative agent for healthcare. Herein, a plasmid harboring two cassettes was constructed, with cpcB from Spirulina subsalsa in one cassette and the fusion gene cpcS::ho1::pcyA in the other, and then expressed in Escherichia coli. PCB-CpcB(C-82), a fluorescent phycocyanin β subunit, was biosynthesized in E. coli, exhibiting an absorption maximum at 620 nm and fluorescence emission maximum at 640 nm. When cpcS was replaced by cpcT, PCB-CpcB(C-153), another fluorescent phycocyanin β subunit, was produced, exhibiting an absorption maximum at 590 nm and fluorescence emission maximum at 620 nm. These two fluorescent biliproteins showed stronger scavenging activity toward hydroxyl and DPPH free radicals than apo-CpcB. The IC50 values for hydroxyl radical scavenging by PCB-CpcB(C-82), PCB-CpcB(C-153), and apo-CpcB were 38.72 ± 2.48 µg/mL, 51.06 ± 6.74 µg/mL, and 81.82 ± 0.67 µg/mL, respectively, and the values for DPPH radical scavenging were 201.00 ± 5.86 µg/mL, 240.34 ± 4.03 µg/mL, and 352.93 ± 26.30 µg/mL, respectively. The comparative antioxidant capacities of the proteins were PCB-CpcB(C-82) > PCB-CpcB(C-153) > apo-CpcB, due to bilin binding. The two fluorescent biliproteins exhibited a significant effect on relieving the growth of E. coli cells injured by H2O2. The results of this study suggest that the fluorescent phycocyanin β subunits of S. subsalsa were reconstructed by one expression vector in E. coli, and could be developed as potential antioxidants.
Collapse
|
28
|
Levi M, Sendersky E, Schwarz R. Decomposition of cyanobacterial light harvesting complexes: NblA-dependent role of the bilin lyase homolog NblB. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:813-821. [PMID: 29575252 DOI: 10.1111/tpj.13896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Phycobilisomes, the macromolecular light harvesting complexes of cyanobacteria are degraded under nutrient-limiting conditions. This crucial response is required to adjust light excitation to the metabolic status and avoid damage by excess excitation. Phycobilisomes are comprised of phycobiliproteins, apo-proteins that covalently bind bilin chromophores. In the cyanobacterium Synechococcus elongatus, the phycobiliproteins allophycocyanin and phycocyanin comprise the core and the rods of the phycobilisome, respectively. Previously, NblB was identified as an essential component required for phycocyanin degradation under nutrient starvation. This protein is homologous to bilin-lyases, enzymes that catalyze the covalent attachment of bilins to apo-proteins. However, the nblB-inactivated strain is not impaired in phycobiliprotein synthesis, but rather is characterized by aberrant phycocyanin degradation. Here, using a phycocyanin-deficient strain, we demonstrate that NblB is required for degradation of the core pigment, allophycocyanin. Furthermore, we show that the protein NblB is expressed under nutrient sufficient conditions, but during nitrogen starvation its level decreases about two-fold. This finding is in contrast to an additional component essential for degradation, NblA, the expression of which is highly induced under starvation. We further identified NblB residues required for phycocyanin degradation in vivo. Finally, we demonstrate phycocyanin degradation in a cell-free system, thereby providing support for the suggestion that NblB directly mediates pigment degradation by chromophore detachment. The dependence of NblB function on NblA revealed using this system, together with the results indicating presence of NblB under nutrient sufficient conditions, suggests a rapid mechanism for induction of pigment degradation, which requires only the expression of NblA.
Collapse
Affiliation(s)
- Mali Levi
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Eleonora Sendersky
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Rakefet Schwarz
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
29
|
Mancini JA, Sheehan M, Kodali G, Chow BY, Bryant DA, Dutton PL, Moser CC. De novo synthetic biliprotein design, assembly and excitation energy transfer. J R Soc Interface 2018; 15:20180021. [PMID: 29618529 PMCID: PMC5938588 DOI: 10.1098/rsif.2018.0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/13/2018] [Indexed: 12/26/2022] Open
Abstract
Bilins are linear tetrapyrrole chromophores with a wide range of visible and near-visible light absorption and emission properties. These properties are tuned upon binding to natural proteins and exploited in photosynthetic light-harvesting and non-photosynthetic light-sensitive signalling. These pigmented proteins are now being manipulated to develop fluorescent experimental tools. To engineer the optical properties of bound bilins for specific applications more flexibly, we have used first principles of protein folding to design novel, stable and highly adaptable bilin-binding four-α-helix bundle protein frames, called maquettes, and explored the minimal requirements underlying covalent bilin ligation and conformational restriction responsible for the strong and variable absorption, fluorescence and excitation energy transfer of these proteins. Biliverdin, phycocyanobilin and phycoerythrobilin bind covalently to maquette Cys in vitro A blue-shifted tripyrrole formed from maquette-bound phycocyanobilin displays a quantum yield of 26%. Although unrelated in fold and sequence to natural phycobiliproteins, bilin lyases nevertheless interact with maquettes during co-expression in Escherichia coli to improve the efficiency of bilin binding and influence bilin structure. Bilins bind in vitro and in vivo to Cys residues placed in loops, towards the amino end or in the middle of helices but bind poorly at the carboxyl end of helices. Bilin-binding efficiency and fluorescence yield are improved by Arg and Asp residues adjacent to the ligating Cys on the same helix and by His residues on adjacent helices.
Collapse
Affiliation(s)
- Joshua A Mancini
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Molly Sheehan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Goutham Kodali
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian Y Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - P Leslie Dutton
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher C Moser
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Structures and enzymatic mechanisms of phycobiliprotein lyases CpcE/F and PecE/F. Proc Natl Acad Sci U S A 2017; 114:13170-13175. [PMID: 29180420 DOI: 10.1073/pnas.1715495114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The light-harvesting phycobilisome in cyanobacteria and red algae requires the lyase-catalyzed chromophorylation of phycobiliproteins. There are three functionally distinct lyase families known. The heterodimeric E/F type is specific for attaching bilins covalently to α-subunits of phycocyanins and phycoerythrins. Unlike other lyases, the lyase also has chromophore-detaching activity. A subclass of the E/F-type lyases is, furthermore, capable of chemically modifying the chromophore. Although these enzymes were characterized >25 y ago, their structures remained unknown. We determined the crystal structure of the heterodimer of CpcE/F from Nostoc sp. PCC7120 at 1.89-Å resolution. Both subunits are twisted, crescent-shaped α-solenoid structures. CpcE has 15 and CpcF 10 helices. The inner (concave) layer of CpcE (helices h2, 4, 6, 8, 10, 12, and 14) and the outer (convex) layer of CpcF (h16, 18, 20, 22, and 24) form a cavity into which the phycocyanobilin chromophore can be modeled. This location of the chromophore is supported by mutations at the interface between the subunits and within the cavity. The structure of a structurally related, isomerizing lyase, PecE/F, that converts phycocyanobilin into phycoviolobilin, was modeled using the CpcE/F structure as template. A H87C88 motif critical for the isomerase activity of PecE/F is located at the loop between h20 and h21, supporting the proposal that the nucleophilic addition of Cys-88 to C10 of phycocyanobilin induces the isomerization of phycocyanobilin into phycoviolobilin. Also, the structure of NblB, involved in phycobilisome degradation could be modeled using CpcE as template. Combined with CpcF, NblB shows a low chromophore-detaching activity.
Collapse
|
31
|
Wu J, Chen H, Zhao J, Jiang P. Fusion proteins of streptavidin and allophycocyanin alpha subunit for immunofluorescence assay. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Xu QZ, Tang QY, Han JX, Ding WL, Zhao BQ, Zhou M, Gärtner W, Scheer H, Zhao KH. Chromophorylation (in Escherichia coli) of allophycocyanin B subunits from far-red light acclimated Chroococcidiopsis thermalis sp. PCC7203. Photochem Photobiol Sci 2017; 16:1153-1161. [PMID: 28594045 DOI: 10.1039/c7pp00066a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyanobacterial phycobilisomes funnel the harvested light energy to the reaction centers via two terminal emitters, allophycocyanin B and the core-membrane linker. ApcD is the α-subunit of allophycocyanin B responsible for its red-shifted absorbance (λmax 665 nm). Far-red photo-acclimated cyanobacteria contain certain allophycocyanins that show even further red-shifted absorbances (λmax > 700 nm). We studied the chromophorylation of the three far-red induced ApcD subunits ApcD2, ApcD3 and ApcD4 from Chroococcidiopsis thermalis sp. PCC7203 during the expression in E. coli. The complex behavior emphasizes that a variety of factors contribute to the spectral red-shift. Only ApcD2 bound phycocyanobilin covalently at the canonical position C81, while ApcD3 and ApcD4 gave only traces of stable products. The product of ApcD2 was, however, heterogeneous. The major fraction had a broad absorption around 560 nm and double-peaked fluorescence at 615 and 670 nm. A minor fraction was similar to the product of conventional ApcD, with maximal absorbance around 610 nm and fluorescence around 640 nm. The heterogeneity was lost in C65 and C132 variants; in these variants only the conventional product was formed. With ApcD4, a red-shifted product carrying non-covalently bound phycocyanobilin could be detected in the supernatant after cell lysis. While this chromophore was lost during purification, it could be stabilized by co-assembly with a far-red light-induced β-subunit, ApcB3.
Collapse
Affiliation(s)
- Qian-Zhao Xu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Qi-Ying Tang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Jia-Xin Han
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Bao-Qing Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstrasse 34-36, D-45470 Mülheim, Germany
| | - Hugo Scheer
- Department Biologie I, Universität München, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| |
Collapse
|
33
|
Mahmoud RM, Sanfilippo JE, Nguyen AA, Strnat JA, Partensky F, Garczarek L, Abo El Kassem N, Kehoe DM, Schluchter WM. Adaptation to Blue Light in Marine Synechococcus Requires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases. Front Microbiol 2017; 8:243. [PMID: 28270800 PMCID: PMC5318389 DOI: 10.3389/fmicb.2017.00243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/03/2017] [Indexed: 11/25/2022] Open
Abstract
Marine Synechococcus has successfully adapted to environments with different light colors, which likely contributes to this genus being the second most abundant group of microorganisms worldwide. Populations of Synechococcus that grow in deep, blue ocean waters contain large amounts of the blue-light absorbing chromophore phycourobilin (PUB) in their light harvesting complexes (phycobilisomes). Here, we show that all Synechococcus strains adapted to blue light possess a gene called mpeU. MpeU is structurally similar to phycobilin lyases, enzymes that ligate chromophores to phycobiliproteins. Interruption of mpeU caused a reduction in PUB content, impaired phycobilisome assembly and reduced growth rate more strongly in blue than green light. When mpeU was reintroduced in the mpeU mutant background, the mpeU-less phenotype was complemented in terms of PUB content and phycobilisome content. Fluorescence spectra of mpeU mutant cells and purified phycobilisomes revealed red-shifted phycoerythrin emission peaks, likely indicating a defect in chromophore ligation to phycoerythrin-I (PE-I) or phycoerythrin-II (PE-II). Our results suggest that MpeU is a lyase-isomerase that attaches a phycoerythrobilin to a PEI or PEII subunit and isomerizes it to PUB. MpeU is therefore an important determinant in adaptation of Synechococcus spp. to capture photons in blue light environments throughout the world’s oceans.
Collapse
Affiliation(s)
- Rania M Mahmoud
- Department of Biology, Indiana University, BloomingtonIN, USA; Department of Botany, Faculty of Science, University of FayoumFayoum, Egypt
| | | | - Adam A Nguyen
- Department of Biological Sciences, University of New Orleans, New OrleansLA, USA; Department of Chemistry, University of New Orleans, New OrleansLA, USA
| | - Johann A Strnat
- Department of Biology, Indiana University, Bloomington IN, USA
| | - Frédéric Partensky
- CNRS, Sorbonne Universités, Université Pierre et Marie Curie University Paris 06, UMR 7144 Roscoff, France
| | - Laurence Garczarek
- CNRS, Sorbonne Universités, Université Pierre et Marie Curie University Paris 06, UMR 7144 Roscoff, France
| | - Nabil Abo El Kassem
- Department of Botany, Faculty of Science, University of Fayoum Fayoum, Egypt
| | - David M Kehoe
- Department of Biology, Indiana University, BloomingtonIN, USA; Indiana Molecular Biology Institute, Indiana University, BloomingtonIN, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, University of New Orleans, New OrleansLA, USA; Department of Chemistry, University of New Orleans, New OrleansLA, USA
| |
Collapse
|
34
|
Lenartić M, Jelenčić V, Zafirova B, Ožanič M, Marečić V, Jurković S, Sexl V, Šantić M, Wensveen FM, Polić B. NKG2D Promotes B1a Cell Development and Protection against Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2017; 198:1531-1542. [PMID: 28087665 DOI: 10.4049/jimmunol.1600461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 12/12/2016] [Indexed: 02/06/2023]
Abstract
NKG2D is a potent activating receptor that is expressed on cytotoxic immune cells such as CD8 T and NK cells, where it promotes cytotoxicity after binding stress ligands on infected or transformed cells. On NK cell precursors NKG2D modulates proliferation and maturation. Previously, we observed that NKG2D deficiency affects peripheral B cell numbers. In this study, we show that NKG2D regulates B1a cell development and function. We find that mice deficient for NKG2D have a strong reduction of B1a cell numbers. As a result, NKG2D-deficient mice produce significantly less Ag-specific IgM Abs upon immunization with T cell-independent Ags, and they are more susceptible to Gram-negative sepsis. Klrk1-/- B1a cells are also functionally impaired and they fail to provide protection against Francisella novicida upon adoptive transfer. Using mixed bone marrow chimeric mice, we show that the impact of NKG2D deficiency on B1a cell development is cell intrinsic. No changes in homeostatic turnover and homing of B cells were detectable, limiting the effects of NKG2D to modulation of the hematopoietic development of B1a cells. Using conditional ablation, we demonstrate that the effect of NKG2D on B1a cell development occurs at a developmental stage that precedes the common lymphoid progenitor. Our findings reveal an unexpected new role for NKG2D in the regulation of B1a cell development. The protective effects of this activating receptor therefore reach beyond that of cytotoxic cells, stimulating the immune system to fight bacterial infections by promoting development of innate-like B cells.
Collapse
Affiliation(s)
- Maja Lenartić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vedrana Jelenčić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Biljana Zafirova
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.,Laboratory of Dendritic Cell Immunobiology, Immunology Department, Institute Pasteur, 75015 Paris, France
| | - Mateja Ožanič
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Valentina Marečić
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Slaven Jurković
- Department of Medical Physics, University Hospital Rijeka, 51000 Rijeka, Croatia
| | - Veronika Sexl
- Department of Biomedical Sciences, Institute of Pharmacology and Toxicology, University of Veterinary Medicine, 1210 Vienna, Austria; and
| | - Marina Šantić
- Department of Microbiology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Felix M Wensveen
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia.,Department of Experimental Immunology, Academic Medical Center, 1105 Amsterdam, the Netherlands
| | - Bojan Polić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|
35
|
Far-red light photoacclimation: Chromophorylation of FR induced α- and β-subunits of allophycocyanin from Chroococcidiopsis thermalis sp. PCC7203. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1607-1616. [DOI: 10.1016/j.bbabio.2016.06.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 02/01/2023]
|
36
|
Yuan C, Li HZ, Tang K, Gärtner W, Scheer H, Zhou M, Zhao KH. Near infrared fluorescent biliproteins generated from bacteriophytochrome AphB of Nostoc sp. PCC 7120. Photochem Photobiol Sci 2016; 15:546-53. [PMID: 27004456 DOI: 10.1039/c5pp00442j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The genome of the cyanobacterium Nostoc sp. PCC 7120 encodes a large number of putative bacteriophytochrome and cyanobacteriochrome photoreceptors that, due to their long-wavelength absorption and fluorescence emission, might serve as fluorescent tags in intracellular investigations. We show that the PAS-GAF domain of the bacteriophytochrome, AphB, binds biliverdin covalently and exhibits, besides its reversible photochemistry, a moderate fluorescence in the near infrared (NIR) spectral region. It was selected for further increasing the brightness while retaining the NIR fluorescence. In the first step, amino acids assumed to improve fluorescence were selectively mutated. The resulting variants were then subjected to several rounds of random mutagenesis and screened for enhanced fluorescence in the NIR. The brightness of optimized PAS-GAF variants increased more than threefold compared to that of wt AphB(1-321), with only insignificant spectral shifts (Amax around 695 nm, and Fmax around 720 nm). In general, the brightness increases with decreasing wavelengths, which allows for a selection of the fluorophore depending on the optical properties of the tissue. A spectral heterogeneity was observed when residue His260, located in close proximity to the chromophore, was mutated to Tyr, emphasizing the strong effects of the environment on the electronic properties of the bound biliverdin chromophore.
Collapse
Affiliation(s)
- Che Yuan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, P.R. China.
| | | | | | | | | | | | | |
Collapse
|
37
|
Wu F, Zang X, Zhang X, Zhang R, Huang X, Hou L, Jiang M, Liu C, Pang C. Molecular Cloning of cpcU and Heterodimeric Bilin Lyase Activity Analysis of CpcU and CpcS for Attachment of Phycocyanobilin to Cys-82 on the β-Subunit of Phycocyanin in Arthrospira platensis FACHB314. Molecules 2016; 21:357. [PMID: 26999083 PMCID: PMC6273044 DOI: 10.3390/molecules21030357] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 11/28/2022] Open
Abstract
A new bilin lyase gene cpcU was cloned from Arthrospira platensis FACHB314 to study the assembly of the phycocyanin β-Subunit. Two recombinant plasmids, one contained the phycocyanobilin (PCB) producing genes (hoxI and pcyA), while the other contained the gene of the β-Subunit of phycobiliprotein (cpcB) and the lyase gene (cpcU, cpcS, or cpcU/S) were constructed and separately transferred into Escherichia coli in order to test the activities of relevant lyases for catalyzing PCB addition to CpcB during synthesizing fluorescent β-PC of A. platensis FACHB314. The fluorescence intensity examination showed that Cys-82 maybe the active site for the β-Subunit binding to PCBs and the attachment could be carried out by CpcU, CpcS, or co-expressed cpcU/S in A. platensis FACHB314.
Collapse
Affiliation(s)
- Fei Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xuecheng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Ran Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Xiaoyun Huang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Lulu Hou
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Minjie Jiang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Chang Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Chunhong Pang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
38
|
|
39
|
Long S, Zhou M, Tang K, Zeng XL, Niu Y, Guo Q, Zhao KH, Xia A. Single-molecule spectroscopy and femtosecond transient absorption studies on the excitation energy transfer process in ApcE(1–240) dimers. Phys Chem Chem Phys 2015; 17:13387-96. [DOI: 10.1039/c5cp01687h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The red-shifted absorption of ApcE dimers results from extending chromophore conformation, which does not depend on strong exction coupling.
Collapse
Affiliation(s)
- Saran Long
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Meng Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kun Tang
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Yingli Niu
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Qianjin Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology
- Huazhong Agricultural University
- Wuhan 430070
- People's Republic of China
| | - Andong Xia
- Beijing National Laboratory for Molecular Sciences (BNLMS) and Key Laboratory of Photochemistry
- Institute of Chemistry
- Chinese Academy of Sciences
- Beijing 100190
- People's Republic of China
| |
Collapse
|
40
|
Peng PP, Dong LL, Sun YF, Zeng XL, Ding WL, Scheer H, Yang X, Zhao KH. The structure of allophycocyanin B from Synechocystis PCC 6803 reveals the structural basis for the extreme redshift of the terminal emitter in phycobilisomes. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2558-69. [PMID: 25286841 PMCID: PMC8494197 DOI: 10.1107/s1399004714015776] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/06/2014] [Indexed: 11/10/2022]
Abstract
Allophycocyanin B (AP-B) is one of the two terminal emitters in phycobilisomes, the unique light-harvesting complexes of cyanobacteria and red algae. Its low excitation-energy level and the correspondingly redshifted absorption and fluorescence emission play an important role in funnelling excitation energy from the hundreds of chromophores of the extramembraneous phycobilisome to the reaction centres within the photosynthetic membrane. In the absence of crystal structures of these low-abundance terminal emitters, the molecular basis for the extreme redshift and directional energy transfer is largely unknown. Here, the crystal structure of trimeric AP-B [(ApcD/ApcB)3] from Synechocystis sp. PCC 6803 at 1.75 Å resolution is reported. In the crystal lattice, eight trimers of AP-B form a porous, spherical, 48-subunit assembly of 193 Å in diameter with an internal cavity of 1.1 × 10(6) Å(3). While the overall structure of trimeric AP-B is similar to those reported for many other phycobiliprotein trimers, the chromophore pocket of the α-subunit, ApcD, has more bulky residues that tightly pack the phycocyanobilin (PCB). Ring D of the chromophores is further stabilized by close interactions with ApcB from the adjacent monomer. The combined contributions from both subunits render the conjugated rings B, C and D of the PCB in ApcD almost perfectly coplanar. Together with mutagenesis data, it is proposed that the enhanced planarity effectively extends the conjugation system of PCB and leads to the redshifted absorption (λmax = 669 nm) and fluorescence emission (679 nm) of the ApcD chromophore in AP-B, thereby enabling highly efficient energy transfer from the phycobilisome core to the reaction centres.
Collapse
Affiliation(s)
- Pan-Pan Peng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Ya-Fang Sun
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, People’s Republic of China
| |
Collapse
|
41
|
Zhou W, Ding WL, Zeng XL, Dong LL, Zhao B, Zhou M, Scheer H, Zhao KH, Yang X. Structure and mechanism of the phycobiliprotein lyase CpcT. J Biol Chem 2014; 289:26677-26689. [PMID: 25074932 PMCID: PMC4175310 DOI: 10.1074/jbc.m114.586743] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/24/2014] [Indexed: 12/15/2022] Open
Abstract
Pigmentation of light-harvesting phycobiliproteins of cyanobacteria requires covalent attachment of open-chain tetrapyrroles, bilins, to the apoproteins. Thioether formation via addition of a cysteine residue to the 3-ethylidene substituent of bilins is mediated by lyases. T-type lyases are responsible for attachment to Cys-155 of phycobiliprotein β-subunits. We present crystal structures of CpcT (All5339) from Nostoc (Anabaena) sp. PCC 7120 and its complex with phycocyanobilin at 1.95 and 2.50 Å resolution, respectively. CpcT forms a dimer and adopts a calyx-shaped β-barrel fold. Although the overall structure of CpcT is largely retained upon chromophore binding, arginine residues at the opening of the binding pocket undergo major rotameric rearrangements anchoring the propionate groups of phycocyanobilin. Based on the structure and mutational analysis, a reaction mechanism is proposed that accounts for chromophore stabilization and regio- and stereospecificity of the addition reaction. At the dimer interface, a loop extending from one subunit partially shields the opening of the phycocyanobilin binding pocket in the other subunit. Deletion of the loop or disruptions of the dimer interface significantly reduce CpcT lyase activity, suggesting functional relevance of the dimer. Dimerization is further enhanced by chromophore binding. The chromophore is largely buried in the dimer, but in the monomer, the 3-ethylidene group is accessible for the apophycobiliprotein, preferentially from the chromophore α-side. Asp-163 and Tyr-65 at the β- and α-face near the E-configured ethylidene group, respectively, support the acid-catalyzed nucleophilic Michael addition of cysteine 155 of the apoprotein to an N-acylimmonium intermediate proposed by Grubmayr and Wagner (Grubmayr, K., and Wagner, U. G. (1988) Monatsh. Chem. 119, 965-983).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wen-Long Ding
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Li Zeng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hugo Scheer
- Department of Biologie I, Universität München, Menzinger Str. 67, D-80638 München, Germany
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China,.
| | - Xiaojing Yang
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, and; Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607.
| |
Collapse
|
42
|
Chen H, Jiang P, Li F, Wu H. Improving production of thermostable and fluorescent holo-β-allophycocyanin by metabolically engineered Escherichia coli using response surface methodology. Prep Biochem Biotechnol 2014; 45:730-41. [PMID: 25181561 DOI: 10.1080/10826068.2014.943374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A stable fluorescent holo-β-allophycocyanin (holo-ApcB) was produced by metabolically engineered Escherichia coli. The E. coli cells harbored two plasmids for expression of five genes that were involved in the holo-ApcB production. Response surface methodology was employed to investigate the individual and interactive effects of four variables, i.e., initial pH of culture medium, IPTG concentration, post-induction temperature, and induction start time, on holo-ApcB production by E. coli. The experimental results showed that the IPTG concentration, postinduction temperature, and induction start time had significant individual effects on holo-ApcB production. A significant interactive effect was also found between the initial pH of culture and induction start time. The maximum holo-ApcB production of 45.3 mg/L was predicted under the following optimized culture conditions: a postinduction temperature of 28.4°C, initial pH of culture of 7.3, IPTG concentration of 1.1 mM, and postinduction time of 66 min. Holo-ApcB production under the optimized culture conditions increased 5.8-fold, compared with that under the nonoptimized conditions. Response surface methodology proved to be a valuable tool for optimization of holo-ApcB production by metabolically engineered E. coli.
Collapse
Affiliation(s)
- Huaxin Chen
- a Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences , Qingdao , China
| | | | | | | |
Collapse
|
43
|
Overkamp KE, Gasper R, Kock K, Herrmann C, Hofmann E, Frankenberg-Dinkel N. Insights into the biosynthesis and assembly of cryptophycean phycobiliproteins. J Biol Chem 2014; 289:26691-26707. [PMID: 25096577 DOI: 10.1074/jbc.m114.591131] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Phycobiliproteins are employed by cyanobacteria, red algae, glaucophytes, and cryptophytes for light-harvesting and consist of apoproteins covalently associated with open-chain tetrapyrrole chromophores. Although the majority of organisms assemble the individual phycobiliproteins into larger aggregates called phycobilisomes, members of the cryptophytes use a single type of phycobiliprotein that is localized in the thylakoid lumen. The cryptophyte Guillardia theta (Gt) uses phycoerythrin PE545 utilizing the uncommon chromophore 15,16-dihydrobiliverdin (DHBV) in addition to phycoerythrobilin (PEB). Both the biosynthesis and the attachment of chromophores to the apophycobiliprotein have not yet been investigated for cryptophytes. In this study, we identified and characterized enzymes involved in PEB biosynthesis. In addition, we present the first in-depth biochemical characterization of a eukaryotic phycobiliprotein lyase (GtCPES). Plastid-encoded HO (GtHo) was shown to convert heme into biliverdin IXα providing the substrate with a putative nucleus-encoded DHBV:ferredoxin oxidoreductase (GtPEBA). A PEB:ferredoxin oxidoreductase (GtPEBB) was found to convert DHBV to PEB, which is the substrate for the phycobiliprotein lyase GtCPES. The x-ray structure of GtCPES was solved at 2.0 Å revealing a 10-stranded β-barrel with a modified lipocalin fold. GtCPES is an S-type lyase specific for binding of phycobilins with reduced C15=C16 double bonds (DHBV and PEB). Site-directed mutagenesis identified residues Glu-136 and Arg-146 involved in phycobilin binding. Based on the crystal structure, a model for the interaction of GtCPES with the apophycobiliprotein CpeB is proposed and discussed.
Collapse
Affiliation(s)
- Kristina E Overkamp
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Raphael Gasper
- Protein Crystallography, Faculty for Biology and Biotechnology, and Ruhr University Bochum, 44780 Bochum, Germany
| | - Klaus Kock
- Physical Chemistry I, Protein Interactions, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Christian Herrmann
- Physical Chemistry I, Protein Interactions, Faculty for Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Faculty for Biology and Biotechnology, and Ruhr University Bochum, 44780 Bochum, Germany
| | - Nicole Frankenberg-Dinkel
- Physiology of Microorganisms, Faculty for Biology and Biotechnology, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|
44
|
Zhang R, Feng XT, Wu F, Ding Y, Zang XN, Zhang XC, Yuan DY, Zhao BR. Molecular cloning and expression analysis of a new bilin lyase: the cpcT gene encoding a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in Arthrospira platensis FACHB314. Gene 2014; 544:191-7. [PMID: 24768724 DOI: 10.1016/j.gene.2014.04.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 11/18/2022]
Abstract
To study the assembly of phycocyanin β subunit, the gene cpcT was first cloned from Arthrospira platensis FACHB314. To explore the function of cpcT, the DNA of phycocyanin β subunit and cpcT were transformed into Escherichia coli BL21 with the plasmid pET-hox1-pcyA, which contained the genes hemeoxygenase 1 (Hox1) and ferredoxin oxidoreductase (PcyA) needed to produce phycocyanobilin. The transformed strains showed specific phycocyanin fluorescence, and the fluorescence intensity was stronger than the strains with only phycocyanin β subunit, indicating that CpcT can promote the assembly of phycocyanin to generate fluorescence. To study the possible binding sites of apo-phycocyanin and phycocyanobilin, the Cys-82 and Cys-153 of the β subunit were individually mutated, giving two kinds of mutants. The results show that Cys-153 maybe the active site for β subunit binding to phycocyanobilins, which is catalyzed by CpcT in A. platensis FACHB314.
Collapse
Affiliation(s)
- Ran Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao-Ting Feng
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China
| | - Fei Wu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China
| | - Yan Ding
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China
| | - Xiao-Nan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China.
| | - Xue-Cheng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003 Shandong, China
| | - Ding-Yang Yuan
- National Hybrid Rice Engineering Technology Research Center, Changsha 410125 Hunan, China
| | - Bing-Ran Zhao
- National Hybrid Rice Engineering Technology Research Center, Changsha 410125 Hunan, China
| |
Collapse
|
45
|
Sun YF, Xu JG, Tang K, Miao D, Gärtner W, Scheer H, Zhao KH, Zhou M. Orange fluorescent proteins constructed from cyanobacteriochromes chromophorylated with phycoerythrobilin. Photochem Photobiol Sci 2014; 13:757-63. [DOI: 10.1039/c3pp50411e] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Kronfel CM, Kuzin AP, Forouhar F, Biswas A, Su M, Lew S, Seetharaman J, Xiao R, Everett JK, Ma LC, Acton TB, Montelione GT, Hunt JF, Paul CEC, Dragomani TM, Boutaghou MN, Cole RB, Riml C, Alvey RM, Bryant DA, Schluchter WM. Structural and biochemical characterization of the bilin lyase CpcS from Thermosynechococcus elongatus. Biochemistry 2013; 52:8663-76. [PMID: 24215428 DOI: 10.1021/bi401192z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacterial phycobiliproteins have evolved to capture light energy over most of the visible spectrum due to their bilin chromophores, which are linear tetrapyrroles that have been covalently attached by enzymes called bilin lyases. We report here the crystal structure of a bilin lyase of the CpcS family from Thermosynechococcus elongatus (TeCpcS-III). TeCpcS-III is a 10-stranded β barrel with two alpha helices and belongs to the lipocalin structural family. TeCpcS-III catalyzes both cognate as well as noncognate bilin attachment to a variety of phycobiliprotein subunits. TeCpcS-III ligates phycocyanobilin, phycoerythrobilin, and phytochromobilin to the alpha and beta subunits of allophycocyanin and to the beta subunit of phycocyanin at the Cys82-equivalent position in all cases. The active form of TeCpcS-III is a dimer, which is consistent with the structure observed in the crystal. With the use of the UnaG protein and its association with bilirubin as a guide, a model for the association between the native substrate, phycocyanobilin, and TeCpcS was produced.
Collapse
Affiliation(s)
- Christina M Kronfel
- Department of Biological Sciences, University of New Orleans , New Orleans, LA 70148, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Watanabe M, Ikeuchi M. Phycobilisome: architecture of a light-harvesting supercomplex. PHOTOSYNTHESIS RESEARCH 2013; 116:265-76. [PMID: 24081814 DOI: 10.1007/s11120-013-9905-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 07/26/2013] [Indexed: 05/09/2023]
Abstract
The phycobilisome (PBS) is an extra-membrane supramolecular complex composed of many chromophore (bilin)-binding proteins (phycobiliproteins) and linker proteins, which generally are colorless. PBS collects light energy of a wide range of wavelengths, funnels it to the central core, and then transfers it to photosystems. Although phycobiliproteins are evolutionarily related to each other, the binding of different bilin pigments ensures the ability to collect energy over a wide range of wavelengths. Spatial arrangement and functional tuning of the different phycobiliproteins, which are mediated primarily by linker proteins, yield PBS that is efficient and versatile light-harvesting systems. In this review, we discuss the functional and spatial tuning of phycobiliproteins with a focus on linker proteins.
Collapse
Affiliation(s)
- Mai Watanabe
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro, Tokyo, 153-8902, Japan
| | | |
Collapse
|
48
|
Atemnkeng VA, Pink M, Schmitz-Spanke S, Wu XJ, Dong LL, Zhao KH, May C, Laufer S, Langer B, Kaiser A. Deoxyhypusine hydroxylase from Plasmodium vivax, the neglected human malaria parasite: molecular cloning, expression and specific inhibition by the 5-LOX inhibitor zileuton. PLoS One 2013; 8:e58318. [PMID: 23505486 PMCID: PMC3591309 DOI: 10.1371/journal.pone.0058318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Primaquine, an 8-aminoquinoline, is the only drug which cures the dormant hypnozoites of persistent liver stages from P. vivax. Increasing resistance needs the discovery of alternative pathways as drug targets to develop novel drug entities. Deoxyhypusine hydroxylase (DOHH) completes hypusine biosynthesis in eukaryotic initiation factor (eIF-5A) which is the only cellular protein known to contain the unusual amino acid hypusine. Modified EIF-5A is important for proliferation of the malaria parasite. Here, we present the first successful cloning and expression of DOHH from P. vivax causing tertiary malaria. The nucleic acid sequence of 1041 bp encodes an open reading frame of 346 amino acids. Histidine tagged expression of P. vivax DOHH detected a protein of 39.01 kDa in E. coli. The DOHH protein from P. vivax shares significant amino acid identity to the simian orthologues from P. knowlesi and P. yoelii strain H. In contrast to P. falciparum only four E-Z-type HEAT-like repeats are present in P. vivax DOHH with different homology to phycocyanin lyase subunits from cyanobacteria and in proteins participating in energy metabolism of Archaea and Halobacteria. However, phycocyanin lyase activity is absent in P. vivax DOHH. The dohh gene is present as a single copy gene and transcribed throughout the whole erythrocytic cycle. Specific inhibition of recombinant P. vivax DOHH is possible by complexing the ferrous iron with zileuton, an inhibitor of mammalian 5-lipoxygenase (5-LOX). Ferrous iron in the active site of 5-LOX is coordinated by three conserved histidines and the carboxylate of isoleucine(673). Zileuton inhibited the P. vivax DOHH protein with an IC50 of 12,5 nmol determined by a relative quantification by GC/MS. By contrast, the human orthologue is only less affected with an IC50 of 90 nmol suggesting a selective iron-complexing strategy for the parasitic enzyme.
Collapse
Affiliation(s)
| | - Mario Pink
- Occupational Medicine, University of Duisburg-Essen, Essen, Germany
| | | | - Xian-Jun Wu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Liang-Liang Dong
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Kai-Hong Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, PR China
| | - Caroline May
- Immune Proteomics, Medizinisches Proteom-Center, Ruhr-University Bochum, Bochum, Germany
| | - Stefan Laufer
- Pharmazeutische Chemie, Pharmazeutisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Barbara Langer
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen, Germany
| | - Annette Kaiser
- Institute of Pharmacogenetics, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
49
|
Wu XJ, Chang K, Luo J, Zhou M, Scheer H, Zhao KH. Modular generation of fluorescent phycobiliproteins. Photochem Photobiol Sci 2013; 12:1036-40. [DOI: 10.1039/c3pp25383j] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Chen H, Lin H, Li F, Jiang P, Qin S. Biosynthesis of a stable allophycocyanin beta subunit in metabolically engineered Escherichia coli. J Biosci Bioeng 2012; 115:485-9. [PMID: 23266116 DOI: 10.1016/j.jbiosc.2012.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/02/2012] [Accepted: 11/08/2012] [Indexed: 11/28/2022]
Abstract
Allophycocyanin (APC) is widely used as a fluorescent tag for fluorescence detection techniques. In this study, the apcB gene from a thermophilic cyanobacterium strain was cloned and ligated into an expression vector to construct a pathway for the biosynthesis of an allophycocyanin beta subunit (holo-apcBT) in Escherichia coli. Isopropyl β-d-1-thiogalactopyranoside induction successfully reconstituted holo-apcBT in E. coli. The recombinant holo-apcB showed spectroscopic properties similar to native APC. The stability and spectroscopic properties of this protein were then compared with another recombinant allophycocyanin beta subunit (holo-apcBM) whose apcB gene was cloned from mesophilic cyanobacterium. At high temperatures and during the course of storage, holo-apcBT was significantly more stable than holo-apcBM. In addition, holo-apcBT had an unexpectedly higher extinction coefficient and fluorescence quantum yield than holo-apcBM, suggesting that holo-apcBT would be a promising fluorescent tag and serve as a substitute for native APC.
Collapse
Affiliation(s)
- Huaxin Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|