1
|
Lee D. Activators of the 26S proteasome when protein degradation increases. Exp Mol Med 2025:10.1038/s12276-024-01385-x. [PMID: 39779978 DOI: 10.1038/s12276-024-01385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/02/2024] [Accepted: 10/29/2024] [Indexed: 01/11/2025] Open
Abstract
In response to extra- and intracellular stimuli that constantly challenge and disturb the proteome, cells rapidly change their proteolytic capacity to maintain proteostasis. Failure of such efforts often becomes a major cause of diseases or is associated with exacerbation. Increase in protein breakdown occurs at multiple steps in the ubiquitin-proteasome system, and the regulation of ubiquitination has been extensively studied. However, the activities of the 26S proteasome are also stimulated, especially under highly catabolic conditions such as those associated with atrophying skeletal muscle, proteotoxic stress such as heat shock and arsenite, or hormonal cues such as cAMP or cGMP agonists. Among the proteins that enhance proteasomal degradation are the PKA, PKG, UBL-UBA proteins and the Zn finger AN1-type domain (ZFAND) family proteins. ZFAND proteins are of particular interest because of their inducible expression in response to various stimuli and their abilities to control protein quality by stimulating the 26S proteasome and p97/VCP. The regulatory roles of ZFAND proteins appear to be important not only for the control of protein degradation but also for other cellular processes, such as mRNA stability and signaling pathways. This review summarizes the known functions of proteasome activators and discusses their possible roles in regulating proteostasis and other cellular processes.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
- Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University. 88 Daxue Road, 325060, Wenzhou, Zhejiang, China.
| |
Collapse
|
2
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
3
|
Shi J, Jia Z, Sun J, Wang X, Zhao X, Zhao C, Liang F, Song X, Guan J, Jia X, Yang J, Chen Q, Yu K, Jia Q, Wu J, Wang D, Xiao Y, Xu X, Liu Y, Wu S, Zhong Q, Wu J, Cui S, Bo X, Wu Z, Park M, Kellis M, He K. Structural variants involved in high-altitude adaptation detected using single-molecule long-read sequencing. Nat Commun 2023; 14:8282. [PMID: 38092772 PMCID: PMC10719358 DOI: 10.1038/s41467-023-44034-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/27/2023] [Indexed: 12/17/2023] Open
Abstract
Structural variants (SVs), accounting for a larger fraction of the genome than SNPs/InDels, are an important pool of genetic variation, enabling environmental adaptations. Here, we perform long-read sequencing data of 320 Tibetan and Han samples and show that SVs are highly involved in high-altitude adaptation. We expand the landscape of global SVs, apply robust models of selection and population differentiation combining SVs, SNPs and InDels, and use epigenomic analyses to predict enhancers, target genes and biological functions. We reveal diverse Tibetan-specific SVs affecting the regulatory circuitry of biological functions, including the hypoxia response, energy metabolism and pulmonary function. We find a Tibetan-specific deletion disrupts a super-enhancer and downregulates EPAS1 using enhancer reporter, cellular knock-out and DNA pull-down assays. Our study expands the global SV landscape, reveals the role of gene-regulatory circuitry rewiring in human adaptation, and illustrates the diverse functional roles of SVs in human biology.
Collapse
Affiliation(s)
- Jinlong Shi
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Zhilong Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jinxiu Sun
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiaoreng Wang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- State Key Laboratory of Experimental Hematology, Beijing, 100853, China
| | - Xiaojing Zhao
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
- Translational Medicine Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chenghui Zhao
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Research Center for Biomedical Engineering, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Fan Liang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xinyu Song
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
- Medical Artificial Intelligence Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiawei Guan
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xue Jia
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Yang
- Laboratory of Nuclear and Radiation Injury, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
| | - Qi Chen
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Kang Yu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qian Jia
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jing Wu
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Depeng Wang
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yuhui Xiao
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Xiaoman Xu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Yinzhe Liu
- NextOmics Biosciences Inc, Wuhan, 430000, China
| | - Shijing Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qin Zhong
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jue Wu
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Saijia Cui
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China
| | - Xiaochen Bo
- Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | | | | | - Manolis Kellis
- Massachusetts Institute of Technology; MIT Computer Science and Artificial Intelligence Laboratory, Broad Institute of MIT and Harvard, Cambridge, 02139, MA, USA
| | - Kunlun He
- Medical Big Data Research Center, Medical Innovation Research Division of Chinese PLA General Hospital, Beijing, 100853, China.
- National Engineering Research Center of Medical Big Data, Chinese PLA General Hospital, Beijing, 100853, China.
- Key Laboratory of Biomedical Engineering and Translational Medicine, Ministry of Industry and Information Technology, Chinese PLA General Hospital, Beijing, 100853, China.
- Beijing Key Laboratory for Precision Medicine of Chronic Heart Failure, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Wysocki R, Rodrigues JI, Litwin I, Tamás MJ. Mechanisms of genotoxicity and proteotoxicity induced by the metalloids arsenic and antimony. Cell Mol Life Sci 2023; 80:342. [PMID: 37904059 PMCID: PMC10616229 DOI: 10.1007/s00018-023-04992-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023]
Abstract
Arsenic and antimony are metalloids with profound effects on biological systems and human health. Both elements are toxic to cells and organisms, and exposure is associated with several pathological conditions including cancer and neurodegenerative disorders. At the same time, arsenic- and antimony-containing compounds are used in the treatment of multiple diseases. Although these metalloids can both cause and cure disease, their modes of molecular action are incompletely understood. The past decades have seen major advances in our understanding of arsenic and antimony toxicity, emphasizing genotoxicity and proteotoxicity as key contributors to pathogenesis. In this review, we highlight mechanisms by which arsenic and antimony cause toxicity, focusing on their genotoxic and proteotoxic effects. The mechanisms used by cells to maintain proteostasis during metalloid exposure are also described. Furthermore, we address how metalloid-induced proteotoxicity may promote neurodegenerative disease and how genotoxicity and proteotoxicity may be interrelated and together contribute to proteinopathies. A deeper understanding of cellular toxicity and response mechanisms and their links to pathogenesis may promote the development of strategies for both disease prevention and treatment.
Collapse
Affiliation(s)
- Robert Wysocki
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland.
| | - Joana I Rodrigues
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden
| | - Ireneusz Litwin
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328, Wroclaw, Poland
| | - Markus J Tamás
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
5
|
Legesse A, Kaushansky N, Braunstein I, Saad H, Lederkremer G, Navon A, Stanhill A. The role of RNF149 in the pre-emptive quality control substrate ubiquitination. Commun Biol 2023; 6:385. [PMID: 37031316 PMCID: PMC10082771 DOI: 10.1038/s42003-023-04763-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/27/2023] [Indexed: 04/10/2023] Open
Abstract
Protein quality control is a process in which a protein's folding status is constantly monitored. Mislocalized proteins (MLP), are processed by the various quality control pathways, as they are often misfolded due to inappropriate cellular surroundings. Polypeptides that fail to translocate into the ER due to an inefficient signal peptide, mutations or ER stress are recognized by the pre-emptive ER associated quality control (pEQC) pathway and degraded by the 26 S proteasome. In this report we reveal the role of RNF149, a membrane bound E3 ligase in the ubiquitination of known pEQC substrates. We demonstrate its selective binding only to non-translocated proteins and its association with known pEQC components. Impairment in RNF149 function increases translocation flux into the ER and manifests in a myeloproliferative neoplasm (MPN) phenotype, a pathological condition associated with pEQC impairment. Finally, the dynamic localization of RNF149 may provide a molecular switch to regulate pEQC during ER stress.
Collapse
Affiliation(s)
- Aster Legesse
- Department of Natural and Life Sciences, Open University of Israel, Ra'anana, 43710, Israel
| | - Nathali Kaushansky
- Department of Molecular Cell Biology, Weizmann institute of Science, Rehovot, 7610001, Israel
| | - Ilana Braunstein
- Department of Biochemistry, Technion School of Medicine, Haifa, 31096, Israel
| | - Haddas Saad
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Gerardo Lederkremer
- The Shmunis School of Biomedicine and Cancer Research, George Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Ami Navon
- Department of Immunology and Regenerative Biology, Weizmann institute of Science, Rehovot, 7610001, Israel
| | - Ariel Stanhill
- Department of Natural and Life Sciences, Open University of Israel, Ra'anana, 43710, Israel.
| |
Collapse
|
6
|
He L, Zhang HR, Di WD, Li FF, Wang CQ, Yang X, Liu XF, Hu M. A proteasomal β5 subunit of Haemonchus contortus with a role in the growth, development and life span. Parasit Vectors 2023; 16:100. [PMID: 36922877 PMCID: PMC10015785 DOI: 10.1186/s13071-023-05676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 03/17/2023] Open
Abstract
BACKGROUND The proteasome in eukaryotic cells can degrade a variety of proteins and plays an important role in regulating the cell cycle, cell survival and apoptosis. The proteasome receives much attention as a potential chemotherapeutic target for treatment of a variety of infectious parasitic diseases, but few studies of proteasomes have been done on parasitic nematodes. METHODS A proteasomal β5 subunit encoding gene (named Hc-pbs-5) and its inferred product (Hc-PBS-5) in Haemonchus contortus were identified and characterized in this study. Then, the transcriptional profiles and anatomical expression were studied using an integrated molecular approach. Finally, a specific proteasome inhibitor bortezomib (BTZ), together with RNA interference (RNAi), was employed to assess the function of Hc-PBS-5. RESULTS Bioinformatic analysis revealed that the coding sequence of Hc-pbs-5 was 855 bp long and encoded 284 amino acids (aa). The predicted protein (Hc-PBS-5) had core conservative sequences (65-250 aa) belonging to N-terminal nucleophile (Ntn) family of hydrolases. Real-time PCR results revealed that Hc-pbs-5 was continuously transcribed in eight developmental stages with higher levels at the infective third-stage larvae (L3s) and adult males of H. contortus. Immunohistochemical results revealed that Hc-PBS-5 was expressed in intestine, outer cuticle, muscle cells under the outer cuticle, cervical glands and seminal vesicles of male adults and also in intestine, outer cuticle, cervical glands, uterine wall, eggs and ovaries of female adults of H. contortus. BTZ could reduce proportions of egg hatching, and the fourth-stage larvae (L4s) developed from the exsheathed L3s (xL3s) of H. contortus. In addition, silencing Hc-pbs-5 by soaking the specific double-stranded RNA (dsRNA) could decrease the transcription of Hc-pbs-5 and result in fewer xL3s developing to L4s in vitro. CONCLUSIONS These results indicate that proteasomal β5 subunit plays an important role in the growth, development and life span of H. contortus.
Collapse
Affiliation(s)
- Li He
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.,Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, Hubei Province, People's Republic of China
| | - Hong-Run Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Wen-Da Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Fang-Fang Li
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Chun-Qun Wang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xin Yang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Xiao-Fang Liu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, Key Laboratory for the Development of Veterinary Products, Ministry of Agriculture College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, People's Republic of China.
| |
Collapse
|
7
|
Lazaro-Pena MI, Ward ZC, Yang S, Strohm A, Merrill AK, Soto CA, Samuelson AV. HSF-1: Guardian of the Proteome Through Integration of Longevity Signals to the Proteostatic Network. FRONTIERS IN AGING 2022; 3:861686. [PMID: 35874276 PMCID: PMC9304931 DOI: 10.3389/fragi.2022.861686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/13/2022] [Indexed: 12/15/2022]
Abstract
Discoveries made in the nematode Caenorhabditis elegans revealed that aging is under genetic control. Since these transformative initial studies, C. elegans has become a premier model system for aging research. Critically, the genes, pathways, and processes that have fundamental roles in organismal aging are deeply conserved throughout evolution. This conservation has led to a wealth of knowledge regarding both the processes that influence aging and the identification of molecular and cellular hallmarks that play a causative role in the physiological decline of organisms. One key feature of age-associated decline is the failure of mechanisms that maintain proper function of the proteome (proteostasis). Here we highlight components of the proteostatic network that act to maintain the proteome and how this network integrates into major longevity signaling pathways. We focus in depth on the heat shock transcription factor 1 (HSF1), the central regulator of gene expression for proteins that maintain the cytosolic and nuclear proteomes, and a key effector of longevity signals.
Collapse
Affiliation(s)
- Maria I. Lazaro-Pena
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Zachary C. Ward
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Sifan Yang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Strohm
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Alyssa K. Merrill
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Toxicology Training Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Celia A. Soto
- Department of Pathology, University of Rochester Medical Center, Rochester, NY, United States
- Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew V. Samuelson
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Andrew V. Samuelson,
| |
Collapse
|
8
|
Steinbach MK, Leipert J, Blurton C, Leippe M, Tholey A. Digital Microfluidics Supported Microproteomics for Quantitative Proteome Analysis of Single Caenorhabditis elegans Nematodes. J Proteome Res 2022; 21:1986-1996. [PMID: 35771142 DOI: 10.1021/acs.jproteome.2c00274] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Miniaturization of sample preparation, including omissible manual sample handling steps, is key for reproducible nanoproteomics, as material is often restricted to only hundreds of cells or single model organisms. Here, we demonstrate a highly sensitive digital microfluidics (DMF)-based sample preparation workflow making use of single-pot solid-phase enhanced sample preparation (SP3) in combination with high-field asymmetric-waveform ion mobility spectrometry (FAIMS), and fast and sensitive ion trap detection on an Orbitrap tribrid MS system. Compared to a manual in-tube SP3-supported sample preparation, the numbers of identified peptides and proteins were markedly increased, while lower standard deviations between replicates were observed. We repeatedly identified up to 5000 proteins from single nematodes. Moreover, label-free quantification of protein changes in single Caenorhabditis elegans treated with a heat stimulus yielded 45 differentially abundant proteins when compared to the untreated control, highlighting the potential of this technology for low-input proteomics studies. LC-MS data have been deposited to the ProteomeXchange Consortium with the data set identifier PXD033143.
Collapse
Affiliation(s)
- Max K Steinbach
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Jan Leipert
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Christine Blurton
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Matthias Leippe
- Comparative Immunobiology, Zoological Institute, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| |
Collapse
|
9
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
10
|
Kunz P, Lehmann C, Pohl C. Differential Thresholds of Proteasome Activation Reveal Two Separable Mechanisms of Sensory Organ Polarization in C. elegans. Front Cell Dev Biol 2021; 9:619596. [PMID: 33634121 PMCID: PMC7900421 DOI: 10.3389/fcell.2021.619596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/19/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalization is a major innovation of animal evolution and implies a synchronization of nervous system, mouth, and foregut polarization to align alimentary tract and sensomotoric system for effective foraging. However, the underlying integration of morphogenetic programs is poorly understood. Here, we show that invagination of neuroectoderm through de novo polarization and apical constriction creates the mouth opening in the Caenorhabditis elegans embryo. Simultaneously, all 18 juxta-oral sensory organ dendritic tips become symmetrically positioned around the mouth: While the two bilaterally symmetric amphid sensilla endings are towed to the mouth opening, labial and cephalic sensilla become positioned independently. Dendrite towing is enabled by the pre-polarized sensory amphid pores intercalating into the leading edge of the anteriorly migrating epidermal sheet, while apical constriction-mediated cell–cell re-arrangements mediate positioning of all other sensory organs. These two processes can be separated by gradual inactivation of the 26S proteasome activator, RPN-6.1. Moreover, RPN-6.1 also shows a dose-dependent requirement for maintenance of coordinated apical polarization of other organs with apical lumen, the pharynx, and the intestine. Thus, our data unveil integration of morphogenetic programs during the coordination of alimentary tract and sensory organ formation and suggest that this process requires tight control of ubiquitin-dependent protein degradation.
Collapse
Affiliation(s)
- Patricia Kunz
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christina Lehmann
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| | - Christian Pohl
- Buchmann Institute for Molecular Life Sciences and Institute of Biochemistry II, Medical Faculty, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
11
|
Lee SK. Endoplasmic Reticulum Homeostasis and Stress Responses in Caenorhabditis elegans. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:279-303. [PMID: 34050871 DOI: 10.1007/978-3-030-67696-4_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive regulatory pathway that alleviates protein-folding defects in the endoplasmic reticulum (ER). Physiological demands, environmental perturbations and pathological conditions can cause accumulation of unfolded proteins in the ER and the stress signal is transmitted to the nucleus to turn on a series of genes to respond the challenge. In metazoan, the UPR pathways consisted of IRE1/XBP1, PEK-1 and ATF6, which function in parallel and downstream transcriptional activation triggers the proteostasis networks consisting of molecular chaperones, protein degradation machinery and other stress response pathways ((Labbadia J, Morimoto RI, F1000Prime Rep 6:7, 2014); (Shen X, Ellis RE, Lee K, Annu Rev Biochem 28:893-903, 2014)). The integrated responses act on to resolve the ER stress by increasing protein folding capacity, attenuating ER-loading translation, activating ER-associated proteasomal degradation (ERAD), and regulating IRE1-dependent decay of mRNA (RIDD). Therefore, the effective UPR to internal and external causes is linked to the multiple pathophysiological conditions such as aging, immunity, and neurodegenerative diseases. Recent development in the research of the UPR includes cell-nonautonomous features of the UPR, interplay between the UPR and other stress response pathways, unconventional UPR inducers, and noncanonical UPR independent of the three major branches, originated from multiple cellular and molecular machineries in addition to ER. Caenorhabditis elegans model system has critically contributed to these unprecedented aspects of the ER UPR and broadens the possible therapeutic targets to treat the ER-stress associated human disorders and time-dependent physiological deterioration of aging.
Collapse
Affiliation(s)
- Sun-Kyung Lee
- Department of Life Science, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Tabachnick-Cherny S, Pinto S, Berko D, Curato C, Wolf Y, Porat Z, Karmona R, Tirosh B, Jung S, Navon A. Polyglutamine-Related Aggregates Can Serve as a Potent Antigen Source for Cross-Presentation by Dendritic Cells. THE JOURNAL OF IMMUNOLOGY 2020; 205:2583-2594. [PMID: 33067378 DOI: 10.4049/jimmunol.1901535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/15/2020] [Indexed: 01/16/2023]
Abstract
Protective MHC class I-dependent immune responses require an overlap between repertoires of proteins directly presented on target cells and cross-presented by professional APC, specifically dendritic cells. How stable proteins that rely on defective ribosomal proteins for direct presentation are captured for cell-to-cell transfer remains enigmatic. In this study, we address this issue using a combination of in vitro (C57BL/6-derived mouse cell lines) and in vivo (C57BL/6 mouse strains) approaches involving stable and unstable versions of OVA model Ags displaying defective ribosomal protein-dependent and -independent Ag presentation, respectively. Apoptosis, but not necrosis, of donor cells was found associated with robust global protein aggregate formation and captured stable proteins permissive for cross-presentation. Potency of aggregates to serve as Ag source was directly demonstrated using polyglutamine-equipped model substrates. Collectively, our data implicate global protein aggregation in apoptotic cells as a mechanism that ensures the overlap between MHC class I epitopes presented directly or cross-presented by APC and demonstrate the unusual ability of dendritic cells to process stable protein aggregates.
Collapse
Affiliation(s)
- Shira Tabachnick-Cherny
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sivan Pinto
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Dikla Berko
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Caterina Curato
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yochai Wolf
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ziv Porat
- Department of Biological Services, The Weizmann Institute of Science, Rehovot 76100, Israel; and
| | - Rotem Karmona
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Boaz Tirosh
- The Institute for Drug Research, The School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Steffen Jung
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel;
| | - Ami Navon
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 76100, Israel;
| |
Collapse
|
13
|
Pan X, Lu L, Cai YD. Predicting protein subcellular location with network embedding and enrichment features. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140477. [PMID: 32593761 DOI: 10.1016/j.bbapap.2020.140477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The subcellular location of a protein is highly related to its function. Identifying the location of a given protein is an essential step for investigating its related problems. Traditional experimental methods can produce solid determination. However, their limitations, such as high cost and low efficiency, are evident. Computational methods provide an alternative means to address these problems. Most previous methods constantly extract features from protein sequences or structures for building prediction models. In this study, we use two types of features and combine them to construct the model. The first feature type is extracted from a protein-protein interaction network to abstract the relationship between the encoded protein and other proteins. The second type is obtained from gene ontology and biological pathways to indicate the existing functions of the encoded protein. These features are analyzed using some feature selection methods. The final optimum features are adopted to build the model with recurrent neural network as the classification algorithm. Such model yields good performance with Matthews correlation coefficient of 0.844. A decision tree is used as a rule learning classifier to extract decision rules. Although the performance of decision rules is poor, they are valuable in revealing the molecular mechanism of proteins with different subcellular locations. The final analysis confirms the reliability of the extracted rules. The source code of the propose method is freely available at https://github.com/xypan1232/rnnloc.
Collapse
Affiliation(s)
- Xiaoyong Pan
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China; Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, 200240 Shanghai, China
| | - Lin Lu
- Department of Radiology, Columbia University Medical Center, NewYork, NY, 10032, USA.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China.
| |
Collapse
|
14
|
Ahmad S, Arif B, Akram Z, Ahmed MW, Khan AU, Hussain MZ, Rahman F, Kayani MA, Mahjabeen I. Association of intronic polymorphisms (rs1549339, rs13402242) and mRNA expression variations in PSMD1 gene in arsenic-exposed workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11425-11437. [PMID: 31965495 DOI: 10.1007/s11356-019-07422-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 12/17/2019] [Indexed: 06/10/2023]
Abstract
Ubiquitin-proteasome system (UPS) gene, PSMD1, is an important gene for neutralization of damaged and misfolded protein(s). The current study was designed to study the genetic and expression variations of PSMD1 gene as a consequence of arsenic exposure and its potential implications in arsenic induced diseases. In the present study, 250 blood samples of exposed industrial workers along with 250 controls were used. Initially, tetra amplification refractory mutation system-PCR was used to determine the role of PSMD1 gene polymorphisms (rs1549339, rs13402242) in industrial workers and controls. Frequency of homozygous mutant genotype of rs1549339 (OR: 2.23, 95% CI: 1.51-3.32, p = 0.0001) and rs13402242 (OR: 2.96, 95% CI: 1.52-5.75, p = 0.001) was observed significantly higher in exposed individuals vs controls. Secondly, qPCR was performed for expression analysis of PSMD1 gene. Significant down-regulated expression of PSMD1 gene (p < 0.0001) was observed vs controls, and this down-regulation was observed more pronounced in smokers (p < 0.0001) with maximum exposure duration (p < 0.0008). This down-regulated expression was observed significantly more pronounced in welding (p < 0.004) and brick kiln industries (p < 0.04) compared to other selected industries. The obtained results suggest that the exposure to arsenic may have an increased risk of developing disease(s) because of arsenic-induced PSMD1 variations.
Collapse
Affiliation(s)
- Saqiba Ahmad
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | - Bushra Arif
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | - Zertashia Akram
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | - Malik Waqar Ahmed
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | - Asad Ullah Khan
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | | | - Faisal Rahman
- Federal Govt Education Institution, Rawalpindi, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Lab, Department of Biosciences, COMSATS University, Park Road Chak shahzad, Islamabad, Pakistan.
| |
Collapse
|
15
|
Jenkins EC, Shah N, Gomez M, Casalena G, Zhao D, Kenny TC, Guariglia SR, Manfredi G, Germain D. Proteasome mapping reveals sexual dimorphism in tissue-specific sensitivity to protein aggregations. EMBO Rep 2020; 21:e48978. [PMID: 32090465 PMCID: PMC7132179 DOI: 10.15252/embr.201948978] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/18/2022] Open
Abstract
Defects in the proteasome can result in pathological proteinopathies. However, the pathogenic role of sex‐ and tissue‐specific sensitivity to proteotoxic stress remains elusive. Here, we map the proteasome activity across nine tissues, in male and female mice, and demonstrate strong sexual dimorphism in proteasome activity, where females have significantly higher activity in several tissues. Further, we report drastic differences in proteasome activity among tissues, independently of proteasome concentration, which are exacerbated under stress conditions. Sexual dimorphism in proteasome activity is confirmed in a SOD1 ALS mouse model, in which the spinal cord, a tissue with comparatively low proteasome activity, is severely affected. Our results offer mechanistic insight into tissue‐specific sensitivities to proteostasis stress and into sex differences in the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Nagma Shah
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Maria Gomez
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Gabriella Casalena
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Dazhi Zhao
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Timothy C Kenny
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| | - Sara Rose Guariglia
- City University of New York, College of Staten Island, Staten Island, NY, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
16
|
Finley D, Prado MA. The Proteasome and Its Network: Engineering for Adaptability. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a033985. [PMID: 30833452 DOI: 10.1101/cshperspect.a033985] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The proteasome, the most complex protease known, degrades proteins that have been conjugated to ubiquitin. It faces the unique challenge of acting enzymatically on hundreds and perhaps thousands of structurally diverse substrates, mechanically unfolding them from their native state and translocating them vectorially from one specialized compartment of the enzyme to another. Moreover, substrates are modified by ubiquitin in myriad configurations of chains. The many unusual design features of the proteasome may have evolved in part to endow this enzyme with a robust ability to process substrates regardless of their identity. The proteasome plays a major role in preserving protein homeostasis in the cell, which requires adaptation to a wide variety of stress conditions. Modulation of proteasome function is achieved through a large network of proteins that interact with it dynamically, modify it enzymatically, or fine-tune its levels. The resulting adaptability of the proteasome, which is unique among proteases, enables cells to control the output of the ubiquitin-proteasome pathway on a global scale.
Collapse
Affiliation(s)
- Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Pizzato Scomazzon S, Riccio A, Santopolo S, Lanzilli G, Coccia M, Rossi A, Santoro MG. The Zinc-Finger AN1-Type Domain 2a Gene Acts as a Regulator of Cell Survival in Human Melanoma: Role of E3-Ligase cIAP2. Mol Cancer Res 2019; 17:2444-2456. [DOI: 10.1158/1541-7786.mcr-19-0243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/13/2019] [Accepted: 09/17/2019] [Indexed: 11/16/2022]
|
18
|
Lee D, Takayama S, Goldberg AL. ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation. Proc Natl Acad Sci U S A 2018; 115:E9550-E9559. [PMID: 30254168 PMCID: PMC6187164 DOI: 10.1073/pnas.1809934115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
ZFAND5/ZNF216, a member of the zinc finger AN1-type domain family, is abundant in heart and brain, but is induced in skeletal muscle during atrophy (although not in proteotoxic stress). Because mice lacking ZFAND5 exhibit decreased atrophy, a role in stimulating protein breakdown seemed likely. Addition of recombinant ZFAND5 to purified 26S proteasomes stimulated hydrolysis of ubiquitinated proteins, short peptides, and ATP. Mutating its C-terminal AN1 domain abolished the stimulation of proteasomal peptidase activity. Mutating its N-terminal zinc finger A20 domain, which binds ubiquitin chains, prevented the enhanced degradation of ubiquitinated proteins without affecting peptidase activity. Mouse embryonic fibroblast (MEF) cells lacking ZFAND5 had lower rates of protein degradation and proteasomal activity than WT MEFs. ZFAND5 addition to cell lysates stimulated proteasomal activity and protein degradation. Unlike other proteasome regulators, ZFAND5 enhances multiple 26S activities and overall cellular protein breakdown.
Collapse
Affiliation(s)
- Donghoon Lee
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
| | | | - Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115;
| |
Collapse
|
19
|
ZFAND1 Recruits p97 and the 26S Proteasome to Promote the Clearance of Arsenite-Induced Stress Granules. Mol Cell 2018; 70:906-919.e7. [PMID: 29804830 DOI: 10.1016/j.molcel.2018.04.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023]
Abstract
Stress granules (SGs) are cytoplasmic assemblies of mRNPs stalled in translation initiation. They are induced by various stress conditions, including exposure to the environmental toxin and carcinogen arsenic. While perturbed SG turnover is linked to the pathogenesis of neurodegenerative diseases, the molecular mechanisms underlying SG formation and turnover are still poorly understood. Here, we show that ZFAND1 is an evolutionarily conserved regulator of SG clearance. ZFAND1 interacts with two key factors of protein degradation, the 26S proteasome and the ubiquitin-selective segregase p97, and recruits them to arsenite-induced SGs. In the absence of ZFAND1, SGs lack the 26S proteasome and p97, accumulate defective ribosomal products, and persist after arsenite removal, indicating their transformation into aberrant, disease-linked SGs. Accordingly, ZFAND1 depletion is epistatic to the expression of pathogenic mutant p97 with respect to SG clearance, suggesting that ZFAND1 function is relevant to the multisystem degenerative disorder IBMPFD/ALS.
Collapse
|
20
|
Wang X, Cao M, Dong Y. Royal jelly promotes DAF-16-mediated proteostasis to tolerate β-amyloid toxicity in C. elegans model of Alzheimer's disease. Oncotarget 2018; 7:54183-54193. [PMID: 27472466 PMCID: PMC5342333 DOI: 10.18632/oncotarget.10857] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/07/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous studies have demonstrated that dietary intervention may promote health and help prevent Alzheimer's disease (AD). We recently reported that bee products of royal jelly (RJ) and enzyme-treated royal jelly (eRJ) were potent to promote healthy aging in C. elegans. Here, we examined whether RJ/eRJ consumption may benefit to mitigate the AD symptom in the disease model of C. elegans. Our results showed that RJ/eRJ supplementation significantly delayed the body paralysis in AD worms, suggesting the β-amyloid (Aβ) toxicity attenuation effects of RJ/eRJ. Genetic analyses suggested that RJ/eRJ-mediated alleviation of Aβ toxicity in AD worms required DAF-16, rather than HSF-1 and SKN-1, in an insulin/IGF signaling dependent manner. Moreover, RJ/eRJ modulated the transactivity of DAF-16 and dramatically improved the protein solubility in aged worms. Given protein solubility is a hallmark of healthy proteostasis, our findings demonstrated that RJ/eRJ supplementation improved proteostasis, and this promotion depended on the transactivity of DAF-16. Collectively, the present study not only elucidated the possible anti-AD mechanism of RJ/eRJ, but also provided evidence from a practical point of view to shed light on the extensive correlation of proteostasis and the prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Biological Sciences, Clemson University, Clemson, SC, USA
| | - Min Cao
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| | - Yuqing Dong
- Department of Biological Sciences, Clemson University, Clemson, SC, USA.,Institute for Engaged Aging, Clemson University, Clemson, SC, USA
| |
Collapse
|
21
|
Translating protein phosphatase research into treatments for neurodegenerative diseases. Biochem Soc Trans 2017; 45:101-112. [PMID: 28202663 DOI: 10.1042/bst20160157] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 12/11/2022]
Abstract
Many of the major neurodegenerative disorders are characterized by the accumulation of intracellular protein aggregates in neurons and other cells in brain, suggesting that errors in protein quality control mechanisms associated with the aging process play a critical role in the onset and progression of disease. The increased understanding of the unfolded protein response (UPR) signaling network and, more specifically, the structure and function of eIF2α phosphatases has enabled the development or discovery of small molecule inhibitors that show great promise in restoring protein homeostasis and ameliorating neuronal damage and death. While this review focuses attention on one or more eIF2α phosphatases, the wide range of UPR proteins that are currently being explored as potential drug targets bodes well for the successful future development of therapies to preserve neuronal function and treat neurodegenerative disease.
Collapse
|
22
|
Korovila I, Hugo M, Castro JP, Weber D, Höhn A, Grune T, Jung T. Proteostasis, oxidative stress and aging. Redox Biol 2017; 13:550-567. [PMID: 28763764 PMCID: PMC5536880 DOI: 10.1016/j.redox.2017.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/04/2017] [Accepted: 07/09/2017] [Indexed: 12/21/2022] Open
Abstract
The production of reactive species is an inevitable by-product of metabolism and thus, life itself. Since reactive species are able to damage cellular structures, especially proteins, as the most abundant macromolecule of mammalian cells, systems are necessary which regulate and preserve a functional cellular protein pool, in a process termed “proteostasis”. Not only the mammalian protein pool is subject of a constant turnover, organelles are also degraded and rebuild. The most important systems for these removal processes are the “ubiquitin-proteasomal system” (UPS), the central proteolytic machinery of mammalian cells, mainly responsible for proteostasis, as well as the “autophagy-lysosomal system”, which mediates the turnover of organelles and large aggregates. Many age-related pathologies and the aging process itself are accompanied by a dysregulation of UPS, autophagy and the cross-talk between both systems. This review will describe the sources and effects of oxidative stress, preservation of cellular protein- and organelle-homeostasis and the effects of aging on proteostasis in mammalian cells.
Collapse
Affiliation(s)
- Ioanna Korovila
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - Martín Hugo
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
| | - José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; Faculty of Medicine, Department of Biomedicine, University of Porto, 4200-319, Portugal; Institute for Innovation and Health Research (I3S), Aging and Stress Group, R. Alfredo Allen, 4200-135 Porto, Portugal
| | - Daniela Weber
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Annika Höhn
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764 Muenchen-Neuherberg, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany; NutriAct - Competence Cluster Nutrition Research Berlin-Potsdam, 14558 Nuthetal, Germany
| | - Tobias Jung
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), 10117 Berlin, Germany.
| |
Collapse
|
23
|
Mitotic Dysfunction Associated with Aging Hallmarks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:153-188. [DOI: 10.1007/978-3-319-57127-0_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Saeki Y. Ubiquitin recognition by the proteasome. J Biochem 2017; 161:113-124. [PMID: 28069863 DOI: 10.1093/jb/mvw091] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
The 26S proteasome is a 2.5-MDa complex responsible for the selective, ATP-dependent degradation of ubiquitylated proteins in eukaryotic cells. Substrates in hundreds cellular pathways are timely ubiquitylated and converged to the proteasome by direct recognition or by multiple shuttle factors. Engagement of substrate protein triggers conformational changes of the proteasome, which drive substrate unfolding, deubiquitylation and translocation of substrates to proteolytic sites. Recent studies have challenged the previous paradigm that Lys48-linked tetraubiquitin is a minimal degradation signal: in addition, monoubiquitylation or multiple short ubiquitylations can serve as the targeting signal for proteasomal degradation. In this review, I highlight recent advances in our understanding of the proteasome structure, the ubiquitin topology in proteasome targeting, and the cellular factors that regulate proteasomal degradation.
Collapse
Affiliation(s)
- Yasushi Saeki
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
25
|
Sun ZYJ, Bhanu MK, Allan MG, Arthanari H, Wagner G, Hanna J. Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS One 2016; 11:e0163660. [PMID: 27662200 PMCID: PMC5035049 DOI: 10.1371/journal.pone.0163660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/12/2016] [Indexed: 12/24/2022] Open
Abstract
Zinc binding domains are common and versatile protein structural motifs that mediate diverse cellular functions. Among the many structurally distinct families of zinc finger (ZnF) proteins, the AN1 domain remains poorly characterized. Cuz1 is one of two AN1 ZnF proteins in the yeast S. cerevisiae, and is a stress-inducible protein that functions in protein degradation through direct interaction with the proteasome and Cdc48. Here we report the solution structure of the Cuz1 AN1 ZnF which reveals a compact C6H2 zinc-coordinating domain that resembles a two-finger hand holding a tri-helical clamp. A central phenylalanine residue sits between the two zinc-coordinating centers. The position of this phenylalanine, just before the penultimate zinc-chelating cysteine, is strongly conserved from yeast to man. This phenylalanine shows an exceptionally slow ring-flipping rate which likely contributes to the high rigidity and stability of the AN1 domain. In addition to the zinc-chelating residues, sequence analysis of Cuz1 indicates a second highly evolutionarily conserved motif. This LDFLP motif is shared with three human proteins-Zfand1, AIRAP, and AIRAP-L-the latter two of which share similar cellular functions with Cuz1. The LDFLP motif, while embedded within the zinc finger domain, is surface exposed, largely uninvolved in zinc chelation, and not required for the overall fold of the domain. The LDFLP motif was dispensable for Cuz1's major known functions, proteasome- and Cdc48-binding. These results provide the first structural characterization of the AN1 zinc finger domain, and suggest that the LDFLP motif may define a sub-family of evolutionarily conserved AN1 zinc finger proteins.
Collapse
Affiliation(s)
- Zhen-Yu J. Sun
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Meera K. Bhanu
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Martin G. Allan
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Physiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Proteostasis alterations in myeloproliferative neoplasms: Oncogenic relevance and therapeutic opportunities. Exp Hematol 2016; 44:574-7. [PMID: 27090962 DOI: 10.1016/j.exphem.2016.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
Myeloproliferative neoplasms (MPNs) represent a frequently occurring group of heterogeneous hematologic malignancies. In the last decade, the identification of JAK2-activating mutations in a significant proportion of MPN patients gave rise to the first molecularly driven therapy for BCR-ABL-negative patients. Nevertheless, current efforts are still focused on the identification of novel therapeutic targets to achieve permanent remission. In this perspective, we focus on the recent findings in this field and highlight new evidence linking proteostasis deregulation with myeloid transformation. We recently reported that the proteostasis regulator AIRAPL acts as a tumor suppressor in MPNs through the modulation of insulin-like growth factor receptor levels at the endoplasmic reticulum. This finding paves the way for new therapeutic approaches to these neoplasms and indicates the importance of protein homeostasis maintenance for normal hematopoiesis.
Collapse
|
27
|
Vayndorf EM, Scerbak C, Hunter S, Neuswanger JR, Toth M, Parker JA, Neri C, Driscoll M, Taylor BE. Morphological remodeling of C. elegans neurons during aging is modified by compromised protein homeostasis. NPJ Aging Mech Dis 2016; 2. [PMID: 27347427 PMCID: PMC4920063 DOI: 10.1038/npjamd.2016.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding cellular outcomes, such as neuronal remodeling, that are common to both healthy and diseased aging brains is essential to the development of successful brain aging strategies. Here, we used Caenorhabdits elegans to investigate how the expression of proteotoxic triggers, such as polyglutamine (polyQ)-expanded huntingtin and silencing of proteostasis regulators, such as the ubiquitin–proteasome system (UPS) and protein clearance components, may impact the morphological remodeling of individual neurons as animals age. We examined the effects of disrupted proteostasis on the integrity of neuronal cytoarchitecture by imaging a transgenic C. elegans strain in which touch receptor neurons express the first 57 amino acids of the human huntingtin (Htt) gene with expanded polyQs (128Q) and by using neuron-targeted RNA interference in adult wild-type neurons to knockdown genes encoding proteins involved in proteostasis. We found that proteostatic challenges conferred by polyQ-expanded Htt and knockdown of specific genes involved in protein homeostasis can lead to morphological changes that are restricted to specific domains of specific neurons. The age-associated branching of PLM neurons is suppressed by N-ter polyQ-expanded Htt expression, whereas ALM neurons with polyQ-expanded Htt accumulate extended outgrowths and other soma abnormalities. Furthermore, knockdown of genes important for ubiquitin-mediated degradation, lysosomal function, and autophagy modulated these age-related morphological changes in otherwise normal neurons. Our results show that the expression of misfolded proteins in neurodegenerative disease such as Huntington’s disease modifies the morphological remodeling that is normally associated with neuronal aging. Our results also show that morphological remodeling of healthy neurons during aging can be regulated by the UPS and other proteostasis pathways. Collectively, our data highlight a model in which morphological remodeling during neuronal aging is strongly affected by disrupted proteostasis and expression of disease-associated, misfolded proteins such as human polyQ-Htt species.
Collapse
Affiliation(s)
- Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Courtney Scerbak
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Skyler Hunter
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Jason R Neuswanger
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Marton Toth
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - J Alex Parker
- Department of Neuroscience, CRCHUM, University of Montreal, Montreal, QC, Canada
| | - Christian Neri
- Laboratory of Neuronal Cell Biology and Pathology, Centre National de la Recherche Scientifique, Paris, France; Sorbonnes Universités, UPMC Univ Paris 06, Paris, France
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Nelson Biological Laboratories, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Barbara E Taylor
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, USA
| |
Collapse
|
28
|
Osorio FG, Freije JMP, López-Otín C. The novel tumor suppressor AIRAPL regulates IGF1R proteostasis. Cell Cycle 2016; 15:873-4. [PMID: 26901531 DOI: 10.1080/15384101.2016.1151725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- Fernando G Osorio
- a Departamento de Bioquímica y Biología Molecular , Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo , Oviedo , Spain
| | - José M P Freije
- a Departamento de Bioquímica y Biología Molecular , Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo , Oviedo , Spain
| | - Carlos López-Otín
- a Departamento de Bioquímica y Biología Molecular , Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo , Oviedo , Spain
| |
Collapse
|
29
|
Rahighi S, Braunstein I, Ternette N, Kessler B, Kawasaki M, Kato R, Matsui T, Weiss TM, Stanhill A, Wakatsuki S. Selective Binding of AIRAPL Tandem UIMs to Lys48-Linked Tri-Ubiquitin Chains. Structure 2016; 24:412-22. [PMID: 26876100 DOI: 10.1016/j.str.2015.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 12/20/2015] [Accepted: 12/21/2015] [Indexed: 11/16/2022]
Abstract
Lys48-linked ubiquitin chains act as the main targeting signals for protein degradation by the proteasome. Here we report selective binding of AIRAPL, a protein that associates with the proteasome upon exposure to arsenite, to Lys48-linked tri-ubiquitin chains. AIRAPL comprises two ubiquitin-interacting motifs in tandem (tUIMs) that are linked through a flexible inter-UIM region. In the complex crystal structure UIM1 binds the proximal ubiquitin, whereas UIM2 (the double-sided UIM) binds non-symmetrically to the middle and distal ubiquitin moieties on either side of the helix. Specificity of AIRAPL for Lys48-linked ubiquitin chains is determined by UIM2, and the flexible inter-UIM linker increases avidity by placing the two UIMs in an orientation that facilitates binding of the third ubiquitin to UIM1. Unlike middle and proximal ubiquitins, distal ubiquitin binds UIM2 through a novel surface, which leaves the Ile44 hydrophobic patch accessible for binding to the proteasomal ubiquitin receptors.
Collapse
Affiliation(s)
- Simin Rahighi
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ilana Braunstein
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel
| | - Nicola Ternette
- TDI MS Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Benedikt Kessler
- TDI MS Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Ryuichi Kato
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Tsutomu Matsui
- Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Thomas M Weiss
- Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Bat Galim, Haifa 31096, Israel.
| | - Soichi Wakatsuki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan; Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Structural Molecular Biology, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA; Photon Science, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
30
|
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway. PLoS Genet 2016; 12:e1005823. [PMID: 26828939 PMCID: PMC4734690 DOI: 10.1371/journal.pgen.1005823] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022] Open
Abstract
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.
Collapse
Affiliation(s)
- Scott A. Keith
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah K. Maddux
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Yayu Zhong
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Meghna N. Chinchankar
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arjumand Ghazi
- Rangos Research Center, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alfred L. Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- San Antonio GRECC, South Texas VA Healthcare System, San Antonio, Texas, United States of America
| |
Collapse
|
31
|
Osorio FG, Soria-Valles C, Santiago-Fernández O, Bernal T, Mittelbrunn M, Colado E, Rodríguez F, Bonzon-Kulichenko E, Vázquez J, Porta-de-la-Riva M, Cerón J, Fueyo A, Li J, Green AR, Freije JMP, López-Otín C. Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling. Nat Med 2016; 22:91-6. [PMID: 26692333 DOI: 10.1038/nm.4013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/18/2015] [Indexed: 12/14/2022]
Abstract
AIRAPL (arsenite-inducible RNA-associated protein-like) is an evolutionarily conserved regulator of cellular proteostasis linked to longevity in nematodes, but its biological function in mammals is unknown. We show herein that AIRAPL-deficient mice develop a fully-penetrant myeloproliferative neoplastic process. Proteomic analysis of AIRAPL-deficient mice revealed that this protein exerts its antineoplastic function through the regulation of the insulin/insulin-like growth factor 1 (IGF-1) signaling pathway. We demonstrate that AIRAPL interacts with newly synthesized insulin-related growth factor-1 receptor (IGF1R) polypeptides, promoting their ubiquitination and proteasome-mediated degradation. Accordingly, genetic and pharmacological IGF1R inhibitory strategies prevent the hematological disease found in AIRAPL-deficient mice as well as that in mice carrying the Jak2(V617F) mutation, thereby demonstrating the causal involvement of this pathway in the pathogenesis of myeloproliferative neoplasms. Consistent with its proposed role as a tumor suppressor of myeloid transformation, AIRAPL expression is widely abrogated in human myeloproliferative disorders. Collectively, these findings support the oncogenic relevance of proteostasis deregulation in hematopoietic cells, and they unveil novel therapeutic targets for these frequent hematological neoplasias.
Collapse
Affiliation(s)
- Fernando G Osorio
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Clara Soria-Valles
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Olaya Santiago-Fernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Teresa Bernal
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - María Mittelbrunn
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
- Instituto de Investigación Sanitaria, Hospital 12 de Octubre (i+12), Madrid, Spain
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Enrique Colado
- Servicio de Hematología, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Francisco Rodríguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Elena Bonzon-Kulichenko
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Montserrat Porta-de-la-Riva
- Area of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Caenorhabditis elegans Facility, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Julián Cerón
- Area of Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Antonio Fueyo
- Área de Fisiología, Departamento de Biología Funcional, Facultad de Medicina, Universidad de Oviedo, Oviedo, Spain
| | - Juan Li
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anthony R Green
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Department of Haematology, Addenbrooke's Hospital, Cambridge, UK
| | - José M P Freije
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| |
Collapse
|
32
|
Papaevgeniou N, Chondrogianni N. UPS Activation in the Battle Against Aging and Aggregation-Related Diseases: An Extended Review. Methods Mol Biol 2016; 1449:1-70. [PMID: 27613027 DOI: 10.1007/978-1-4939-3756-1_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Aging is a biological process accompanied by gradual increase of damage in all cellular macromolecules, i.e., nucleic acids, lipids, and proteins. When the proteostasis network (chaperones and proteolytic systems) cannot reverse the damage load due to its excess as compared to cellular repair/regeneration capacity, failure of homeostasis is established. This failure is a major hallmark of aging and/or aggregation-related diseases. Dysfunction of the major cellular proteolytic machineries, namely the proteasome and the lysosome, has been reported during the progression of aging and aggregation-prone diseases. Therefore, activation of these pathways is considered as a possible preventive or therapeutic approach against the progression of these processes. This chapter focuses on UPS activation studies in cellular and organismal models and the effects of such activation on aging, longevity and disease prevention or reversal.
Collapse
Affiliation(s)
- Nikoletta Papaevgeniou
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece.
| |
Collapse
|
33
|
Braunstein I, Zach L, Allan S, Kalies KU, Stanhill A. Proteasomal degradation of preemptive quality control (pQC) substrates is mediated by an AIRAPL-p97 complex. Mol Biol Cell 2015; 26:3719-27. [PMID: 26337389 PMCID: PMC4626058 DOI: 10.1091/mbc.e15-02-0085] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 08/27/2015] [Indexed: 12/20/2022] Open
Abstract
The preemptive quality control (pQC) pathway participates in the unfolded protein response regulating ER homeostasis, yet many components are not known. The role of p97 and its adaptor, AIRAPL, in proteasomal processing of pQC substrates is shown, and an insulin-processing mutant (R6C) is identified as a pQC substrate. The initial folding of secreted proteins occurs in the ER lumen, which contains specific chaperones and where posttranslational modifications may occur. Therefore lack of translocation, regardless of entry route or protein identity, is a highly toxic event, as the newly synthesized polypeptide is misfolded and can promiscuously interact with cytosolic factors. Mislocalized proteins bearing a signal sequence that did not successfully translocate through the translocon complex are subjected to a preemptive quality control (pQC) pathway and are degraded by the ubiquitin-proteasome system (UPS). In contrast to UPS-mediated, ER-associated degradation, few components involved in pQC have been identified. Here we demonstrate that on specific translocation inhibition, a p97–AIRAPL complex directly binds and regulates the efficient processing of polyubiquitinated pQC substrates by the UPS. We also demonstrate p97’s role in pQC processing of preproinsulin in cases of naturally occurring mutations within the signal sequence of insulin.
Collapse
Affiliation(s)
- Ilana Braunstein
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Lolita Zach
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Susanne Allan
- Centre for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Kai-Uwe Kalies
- Centre for Structural and Cell Biology in Medicine, University of Lübeck, 23538 Lübeck, Germany
| | - Ariel Stanhill
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, Haifa 31096, Israel
| |
Collapse
|
34
|
Chondrogianni N, Voutetakis K, Kapetanou M, Delitsikou V, Papaevgeniou N, Sakellari M, Lefaki M, Filippopoulou K, Gonos ES. Proteasome activation: An innovative promising approach for delaying aging and retarding age-related diseases. Ageing Res Rev 2015; 23:37-55. [PMID: 25540941 DOI: 10.1016/j.arr.2014.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 11/16/2022]
Abstract
Aging is a natural process accompanied by a progressive accumulation of damage in all constituent macromolecules (nucleic acids, lipids and proteins). Accumulation of damage in proteins leads to failure of proteostasis (or vice versa) due to increased levels of unfolded, misfolded or aggregated proteins and, in turn, to aging and/or age-related diseases. The major cellular proteolytic machineries, namely the proteasome and the lysosome, have been shown to dysfunction during aging and age-related diseases. Regarding the proteasome, it is well established that it can be activated either through genetic manipulation or through treatment with natural or chemical compounds that eventually result to extension of lifespan or deceleration of the progression of age-related diseases. This review article focuses on proteasome activation studies in several species and cellular models and their effects on aging and longevity. Moreover, it summarizes findings regarding proteasome activation in the major age-related diseases as well as in progeroid syndromes.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Konstantinos Voutetakis
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianna Kapetanou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Vasiliki Delitsikou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Konstantina Filippopoulou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry and Biotechnology, 48 Vas. Constantinou Ave., 116 35 Athens, Greece; Örebro University, Medical School, Örebro, Sweden.
| |
Collapse
|
35
|
Control of p97 function by cofactor binding. FEBS Lett 2015; 589:2578-89. [PMID: 26320413 DOI: 10.1016/j.febslet.2015.08.028] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 08/18/2015] [Accepted: 08/18/2015] [Indexed: 12/14/2022]
Abstract
p97 (also known as Cdc48, Ter94, and VCP) is an essential, abundant and highly conserved ATPase driving the turnover of ubiquitylated proteins in eukaryotes. Even though p97 is involved in highly diverse cellular pathways and processes, it exhibits hardly any substrate specificity on its own. Instead, it relies on a large number of regulatory cofactors controlling substrate specificity and turnover. The complexity as well as temporal and spatial regulation of the interactions between p97 and its cofactors is only beginning to be understood at the molecular level. Here, we give an overview on the structural framework of p97 interactions with its cofactors, the emerging principles underlying the assembly of complexes with different cofactors, and the pathogenic effects of disease-associated p97 mutations on cofactor binding.
Collapse
|
36
|
Miyazaki Y, Chen LC, Chu BW, Swigut T, Wandless TJ. Distinct transcriptional responses elicited by unfolded nuclear or cytoplasmic protein in mammalian cells. eLife 2015; 4. [PMID: 26314864 PMCID: PMC4566031 DOI: 10.7554/elife.07687] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/13/2015] [Indexed: 12/13/2022] Open
Abstract
Eukaryotic cells possess a variety of signaling pathways that prevent accumulation of unfolded and misfolded proteins. Chief among these is the heat shock response (HSR), which is assumed to respond to unfolded proteins in the cytosol and nucleus alike. In this study, we probe this axiom further using engineered proteins called 'destabilizing domains', whose folding state we control with a small molecule. The sudden appearance of unfolded protein in mammalian cells elicits a robust transcriptional response, which is distinct from the HSR and other known pathways that respond to unfolded proteins. The cellular response to unfolded protein is strikingly different in the nucleus and the cytosol, although unfolded protein in either compartment engages the p53 network. This response provides cross-protection during subsequent proteotoxic stress, suggesting that it is a central component of protein quality control networks, and like the HSR, is likely to influence the initiation and progression of human pathologies.
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Ling-chun Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Bernard W Chu
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| | - Thomas J Wandless
- Department of Chemical and Systems Biology, Stanford University, Stanford, United States
| |
Collapse
|
37
|
Saez I, Vilchez D. Protein clearance mechanisms and their demise in age-related neurodegenerative diseases. AIMS MOLECULAR SCIENCE 2015. [DOI: 10.3934/molsci.2015.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
38
|
The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 2014; 5:5659. [DOI: 10.1038/ncomms6659] [Citation(s) in RCA: 442] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 10/24/2014] [Indexed: 12/27/2022] Open
|
39
|
Chondrogianni N, Georgila K, Kourtis N, Tavernarakis N, Gonos ES. 20S proteasome activation promotes life span extension and resistance to proteotoxicity in Caenorhabditis elegans. FASEB J 2014; 29:611-22. [PMID: 25395451 DOI: 10.1096/fj.14-252189] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Protein homeostasis (proteostasis) is one of the nodal points that need to be preserved to retain physiologic cellular/organismal balance. The ubiquitin-proteasome system (UPS) is responsible for the removal of both normal and damaged proteins, with the proteasome being the downstream effector. The proteasome is the major cellular protease with progressive impairment of function during aging and senescence. Despite the documented age-retarding properties of proteasome activation in various cellular models, simultaneous enhancement of the 20S core proteasome content, assembly, and function have never been reported in any multicellular organism. Consequently, the possible effects of the core proteasome modulation on organismal life span are elusive. In this study, we have achieved activation of the 20S proteasome at organismal level. We demonstrate enhancement of proteasome levels, assembly, and activity in the nematode Caenorhabditis elegans, resulting in life span extension and increased resistance to stress. We also provide evidence that the observed life span extension is dependent on the transcriptional activity of Dauer formation abnormal/Forkhead box class O (DAF-16/FOXO), skinhead-1 (SKN-1), and heat shock factor-1 (HSF-1) factors through regulation of downstream longevity genes. We further show that the reported beneficial effects are not ubiquitous but they are dependent on the genetic context. Finally, we provide evidence that proteasome core activation might be a potential strategy to minimize protein homeostasis deficiencies underlying aggregation-related diseases, such as Alzheimer's disease (AD) or Huntington's disease (HD). In summary, this is the first report demonstrating that 20S core proteasome up-regulation in terms of both content and activity is feasible in a multicellular eukaryotic organism and that in turn this modulation promotes extension of organismal health span and life span.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| | - Nikos Kourtis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Hellenic Research Foundation, Athens, Greece; and
| |
Collapse
|
40
|
Hassan WM, Dostal V, Huemann BN, Yerg JE, Link CD. Identifying Aβ-specific pathogenic mechanisms using a nematode model of Alzheimer's disease. Neurobiol Aging 2014; 36:857-66. [PMID: 25457027 DOI: 10.1016/j.neurobiolaging.2014.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 09/25/2014] [Accepted: 10/12/2014] [Indexed: 01/18/2023]
Abstract
Multiple gene expression alterations have been linked to Alzheimer's disease (AD), implicating multiple metabolic pathways in its pathogenesis. However, a clear distinction between AD-specific gene expression changes and those resulting from nonspecific responses to toxic aggregating proteins has not been made. We investigated alterations in gene expression induced by human beta-amyloid peptide (Aβ) in a Caenorhabditis elegans AD model. Aβ-induced gene expression alterations were compared with those caused by a synthetic aggregating protein to identify Aβ-specific effects. Both Aβ-specific and nonspecific alterations were observed. Among Aβ-specific genes were those involved in aging, proteasome function, and mitochondrial function. An intriguing observation was the significant overlap between gene expression changes induced by Aβ and those induced by Cry5B, a bacterial pore-forming toxin. This led us to hypothesize that Aβ exerts its toxic effect, at least in part, by causing damage to biological membranes. We provide in vivo evidence consistent with this hypothesis. This study distinguishes between Aβ-specific and nonspecific mechanisms and provides potential targets for therapeutics discovery.
Collapse
Affiliation(s)
- Wail M Hassan
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA; Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA.
| | - Vishantie Dostal
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Brady N Huemann
- Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John E Yerg
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| | - Christopher D Link
- Department of Integrative Physiology, Institute for Behavioral Genetics, University of Colorado at Boulder, Boulder, CO, USA
| |
Collapse
|
41
|
Chondrogianni N, Sakellari M, Lefaki M, Papaevgeniou N, Gonos ES. Proteasome activation delays aging in vitro and in vivo. Free Radic Biol Med 2014; 71:303-320. [PMID: 24681338 DOI: 10.1016/j.freeradbiomed.2014.03.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 02/02/2023]
Abstract
Aging is a natural biological process that is characterized by a progressive accumulation of macromolecular damage. In the proteome, aging is accompanied by decreased protein homeostasis and function of the major cellular proteolytic systems, leading to the accumulation of unfolded, misfolded, or aggregated proteins. In particular, the proteasome is responsible for the removal of normal as well as damaged or misfolded proteins. Extensive work during the past several years has clearly demonstrated that proteasome activation by either genetic means or use of compounds significantly retards aging. Importantly, this represents a common feature across evolution, thereby suggesting proteasome activation to be an evolutionarily conserved mechanism of aging and longevity regulation. This review article reports on the means of function of these proteasome activators and how they regulate aging in various species.
Collapse
Affiliation(s)
- Niki Chondrogianni
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece.
| | - Marianthi Sakellari
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| | - Maria Lefaki
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Nikoletta Papaevgeniou
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece
| | - Efstathios S Gonos
- National Hellenic Research Foundation, Institute of Biology, Medicinal Chemistry, and Biotechnology, 116 35 Athens, Greece; Örebro University Medical School, Örebro, Sweden
| |
Collapse
|
42
|
Saez I, Vilchez D. The Mechanistic Links Between Proteasome Activity, Aging and Age-related Diseases. Curr Genomics 2014; 15:38-51. [PMID: 24653662 PMCID: PMC3958958 DOI: 10.2174/138920291501140306113344] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/17/2023] Open
Abstract
Damaged and misfolded proteins accumulate during the aging process, impairing cell function and tissue homeostasis. These perturbations to protein homeostasis (proteostasis) are hallmarks of age-related neurodegenerative disorders such as Alzheimer’s, Parkinson’s or Huntington’s disease. Damaged proteins are degraded by cellular clearance mechanisms such as the proteasome, a key component of the proteostasis network. Proteasome activity declines during aging, and proteasomal dysfunction is associated with late-onset disorders. Modulation of proteasome activity extends lifespan and protects organisms from symptoms associated with proteostasis disorders. Here we review the links between proteasome activity, aging and neurodegeneration. Additionally, strategies to modulate proteasome activity and delay the onset of diseases associated to proteasomal dysfunction are discussed herein.
Collapse
Affiliation(s)
- Isabel Saez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Co-logne, Joseph Stelzmann Strasse 26, 50931 Cologne, Germany
| |
Collapse
|
43
|
Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG. The proteasome inhibitor bortezomib is a potent inducer of zinc finger AN1-type domain 2a gene expression: role of heat shock factor 1 (HSF1)-heat shock factor 2 (HSF2) heterocomplexes. J Biol Chem 2014; 289:12705-15. [PMID: 24619424 DOI: 10.1074/jbc.m113.513242] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The zinc finger AN1-type domain 2a gene, also known as arsenite-inducible RNA-associated protein (AIRAP), was recently identified as a novel human canonical heat shock gene strictly controlled by heat shock factor (HSF) 1. Little is known about AIRAP gene regulation in human cells. Here we report that bortezomib, a proteasome inhibitor with anticancer and antiangiogenic properties used in the clinic for treatment of multiple myeloma, is a potent inducer of AIRAP expression in human cells. Using endothelial cells as a model, we unraveled the molecular mechanism regulating AIRAP expression during proteasome inhibition. Bortezomib induces AIRAP expression at the transcriptional level early after treatment, concomitantly with polyubiquitinated protein accumulation and HSF activation. AIRAP protein is detected at high levels for at least 48 h after bortezomib exposure, together with the accumulation of HSF2, a factor implicated in differentiation and development regulation. Different from heat-mediated induction, in bortezomib-treated cells, HSF1 and HSF2 interact directly, forming HSF1-HSF2 heterotrimeric complexes recruited to a specific heat shock element in the AIRAP promoter. Interestingly, whereas HSF1 has been confirmed to be critical for AIRAP gene transcription, HSF2 was found to negatively regulate AIRAP expression after bortezomib treatment, further emphasizing an important modulatory role of this transcription factor under stress conditions. AIRAP function is still not defined. However, the fact that AIRAP is expressed abundantly in primary human cells at bortezomib concentrations comparable with plasma levels in treated patients suggests that AIRAP may participate in the regulatory network controlling proteotoxic stress during bortezomib treatment.
Collapse
Affiliation(s)
- Antonio Rossi
- From the Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), 00133 Rome, Italy and
| | | | | | | | | | | |
Collapse
|
44
|
Heavy metals and metalloids as a cause for protein misfolding and aggregation. Biomolecules 2014; 4:252-67. [PMID: 24970215 PMCID: PMC4030994 DOI: 10.3390/biom4010252] [Citation(s) in RCA: 251] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/14/2014] [Accepted: 02/19/2014] [Indexed: 11/30/2022] Open
Abstract
While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.
Collapse
|
45
|
Abstract
Protein homoeostasis is a fundamental requirement for all living cells in order to survive in a dynamic surrounding. Proper levels of AIRAPL (arsenite-inducible RNA-associated protein-like protein) (ZFAND2B) are required in order to maintain cellular folding capacity in metazoans, and functional impairment of AIRAPL results in acceleration of aging and protein aggregation. However, the cellular roles of AIRAPL in this process are not known. In the present paper, we report that AIRAPL binds and forms a complex with p97 [VCP (valosin-containing protein)/Cdc48], Ubxd8 (ubiquitin regulatory X domain 8), Npl4-Ufd1, Derlin-1 and Bag6 on the ER (endoplasmic reticulum) membrane. In spite of the fact that AIRAPL complex partners are involved in the ERAD (ER-associated degradation) process, AIRAPL knockdown does not show any impairment in ERAD substrate degradation. However, translocation into the ER of a subset of ERAD- and non-ERAD-secreted proteins are regulated by AIRAPL. The ability to regulate translocation by the p97-AIRAPL complex is entirely dependent on the proteins' signal peptide. Our results demonstrate a p97 complex regulating translocation into the ER in a signal-peptide-dependent manner.
Collapse
|
46
|
The ubiquitin proteasome system in Caenorhabditis elegans and its regulation. Redox Biol 2014; 2:333-47. [PMID: 24563851 PMCID: PMC3926112 DOI: 10.1016/j.redox.2014.01.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/08/2014] [Accepted: 01/10/2014] [Indexed: 11/20/2022] Open
Abstract
Protein degradation constitutes a major cellular function that is responsible for maintenance of the normal cellular physiology either through the degradation of normal proteins or through the elimination of damaged proteins. The Ubiquitin–Proteasome System (UPS)1 is one of the main proteolytic systems that orchestrate protein degradation. Given that up- and down- regulation of the UPS system has been shown to occur in various normal (such as ageing) and pathological (such as neurodegenerative diseases) processes, the exogenous modulation of the UPS function and activity holds promise of (a) developing new therapeutic interventions against various diseases and (b) establishing strategies to maintain cellular homeostasis. Since the proteasome genes are evolutionarily conserved, their role can be dissected in simple model organisms, such as the nematode, Caenorhabditis elegans. In this review, we survey findings on the redox regulation of the UPS in C. elegans showing that the nematode is an instrumental tool in the identification of major players in the UPS pathway. Moreover, we specifically discuss UPS-related genes that have been modulated in the nematode and in human cells and have resulted in similar effects thus further exhibiting the value of this model in the study of the UPS. UPS is one of the main proteolytic systems that orchestrate protein degradation. Proteasome function can be dissected in Caenorhabditis elegans. Nematodes can be used in the identification of major players in the UPS pathway.
Collapse
|
47
|
Hanna J, Waterman D, Isasa M, Elsasser S, Shi Y, Gygi S, Finley D. Cuz1/Ynl155w, a zinc-dependent ubiquitin-binding protein, protects cells from metalloid-induced proteotoxicity. J Biol Chem 2013; 289:1876-85. [PMID: 24297164 DOI: 10.1074/jbc.m113.534032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein misfolding is a universal threat to cells. The ubiquitin-proteasome system mediates a cellular stress response capable of eliminating misfolded proteins. Here we identify Cuz1/Ynl155w as a component of the ubiquitin system, capable of interacting with both the proteasome and Cdc48. Cuz1/Ynl155w is regulated by the transcription factor Rpn4, and is required for cells to survive exposure to the trivalent metalloids arsenic and antimony. A related protein, Yor052c, shows similar phenotypes, suggesting a multicomponent stress response pathway. Cuz1/Ynl155w functions as a zinc-dependent ubiquitin-binding protein. Thus, Cuz1/Ynl155w is proposed to protect cells from metalloid-induced proteotoxicity by delivering ubiquitinated substrates to Cdc48 and the proteasome for destruction.
Collapse
Affiliation(s)
- John Hanna
- From the Department of Pathology, Brigham and Women's Hospital, and
| | | | | | | | | | | | | |
Collapse
|
48
|
Sá-Moura B, Funakoshi M, Tomko RJ, Dohmen RJ, Wu Z, Peng J, Hochstrasser M. A conserved protein with AN1 zinc finger and ubiquitin-like domains modulates Cdc48 (p97) function in the ubiquitin-proteasome pathway. J Biol Chem 2013; 288:33682-33696. [PMID: 24121501 DOI: 10.1074/jbc.m113.521088] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulated protein degradation mediated by the ubiquitin-proteasome system (UPS) is critical to eukaryotic protein homeostasis. Often vital to degradation of protein substrates is their disassembly, unfolding, or extraction from membranes. These processes are catalyzed by the conserved AAA-ATPase Cdc48 (also known as p97). Here we characterize the Cuz1 protein (Cdc48-associated UBL/zinc finger protein-1), encoded by a previously uncharacterized arsenite-inducible gene in budding yeast. Cuz1, like its human ortholog ZFAND1, has both an AN1-type zinc finger (Zf_AN1) and a divergent ubiquitin-like domain (UBL). We show that Cuz1 modulates Cdc48 function in the UPS. The two proteins directly interact, and the Cuz1 UBL, but not Zf_AN1, is necessary for binding to the Cdc48 N-terminal domain. Cuz1 also associates, albeit more weakly, with the proteasome, and the UBL is dispensable for this interaction. Cuz1-proteasome interaction is strongly enhanced by exposure of cells to the environmental toxin arsenite, and in a proteasome mutant, loss of Cuz1 enhances arsenite sensitivity. Whereas loss of Cuz1 alone causes only minor UPS degradation defects, its combination with mutations in the Cdc48(Npl4-Ufd1) complex leads to much greater impairment. Cuz1 helps limit the accumulation of ubiquitin conjugates on both the proteasome and Cdc48, suggesting a possible role in the transfer of ubiquitylated substrates from Cdc48 to the proteasome or in their release from these complexes.
Collapse
Affiliation(s)
- Bebiana Sá-Moura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520; Graduate Program in Areas of Basic and Applied Biology, Abel Salazar Biomedical Sciences Institute, University of Porto, Porto 4099-002, Portugal
| | - Minoru Funakoshi
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - Robert J Tomko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| | - R Jürgen Dohmen
- Institute for Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Cologne, Germany
| | - Zhiping Wu
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, St. Jude Proteomics Facility, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520.
| |
Collapse
|
49
|
McCormick MA, Kennedy BK. Genome-scale studies of aging: challenges and opportunities. Curr Genomics 2013; 13:500-7. [PMID: 23633910 PMCID: PMC3468883 DOI: 10.2174/138920212803251454] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2012] [Revised: 06/08/2012] [Accepted: 07/25/2012] [Indexed: 12/21/2022] Open
Abstract
Whole-genome studies involving a phenotype of interest are increasingly prevalent, in part due to a dramatic increase in speed at which many high throughput technologies can be performed coupled to simultaneous decreases in cost. This type of genome-scale methodology has been applied to the phenotype of lifespan, as well as to whole-transcriptome changes during the aging process or in mutants affecting aging. The value of high throughput discovery-based science in this field is clearly evident, but will it yield a true systems-level understanding of the aging process? Here we review some of this work to date, focusing on recent findings and the unanswered puzzles to which they point. In this context, we also discuss recent technological advances and some of the likely future directions that they portend.
Collapse
|
50
|
Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES. Protein damage, repair and proteolysis. Mol Aspects Med 2012; 35:1-71. [PMID: 23107776 DOI: 10.1016/j.mam.2012.09.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/26/2012] [Indexed: 01/10/2023]
Abstract
Proteins are continuously affected by various intrinsic and extrinsic factors. Damaged proteins influence several intracellular pathways and result in different disorders and diseases. Aggregation of damaged proteins depends on the balance between their generation and their reversal or elimination by protein repair systems and degradation, respectively. With regard to protein repair, only few repair mechanisms have been evidenced including the reduction of methionine sulfoxide residues by the methionine sulfoxide reductases, the conversion of isoaspartyl residues to L-aspartate by L-isoaspartate methyl transferase and deglycation by phosphorylation of protein-bound fructosamine by fructosamine-3-kinase. Protein degradation is orchestrated by two major proteolytic systems, namely the lysosome and the proteasome. Alteration of the function for both systems has been involved in all aspects of cellular metabolic networks linked to either normal or pathological processes. Given the importance of protein repair and degradation, great effort has recently been made regarding the modulation of these systems in various physiological conditions such as aging, as well as in diseases. Genetic modulation has produced promising results in the area of protein repair enzymes but there are not yet any identified potent inhibitors, and, to our knowledge, only one activating compound has been reported so far. In contrast, different drugs as well as natural compounds that interfere with proteolysis have been identified and/or developed resulting in homeostatic maintenance and/or the delay of disease progression.
Collapse
Affiliation(s)
- Niki Chondrogianni
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| | - Isabelle Petropoulos
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Stefanie Grimm
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Konstantina Georgila
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece
| | - Betul Catalgol
- Department of Biochemistry, Faculty of Medicine, Genetic and Metabolic Diseases Research Center (GEMHAM), Marmara University, Haydarpasa, Istanbul, Turkey
| | - Bertrand Friguet
- Laboratoire de Biologie Cellulaire du Vieillissement, UR4-UPMC, IFR 83, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France
| | - Tilman Grune
- Department of Nutritional Toxicology, Institute of Nutrition, Friedrich-Schiller University, Dornburger Straße 24, 07743 Jena, Germany
| | - Efstathios S Gonos
- Institute of Biology, Medicinal Chemistry and Biotechnology, National Helenic Research Foundation, 48 Vas. Constantinou Ave., 116 35 Athens, Greece.
| |
Collapse
|