1
|
Durant AC, Donini A. Ammonia transport in the excretory system of mosquito larvae (Aedes aegypti): Rh protein expression and the transcriptome of the rectum. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111649. [PMID: 38670480 DOI: 10.1016/j.cbpa.2024.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
The role of the mosquito excretory organs (Malpighian tubules, MT and hindgut, HG) in ammonia transport as well as expression and function of the Rhesus (Rh protein) ammonia transporters within these organs was examined in Aedes aegypti larvae and adult females. Immunohistological examination revealed that the Rh proteins are co-localized with V-type H+-ATPase (VA) to the apical membranes of MT and HG epithelia of both larvae and adult females. Of the two Rh transporter genes present in A. aegypti, AeRh50-1 and AeRh50-2, we show using quantitative real-time PCR (qPCR) and an RNA in-situ hybridization (ISH) assay that AeRh50-1 is the predominant Rh protein expressed in the excretory organs of larvae and adult females. Further assessment of AeRh50-1 function in larvae and adults using RNAi (i.e. dsRNA-mediated knockdown) revealed significantly decreased [NH4+] (mmol l-1) levels in the secreted fluid of larval MT which does not affect overall NH4+ transport rates, as well as significantly decreased NH4+ flux rates across the HG (haemolymph to lumen) of adult females. We also used RNA sequencing to identify the expression of ion transporters and enzymes within the rectum of larvae, of which limited information currently exists for this important osmoregulatory organ. Of the ammonia transporters in A. aegypti, AeRh50-1 transcript is most abundant in the rectum thus validating our immunohistochemical and RNA ISH findings. In addition to enriched VA transcript (subunits A and d1) in the rectum, we also identified high Na+-K+-ATPase transcript (α subunit) expression which becomes significantly elevated in response to HEA, and we also found enriched carbonic anhydrase 9, inwardly rectifying K+ channel Kir2a, and Na+-coupled cation-chloride (Cl-) co-transporter CCC2 transcripts. Finally, the modulation in excretory organ function and/or Rh protein expression was examined in relation to high ammonia challenge, specifically high environmental ammonia (HEA) rearing of larvae. NH4+ flux measurements using the scanning-ion selective electrode (SIET) technique revealed no significant differences in NH4+ transport across organs comprising the alimentary canal of larvae reared in HEA vs freshwater. Further, significantly increased VA activity, but not NKA, was observed in the MT of HEA-reared larvae. Relatively high Rh protein immunostaining persists within the hindgut epithelium, as well as the ovary, of females at 24-48 h post blood meal corresponding with previously demonstrated peak levels of ammonia formation. These data provide new insight into the role of the excretory organs in ammonia transport physiology and the contribution of Rh proteins in mediating ammonia movement across the epithelia of the MT and HG, and the first comprehensive examination of ion transporter and channel expression in the mosquito rectum.
Collapse
Affiliation(s)
- Andrea C Durant
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195-1800, USA
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
2
|
Chen Y, Zhang M, Yang C, Gao M, Yan Y, Deng C, Sun N. Designed Directional Growth of Ti-Metal-Organic Frameworks for Decoding Alzheimer's Disease-Specific Exosome Metabolites. Anal Chem 2024; 96:2727-2736. [PMID: 38300748 DOI: 10.1021/acs.analchem.3c05868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Exosomes, a growing focus for liquid biopsies, contain diverse molecular cargos. In particular, exosome metabolites with valuable information have exhibited great potential for improving the efficiency of liquid biopsies for addressing complex medical conditions. In this work, we design the directional growth of Ti-metal-organic frameworks on polar-functionalized magnetic particles. This design facilitates the rapid synergistic capture of exosomes with the assistance of an external magnetic field and additionally synergistically enhances the ionization of their metabolites during mass spectrometry detection. Benefiting from this dual synergistic effect, we identified three high-performance exosome metabolites through the differential comparison of a large number of serum samples from individuals with Alzheimer's disease (AD) and normal cognition. Notably, the accuracy of AD identification ranges from 93.18 to 100% using a single exosome metabolite and reaches a flawless 100% with three metabolites. These findings emphasize the transformative potential of this work to enhance the precision and reliability of AD diagnosis, ushering in a new era of improved diagnostic accuracy.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Man Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Chenyu Yang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Mingxia Gao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Chunhui Deng
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Nianrong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Department of Chemistry, Fudan University, Shanghai 200032, China
| |
Collapse
|
3
|
Petchampai N, Isoe J, Balaraman P, Oscherwitz M, Carter BH, Sánchez CG, Scaraffia PY. Pyruvate kinase is post-translationally regulated by sirtuin 2 in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2023; 162:104015. [PMID: 37797713 PMCID: PMC10698509 DOI: 10.1016/j.ibmb.2023.104015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
We previously demonstrated that Aedes aegypti pyruvate kinase (AaPK) plays a key role in the regulation of both carbon and nitrogen metabolism in mosquitoes. To further elucidate whether AaPK can be post-translationally regulated by Ae. aegypti sirtuin 2 (AaSirt2), an NAD+-dependent deacetylase that catalyzes the removal of acetyl groups from acetylated lysine residues, we conducted a series of analysis in non-starved and starved female mosquitoes. Transcriptional and protein profiles of AaSirt2, analyzed by qPCR and western blots, indicated that the AaSirt2 is differentially modulated in response to sugar or blood feeding in mosquito tissues dissected at different times during the first gonotrophic cycle. We also found that AaSirt2 is localized in both cytosolic and mitochondrial cellular compartments of fat body and thorax. Multiple lysine-acetylated proteins were detected by western blotting in both cellular compartments. Furthermore, western blotting of immunoprecipitated proteins provided evidence that AaPK is lysine-acetylated and bound with AaSirt2 in the cytosolic fractions of fat body and thorax from non-starved and starved females. In correlation with these results, we also discovered that RNAi-mediated knockdown of AaSirt2 in the fat body of starved females significantly decreased AaPK protein abundance. Notably, survivorship of AaSirt2-deficient females maintained under four different nutritional regimens was not significantly affected. Taken together, our data reveal that AaPK is post-translationally regulated by AaSirt2.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Prashanth Balaraman
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Max Oscherwitz
- Department of Entomology, The University of Arizona, Tucson, AZ, 85721, USA
| | - Brendan H Carter
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Cecilia G Sánchez
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Infectious Disease, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
4
|
Isoe J, Petchampai N, Joseph V, Scaraffia PY. Ornithine decarboxylase deficiency critically impairs nitrogen metabolism and survival in Aedes aegypti mosquitoes. FASEB J 2022; 36:e22279. [PMID: 35344219 PMCID: PMC8969881 DOI: 10.1096/fj.202200008r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/21/2022] [Accepted: 03/14/2022] [Indexed: 11/11/2022]
Abstract
Ornithine decarboxylase (ODC; EC 4.1.1.17) catalyzes the conversion of ornithine to putrescine, the rate-limiting first step for de novo polyamine biosynthesis. Previously, we reported that genetic knockdown of xanthine dehydrogenase 1 (XDH1)-a gene encoding the enzyme involved in the last two steps of uric acid synthesis-causes an increase in ODC transcript levels in fat body of blood-fed Aedes aegypti mosquitoes, suggesting a crosstalk at molecular level between XDH1 and ODC during nitrogen disposal. To further investigate the role of ODC in nitrogen metabolism, we conducted several biochemical and genetic analyses in sugar- and blood-fed A. aegypti females. Distinct ODC gene and protein expression patterns were observed in mosquito tissues dissected during the first gonotrophic cycle. Both pharmacological and RNA interference-mediated knockdown of ODC negatively impacted mosquito survival, disrupted nitrogen waste disposal, delayed oviposition onset, and decreased fecundity in vitellogenic blood-fed females. A lag in the expression of two major digestive serine proteases, a reduction of blood meal digestion in the midgut, and a decrease in vitellogenin yolk protein uptake in ovarian follicles were observed by western blots in ODC-deficient females. Moreover, genetic silencing of ODC showed a broad transcriptional modulation of genes encoding proteins involved in multiple metabolic pathways in mosquito fat body, midgut, and Malpighian tubules prior to and after blood feeding. All together, these data demonstrate that ODC plays an essential role in mosquito metabolism, and that ODC crosstalks with multiple genes and proteins to prevent deadly nitrogen perturbations in A. aegypti females.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | - Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Vena Joseph
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
5
|
Kwon H, Smith R. Anopheles gambiae Actively Metabolizes Uric Acid Following Plasmodium Infection to Limit Malaria Parasite Survival. Front Physiol 2022; 12:821869. [PMID: 35140633 PMCID: PMC8818946 DOI: 10.3389/fphys.2021.821869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Characterizing the physiological changes that accompany malaria parasite infection of the mosquito host is crucial to our understanding of vectorial capacity in Anopheles mosquitoes, yet has not fully been explored. In this study, we examine the role of uric acid metabolism in the mosquito, Anopheles gambiae, following malaria parasite infection. We demonstrate that levels of uric acid are significantly decreased in the excreta and the mosquito at 24 and 48 h post-Plasmodium infection when compared to controls fed on naïve mouse blood. When we examine the expression of well-known enzymes responsible for uric acid metabolism, we see a significant increase in both urate oxidase (UO) and allatoicase (ALLC) expression following Plasmodium infection. Targeting the essential first step in uric acid metabolism by silencing UO resulted in elevated levels of uric acid, enhancing malaria parasite survival. With implications from other insect systems that bacteria can modulate UO expression, we examined the possibility that the mosquito microbiota and its expansion following blood-feeding may contribute to increased UO levels. However, there was no difference in uric acid metabolism between septic and aseptic mosquitoes, indicating that the mosquito microbiome is not associated with the manipulation of UO expression. Together, our study provides new evidence that Plasmodium infection causes the mosquito host to actively metabolize uric acid by increasing UO expression to limit Plasmodium oocyst survival, suggesting that nitrogen metabolism is an essential pathway in defining mosquito vector competence.
Collapse
|
6
|
Dhakal S, Sang J, Aryal B, Lee Y. Ionotropic receptors mediate nitrogenous waste avoidance in Drosophila melanogaster. Commun Biol 2021; 4:1281. [PMID: 34773080 PMCID: PMC8589963 DOI: 10.1038/s42003-021-02799-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
Ammonia and its amine-containing derivatives are widely found in natural decomposition byproducts. Here, we conducted biased chemoreceptor screening to investigate the mechanisms by which different concentrations of ammonium salt, urea, and putrescine in rotten fruits affect feeding and oviposition behavior. We identified three ionotropic receptors, including the two broadly required IR25a and IR76b receptors, as well as the narrowly tuned IR51b receptor. These three IRs were fundamental in eliciting avoidance against nitrogenous waste products, which is mediated by bitter-sensing gustatory receptor neurons (GRNs). The aversion of nitrogenous wastes was evaluated by the cellular requirement by expressing Kir2.1 and behavioral recoveries of the mutants in bitter-sensing GRNs. Furthermore, by conducting electrophysiology assays, we confirmed that ammonia compounds are aversive in taste as they directly activated bitter-sensing GRNs. Therefore, our findings provide insights into the ecological roles of IRs as a means to detect and avoid toxic nitrogenous waste products in nature.
Collapse
Affiliation(s)
- Subash Dhakal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Jiun Sang
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Binod Aryal
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul, 02707, Republic of Korea.
- Interdisciplinary Program for Bio-Health Convergence, Kookmin University, Seoul, 02707, Republic of Korea.
| |
Collapse
|
7
|
Novel Symbiotic Genome-Scale Model Reveals Wolbachia's Arboviral Pathogen Blocking Mechanism in Aedes aegypti. mBio 2021; 12:e0156321. [PMID: 34634928 PMCID: PMC8515829 DOI: 10.1128/mbio.01563-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wolbachia are endosymbiont bacteria known to infect arthropods causing different effects, such as cytoplasmic incompatibility and pathogen blocking in Aedes aegypti. Although several Wolbachia strains have been studied, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their obligate endosymbiont nature and its pathogen blocking ability. Motivated by the potential applications on disease control, we developed a genome-scale model of two Wolbachia strains: wMel and the strongest Dengue blocking strain known to date: wMelPop. The obtained metabolic reconstructions exhibit an energy metabolism relying mainly on amino acids and lipid transport to support cell growth that is consistent with altered lipid and cholesterol metabolism in Wolbachia-infected mosquitoes. The obtained metabolic reconstruction was then coupled with a reconstructed mosquito model to retrieve a symbiotic genome-scale model accounting for 1,636 genes and 6,408 reactions of the Aedes aegypti-Wolbachia interaction system. Simulation of an arboviral infection in the obtained novel symbiotic model represents a metabolic scenario characterized by pathogen blocking in higher titer Wolbachia strains, showing that pathogen blocking by Wolbachia infection is consistent with competition for lipid and amino acid resources between arbovirus and this endosymbiotic bacteria.
Collapse
|
8
|
Scolari F, Khamis FM, Pérez-Staples D. Beyond Sperm and Male Accessory Gland Proteins: Exploring Insect Reproductive Metabolomes. Front Physiol 2021; 12:729440. [PMID: 34690804 PMCID: PMC8529219 DOI: 10.3389/fphys.2021.729440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/14/2021] [Indexed: 01/13/2023] Open
Abstract
Insect seminal fluid, the non-sperm component of the ejaculate, comprises a variegated set of molecules, including, but not limited to, lipids, proteins, carbohydrates, salts, hormones, nucleic acids, and vitamins. The identity and functional role of seminal fluid proteins (SFPs) have been widely investigated, in multiple species. However, most of the other small molecules in insect ejaculates remain uncharacterized. Metabolomics is currently adopted to deepen our understanding of complex biological processes and in the last 15years has been applied to answer different physiological questions. Technological advances in high-throughput methods for metabolite identification such as mass spectrometry and nuclear magnetic resonance (NMR) are now coupled to an expanded bioinformatics toolbox for large-scale data analysis. These improvements allow for the processing of smaller-sized samples and for the identification of hundreds to thousands of metabolites, not only in Drosophila melanogaster but also in disease vectors, animal, and agricultural pests. In this review, we provide an overview of the studies that adopted metabolomics-based approaches in insects, with a particular focus on the reproductive tract (RT) of both sexes and the ejaculate. Progress in the field of metabolomics will contribute not only to achieve a deeper understanding of the composition of insect ejaculates and how they are affected by endogenous and exogenous factors, but also to provide increasingly powerful tools to decipher the identity and molecular interactions between males and females during and after mating.
Collapse
Affiliation(s)
- Francesca Scolari
- Institute of Molecular Genetics (IGM)-CNR "Luigi Luca Cavalli-Sforza", Pavia, Italy
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Diana Pérez-Staples
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
9
|
Weihrauch D, O'Donnell MJ. Mechanisms of nitrogen excretion in insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:25-30. [PMID: 33609767 DOI: 10.1016/j.cois.2021.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Avoiding the toxic effects of ammonia derived from catabolism of proteins and nucleic acids typically involves synthesis of the less soluble compound uric acid in insects, although some species which are not water stressed excrete ammonia directly. Some dipterans metabolize uric acid further to allantoin or urea. Uric acid plays diverse roles as a nitrogenous waste, nitrogen store, pigment, antioxidant and possibly a signaling molecule. Multiple transporters are implicated in urate transport, including members of the ABC and SLC families. Excretion of ammonia by the Malpighian tubules, hindgut, or anal papillae involves multiple transporters, including Na+/K+-ATPase, Rhesus glycoproteins, ammonia transporters (AMTs) and possibly a hyperpolarization-activated cyclic nucleotide-gated K+ channel (HCN).
Collapse
Affiliation(s)
- Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | | |
Collapse
|
10
|
Reynolds CJ, Turin DR, Romero MF. Transporters and tubule crystals in the insect Malpighian tubule. CURRENT OPINION IN INSECT SCIENCE 2021; 47:82-89. [PMID: 34044181 PMCID: PMC8487917 DOI: 10.1016/j.cois.2021.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 05/16/2023]
Abstract
The insect renal (Malpighian) tubules are functionally homologous to the mammalian kidney. Accumulating evidence indicates that renal tubule crystals form in a manner similar to mammalian kidney stones. In Drosophila melanogaster, crystals can be induced by diet, toxic substances, or genetic mutations that reflect circumstances influencing or eliciting kidney stones in mammals. Incredibly, many mammalian proteins have distinct homologs in Drosophila, and the function of most homologs have been demonstrated to recapitulate their mammalian and human counterparts. Here, we discuss the present literature establishing Drosophila as a nephrolithiasis model. This insect model may be used to investigate and understand the etiology of kidney stone diseases, especially with regard to calcium oxalate, calcium phosphate and xanthine or urate crystallization.
Collapse
Affiliation(s)
- Carmen J Reynolds
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA
| | - Daniel R Turin
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; University of Minnesota-Rochester, 111 South Broadway, Suite 300, Rochester, MN 55904, USA
| | - Michael F Romero
- Physiology and Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 First Street SW, Rochester, MN 55905, USA; Nephrology and Hypertension, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN 55905, USA.
| |
Collapse
|
11
|
Horvath TD, Dagan S, Scaraffia PY. Unraveling mosquito metabolism with mass spectrometry-based metabolomics. Trends Parasitol 2021; 37:747-761. [PMID: 33896683 PMCID: PMC8282712 DOI: 10.1016/j.pt.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
Nearly half a million people die annually due to mosquito-borne diseases. Despite aggressive mosquito population-control efforts, current strategies are limited in their ability to control these vectors. A better understanding of mosquito metabolism through modern approaches can contribute to the discovery of novel metabolic targets and/or regulators and lead to the development of better mosquito-control strategies. Currently, cutting-edge technologies such as gas or liquid chromatography-mass spectrometry-based metabolomics are considered 'mature technologies' in many life-science disciplines but are still an emerging area of research in medical entomology. This review primarily discusses recent developments and progress in the application of mass spectrometry-based metabolomics to answer multiple biological questions related to mosquito metabolism.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Immunology and Pathology, Baylor College of Medicine, and Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research, Ness Ziona, Israel, 74100, Israel
| | - Patricia Y Scaraffia
- Department of Tropical Medicine and Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
12
|
Simão-Gurge RM, Thakre N, Strickland J, Isoe J, Delacruz LR, Torrevillas BK, Rodriguez AM, Riehle MA, Luckhart S. Activation of Anopheles stephensi Pantothenate Kinase and Coenzyme A Biosynthesis Reduces Infection with Diverse Plasmodium Species in the Mosquito Host. Biomolecules 2021; 11:807. [PMID: 34072373 PMCID: PMC8228300 DOI: 10.3390/biom11060807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria parasites require pantothenate from both human and mosquito hosts to synthesize coenzyme A (CoA). Specifically, mosquito-stage parasites cannot synthesize pantothenate de novo or take up preformed CoA from the mosquito host, making it essential for the parasite to obtain pantothenate from mosquito stores. This makes pantothenate utilization an attractive target for controlling sexual stage malaria parasites in the mosquito. CoA is synthesized from pantothenate in a multi-step pathway initiated by the enzyme pantothenate kinase (PanK). In this work, we manipulated A. stephensi PanK activity and assessed the impact of mosquito PanK activity on the development of two malaria parasite species with distinct genetics and life cycles: the human parasite Plasmodium falciparum and the mouse parasite Plasmodium yoelii yoelii 17XNL. We identified two putative A. stephensi PanK isoforms encoded by a single gene and expressed in the mosquito midgut. Using both RNAi and small molecules with reported activity against human PanK, we confirmed that A. stephensi PanK manipulation was associated with corresponding changes in midgut CoA levels. Based on these findings, we used two small molecule modulators of human PanK activity (PZ-2891, compound 7) at reported and ten-fold EC50 doses to examine the effects of manipulating A. stephensi PanK on malaria parasite infection success. Our data showed that oral provisioning of 1.3 nM and 13 nM PZ-2891 increased midgut CoA levels and significantly decreased infection success for both Plasmodium species. In contrast, oral provisioning of 62 nM and 620 nM compound 7 decreased CoA levels and significantly increased infection success for both Plasmodium species. This work establishes the A. stephensi CoA biosynthesis pathway as a potential target for broadly blocking malaria parasite development in anopheline hosts. We envision this strategy, with small molecule PanK modulators delivered to mosquitoes via attractive bait stations, working in concert with deployment of parasite-directed novel pantothenamide drugs to block parasite infection in the human host. In mosquitoes, depletion of pantothenate through manipulation to increase CoA biosynthesis is expected to negatively impact Plasmodium survival by starving the parasite of this essential nutrient. This has the potential to kill both wild type parasites and pantothenamide-resistant parasites that could develop under pantothenamide drug pressure if these compounds are used as future therapeutics for human malaria.
Collapse
Affiliation(s)
- Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Neha Thakre
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Jessica Strickland
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Jun Isoe
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Lillian R. Delacruz
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Brandi K. Torrevillas
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Anna M. Rodriguez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
| | - Michael A. Riehle
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; (N.T.); (J.I.); (L.R.D.); (M.A.R.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83843, USA; (R.M.S.-G.); (J.S.); (B.K.T.); (A.M.R.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83843, USA
| |
Collapse
|
13
|
van Schoor T, Kelly ET, Tam N, Attardo GM. Impacts of Dietary Nutritional Composition on Larval Development and Adult Body Composition in the Yellow Fever Mosquito ( Aedes aegypti). INSECTS 2020; 11:insects11080535. [PMID: 32824225 PMCID: PMC7469193 DOI: 10.3390/insects11080535] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/08/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023]
Abstract
Simple Summary The mosquito Aedes aegypti (Ae. aegypti) is responsible for the spread of viruses such as Zika and Dengue. The nutritional environment of immature Ae. aegypti is important for development of larvae and resulting adult mosquitoes. Larval mosquitoes with inadequate nutrition can result in developmental failure or impact the size and reproductive ability of adults. Understanding the nutritional requirements of larval mosquitoes allows us to optimize lab reared mosquitoes and identify new targets for mosquito control. We tested the effect of diets with different ratios of protein to carbohydrates on the life history traits of Ae. aegypti. Each diet was composed of autolyzed Brewer’s yeast (protein), and/or rice flour (carbohydrates). Larvae fed a medium-low protein diet had the shortest pupation time. As adults, the medium-low protein dietary group also had the longest wing lengths, highest weights, and increased lipid stores compared to the adults in all other dietary groups. These findings indicate that both carbohydrates and protein are essential components of Aedes aegypti larval diets. However, Ae. aegypti larvae fed a diet rich in carbohydrates and lower in protein seem to flourish as long as they receive enough dietary protein to fulfill basic biochemical requirements for growth and development. Abstract Background: the mosquito Aedes aegypti (Ae. aegypti) is an important vector of arboviruses, including Zika, Dengue, and Chikungunya. The dietary requirements of larval Ae. aegypti are not well understood and likely impact developmental and physiological parameters knowledge of which could be important for vector control. This study examines the effects nutrition has on growth and development of larval Ae. aegypti of laboratory-reared Rockefeller strain mosquitoes. Methods: mosquito larvae were split into five feeding groups with diets providing different ratios of protein and carbohydrates. Each group received autolyzed Brewer’s yeast (AY - high-protein), and/or rice flour (RF—high-carbohydrate). The groups were monitored to record larval developmental times, adult sizes and nutritional stores. Results: the 100% AY group failed to pupate, suggesting the AY alone is either lacking in critical nutrients or is toxic at higher concentrations. The 100% RF group resulted in the smallest adults that took the longest time to reach pupation. Of the remaining groups, the 25% AY/75% RF (Med–low) diet yielded adult mosquitoes with highest average weight, wing length, and lipid stores relative to the other diets. Conclusions: the dietary requirements for development, body size, and nutrient stores of Ae. aegypti mosquitoes appear to be dependent on a relatively low but essential proportion of dietary protein to carbohydrates to achieve optimal developmental outcomes.
Collapse
|
14
|
Petchampai N, Isoe J, Horvath TD, Dagan S, Tan L, Lorenzi PL, Hawke DH, Scaraffia PY. Mass spectrometry-based stable-isotope tracing uncovers metabolic alterations in pyruvate kinase-deficient Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103366. [PMID: 32276114 PMCID: PMC7249512 DOI: 10.1016/j.ibmb.2020.103366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 05/11/2023]
Abstract
A recent in vitro characterization of a recombinant pyruvate kinase (PK) from Aedes aegypti mosquitoes demonstrated that the enzyme is uniquely regulated by multiple allosteric effectors. Here, we further explored PK gene and protein expression, and enzymatic activity in key metabolic tissues of mosquitoes maintained under different nutritional conditions. We also studied the metabolic effects of PK depletion using several techniques including RNA interference and mass spectrometry-based stable-isotope tracing. Transcriptional analysis showed a dynamic post-feeding PK mRNA expression pattern within and across mosquito tissues, whereas corresponding protein levels remained stable throughout the time course analyzed. Nevertheless, PK activity significantly differed in the fat body of sucrose-, blood-fed, and starved mosquitoes. Genetic silencing of PK did not alter survival in blood-fed females maintained on sucrose. However, an enhanced survivorship was observed in PK-deficient females maintained under different nutritional regimens. Our results indicate that mosquitoes overcame PK deficiency by up-regulating the expression of genes encoding NADP-malic enzyme-1, phosphoenolpyruvate carboxykinase-1, phosphoglycerate dehydrogenase and glutamate dehydrogenase, and by decreasing glucose oxidation and metabolic pathways associated with ammonia detoxification. Taken together, our data demonstrate that PK confers to A. aegypti a metabolic plasticity to tightly regulate both carbon and nitrogen metabolism.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Thomas D Horvath
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shai Dagan
- Israel Institute for Biological Research (IIBR), Ness Ziona, 74100, Israel
| | - Lin Tan
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Metabolomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - David H Hawke
- Department of Systems Biology, Proteomics Core Facility, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
15
|
20-Hydroxyecdysone Primes Innate Immune Responses That Limit Bacterial and Malarial Parasite Survival in Anopheles gambiae. mSphere 2020; 5:5/2/e00983-19. [PMID: 32295874 PMCID: PMC7160685 DOI: 10.1128/msphere.00983-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood feeding is an integral behavior of mosquitoes to acquire nutritional resources needed for reproduction. This requirement also enables mosquitoes to serve as efficient vectors to acquire and potentially transmit a multitude of mosquito-borne diseases, most notably malaria. Recent studies suggest that mosquito immunity is stimulated following a blood meal, independent of infection status. Since blood feeding promotes production of the hormone 20-hydroxyecdysone (20E), we hypothesized that 20E plays an important role in priming the immune response for pathogen challenge. Here, we examine the immunological effects of priming Anopheles gambiae with 20E prior to pathogen infection, demonstrating a significant reduction in bacteria and Plasmodium berghei survival in the mosquito host. Transcriptome sequencing (RNA-seq) analysis following 20E treatment identifies several known 20E-regulated genes, as well as several immune genes with previously reported function in antipathogen defense. Together, these data demonstrate that 20E influences cellular immune function and antipathogen immunity following mosquito blood feeding, arguing the importance of hormones in the regulation of mosquito innate immune function.IMPORTANCE Blood feeding is required to provide nutrients for mosquito egg production and serves as a mechanism to acquire and transmit pathogens. Shortly after a blood meal is taken, there is a peak in the production of 20-hydroxyecdysone (20E), a mosquito hormone that initiates physiological changes, including yolk protein production and mating refractoriness. Here, we examine additional roles of 20E in the regulation of mosquito immunity, demonstrating that priming the immune system with 20E increases mosquito resistance to pathogens. We identify differentially expressed genes in response to 20E treatment, including several involved in innate immune function as well as lipid metabolism and transport. Together, these data argue that 20E stimulates mosquito cellular immune function and innate immunity shortly after blood feeding.
Collapse
|
16
|
Nouzova M, Clifton ME, Noriega FG. Mosquito adaptations to hematophagia impact pathogen transmission. CURRENT OPINION IN INSECT SCIENCE 2019; 34:21-26. [PMID: 31247413 DOI: 10.1016/j.cois.2019.02.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Mosquito-borne diseases such as Dengue fever, Chikungunya, and Malaria are critical threats to public health in many parts of the world. Female mosquitoes have evolved multiple adaptive mechanisms to hematophagy, including the ability to efficiently draw and digest blood, as well as the ability to eliminate excess fluids and toxic by-products of blood digestion. Pathogenic agents enter the mosquito digestive tract with the blood meal and need to travel through the midgut and into the hemocele in order to reach the salivary glands and infect a new host. Pathogens need to adjust to these hostile gut, hemocele, and salivary gland environments, and when possible influence the physiology and behavior of their hosts to enhance transmission.
Collapse
Affiliation(s)
- Marcela Nouzova
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA; Institute of Parasitology, Biology Centre CAS, Ceske Budejovice, Czech Republic
| | - Mark E Clifton
- North Shore Mosquito Abatement District, Northfield, IL, USA
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
17
|
Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes. PLoS Biol 2019; 17:e3000068. [PMID: 30620728 PMCID: PMC6324781 DOI: 10.1371/journal.pbio.3000068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 11/29/2018] [Indexed: 12/17/2022] Open
Abstract
Mosquito-borne diseases are responsible for several million human deaths annually around the world. One approach to controlling mosquito populations is to disrupt molecular processes or antagonize novel metabolic targets required for the production of viable eggs. To this end, we focused our efforts on identifying proteins required for completion of embryonic development that are mosquito selective and represent potential targets for vector control. We performed bioinformatic analyses to identify putative protein-coding sequences that are specific to mosquito genomes. Systematic RNA interference (RNAi) screening of 40 mosquito-specific genes was performed by injecting double-stranded RNA (dsRNA) into female Aedes aegypti mosquitoes. This experimental approach led to the identification of eggshell organizing factor 1 (EOF1, AAEL012336), which plays an essential role in the formation and melanization of the eggshell. Eggs deposited by EOF1-deficient mosquitoes have nonmelanized fragile eggshells, and all embryos are nonviable. Scanning electron microscopy (SEM) analysis identified that exochorionic eggshell structures are strongly affected in EOF1-deficient mosquitoes. EOF1 is a potential novel target, to our knowledge, for exploring the identification and development of mosquito-selective and biosafe small-molecule inhibitors. An RNAi functional screen of 40 Aedes aegypti genes specific to the mosquito lineage helped to identify EOF1, a protein that plays an essential role in mosquito eggshell formation and melanization. Mosquito-borne pathogens infect millions of people worldwide, and the rise in insecticide resistance is exacerbating this problem. A new generation of environmentally safe insecticides will be essential to control insecticide-resistant mosquitoes. One potential route to such novel insecticide targets is the identification of proteins specifically needed for mosquito reproduction. Female mosquitoes feed on blood to produce eggs, which are covered with an eggshell; using RNA interference screening of mosquito-specific genes in Aedes aegypti (the mosquito that transmits yellow fever), we identified the eggshell organizing factor 1 (EOF1) protein that plays an essential role in eggshell melanization and embryonic development. Nearly 100% of eggs laid by EOF1-deficient females had a defective eggshell and were not viable. Bleach assays on eggs further confirmed that mosquito-specific EOF1 is required for embryonic development in A. aegypti. Additional experiments revealed that EOF1 also plays an essential role in eggshell formation in Aedes albopictus (the tiger mosquito, a carrier of Zika virus and dengue fever). We hypothesize that EOF1 has evolved within the Culicidae family to effect eggshell formation and therefore maximize egg survival. The results provide new insights, to our knowledge, into mosquito egg maturation and eggshell synthesis and could lead to key advances in the field of mosquito vector control.
Collapse
|
18
|
Petchampai N, Murillo-Solano C, Isoe J, Pizarro JC, Scaraffia PY. Distinctive regulatory properties of pyruvate kinase 1 from Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 104:82-90. [PMID: 30578824 PMCID: PMC6814295 DOI: 10.1016/j.ibmb.2018.12.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 05/17/2023]
Abstract
Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diseases of public health significance. The discovery of new metabolic targets is crucial for improving mosquito control strategies. We recently demonstrated that glucose oxidation supports ammonia detoxification in A. aegypti. Pyruvate kinase (PK, EC 2.7.1.40) catalyzes the last step of the glycolytic pathway. In most organisms, one or more allosteric effectors control PK activity. However, the kinetic properties and structure of PK in mosquitoes have not been previously reported. In this study, two alternatively spliced mRNA variants (AaPK1 and AaPK2) that code for PKs were identified in the A. aegypti genome. The AaPK1 mRNA variant, which encodes a 529 amino acid protein with an estimated molecular weight of ∼57 kDa, was cloned. The protein was expressed in Escherichia coli and purified. The AaPK1 kinetic properties were identified. The recombinant protein was also crystallized and its 3D structure determined. We found that alanine, glutamine, proline, serine and fructose-1-phosphate displayed a classic allosteric activation on AaPK1. Ribulose-5-phosphate acted as an allosteric inhibitor of AaPK1 but its inhibitory effect was reversed by alanine, glutamine, proline and serine. Additionally, the allosteric activation of AaPK1 by amino acids was weakened by fructose-1,6-bisphosphate, whereas the allosteric activation of AaPK1 by alanine and serine was diminished by glucose-6-phosphate. The AaPK1 structure shows the presence of fructose-1,6-bisphosphate in the allosteric site. Together, our results reveal that specific amino acids and phosphorylated sugars tightly regulate conformational dynamics and catalytic changes of AaPK1. The distinctive AaPK1 allosteric properties support a complex role for this enzyme within mosquito metabolism.
Collapse
Affiliation(s)
- Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Claribel Murillo-Solano
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Jun Isoe
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, USA
| | - Juan C Pizarro
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
19
|
Nguyen JT, Fong J, Fong D, Fong T, Lucero RM, Gallimore JM, Burata OE, Parungao K, Rascón AA. Soluble expression of recombinant midgut zymogen (native propeptide) proteases from the Aedes aegypti Mosquito Utilizing E. coli as a host. BMC BIOCHEMISTRY 2018; 19:12. [PMID: 30563449 PMCID: PMC6299515 DOI: 10.1186/s12858-018-0101-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 12/04/2018] [Indexed: 02/05/2023]
Abstract
Background Studying proteins and enzymes involved in important biological processes in the Aedes aegypti mosquito is limited by the quantity that can be directly isolated from the mosquito. Adding to this difficulty, digestive enzymes (midgut proteases) involved in metabolizing blood meal proteins require a more oxidizing environment to allow proper folding of disulfide bonds. Therefore, recombinant techniques to express foreign proteins in Escherichia coli prove to be effective in producing milligram quantities of the expressed product. However, with the most commonly used strains having a reducing cytoplasm, soluble expression of recombinant proteases is hampered. Fortunately, new E. coli strains with a more oxidizing cytoplasm are now available to ensure proper folding of disulfide bonds. Results Utilizing an E. coli strain with a more oxidizing cytoplasm (SHuffle® T7, New England Biolabs) and changes in bacterial growth temperature has resulted in the soluble expression of the four most abundantly expressed Ae. aegypti midgut proteases (AaET, AaSPVI, AaSPVII, and AaLT). A previous attempt of solubly expressing the full-length zymogen forms of these proteases with the leader (signal) sequence and a modified pseudo propeptide with a heterologous enterokinase cleavage site led to insoluble recombinant protein expression. In combination with the more oxidizing cytoplasm, and changes in growth temperature, helped improve the solubility of the zymogen (no leader) native propeptide proteases in E. coli. Furthermore, the approach led to autocatalytic activation of the proteases during bacterial expression and observable BApNA activity. Different time-points after bacterial growth induction were tested to determine the time at which the inactive (zymogen) species is observed to transition to the active form. This helped with the purification and isolation of only the inactive zymogen forms using Nickel affinity. Conclusions The difficulty in solubly expressing recombinant proteases in E. coli is caused by the native reducing cytoplasm. However, with bacterial strains with a more oxidizing cytoplasm, recombinant soluble expression can be achieved, but only in concert with changes in bacterial growth temperature. The method described herein should provide a facile starting point to recombinantly expressing Ae. aegypti mosquito proteases or proteins dependent on disulfide bonds utilizing E. coli as a host. Electronic supplementary material The online version of this article (10.1186/s12858-018-0101-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- James T Nguyen
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jonathan Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Daniel Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Timothy Fong
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Rachael M Lucero
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Jamie M Gallimore
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Olive E Burata
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Kamille Parungao
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA
| | - Alberto A Rascón
- Department of Chemistry, Duncan Hall 612, One Washington Square, San José State University, San José, CA, 95192, USA.
| |
Collapse
|
20
|
Richard R, Foster S, Giron D, Casas J. A host-feeding wasp shares several features of nitrogen management with blood-feeding mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2018; 110:1-5. [PMID: 30118747 DOI: 10.1016/j.jinsphys.2018.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/11/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Adult feeding on hosts is common among parasitic wasps. The ingested host fluid is rich in nutrients, especially proteins. A study on Eupelmus vuilleti (Hymenoptera: Eupelmidae), a host-feeding parasitoid of larvae of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae), showed that the carbohydrates (maybe lipids) but not proteins, gained from host feeding accounted for the increased egg production. Thus, host protein is probably utilized for general adult metabolism, allowing conservation of carbohydrate and/or lipid resources for direct allocation to oocytes. In that case, there should be increased N excretion by female parasitoids. To test this, we studied the dynamics of excretion in E. vuilleti with and without host exposure. The aim of this work was threefold: (i) to identify the major N-containing compounds in adult excreta, (ii) to assess whether protein consumption during host feeding increased the amount of N excreted, and (iii), if so, to compare the increase in N excreted with the amount taken in during a single host feeding. We found that uric acid is the predominant N-containing metabolite in excreta, although small quantities of urea and traces of allantoin were also found. A calculation of the N budget showed that the extra quantity of N excreted following a host meal corresponds to the quantity ingested, confirming that host-feeding in this species offers little or no net quantitative benefit in N allocation to oocytes, although the allocation of specific amino acids from host feeding cannot be discounted. Interestingly, host-feeding in parasitoids appears analogous to vertebrate blood-feeding in mosquitoes, both in terms of the N-containing compounds excreted and the offset of acquired N to metabolism, rather than to oocytes. Further comparative and detailed investigations of N excretion in insects living on other N-rich fluids might establish further metabolic commonalities.
Collapse
Affiliation(s)
- Romain Richard
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université de Tours, 37200 Tours, France
| | - Stephen Foster
- Department of Entomology, SNRS, North Dakota State University, PO Box 6050, Fargo, ND 58108-6050, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université de Tours, 37200 Tours, France
| | - Jérôme Casas
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261 CNRS/Université de Tours, 37200 Tours, France; Institut Universitaire de France, IUF, Paris, France.
| |
Collapse
|
21
|
Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2017; 23:112-117. [PMID: 29129275 PMCID: PMC5695569 DOI: 10.1016/j.cois.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 05/11/2023]
Abstract
Micronutrients or non-energetic nutrients (NEN) are needed in reduced amounts, but are essential for many mosquito physiological processes that influence biological traits from vector competence to reproductive capacity. The NEN include amino acids (AA), vitamins, salts, metals and sterols. Free AA plays critical roles controlling most physiological processes, from digestion to reproduction. Particularly proline connects metabolic pathways in energy production, flight physiology and ammonia detoxification. Metal, in particular iron and calcium, salts, sterol and vitamin homeostasis are critical for cell signaling, respiration, metabolism and reproduction. Micronutrient homeostasis influence the symbiotic relationships with microorganisms, having important implications in mosquitoes' nutrition, physiology and behavior, as well as in mosquito immunity and vector competence.
Collapse
Affiliation(s)
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
22
|
Horvath TD, Dagan S, Lorenzi PL, Hawke DH, Scaraffia PY. Positional stable isotope tracer analysis reveals carbon routes during ammonia metabolism of Aedes aegypti mosquitoes. FASEB J 2017; 32:466-477. [PMID: 28970248 DOI: 10.1096/fj.201700657r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 01/23/2023]
Abstract
In Aedes aegypti females, the ammonia released during blood meal digestion is partially metabolized to facilitate the disposal of excess nitrogen. In this study, we used low- and high-resolution liquid chromatography-mass spectrometry (LC/MS) techniques to investigate the role of glucose during ammonia detoxification. Mosquitoes were fed a blood meal supplemented with [1,2-13C2]glucose, and downstream metabolites were measured for 24 h. Quantification of [13C] amino acids in the entire mosquito body was conducted without sample derivatization using selected reaction monitoring of mass transitions that are indicative of the structural position of [13C] atom incorporation. Identification of unlabeled and [13C] isotopologs of 43 compounds, including amino acids, amino acid derivatives, and organic acids, was performed by high-resolution LC/MS techniques. Blood-fed mosquitoes synthesized [13C] metabolites in mainly 2 carbon positions from [1,2-13C2]glucose. [13C2]Ala and [13C2]Pro were the most abundant and rapidly labeled amino acids synthesized. Additional [13C] amino acids, [13C] amino acid derivatives, and [13C] organic acids in 1 or 2 carbon positions were also identified. Two kinetic routes were proposed based on the incorporation of a [13C] atom at position 1 in specific amino acids. Our findings provide evidence that glucose is used for ammonia detoxification and [13C] uric acid synthesis through multiple metabolic pathways, uncovering a metabolic link at the carbon atomic level in ammonia metabolism of A. aegypti-Horvath, T. D., Dagan, S., Lorenzi, P. L., Hawke, D. H., Scaraffia, P. Y. Positional stable isotope tracer analysis reveals carbon routes during ammonia metabolism of Aedes aegypti mosquitoes.
Collapse
Affiliation(s)
- Thomas D Horvath
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - Shai Dagan
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Philip L Lorenzi
- Department of Bioinformatics and Computational Biology, Proteomics and Metabolomics Core Facility, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
| | - David H Hawke
- Department of Systems Biology, Proteomics and Metabolomics Core Facility, University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA; and
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
23
|
Li Y, Piermarini PM, Esquivel CJ, Price DP, Drumm HE, Schilkey FD, Hansen IA. RNA-Seq Comparison of Larval and Adult Malpighian Tubules of the Yellow Fever Mosquito Aedes aegypti Reveals Life Stage-Specific Changes in Renal Function. Front Physiol 2017; 8:283. [PMID: 28536536 PMCID: PMC5422481 DOI: 10.3389/fphys.2017.00283] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 04/19/2017] [Indexed: 11/20/2022] Open
Abstract
Introduction: The life history of Aedes aegypti presents diverse challenges to its diuretic system. During the larval and pupal life stages mosquitoes are aquatic. With the emergence of the adult they become terrestrial. This shifts the organism within minutes from an aquatic environment to a terrestrial environment where dehydration has to be avoided. In addition, female mosquitoes take large blood meals, which present an entirely new set of challenges to salt and water homeostasis. Methods: To determine differences in gene expression associated with these different life stages, we performed an RNA-seq analysis of the main diuretic tissue in A. aegypti, the Malpighian tubules. We compared transcript abundance in 4th instar larvae to that of adult females and analyzed the data with a focus on transcripts that encode proteins potentially involved in diuresis, like water and solute channels as well as ion transporters. We compared our results against the model of potassium- and sodium chloride excretion in the Malpighian tubules proposed by Hine et al. (2014), which involves at least eight ion transporters and a proton-pump. Results: We found 3,421 of a total number of 17,478 (19.6%) unique transcripts with a P < 0.05 and at least a 2.5 fold change in expression levels between the two groups. We identified two novel transporter genes that are highly expressed in the adult Malpighian tubules, which have not previously been part of the transport model in this species and may play important roles in diuresis. We also identified candidates for hypothesized sodium and chloride channels. Detoxification genes were generally higher expressed in larvae. Significance: This study represents the first comparison of Malpighian tubule transcriptomes between larval and adult A. aegypti mosquitoes, highlighting key differences in their renal systems that arise as they transform from an aquatic filter-feeding larval stage to a terrestrial, blood-feeding adult stage.
Collapse
Affiliation(s)
- Yiyi Li
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA.,Department of Computer Science, New Mexico State UniversityLas Cruces, NM, USA
| | - Peter M Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | - Carlos J Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State UniversityWooster, OH, USA
| | | | - Hannah E Drumm
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA
| | | | - Immo A Hansen
- Department of Biology, New Mexico State UniversityLas Cruces, NM, USA.,Department of Computer Science, New Mexico State UniversityLas Cruces, NM, USA.,Institute of Applied Biosciences, New Mexico State UniversityLas Cruces, NM, USA
| |
Collapse
|
24
|
Baumann A, Skaljac M, Lehmann R, Vilcinskas A, Franta Z. Urate Oxidase produced by Lucilia sericata medical maggots is localized in Malpighian tubes and facilitates allantoin production. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 83:44-53. [PMID: 28235562 DOI: 10.1016/j.ibmb.2017.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 06/06/2023]
Abstract
Lucilia sericata maggots are the only species currently approved for maggot debridement therapy (MDT), an alternative treatment for chronic and recalcitrant wounds. Maggots promote wound debridement, disinfection and healing by producing a complex mixture of proteins, peptides and low-molecular-weight compounds in their secretions and excretions, but the individual components are not well characterized at the molecular level. Here we investigated the purine catabolism pathway in L. sericata, focusing on the production of allantoin by Urate Oxidase (UO), which is thought to promote wound healing. We produced recombinant L. sericata UO in Escherichia coli, and characterized the properties of the pure enzyme in terms of the optimum pH (7-10) and temperature (20-25 °C), its stability, sensitivity to inhibition and ion dependency. We used quantitative RT-PCR and RNA in situ hybridization to monitor the expression of the UO gene, and we used a guinea pig anti-UO antibody to detect the native enzyme by western blot and by florescence immunohistochemistry in larval tissues. We found that L. sericata UO is exclusively present in the larval excretion organ (the Malpighian tubes) and is freely available in the cytoplasm rather than restricted to a specific subcellular compartment. Allantoin is a final product of L. sericata purine catabolism. It is produced by UO in the Malpighian tubes to remove uric acid from the hemolymph and is consequently excreted via the hindgut. Our findings confirm the hypothesis that both actively secreted molecules and excretion products contribute to the beneficial effects of MDT.
Collapse
Affiliation(s)
- Andre Baumann
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Marisa Skaljac
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Rüdiger Lehmann
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany
| | - Andreas Vilcinskas
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany; Justus-Liebig-University of Giessen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Zdenӗk Franta
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Winchesterstraße 2, 35394 Giessen, Germany.
| |
Collapse
|
25
|
Isoe J, Petchampai N, Isoe YE, Co K, Mazzalupo S, Scaraffia PY. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity. FASEB J 2017; 31:2276-2286. [PMID: 28179423 DOI: 10.1096/fj.201601185r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/23/2017] [Indexed: 01/03/2023]
Abstract
Aedesaegypti has 2 genes encoding xanthine dehydrogenase (XDH). We analyzed XDH1 and XDH2 gene expression by real-time quantitative PCR in tissues from sugar- and blood-fed females. Differential XDH1 and XDH2 gene expression was observed in tissues dissected throughout a time course. We next exposed females to blood meals supplemented with allopurinol, a well-characterized XDH inhibitor. We also tested the effects of injecting double-stranded RNA (dsRNA) against XDH1, XDH2, or both. Disruption of XDH by allopurinol or XDH1 by RNA interference significantly affected mosquito survival, causing a disruption in blood digestion, excretion, oviposition, and reproduction. XDH1-deficient mosquitoes showed a persistence of serine proteases in the midgut at 48 h after blood feeding and a reduction in the uptake of vitellogenin by the ovaries. Surprisingly, analysis of the fat body from dsRNA-XDH1-injected mosquitoes fell into 2 groups: one group was characterized by a reduction of the XDH1 transcript, whereas the other group was characterized by an up-regulation of several transcripts, including XDH1, glutamine synthetase, alanine aminotransferase, catalase, superoxide dismutase, ornithine decarboxylase, glutamate receptor, and ammonia transporter. Our data demonstrate that XDH1 plays an essential role and that XDH1 has the potential to be used as a metabolic target for Ae.aegypti vector control.-Isoe, J., Petchampai, N., Isoe, Y. E., Co, K., Mazzalupo, S., Scaraffia, P. Y. Xanthine dehydrogenase-1 silencing in Aedes aegypti mosquitoes promotes a blood feeding-induced adulticidal activity.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Natthida Petchampai
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Yurika E Isoe
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Katrina Co
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Stacy Mazzalupo
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA;
| |
Collapse
|
26
|
The Role of Arthropods in the Growth of Tillandsia violacea (Bromeliaceae) in a Mexican Temperate Forest. AMERICAN MIDLAND NATURALIST 2016. [DOI: 10.1674/0003-0031-175.2.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Araújo FS, Coelho LM, Silva LDC, da Silva Neto BR, Parente-Rocha JA, Bailão AM, de Oliveira CMA, Fernandes GDR, Hernández O, Ochoa JGM, Soares CMDA, Pereira M. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp. PLoS Negl Trop Dis 2016; 10:e0004309. [PMID: 26734764 PMCID: PMC4703379 DOI: 10.1371/journal.pntd.0004309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 11/26/2015] [Indexed: 02/06/2023] Open
Abstract
Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. Paracoccidioidomycosis (PCM) is a neglected human systemic mycosis caused by Paracoccidioides spp. fungus that invades the host’s lungs and can disseminate to many other organs. Treatment usually involves amphotericin B, sulfadiazine, trimethoprim-sulfamethoxazole, itraconazole, ketoconazole or fluconazole for six months to two years. In this way, many adverse effects are associated with treatment, and patients can have many co-morbidities and difficulties in complying with treatment. For those reasons, more effective and less toxic drugs are needed. The discovery of a potentially bioactive molecule and its correlation with a biological target is an important step in the research and development of drugs. One of the ways in which cells adjust to environmental change is by changing the pattern of gene expression. Thus, the transcriptome is potential experimental strategy to elucidate the mode of action of bioactive molecules. Here, Paracoccidoides spp. altered the expression of genes, leading to a further understanding of the action of the compound argentilactone in the fungal cells. Argentilactone seems to be able to modulate cellular targets, to induce oxidative stress and to interfere with the biosynthesis of the P. lutzii cell wall.
Collapse
Affiliation(s)
- Felipe Souto Araújo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Luciene Melo Coelho
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lívia do Carmo Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | | | - Gabriel da Rocha Fernandes
- Laboratório de Biodados, Biologia Celular e Desenvolvimento, Universidade Católica de Brasília, Brasília, Distrito Federal, Brazil
| | - Orville Hernández
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) and Escuela de Microbiología Universidad de Antioquia, Medellín, Colombia
| | - Juan Guillermo McEwen Ochoa
- Unidad de Biología Celular y Molecular, Corporación para Investigaciones Biológicas (CIB) and Facultad de Medicina Universidad de Antioquia, Medellín, Colombia
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- * E-mail:
| |
Collapse
|
28
|
Mazzalupo S, Isoe J, Belloni V, Scaraffia PY. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase. FASEB J 2016; 30:111-20. [PMID: 26310269 PMCID: PMC4684537 DOI: 10.1096/fj.15-277087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023]
Abstract
To better understand the mechanisms responsible for the success of female mosquitoes in their disposal of excess nitrogen, we investigated the role of alanine aminotransferase (ALAT) in blood-fed Aedes aegypti. Transcript and protein levels from the 2 ALAT genes were analyzed in sucrose- and blood-fed A. aegypti tissues. ALAT1 and ALAT2 exhibit distinct expression patterns in tissues during the first gonotrophic cycle. Injection of female mosquitoes with either double-stranded RNA (dsRNA)-ALAT1 or dsRNA ALAT2 significantly decreased mRNA and protein levels of ALAT1 or ALAT2 in fat body, thorax, and Malpighian tubules compared with dsRNA firefly luciferase-injected control mosquitoes. The silencing of either A. aegypti ALAT1 or ALAT2 caused unexpected phenotypes such as a delay in blood digestion, a massive accumulation of uric acid in the midgut posterior region, and a significant decrease of nitrogen waste excretion during the first 48 h after blood feeding. Concurrently, the expression of genes encoding xanthine dehydrogenase and ammonia transporter (Rhesus 50 glycoprotein) were significantly increased in tissues of both ALAT1- and ALAT2-deficient females. Moreover, perturbation of ALAT1 and ALAT2 in the female mosquitoes delayed oviposition and reduced egg production. These novel findings underscore the efficient mechanisms that blood-fed mosquitoes use to avoid ammonia toxicity and free radical damage.-Mazzalupo, S., Isoe, J., Belloni, V., Scaraffia, P. Y. Effective disposal of nitrogen waste in blood-fed Aedes aegypti mosquitoes requires alanine aminotransferase.
Collapse
Affiliation(s)
- Stacy Mazzalupo
- *Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA; and Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jun Isoe
- *Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA; and Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Virginia Belloni
- *Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA; and Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Patricia Y Scaraffia
- *Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA; and Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
29
|
Genome of Rhodnius prolixus, an insect vector of Chagas disease, reveals unique adaptations to hematophagy and parasite infection. Proc Natl Acad Sci U S A 2015; 112:14936-41. [PMID: 26627243 DOI: 10.1073/pnas.1506226112] [Citation(s) in RCA: 249] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rhodnius prolixus not only has served as a model organism for the study of insect physiology, but also is a major vector of Chagas disease, an illness that affects approximately seven million people worldwide. We sequenced the genome of R. prolixus, generated assembled sequences covering 95% of the genome (∼ 702 Mb), including 15,456 putative protein-coding genes, and completed comprehensive genomic analyses of this obligate blood-feeding insect. Although immune-deficiency (IMD)-mediated immune responses were observed, R. prolixus putatively lacks key components of the IMD pathway, suggesting a reorganization of the canonical immune signaling network. Although both Toll and IMD effectors controlled intestinal microbiota, neither affected Trypanosoma cruzi, the causal agent of Chagas disease, implying the existence of evasion or tolerance mechanisms. R. prolixus has experienced an extensive loss of selenoprotein genes, with its repertoire reduced to only two proteins, one of which is a selenocysteine-based glutathione peroxidase, the first found in insects. The genome contained actively transcribed, horizontally transferred genes from Wolbachia sp., which showed evidence of codon use evolution toward the insect use pattern. Comparative protein analyses revealed many lineage-specific expansions and putative gene absences in R. prolixus, including tandem expansions of genes related to chemoreception, feeding, and digestion that possibly contributed to the evolution of a blood-feeding lifestyle. The genome assembly and these associated analyses provide critical information on the physiology and evolution of this important vector species and should be instrumental for the development of innovative disease control methods.
Collapse
|
30
|
Belloni V, Scaraffia PY. Exposure to L-cycloserine incurs survival costs and behavioral alterations in Aedes aegypti females. Parasit Vectors 2014; 7:373. [PMID: 25129074 PMCID: PMC4261769 DOI: 10.1186/1756-3305-7-373] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/17/2014] [Indexed: 11/25/2022] Open
Abstract
Background It was previously demonstrated that alanine aminotransferase (ALAT, EC 2.6.1.2) participates in maintaining the alanine-proline cycle between flight muscles and fat body during Aedes aegypti flight. ALAT is also actively involved in the metabolism of ammonia in A. aegypti. Here, we investigated the survival and behavioral costs of ALAT inhibition in A. aegypti females to better understand the role of ALAT in blood-fed mosquitoes. Methods We analyzed how A. aegypti female mosquitoes respond to blood meals supplemented with 0, 2.5, 5 and 10 mM L-cycloserine, a well-known inhibitor of ALAT in animals. Mosquitoes were also exposed to blood meals supplemented with L-cycloserine and different concentrations of glucose (0, 10 and 100 mM). Additionally, the effects of ALAT inhibitor and glucose in mosquitoes starved for 24 or 48 h were investigated. Survival and behavioral phenotypes were analyzed during a time course (1, 2, 4, 6, 12, 24, 48 and 72 h after feeding). Results L-cycloserine at 10 mM resulted in high mortality relative to control, with an acute effect during the first 6 h after treatment. A significant decrease in the number of active mosquitoes coinciding with an increase in futile wing fanning during the first 24 h was observed at all inhibitor concentrations. A high occurrence of knockdown phenotype was also recorded at this time for both 5 and 10 mM L-cycloserine. The supplementation of glucose in the blood meal amplified the effects of the ALAT inhibitor. In particular, we observed a higher mortality rate concomitant with an increase in the knockdown phenotype. Starvation prior to blood feeding also increased the effects of L-cycloserine with a rapid increase in mortality. Conclusions Our results provide evidence that exposure of high doses of L-cycloserine during A. aegypti blood feeding affects mosquito survival and motor activity, suggesting an interference with carbohydrate and ammonia metabolism in a time-dependent manner. Electronic supplementary material The online version of this article (doi:10.1186/1756-3305-7-373) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Patricia Y Scaraffia
- Department of Tropical Medicine, Vector-Borne Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, 1430 Tulane Ave,, SL-17, New Orleans, LA 70112, USA.
| |
Collapse
|
31
|
Esquivel CJ, Cassone BJ, Piermarini PM. Transcriptomic evidence for a dramatic functional transition of the malpighian tubules after a blood meal in the Asian tiger mosquito Aedes albopictus. PLoS Negl Trop Dis 2014; 8:e2929. [PMID: 24901705 PMCID: PMC4046972 DOI: 10.1371/journal.pntd.0002929] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/21/2014] [Indexed: 01/02/2023] Open
Abstract
Background The consumption of a vertebrate blood meal by adult female mosquitoes is necessary for their reproduction, but it also presents significant physiological challenges to mosquito osmoregulation and metabolism. The renal (Malpighian) tubules of mosquitoes play critical roles in the initial processing of the blood meal by excreting excess water and salts that are ingested. However, it is unclear how the tubules contribute to the metabolism and excretion of wastes (e.g., heme, ammonia) produced during the digestion of blood. Methodology/Principal Findings Here we used RNA-Seq to examine global changes in transcript expression in the Malpighian tubules of the highly-invasive Asian tiger mosquito Aedes albopictus during the first 24 h after consuming a blood meal. We found progressive, global changes in the transcriptome of the Malpighian tubules isolated from mosquitoes at 3 h, 12 h, and 24 h after a blood meal. Notably, a DAVID functional cluster analysis of the differentially-expressed transcripts revealed 1) a down-regulation of transcripts associated with oxidative metabolism, active transport, and mRNA translation, and 2) an up-regulation of transcripts associated with antioxidants and detoxification, proteolytic activity, amino-acid metabolism, and cytoskeletal dynamics. Conclusions/Significance The results suggest that blood feeding elicits a functional transition of the epithelium from one specializing in active transepithelial fluid secretion (e.g., diuresis) to one specializing in detoxification and metabolic waste excretion. Our findings provide the first insights into the putative roles of mosquito Malpighian tubules in the chronic processing of blood meals. The Asian tiger mosquito Aedes albopictus is a vector of several medically-important arboviruses and one of the most invasive mosquito species in the world. Existing control measures for mosquitoes are presently being challenged by the emergence of resistance to insecticides that target the nervous system. Thus, it is necessary to identify novel physiological targets to guide the development of new insecticides. We recently demonstrated that the ‘kidneys’ (Malpighian tubules) of mosquitoes offer a valuable, new physiological target for insecticides. However, our understanding of how this tissue contributes to the chronic metabolic processing of blood meals by mosquitoes is limited. Here we characterize the changes in transcript expression that occur in the Malpighian tubules of adult female A. albopictus with the goal of identifying key molecular pathways that may reveal valuable targets for insecticide development. We find dramatic changes in transcript accumulation in Malpighian tubules, which 1) provide new insights into the potential functional roles of Malpighian tubules after a blood meal, and 2) reveal new potential molecular pathways and targets to guide the development of new insecticides that would disrupt the renal functions of mosquitoes.
Collapse
Affiliation(s)
- Carlos J. Esquivel
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Bryan J. Cassone
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
| | - Peter M. Piermarini
- Department of Entomology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Cassone BJ, Kamdem C, Cheng C, Tan JC, Hahn MW, Costantini C, Besansky NJ. Gene expression divergence between malaria vector sibling species Anopheles gambiae and An. coluzzii from rural and urban Yaoundé Cameroon. Mol Ecol 2014; 23:2242-59. [PMID: 24673723 DOI: 10.1111/mec.12733] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/05/2014] [Accepted: 03/05/2014] [Indexed: 01/07/2023]
Abstract
Divergent selection based on aquatic larval ecology is a likely factor in the recent isolation of two broadly sympatric and morphologically identical African mosquito species, the malaria vectors Anopheles gambiae and An. coluzzii. Population-based genome scans have revealed numerous candidate regions of recent positive selection, but have provided few clues as to the genetic mechanisms underlying behavioural and physiological divergence between the two species, phenotypes which themselves remain obscure. To uncover possible genetic mechanisms, we compared global transcriptional profiles of natural and experimental populations using gene-based microarrays. Larvae were sampled as second and fourth instars from natural populations in and around the city of Yaoundé, capital of Cameroon, where the two species segregate along a gradient of urbanization. Functional enrichment analysis of differentially expressed genes revealed that An. coluzzii--the species that breeds in more stable, biotically complex and potentially polluted urban water bodies--overexpresses genes implicated in detoxification and immunity relative to An. gambiae, which breeds in more ephemeral and relatively depauperate pools and puddles in suburbs and rural areas. Moreover, our data suggest that such overexpression by An. coluzzii is not a transient result of induction by xenobiotics in the larval habitat, but an inherent and presumably adaptive response to repeatedly encountered environmental stressors. Finally, we find no significant overlap between the differentially expressed loci and previously identified genomic regions of recent positive selection, suggesting that transcriptome divergence is regulated by trans-acting factors rather than cis-acting elements.
Collapse
Affiliation(s)
- Bryan J Cassone
- Eck Institute for Global Health & Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556-0369, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Martínez-Gómez AI, Soriano-Maldonado P, Andújar-Sánchez M, Clemente-Jiménez JM, Rodríguez-Vico F, Neira JL, Las Heras-Vázquez FJ, Martínez-Rodríguez S. Biochemical and mutational studies of allantoinase from Bacillus licheniformis CECT 20T. Biochimie 2013; 99:178-88. [PMID: 24333989 DOI: 10.1016/j.biochi.2013.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 12/03/2013] [Indexed: 10/25/2022]
Abstract
Allantoinases (allantoin amidohydrolase, E.C. 3.5.2.5) catalyze the hydrolysis of the amide bond of allantoin to form allantoic acid, in those organisms where allantoin is not the final product of uric acid degradation. Despite their importance in the purine catabolic pathway, sequences of microbial allantoinases with proven activity are scarce, and only the enzyme from Escherichia coli (AllEco) has been studied in detail in the genomic era. In this work, we report the cloning, purification and characterization of the recombinant allantoinase from Bacillus licheniformis CECT 20T (AllBali). The enzyme was a homotetramer with an apparent Tm of 62 ± 1 °C. Optimal parameters for the enzyme activity were pH 7.5 and 50 °C, showing apparent Km and kcat values of 17.7 ± 2.7 mM and 24.4 ± 1.5 s(-1), respectively. Co(2+) proved to be the most effective cofactor, inverting the enantioselectivity of AllBali when compared to that previously reported for other allantoinases. The common ability of different cyclic amidohydrolases to hydrolyze distinct substrates to the natural one also proved true for AllBali. The enzyme was able to hydrolyze hydantoin, dihydrouracil and 5-ethyl-hydantoin, although at relative rates 3-4 orders of magnitude lower than with allantoin. Mutagenesis experiments suggest that S292 is likely implicated in the binding of the allantoin ring through the carbonyl group of the polypeptide main chain, which is the common mechanism observed in other members of the amidohydrolase family. In addition, our results suggest an allosteric effect of H2O2 toward allantoinase.
Collapse
Affiliation(s)
- Ana Isabel Martínez-Gómez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Pablo Soriano-Maldonado
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Montserrat Andújar-Sánchez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Josefa María Clemente-Jiménez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Felipe Rodríguez-Vico
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Complex Systems Physics Institute, 50009 Zaragoza, Spain
| | - Francisco Javier Las Heras-Vázquez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain
| | - Sergio Martínez-Rodríguez
- Dpto. Química y Física, Universidad de Almería, Campus de Excelencia Internacional Agroalimentario, ceiA3, 04120 Almería, Spain; Centro de Investigación en Biotecnología Agroalimentaria, BITAL, Almería, Spain; Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Dpto. Química Física, Universidad de Granada, 18071 Granada, Spain.
| |
Collapse
|
35
|
Isoe J, Scaraffia PY. Urea synthesis and excretion in Aedes aegypti mosquitoes are regulated by a unique cross-talk mechanism. PLoS One 2013; 8:e65393. [PMID: 23755226 PMCID: PMC3673916 DOI: 10.1371/journal.pone.0065393] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 04/29/2013] [Indexed: 12/12/2022] Open
Abstract
Aedes aegypti mosquitoes do not have a typical functional urea cycle for ammonia disposal such as the one present in most terrestrial vertebrates. However, they can synthesize urea by two different pathways, argininolysis and uricolysis. We investigated how formation of urea by these two pathways is regulated in females of A. aegypti. The expression of arginase (AR) and urate oxidase (UO), either separately or simultaneously (ARUO) was silenced by RNAi. The amounts of several nitrogen compounds were quantified in excreta using mass spectrometry. Injection of mosquitoes with either dsRNA-AR or dsRNA-UO significantly decreased the expressions of AR or UO in the fat body (FB) and Malpighian tubules (MT). Surprisingly, the expression level of AR was increased when UO was silenced and vice versa, suggesting a cross-talk regulation between pathways. In agreement with these data, the amount of urea measured 48 h after blood feeding remained unchanged in those mosquitoes injected with dsRNA-AR or dsRNA-UO. However, allantoin significantly increased in the excreta of dsRNA-AR-injected females. The knockdown of ARUO mainly led to a decrease in urea and allantoin excretion, and an increase in arginine excretion. In addition, dsRNA-AR-injected mosquitoes treated with a specific nitric oxide synthase inhibitor showed an increase of UO expression in FB and MT and a significant increase in the excretion of nitrogen compounds. Interestingly, both a temporary delay in the digestion of a blood meal and a significant reduction in the expression of several genes involved in ammonia metabolism were observed in dsRNA-AR, UO or ARUO-injected females. These results reveal that urea synthesis and excretion in A. aegypti are tightly regulated by a unique cross-talk signaling mechanism. This process allows blood-fed mosquitoes to regulate the synthesis and/or excretion of nitrogen waste products, and avoid toxic effects that could result from a lethal concentration of ammonia in their tissues.
Collapse
Affiliation(s)
- Jun Isoe
- Department of Chemistry and Biochemistry, The Center for Insect Science, The University of Arizona, Tucson, Arizona, United States of America
| | - Patricia Y. Scaraffia
- Department of Chemistry and Biochemistry, The Center for Insect Science, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
36
|
Ma X, Dagan S, Somogyi Á, Wysocki VH, Scaraffia PY. Low mass MS/MS fragments of protonated amino acids used for distinction of their 13C-isotopomers in metabolic studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:622-31. [PMID: 23444051 PMCID: PMC3624025 DOI: 10.1007/s13361-012-0574-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/10/2012] [Accepted: 12/13/2012] [Indexed: 05/14/2023]
Abstract
Glu, Gln, Pro, and Ala are the main amino acids involved in ammonia detoxification in mosquitoes. In order to develop a tandem mass spectrometry method (MS(2)) to monitor each carbon of the above isotopically-labeled (13)C-amino acids for metabolic studies, the compositions and origins of atoms in fragments of the protonated amino acid should be first elucidated. Thus, various electrospray (ESI)-based MS(2) tools were employed to study the fragmentation of these unlabeled and isotopically-labeled amino acids and better understand their dissociation pathways. A broad range of fragments, including previously-undescribed low m/z fragments was revealed. The formulae of the fragments (from m/z 130 down to m/z 27) were confirmed by their accurate masses. The structures and conformations of the larger fragments of Glu were also explored by ion mobility mass spectrometry (IM-MS) and gas-phase hydrogen/deuterium exchange (HDX) experiments. It was found that some low m/z fragments (m/z 27-30) are common to Glu, Gln, Pro, and Ala. The origins of carbons in these small fragments are discussed and additional collision induced dissociation (CID) MS(2) fragmentation pathways are proposed for them. It was also found that small fragments (≤m/z 84) of protonated, methylated Glu, and methylated Gln are the same as those of the underivatized Glu and Gln. Taken together, the new approach of utilizing low m/z fragments can be applied to distinguish, identify, and quantify (13)C-amino acids labeled at various positions, either in the backbone or side chain.
Collapse
Affiliation(s)
- Xin Ma
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Shai Dagan
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Árpád Somogyi
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
| | - Patricia Y. Scaraffia
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721, United States
- Corresponding author. Address reprint requests to Dr. Patricia Y. Scaraffia, Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0088, United States. . Phone: (520) 626-5052 Fax : (520) 626-9204
| |
Collapse
|
37
|
Bush DR, Wysocki VH, Scaraffia PY. Study of the fragmentation of arginine isobutyl ester applied to arginine quantification in Aedes aegypti mosquito excreta. JOURNAL OF MASS SPECTROMETRY : JMS 2012; 47:1364-1371. [PMID: 23019169 PMCID: PMC3462363 DOI: 10.1002/jms.3063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
It has been demonstrated that argininolysis and uricolysis are involved in the synthesis and excretion of urea in Aedes aegypti female mosquitoes. To further investigate the metabolic regulation of urea in female mosquitoes, it is desirable to have a rapid and efficient method to monitor arginine (Arg) concentration in mosquito excreta. Thus, a procedure currently used for the identification of Arg in urea cycle disorders in newborn babies was adapted to analyze Arg in A. aegypti excreta. The fragmentation patterns of the isobutyl esters of Arg and (15)N(2)-Arg (labeled at the guanidino group) were explored by electrospray ionization (ESI)-tandem mass spectrometry and fragmentation pathways not described before were characterized. In addition, Arg, (18)O(2)-Arg, (15)N(2)-Arg and (15)N(2)-(18)O(2)-Arg were also analyzed to elucidate some of the minor fragments in greater detail. Mosquito excreta from individual females were collected before and at different times after feeding a blood meal, mixed with (15)N(2)-Arg, an internal standard, and then derivatized as isobutyl esters. Based on the fragmentation mechanisms of Arg standards, studied by MS(2) and MS(3), Arg in the mosquito excreta was successfully analyzed by ESI-multiple reaction monitoring in a triple-quadrupole mass spectrometer. Arg excretion was monitored over a 120 h window before and after feeding female mosquitoes with a blood meal, with the maximum level of Arg excretion observed at 36-48 h post blood feeding. This method provides an efficient and rapid tool to quantify Arg in individual blood-fed mosquitoes, and can be applied to other organisms, whose small size severally limits the use of conventional biochemical analysis.
Collapse
|
38
|
Weihrauch D, Donini A, O'Donnell MJ. Ammonia transport by terrestrial and aquatic insects. JOURNAL OF INSECT PHYSIOLOGY 2012; 58:473-87. [PMID: 22100291 DOI: 10.1016/j.jinsphys.2011.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/04/2011] [Indexed: 05/13/2023]
Abstract
Ammonia, an end product from amino acid and nucleic acid metabolism, is highly toxic for most animals. This review will provide an update on nitrogen metabolism in terrestrial and aquatic insects with emphasis on ammonia generation and transport. Aspects that will be discussed include metabolic pathways of nitrogenous compounds, the origin of ammonia and other nitrogenous waste products, ammonia toxicity, putative ammonia transporters as well as ammonia transport processes known in insects. Ammonia transport mechanisms in the mosquito Aedes aegypti, the tobacco hornworm Manduca sexta and the locust Schistocerca gregaria will be discussed in detail while providing additional, novel data.
Collapse
Affiliation(s)
- Dirk Weihrauch
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T2N2.
| | | | | |
Collapse
|
39
|
Defects in coatomer protein I (COPI) transport cause blood feeding-induced mortality in Yellow Fever mosquitoes. Proc Natl Acad Sci U S A 2011; 108:E211-7. [PMID: 21628559 DOI: 10.1073/pnas.1102637108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Blood feeding by vector mosquitoes provides the entry point for disease pathogens and presents an acute metabolic challenge that must be overcome to complete the gonotrophic cycle. Based on recent data showing that coatomer protein I (COPI) vesicle transport is involved in cellular processes beyond Golgi-endoplasmic reticulum retrograde protein trafficking, we disrupted COPI functions in the Yellow Fever mosquito Aedes aegypti to interfere with blood meal digestion. Surprisingly, we found that decreased expression of the γCOPI coatomer protein led to 89% mortality in blood-fed mosquitoes by 72 h postfeeding compared with 0% mortality in control dsRNA-injected blood-fed mosquitoes and 3% mortality in γCOPI dsRNA-injected sugar-fed mosquitoes. Similar results were obtained using dsRNA directed against five other COPI coatomer subunits (α, β, β', δ, and ζ). We also examined midgut tissues by EM, quantitated heme in fecal samples, and characterized feeding-induced protein expression in midgut, fat body, and ovary tissues of COPI-deficient mosquitoes. We found that COPI defects disrupt epithelial cell membrane integrity, stimulate premature blood meal excretion, and block induced expression of several midgut protease genes. To study the role of COPI transport in ovarian development, we injected γCOPI dsRNA after blood feeding and found that, although blood digestion was normal, follicles in these mosquitoes were significantly smaller by 48 h postinjection and lacked eggshell proteins. Together, these data show that COPI functions are critical to mosquito blood digestion and egg maturation, a finding that could also apply to other blood-feeding arthropod vectors.
Collapse
|
40
|
Scaraffia PY, Zhang Q, Thorson K, Wysocki VH, Miesfeld RL. Differential ammonia metabolism in Aedes aegypti fat body and midgut tissues. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1040-9. [PMID: 20206632 PMCID: PMC2910787 DOI: 10.1016/j.jinsphys.2010.02.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 05/04/2023]
Abstract
In order to understand at the tissue level how Aedes aegypti copes with toxic ammonia concentrations that result from the rapid metabolism of blood meal proteins, we investigated the incorporation of (15)N from (15)NH(4)Cl into amino acids using an in vitro tissue culture system. Fat body or midgut tissues from female mosquitoes were incubated in an Aedes saline solution supplemented with glucose and (15)NH(4)Cl for 10-40min. The media were then mixed with deuterium-labeled amino acids, dried and derivatized. The (15)N-labeled and unlabeled amino acids in each sample were quantified by mass spectrometry techniques. The results demonstrate that both tissues efficiently incorporate ammonia into amino acids, however, the specific metabolic pathways are distinct. In the fat body, the (15)N from (15)NH(4)Cl is first incorporated into the amide side chain of Gln and then into the amino group of Gln, Glu, Ala and Pro. This process mainly occurs via the glutamine synthetase (GS) and glutamate synthase (GltS) pathway. In contrast, (15)N in midgut is first incorporated into the amino group of Glu and Ala, and then into the amide side chain of Gln. Interestingly, our data show that the GS/GltS pathway is not functional in the midgut. Instead, midgut cells detoxify ammonia by glutamate dehydrogenase, alanine aminotransferase and GS. These data provide new insights into ammonia metabolism in A. aegypti mosquitoes.
Collapse
Affiliation(s)
- Patricia Y Scaraffia
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721-0088, USA.
| | | | | | | | | |
Collapse
|
41
|
Jiang W, Wysocki VH, Dodds ED, Miesfeld RL, Scaraffia PY. Differentiation and quantification of C1 and C2 (13)C-labeled glucose by tandem mass spectrometry. Anal Biochem 2010; 404:40-4. [PMID: 20447372 DOI: 10.1016/j.ab.2010.04.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/31/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The fragmentation patterns of various (13)C-labeled glucose molecules were analyzed by electrospray ionization tandem mass spectrometry. Derivatization of glucose to yield methylglucosamine makes the C-C bond between C1 and C2 a favored cleavage site. This is in contrast to underivatized glucose, which favorably undergoes loss of a fragment containing both C1 and C2. Based on the fragmentation pattern of methylglucoasmine, we developed a method to distinguish and quantify C1 and C2 (13)C-labeled glucose by derivatization with methylamine followed by multiple reaction monitoring scans in a Q-trap mass spectrometer. Fragment ion ratios in the tandem mass spectra showed an isotope effect with (13)C or deuterium labeling, so a "correction factor" was introduced to make the quantification more accurate. The current approach can be applied to individually monitor the metabolic origin and fate of C1 and C2 atoms in (13)C-labeled glucose. This method provides a new means of quantifying glucose isotopomers in metabolic studies.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, 85721, USA
| | | | | | | | | |
Collapse
|
42
|
Isoe J, Rascón AA, Kunz S, Miesfeld RL. Molecular genetic analysis of midgut serine proteases in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:903-12. [PMID: 19883761 PMCID: PMC2818436 DOI: 10.1016/j.ibmb.2009.10.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 10/23/2009] [Accepted: 10/26/2009] [Indexed: 05/13/2023]
Abstract
Digestion of blood meal proteins by midgut proteases provides anautogenous mosquitoes with the nutrients required to complete the gonotrophic cycle. Inhibition of protein digestion in the midgut of blood feeding mosquitoes could therefore provide a strategy for population control. Based on recent reports indicating that the mechanism and regulation of protein digestion in blood fed female Aedes aegypti mosquitoes is more complex than previously thought, we used a robust RNAi knockdown method to investigate the role of four highly expressed midgut serine proteases in blood meal metabolism. We show by Western blotting that the early phase trypsin protein (AaET) is maximally expressed at 3 h post-blood meal (PBM), and that AaET is not required for the protein expression of three late phase serine proteases, AaLT (late trypsin), AaSPVI (5G1), and AaSPVII. Using the trypsin substrate analog BApNA to analyze in vitro enzyme activity in midgut extracts from single mosquitoes, we found that knockdown of AaSPVI expression caused a 77.6% decrease in late phase trypsin-like activity, whereas, knockdown of AaLT and AaSPVII expression had no significant effect on BApNA activity. In contrast, injection of AaLT, AaSPVI, and AaSPVII dsRNA inhibited degradation of endogenous serum albumin protein using an in vivo protease assay, as well as, significantly decreased egg production in both the first and second gonotrophic cycles (P < 0.001). These results demonstrate that AaLT, AaSPVI, and AaSPVII all contribute to blood protein digestion and oocyte maturation, even though AaSPVI is the only abundant midgut late phase serine protease that appears to function as a classic trypsin enzyme.
Collapse
Affiliation(s)
| | | | | | - Roger L. Miesfeld
- Corresponding author; Roger L. Miesfeld; . Department of Chemistry & Biochemistry, BioSciences West Room 518, 1041 E. Lowell St., University of Arizona, Tucson, AZ, 85721. Phone: (520) 626-2343, Fax: (520) 621-1697
| |
Collapse
|
43
|
Kim K, Kim MI, Chung J, Ahn JH, Rhee S. Crystal structure of metal-dependent allantoinase from Escherichia coli. J Mol Biol 2009; 387:1067-74. [PMID: 19248789 DOI: 10.1016/j.jmb.2009.02.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 02/13/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
Allantoinase acts as a key enzyme for the biogenesis and degradation of ureides by catalyzing the conversion of (S)-allantoin into allantoate, the final step in the ureide pathway. Despite limited sequence similarity, biochemical studies of the enzyme suggested that allantoinase belongs to the amidohydrolase family. In this study, the crystal structure of allantoinase from Escherichia coli was determined at 2.1 A resolution. The enzyme consists of a homotetramer in which each monomer contains two domains: a pseudo-triosephosphate-isomerase barrel and a beta-sheet. Analogous to other enzymes in the amidohydrolase family, allantoinase retains a binuclear metal center in the active site, embedded within the barrel fold. Structural analyses demonstrated that the metal ions in the active site ligate one hydroxide and six residues that are conserved among allantoinases from other organisms. Functional analyses showed that the presence of zinc in the metal center is essential for catalysis and enantioselectivity of substrate. Both the metal center and active site residues Asn94 and Ser317 play crucial roles in dictating enzyme activity. These structural and functional features are distinctively different from those of the metal-independent allantoinase, which was very recently identified.
Collapse
Affiliation(s)
- Kwangsoo Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | | | | | | | | |
Collapse
|
44
|
Isoe J, Zamora J, Miesfeld RL. Molecular analysis of the Aedes aegypti carboxypeptidase gene family. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2009; 39:68-73. [PMID: 18977440 PMCID: PMC2673731 DOI: 10.1016/j.ibmb.2008.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 09/08/2008] [Accepted: 09/11/2008] [Indexed: 05/26/2023]
Abstract
To gain a better understanding of coordinate regulation of protease gene expression in the mosquito midgut, we undertook a comprehensive molecular study of digestive carboxypeptidases in Aedes aegypti. Through a combination of cDNA cloning using degenerate PCR primers, and database mining of the recently completed A. aegypti genome, we cloned and characterized 18 A. aegypti carboxypeptidase genes. Bioinformatic analysis revealed that 11 of these genes belong to the carboxypeptidase A family (AaCPA-I through AaCPA-XI), and seven to the carboxypeptidase B gene family (AaCPB-I through AaCPB-VII). Phylogenetic analysis of 32 mosquito carboxypeptidases from five different species indicated that most of the sequence divergence in the carboxypeptidase gene family occurred prior to the separation of Aedes and Anopheles mosquito lineages. Unlike the CPA genes that are scattered throughout the A. aegypti genome, six of seven CPB genes were found to be located within a single 120 kb genome contig, suggesting that they most likely arose from multiple gene duplication events. Quantitative expression analysis revealed that 11 of the A. aegypti carboxypeptidase genes were induced up to 40-fold in the midgut in response to blood meal feeding, with peak expression times ranging from 3 to 36 h post-feeding depending on the gene.
Collapse
Affiliation(s)
| | | | - Roger L. Miesfeld
- Corresponding author: Roger L. Miesfeld, Ph.D., Department of Biochemistry and Molecular Biophysics, University of Arizona, Tucson, AZ 85721, USA, tel. (520) 626-2343, FAX (520) 621-1697,
| |
Collapse
|
45
|
Kamleh MA, Dow JAT, Watson DG. Applications of mass spectrometry in metabolomic studies of animal model and invertebrate systems. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 8:28-48. [DOI: 10.1093/bfgp/eln052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
46
|
Brandon MC, Pennington JE, Isoe J, Zamora J, Schillinger AS, Miesfeld RL. TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2008; 38:916-922. [PMID: 18708143 PMCID: PMC2570706 DOI: 10.1016/j.ibmb.2008.07.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 06/26/2008] [Accepted: 07/20/2008] [Indexed: 05/25/2023]
Abstract
Blood meal digestion in mosquitoes occurs in two phases, an early phase that is translationally regulated, and a late phase that is transcriptionally regulated. Early trypsin is a well-characterized serine endoprotease that is representative of other early phase proteases in the midgut that are only synthesized after feeding. Since the kinase Target of Rapamycin (TOR) has been implicated as a nutrient sensor in other systems, including the mosquito fat body, we tested if TOR signaling is involved in early trypsin protein synthesis in the mosquito midgut in response to feeding. We found that ingestion of an amino acid meal by female mosquitoes induces early trypsin protein synthesis, coincident with phosphorylation of two known TOR target proteins, p70S6 kinase (S6K) and the translational repressor 4E-Binding Protein (4E-BP). Moreover, in vitro culturing of midguts from unfed mosquitoes led to amino acid-dependent phosphorylation of S6K and 4E-BP which could be blocked by treatment with rapamycin, a TOR-specific inhibitor. Lastly, by injecting mosquitoes with TOR double stranded RNA (dsRNA) or rapamycin, we demonstrated that TOR signaling was required in vivo for both phosphorylation of S6K and 4E-BP in the midgut, and for translation of early trypsin mRNA in response to amino acid feeding. It may be possible to target the TOR signaling pathway in the midgut to inhibit blood meal digestion, and thereby, decrease fecundity and the spread of mosquito borne diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Roger L. Miesfeld
- Address correspondence to: Roger L. Miesfeld, The University of Arizona, Department of Biochemistry and Molecular Biophysics, PO Box 210088, Tucson, AZ 85721-0088.
| |
Collapse
|