1
|
Ben-Tov D, Mafessoni F, Cucuy A, Honig A, Melamed-Bessudo C, Levy AA. Uncovering the dynamics of precise repair at CRISPR/Cas9-induced double-strand breaks. Nat Commun 2024; 15:5096. [PMID: 38877047 PMCID: PMC11178868 DOI: 10.1038/s41467-024-49410-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/05/2024] [Indexed: 06/16/2024] Open
Abstract
CRISPR/Cas9 is widely used for precise mutagenesis through targeted DNA double-strand breaks (DSBs) induction followed by error-prone repair. A better understanding of this process requires measuring the rates of cutting, error-prone, and precise repair, which have remained elusive so far. Here, we present a molecular and computational toolkit for multiplexed quantification of DSB intermediates and repair products by single-molecule sequencing. Using this approach, we characterize the dynamics of DSB induction, processing and repair at endogenous loci along a 72 h time-course in tomato protoplasts. Combining this data with kinetic modeling reveals that indel accumulation is determined by the combined effect of the rates of DSB induction processing of broken ends, and precise versus error repair. In this study, 64-88% of the molecules were cleaved in the three targets analyzed, while indels ranged between 15-41%. Precise repair accounts for most of the gap between cleavage and error repair, representing up to 70% of all repair events. Altogether, this system exposes flux in the DSB repair process, decoupling induction and repair dynamics, and suggesting an essential role of high-fidelity repair in limiting the efficiency of CRISPR-mediated mutagenesis.
Collapse
Affiliation(s)
- Daniela Ben-Tov
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Fabrizio Mafessoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Amit Cucuy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Arik Honig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Cathy Melamed-Bessudo
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Avraham A Levy
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
2
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Matos‐Rodrigues G, Barroca V, Muhammad A, Dardillac E, Allouch A, Koundrioukoff S, Lewandowski D, Despras E, Guirouilh‐Barbat J, Frappart L, Kannouche P, Dupaigne P, Le Cam E, Perfettini J, Romeo P, Debatisse M, Jasin M, Livera G, Martini E, Lopez BS. In vivo reduction of RAD51-mediated homologous recombination triggers aging but impairs oncogenesis. EMBO J 2023; 42:e110844. [PMID: 37661798 PMCID: PMC10577633 DOI: 10.15252/embj.2022110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023] Open
Abstract
Homologous recombination (HR) is a prominent DNA repair pathway maintaining genome integrity. Mutations in many HR genes lead to cancer predisposition. Paradoxically, the implication of the pivotal HR factor RAD51 on cancer development remains puzzling. Particularly, no RAD51 mouse models are available to address the role of RAD51 in aging and carcinogenesis in vivo. We engineered a mouse model with an inducible dominant-negative form of RAD51 (SMRad51) that suppresses RAD51-mediated HR without stimulating alternative mutagenic repair pathways. We found that in vivo expression of SMRad51 led to replicative stress, systemic inflammation, progenitor exhaustion, premature aging and reduced lifespan, but did not trigger tumorigenesis. Expressing SMRAD51 in a breast cancer predisposition mouse model (PyMT) decreased the number and the size of tumors, revealing an anti-tumor activity of SMRAD51. We propose that these in vivo phenotypes result from chronic endogenous replication stress caused by HR decrease, which preferentially targets progenitors and tumor cells. Our work underlines the importance of RAD51 activity for progenitor cell homeostasis, preventing aging and more generally for the balance between cancer and aging.
Collapse
Affiliation(s)
- Gabriel Matos‐Rodrigues
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Vilma Barroca
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Ali‐Akbar Muhammad
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Awatef Allouch
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Stephane Koundrioukoff
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Daniel Lewandowski
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Despras
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Josée Guirouilh‐Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| | - Lucien Frappart
- Leibniz Institute on Aging‐Fritz Lipmann InstituteJenaGermany
| | - Patricia Kannouche
- CNRS UMR8200, Laboratory of Genetic Instability and OncogenesisUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126 CNRSUniversité Paris‐Sud, Université Paris‐Saclay, Gustave RoussyVillejuif CedexFrance
| | - Jean‐Luc Perfettini
- Cell Death and Aging Team, INSERM U1030, Laboratory of Molecular RadiotherapyUniversity Paris‐Sud and Gustave RoussyVillejuifFrance
| | - Paul‐Henri Romeo
- Université de Paris and Université Paris‐Saclay, Inserm, IRCM/IBFJ CEAUMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Michelle Debatisse
- CNRS UMR8200 Sorbonne UniversitésUPMC UniversityParisFrance
- Institut Gustave RoussyVillejuifFrance
| | - Maria Jasin
- Developmental Biology ProgramMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Gabriel Livera
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Emmanuelle Martini
- Université de Paris and Université Paris‐Saclay, Laboratory of Development of the Gonads, IRCM/IBFJ CEA, UMR Genetic Stability Stem Cells and RadiationFontenay aux RosesFrance
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut CochinEquipe Labellisée Ligue Contre le CancerParisFrance
| |
Collapse
|
4
|
Zhao H, Hartono SR, de Vera KMF, Yu Z, Satchi K, Zhao T, Sciammas R, Sanz L, Chédin F, Barlow J. Senataxin and RNase H2 act redundantly to suppress genome instability during class switch recombination. eLife 2022; 11:e78917. [PMID: 36542058 PMCID: PMC9771370 DOI: 10.7554/elife.78917] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
Class switch recombination generates distinct antibody isotypes critical to a robust adaptive immune system, and defects are associated with autoimmune disorders and lymphomagenesis. Transcription is required during class switch recombination to recruit the cytidine deaminase AID-an essential step for the formation of DNA double-strand breaks-and strongly induces the formation of R loops within the immunoglobulin heavy-chain locus. However, the impact of R loops on double-strand break formation and repair during class switch recombination remains unclear. Here, we report that cells lacking two enzymes involved in R loop removal-senataxin and RNase H2-exhibit increased R loop formation and genome instability at the immunoglobulin heavy-chain locus without impacting its transcriptional activity, AID recruitment, or class switch recombination efficiency. Senataxin and RNase H2-deficient cells also exhibit increased insertion mutations at switch junctions, a hallmark of alternative end joining. Importantly, these phenotypes were not observed in cells lacking senataxin or RNase H2B alone. We propose that senataxin acts redundantly with RNase H2 to mediate timely R loop removal, promoting efficient repair while suppressing AID-dependent genome instability and insertional mutagenesis.
Collapse
Affiliation(s)
- Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Stella R Hartono
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | | | - Zheyuan Yu
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
- Graduate Group in Biostatistics, University of California, DavisDavisUnited States
| | - Krishni Satchi
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Tracy Zhao
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| | - Roger Sciammas
- Center for Immunology and Infectious Diseases, University of California, DavisDavisUnited States
| | - Lionel Sanz
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Frédéric Chédin
- Department of Molecular and Cellular Biology, University of California, DavisDavisUnited States
| | - Jacqueline Barlow
- Department of Microbiology and Molecular Genetics, University of California, DavisDavisUnited States
| |
Collapse
|
5
|
Rass E, Willaume S, Bertrand P. 53BP1: Keeping It under Control, Even at a Distance from DNA Damage. Genes (Basel) 2022; 13:genes13122390. [PMID: 36553657 PMCID: PMC9778356 DOI: 10.3390/genes13122390] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Double-strand breaks (DSBs) are toxic lesions that can be generated by exposure to genotoxic agents or during physiological processes, such as during V(D)J recombination. The repair of these DSBs is crucial to prevent genomic instability and to maintain cellular homeostasis. Two main pathways participate in repairing DSBs, namely, non-homologous end joining (NHEJ) and homologous recombination (HR). The P53-binding protein 1 (53BP1) plays a pivotal role in the choice of DSB repair mechanism, promotes checkpoint activation and preserves genome stability upon DSBs. By preventing DSB end resection, 53BP1 promotes NHEJ over HR. Nonetheless, the balance between DSB repair pathways remains crucial, as unscheduled NHEJ or HR events at different phases of the cell cycle may lead to genomic instability. Therefore, the recruitment of 53BP1 to chromatin is tightly regulated and has been widely studied. However, less is known about the mechanism regulating 53BP1 recruitment at a distance from the DNA damage. The present review focuses on the mechanism of 53BP1 recruitment to damage and on recent studies describing novel mechanisms keeping 53BP1 at a distance from DSBs.
Collapse
Affiliation(s)
- Emilie Rass
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Correspondence:
| | - Simon Willaume
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
6
|
Wilson C, Murnane JP. High-throughput screen to identify compounds that prevent or target telomere loss in human cancer cells. NAR Cancer 2022; 4:zcac029. [PMID: 36196242 PMCID: PMC9527662 DOI: 10.1093/narcan/zcac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosome instability (CIN) is an early step in carcinogenesis that promotes tumor cell progression and resistance to therapy. Using plasmids integrated adjacent to telomeres, we have previously demonstrated that the sensitivity of subtelomeric regions to DNA double-strand breaks (DSBs) contributes to telomere loss and CIN in cancer. A high-throughput screen was created to identify compounds that affect telomere loss due to subtelomeric DSBs introduced by I-SceI endonuclease, as detected by cells expressing green fluorescent protein (GFP). A screen of a library of 1832 biologically-active compounds identified a variety of compounds that increase or decrease the number of GFP-positive cells following activation of I-SceI. A curated screen done in triplicate at various concentrations found that inhibition of classical nonhomologous end joining (C-NHEJ) increased DSB-induced telomere loss, demonstrating that C-NHEJ is functional in subtelomeric regions. Compounds that decreased DSB-induced telomere loss included inhibitors of mTOR, p38 and tankyrase, consistent with our earlier hypothesis that the sensitivity of subtelomeric regions to DSBs is a result of inappropriate resection during repair. Although this assay was also designed to identify compounds that selectively target cells experiencing telomere loss and/or chromosome instability, no compounds of this type were identified in the current screen.
Collapse
Affiliation(s)
- Chris Wilson
- Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA 94143, USA
| | - John P Murnane
- To whom correspondence should be addressed. Tel: +1 415 680 4434;
| |
Collapse
|
7
|
Fan W, Yu M, Wang X, Xie W, Tian R, Cui Z, Jin Z, Huang Z, Das BC, Severinov K, Hitzeroth II, Debata PR, Tian X, Xie H, Lang B, Tan J, Xu H, Hu Z. Non-homologous dsODN increases the mutagenic effects of CRISPR-Cas9 to disrupt oncogene E7 in HPV positive cells. Cancer Gene Ther 2022; 29:758-769. [PMID: 34112918 DOI: 10.1038/s41417-021-00355-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/16/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
Genome editing tools targeting high-risk human papillomavirus (HPV) oncogene could be a promising therapeutic strategy for the treatment of HPV-related cervical cancer. We aimed to improve the editing efficiency and detect off-target effects concurrently for the clinical translation strategy by using CRISPR-Cas9 system co-transfected with 34nt non-homologous double-stranded oligodeoxynucleotide (dsODN). We firstly tested this strategy on targeting the Green Fluorescent Protein (GFP) gene, of which the expression is easily observed. Our results showed that the GFP+ cells were significantly decreased when using GFP-sgRNAs with dsODN, compared to using GFP-sgRNAs without donors. By PCR and Sanger sequencing, we verified the dsODN integration into the break sites of the GFP gene. And by amplicon sequencing, we observed that the indels% of the targeted site on the GFP gene was increased by using GFP-sgRNAs with dsODN. Next, we went on to target the HPV18 E7 oncogene by using single E7-sgRNA and multiplexed E7-sgRNAs respectively. Whenever using single sgRNA or multiplexed sgRNAs, the mRNA expression of HPV18 E7 oncogene was significantly decreased when adding E7-sgRNAs with dsODN, compared to E7-sgRNAs without donor. And the indels% of the targeted sites on the HPV18 E7 gene was markedly increased by adding dsODN with E7-sgRNAs. Finally, we performed GUIDE-Seq to verify that the integrated dsODN could serve as the marker to detect off-target effects in using single or multiplexed two sgRNAs. And we detected fewer on-target reads and off-target sites in multiplexes compared to the single sgRNAs when targeting the GFP and the HPV18 E7 genes. Together, CRISPR-Cas9 system co-transfected with 34nt dsODN concurrently improved the editing efficiency and monitored off-target effects, which might provide new insights in the treatment of HPV infections and related cervical cancer.
Collapse
Affiliation(s)
- Weiwen Fan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Miao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weiling Xie
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Tian
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zifeng Cui
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhuang Jin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyue Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Uttar Pradesh, Noida, India
| | | | - Inga Isabel Hitzeroth
- Biopharming Research Unit, Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | | | - Xun Tian
- Department of Obstetrics and Gynecology, The Central Hospital of Wuhan, Wuhan, Hubei, China
| | - Hongxian Xie
- STech Company Bio-X Lab, Zhuhai, Guangdong, China
| | - Bin Lang
- School of Health Sciences and Sports, Macao Polytechnic Institute, Macao, China
| | - Jinfeng Tan
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hongyan Xu
- Department of Obstetrics and Gynecology, Yuebei People's Hospital, Medical College of Shantou University, Guangzhou, Guangdong, China.
| | - Zheng Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
8
|
So A, Dardillac E, Muhammad A, Chailleux C, Sesma-Sanz L, Ragu S, Le Cam E, Canitrot Y, Masson J, Dupaigne P, Lopez BS, Guirouilh-Barbat J. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2651-2666. [PMID: 35137208 PMCID: PMC8934640 DOI: 10.1093/nar/gkac073] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Selection of the appropriate DNA double-strand break (DSB) repair pathway is decisive for genetic stability. It is proposed to act according to two steps: 1-canonical nonhomologous end-joining (C-NHEJ) versus resection that generates single-stranded DNA (ssDNA) stretches; 2-on ssDNA, gene conversion (GC) versus nonconservative single-strand annealing (SSA) or alternative end-joining (A-EJ). Here, we addressed the mechanisms by which RAD51 regulates this second step, preventing nonconservative repair in human cells. Silencing RAD51 or BRCA2 stimulated both SSA and A-EJ, but not C-NHEJ, validating the two-step model. Three different RAD51 dominant-negative forms (DN-RAD51s) repressed GC and stimulated SSA/A-EJ. However, a fourth DN-RAD51 repressed SSA/A-EJ, although it efficiently represses GC. In living cells, the three DN-RAD51s that stimulate SSA/A-EJ failed to load efficiently onto damaged chromatin and inhibited the binding of endogenous RAD51, while the fourth DN-RAD51, which inhibits SSA/A-EJ, efficiently loads on damaged chromatin. Therefore, the binding of RAD51 to DNA, rather than its ability to promote GC, is required for SSA/A-EJ inhibition by RAD51. We showed that RAD51 did not limit resection of endonuclease-induced DSBs, but prevented spontaneous and RAD52-induced annealing of complementary ssDNA in vitro. Therefore, RAD51 controls the selection of the DSB repair pathway, protecting genome integrity from nonconservative DSB repair through ssDNA occupancy, independently of the promotion of CG.
Collapse
Affiliation(s)
- Ayeong So
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Ali Muhammad
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | | | - Laura Sesma-Sanz
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Sandrine Ragu
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, France
- CNRS UMR 8200, Gustave-Roussy, Université Paris-Saclay, 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Yvan Canitrot
- CBI, CNRS UMR5088, LBCMCP, Toulouse University, Toulouse, France
| | - Jean Yves Masson
- Genome Stability Laboratory, CHU de Québec Research Center (Oncology Division), Quebec City, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, QC, Canada
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, F-94805, Villejuif Cedex, France
| | - Bernard S Lopez
- To whom correspondence should be addressed. Tel: +33 1 53 73 27 40;
| | | |
Collapse
|
9
|
Etourneaud L, Moussa A, Rass E, Genet D, Willaume S, Chabance-Okumura C, Wanschoor P, Picotto J, Thézé B, Dépagne J, Veaute X, Dizet E, Busso D, Barascu A, Irbah L, Kortulewski T, Campalans A, Le Chalony C, Zinn-Justin S, Scully R, Pennarun G, Bertrand P. Lamin B1 sequesters 53BP1 to control its recruitment to DNA damage. SCIENCE ADVANCES 2021; 7:eabb3799. [PMID: 34452908 PMCID: PMC8397269 DOI: 10.1126/sciadv.abb3799] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/07/2021] [Indexed: 05/09/2023]
Abstract
Double-strand breaks (DSBs) are harmful lesions and a major cause of genome instability. Studies have suggested a link between the nuclear envelope and the DNA damage response. Here, we show that lamin B1, a major component of the nuclear envelope, interacts directly with 53BP1 protein, which plays a pivotal role in the DSB repair. This interaction is dissociated after DNA damage. Lamin B1 overexpression impedes 53BP1 recruitment to DNA damage sites and leads to a persistence of DNA damage, a defect in nonhomologous end joining and an increased sensitivity to DSBs. The identification of interactions domains between lamin B1 and 53BP1 allows us to demonstrate that the defect of 53BP1 recruitment and the DSB persistence upon lamin B1 overexpression are due to sequestration of 53BP1 by lamin B1. This study highlights lamin B1 as a factor controlling the recruitment of 53BP1 to DNA damage sites upon injury.
Collapse
Affiliation(s)
- Laure Etourneaud
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Angela Moussa
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Emilie Rass
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Diane Genet
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Simon Willaume
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Caroline Chabance-Okumura
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Paul Wanschoor
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Julien Picotto
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Benoît Thézé
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Jordane Dépagne
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Xavier Veaute
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Eléa Dizet
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Didier Busso
- Genetic Engineering and Expression Platform (CIGEX), iRCM, DRF, CEA, Fontenay-aux-Roses, France
| | - Aurélia Barascu
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Lamya Irbah
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- Imaging platform, iRCM, DRF, CEA, F-92265 Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "Radiopathology" Team, iRCM/IBFJ, DRF, CEA, France
| | - Anna Campalans
- Université de Paris and Université Paris Saclay, iRCM/IBFJ, CEA, UMR Stabilité Génétique Cellules Souches et Radiations, "Genetic Instability Research" Team, F-92265 Fontenay-aux-Roses, France
| | - Catherine Le Chalony
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Sophie Zinn-Justin
- Laboratory of Structural Biology and Radiobiology, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, F-91190 Gif-sur-Yvette, France
| | - Ralph Scully
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Gaëlle Pennarun
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| | - Pascale Bertrand
- Université de Paris and Université Paris Saclay, INSERM, iRCM/IBFJ, CEA, UMR Stabilité Génétique, Cellules Souches et Radiations, F-92265 Fontenay-aux-Roses, France.
- "DNA Repair and Ageing" Team, iRCM/IBFJ, DRF, CEA, France
| |
Collapse
|
10
|
Tatin X, Muggiolu G, Sauvaigo S, Breton J. Evaluation of DNA double-strand break repair capacity in human cells: Critical overview of current functional methods. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108388. [PMID: 34893153 DOI: 10.1016/j.mrrev.2021.108388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023]
Abstract
DNA double-strand breaks (DSBs) are highly deleterious lesions, responsible for mutagenesis, chromosomal translocation or cell death. DSB repair (DSBR) is therefore a critical part of the DNA damage response (DDR) to restore molecular and genomic integrity. In humans, this process is achieved through different pathways with various outcomes. The balance between DSB repair activities varies depending on cell types, tissues or individuals. Over the years, several methods have been developed to study variations in DSBR capacity. Here, we mainly focus on functional techniques, which provide dynamic information regarding global DSB repair proficiency or the activity of specific pathways. These methods rely on two kinds of approaches. Indirect techniques, such as pulse field gel electrophoresis (PFGE), the comet assay and immunofluorescence (IF), measure DSB repair capacity by quantifying the time-dependent decrease in DSB levels after exposure to a DNA-damaging agent. On the other hand, cell-free assays and reporter-based methods directly track the repair of an artificial DNA substrate. Each approach has intrinsic advantages and limitations and despite considerable efforts, there is currently no ideal method to quantify DSBR capacity. All techniques provide different information and can be regarded as complementary, but some studies report conflicting results. Parameters such as the type of biological material, the required equipment or the cost of analysis may also limit available options. Improving currently available methods measuring DSBR capacity would be a major step forward and we present direct applications in mechanistic studies, drug development, human biomonitoring and personalized medicine, where DSBR analysis may improve the identification of patients eligible for chemo- and radiotherapy.
Collapse
Affiliation(s)
- Xavier Tatin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France; LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | | | - Sylvie Sauvaigo
- LXRepair, 5 Avenue du Grand Sablon, 38700 La Tronche, France
| | - Jean Breton
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000 Grenoble, France.
| |
Collapse
|
11
|
Ku70 suppresses alternative end joining in G1-arrested progenitor B cells. Proc Natl Acad Sci U S A 2021; 118:2103630118. [PMID: 34006647 DOI: 10.1073/pnas.2103630118] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Classical nonhomologous end joining (C-NHEJ) repairs DNA double-strand breaks (DSBs) throughout interphase but predominates in G1 phase when homologous recombination is unavailable. Complexes containing the Ku70/80 ("Ku") and XRCC4/ligase IV (Lig4) core C-NHEJ factors are required, respectively, for sensing and joining DSBs. While XRCC4/Lig4 are absolutely required for joining RAG1/2 endonuclease ("RAG")-initiated DSBs during V(D)J recombination in G1-phase progenitor lymphocytes, cycling cells deficient for XRCC4/Lig4 also can join chromosomal DSBs by alternative end-joining (A-EJ) pathways. Restriction of V(D)J recombination by XRCC4/Lig4-mediated joining has been attributed to RAG shepherding V(D)J DSBs exclusively into the C-NHEJ pathway. Here, we report that A-EJ of DSB ends generated by RAG1/2, Cas9:gRNA, and Zinc finger endonucleases in Lig4-deficient G1-arrested progenitor B cell lines is suppressed by Ku. Thus, while diverse DSBs remain largely as free broken ends in Lig4-deficient G1-arrested progenitor B cells, deletion of Ku70 increases DSB rejoining and translocation levels to those observed in Ku70-deficient counterparts. Correspondingly, while RAG-initiated V(D)J DSB joining is abrogated in Lig4-deficient G1-arrested progenitor B cell lines, joining of RAG-generated DSBs in Ku70-deficient and Ku70/Lig4 double-deficient lines occurs through a translocation-like A-EJ mechanism. Thus, in G1-arrested, Lig4-deficient progenitor B cells are functionally end-joining suppressed due to Ku-dependent blockage of A-EJ, potentially in association with G1-phase down-regulation of Lig1. Finally, we suggest that differential impacts of Ku deficiency versus Lig4 deficiency on V(D)J recombination, neuronal apoptosis, and embryonic development results from Ku-mediated inhibition of A-EJ in the G1 cell cycle phase in Lig4-deficient developing lymphocyte and neuronal cells.
Collapse
|
12
|
Roisné-Hamelin F, Pobiega S, Jézéquel K, Miron S, Dépagne J, Veaute X, Busso D, Du MHL, Callebaut I, Charbonnier JB, Cuniasse P, Zinn-Justin S, Marcand S. Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun 2021; 12:2763. [PMID: 33980827 PMCID: PMC8115599 DOI: 10.1038/s41467-021-23035-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Specific proteins present at telomeres ensure chromosome end stability, in large part through unknown mechanisms. In this work, we address how the Saccharomyces cerevisiae ORC-related Rif2 protein protects telomere. We show that the small N-terminal Rif2 BAT motif (Blocks Addition of Telomeres) previously known to limit telomere elongation and Tel1 activity is also sufficient to block NHEJ and 5' end resection. The BAT motif inhibits the ability of the Mre11-Rad50-Xrs2 complex (MRX) to capture DNA ends. It acts through a direct contact with Rad50 ATP-binding Head domains. Through genetic approaches guided by structural predictions, we identify residues at the surface of Rad50 that are essential for the interaction with Rif2 and its inhibition. Finally, a docking model predicts how BAT binding could specifically destabilise the DNA-bound state of the MRX complex. From these results, we propose that when an MRX complex approaches a telomere, the Rif2 BAT motif binds MRX Head in its ATP-bound resting state. This antagonises MRX transition to its DNA-bound state, and favours a rapid return to the ATP-bound state. Unable to stably capture the telomere end, the MRX complex cannot proceed with the subsequent steps of NHEJ, Tel1-activation and 5' resection.
Collapse
Affiliation(s)
- Florian Roisné-Hamelin
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Sabrina Pobiega
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Kévin Jézéquel
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Simona Miron
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Jordane Dépagne
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Xavier Veaute
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Didier Busso
- CIGEx, Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France
| | - Marie-Hélène Le Du
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie de Physique des Matériaux et de Cosmochimie (IMPMC), Paris, France
| | - Jean-Baptiste Charbonnier
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Philippe Cuniasse
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CNRS, CEA, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Marcand
- Université de Paris, Université Paris-Saclay, Inserm, CEA, Institut de Biologie François Jacob, iRCM, UMR Stabilité Génétique Cellules Souches et Radiations, Fontenay-aux-Roses, France.
| |
Collapse
|
13
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
14
|
CRISPR/Cas Technology in Pig-to-Human Xenotransplantation Research. Int J Mol Sci 2021; 22:ijms22063196. [PMID: 33801123 PMCID: PMC8004187 DOI: 10.3390/ijms22063196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
CRISPR/Cas (clustered regularly interspaced short palindromic repeats linked to Cas nuclease) technology has revolutionized many aspects of genetic engineering research. Thanks to it, it became possible to study the functions and mechanisms of biology with greater precision, as well as to obtain genetically modified organisms, both prokaryotic and eukaryotic. The changes introduced by the CRISPR/Cas system are based on the repair paths of the single or double strand DNA breaks that cause insertions, deletions, or precise integrations of donor DNA. These changes are crucial for many fields of science, one of which is the use of animals (pigs) as a reservoir of tissues and organs for xenotransplantation into humans. Non-genetically modified animals cannot be used to save human life and health due to acute immunological reactions resulting from the phylogenetic distance of these two species. This review is intended to collect and summarize the advantages as well as achievements of the CRISPR/Cas system in pig-to-human xenotransplantation research. In addition, it demonstrates barriers and limitations that require careful evaluation before attempting to experiment with this technology.
Collapse
|
15
|
Eki R, She J, Parlak M, Benamar M, Du KP, Kumar P, Abbas T. A robust CRISPR-Cas9-based fluorescent reporter assay for the detection and quantification of DNA double-strand break repair. Nucleic Acids Res 2020; 48:e126. [PMID: 33068408 PMCID: PMC7708081 DOI: 10.1093/nar/gkaa897] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 12/30/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic lesions that can lead to chromosome rearrangements, genomic instability and cell death. Consequently, cells have evolved multiple mechanisms to efficiently repair DSBs to preserve genomic integrity. We have developed a DSB repair assay system, designated CDDR (CRISPR-Cas9-based Dual-fluorescent DSB Repair), that enables the detection and quantification of DSB repair outcomes in mammalian cells with high precision. CDDR is based on the introduction and subsequent resolution of one or two DSB(s) in an intrachromosomal fluorescent reporter following the expression of Cas9 and sgRNAs targeting the reporter. CDDR can discriminate between high-fidelity (HF) and error-prone non-homologous end-joining (NHEJ), as well as between proximal and distal NHEJ repair. Furthermore, CDDR can detect homology-directed repair (HDR) with high sensitivity. Using CDDR, we found HF-NHEJ to be strictly dependent on DNA Ligase IV, XRCC4 and XLF, members of the canonical branch of NHEJ pathway (c-NHEJ). Loss of these genes also stimulated HDR, and promoted error-prone distal end-joining. Deletion of the DNA repair kinase ATM, on the other hand, stimulated HF-NHEJ and suppressed HDR. These findings demonstrate the utility of CDDR in characterizing the effect of repair factors and in elucidating the balance between competing DSB repair pathways.
Collapse
Affiliation(s)
- Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Jane She
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahmut Parlak
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mouadh Benamar
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA
| | - Kang-Ping Du
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Pankaj Kumar
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.,Center for Cell Signaling, University of Virginia, Charlottesville, VA 22908, USA.,Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
16
|
Chabot T, Cheraud Y, Fleury F. Relationships between DNA repair and RTK-mediated signaling pathways. Biochim Biophys Acta Rev Cancer 2020; 1875:188495. [PMID: 33346130 DOI: 10.1016/j.bbcan.2020.188495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 10/22/2022]
Abstract
Receptor Tyrosine Kinases (RTK) are an important family involved in numerous signaling pathways essential for proliferation, cell survival, transcription or cell-cycle regulation. Their role and involvement in cancer cell survival have been widely described in the literature, and are generally associated with overexpression and/or excessive activity in the cancer pathology. Because of these characteristics, RTKs are relevant targets in the fight against cancer. In the last decade, increasingly numerous works describe the role of RTK signaling in the modulation of DNA repair, thus providing evidence of the relationship between RTKs and the protein actors in the repair pathways. In this review, we propose a summary of RTKs described as potential modulators of double-stranded DNA repair pathways in order to put forward new lines of research aimed at the implementation of new therapeutic strategies targeting both DNA repair pathways and RTK-mediated signaling pathways.
Collapse
Affiliation(s)
- Thomas Chabot
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Yvonnick Cheraud
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France
| | - Fabrice Fleury
- Mechanism and regulation of DNA repair team, UFIP, CNRS UMR 6286, Université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France.
| |
Collapse
|
17
|
Tsai L, Lopezcolorado F, Bhargava R, Mendez-Dorantes C, Jahanshir E, Stark J. RNF8 has both KU-dependent and independent roles in chromosomal break repair. Nucleic Acids Res 2020; 48:6032-6052. [PMID: 32427332 PMCID: PMC7293022 DOI: 10.1093/nar/gkaa380] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/10/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
Chromosomal double strand breaks (DSBs) can initiate several signaling events, such as ubiquitination, however the precise influence of such signaling on DSB repair outcomes remains poorly understood. With an RNA interference screen, we found that the E3 ubiquitin ligase RNF8 suppresses a deletion rearrangement mediated by canonical non-homologous end joining (C-NHEJ). We also found that RNF8 suppresses EJ without insertion/deletion mutations, which is a hallmark of C-NHEJ. Conversely, RNF8 promotes alternative EJ (ALT-EJ) events involving microhomology that is embedded from the edge of the DSB. These ALT-EJ events likely require limited end resection, whereas RNF8 is not required for single-strand annealing repair involving extensive end resection. Thus, RNF8 appears to specifically facilitate repair events requiring limited end resection, which we find is dependent on the DSB end protection factor KU. However, we also find that RNF8 is important for homology-directed repair (HDR) independently of KU, which appears linked to promoting PALB2 function. Finally, the influence of RNF8 on EJ is distinct from 53BP1 and the ALT-EJ factor, POLQ. We suggest that RNF8 mediates both ALT-EJ and HDR, but via distinct mechanisms, since only the former is dependent on KU.
Collapse
Affiliation(s)
- Linda Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
18
|
Miller DE. Synaptonemal Complex-Deficient Drosophila melanogaster Females Exhibit Rare DSB Repair Events, Recurrent Copy-Number Variation, and an Increased Rate of de Novo Transposable Element Movement. G3 (BETHESDA, MD.) 2020; 10:525-537. [PMID: 31882405 PMCID: PMC7003089 DOI: 10.1534/g3.119.400853] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 12/23/2019] [Indexed: 01/11/2023]
Abstract
Genetic stability depends on the maintenance of a variety of chromosome structures and the precise repair of DNA breaks. During meiosis, programmed double-strand breaks (DSBs) made in prophase I are normally repaired as gene conversions or crossovers. DSBs can also be made by other mechanisms, such as the movement of transposable elements (TEs), which must also be resolved. Incorrect repair of these DNA lesions can lead to mutations, copy-number changes, translocations, and/or aneuploid gametes. In Drosophila melanogaster, as in most organisms, meiotic DSB repair occurs in the presence of a rapidly evolving multiprotein structure called the synaptonemal complex (SC). Here, whole-genome sequencing is used to investigate the fate of meiotic DSBs in D. melanogaster mutant females lacking functional SC, to assay for de novo CNV formation, and to examine the role of the SC in transposable element movement in flies. The data indicate that, in the absence of SC, copy-number variation still occurs and meiotic DSB repair by gene conversion occurs infrequently. Remarkably, an 856-kilobase de novo CNV was observed in two unrelated individuals of different genetic backgrounds and was identical to a CNV recovered in a previous wild-type study, suggesting that recurrent formation of large CNVs occurs in Drosophila. In addition, the rate of novel TE insertion was markedly higher than wild type in one of two SC mutants tested, suggesting that SC proteins may contribute to the regulation of TE movement and insertion in the genome. Overall, this study provides novel insight into the role that the SC plays in genome stability and provides clues as to why the sequence, but not structure, of SC proteins is rapidly evolving.
Collapse
Affiliation(s)
- Danny E Miller
- Division of Medical Genetics, Department of Medicine, and
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington 98105, and
- Seattle Children's Hospital, Seattle, Washington 98105
| |
Collapse
|
19
|
Chauhan V, Sherman S, Said Z, Yauk CL, Stainforth R. A case example of a radiation-relevant adverse outcome pathway to lung cancer. Int J Radiat Biol 2020; 97:68-84. [PMID: 31846388 DOI: 10.1080/09553002.2019.1704913] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adverse outcome pathways (AOPs) describe how a measurable sequence of key events, beginning from a molecular initiator, can lead to an adverse outcome of relevance to risk assessment. An AOP is modular by design, comprised of four main components: (1) a Molecular Initiating Event (MIE), (2) Key Events (KEs), (3) Key Event Relationships (KERs) and (4) an Adverse Outcome (AO). PURPOSE Here, we illustrate the utility of the AOP concept through a case example in the field of ionizing radiation, using the Organisation for Economic Cooperation and Development (OECD) Users' Handbook. This AOP defines a classic targeted response to a radiation insult with an AO of lung cancer that is relevant to radon gas exposure. MATERIALS AND METHODS To build this AOP, over 500 papers were reviewed and categorized based on the modified Bradford-Hill Criteria. Data-rich key events from the MIE, to several measurable KEs and KERs related to DNA damage response/repair were identified. RESULTS The components for this AOP begin with direct deposition of energy as the MIE. Energy deposited into a cell can lead to multiple ionization events to targets such as DNA. This energy can damage DNA leading to double-strand breaks (DSBs) (KE1), this will initiate repair activation (KE2) in higher eukaryotes through mechanisms that are quick and efficient, but error-prone. If DSBs occur in regions of the DNA transcribing critical genes, then mutations (KE3) generated through faulty repair may alter the function of these genes or may cause chromosomal aberrations (KE4). This can impact cellular pathways such as cell growth, cell cycling and then cellular proliferation (KE5). This will form hyperplasia in lung cells, leading eventually to lung cancer (AO) induction and metastasis. The weight of evidence for the KERs was built using biological plausibility, incidence concordance, dose-response, time-response and essentiality studies. The uncertainties and inconsistencies surrounding this AOP are centered on dose-response relationships associated with dose, dose-rates and radiation quality. CONCLUSION Overall, the AOP framework provided an effective means to organize the scientific knowledge surrounding the KERs and identify those with strong dose-response relationships and those with inconsistencies. This case study is an example of how the AOP methodology can be applied to sources of radiation to help support areas of risk assessment.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Samantha Sherman
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Zakaria Said
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robert Stainforth
- Consumer and Clinical Radiation Protection Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| |
Collapse
|
20
|
Bhargava R, Lopezcolorado FW, Tsai LJ, Stark JM. The canonical non-homologous end joining factor XLF promotes chromosomal deletion rearrangements in human cells. J Biol Chem 2020; 295:125-137. [PMID: 31753920 PMCID: PMC6952595 DOI: 10.1074/jbc.ra119.010421] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
Clastogen exposure can result in chromosomal rearrangements, including large deletions and inversions that are associated with cancer development. To examine such rearrangements in human cells, here we developed a reporter assay based on endogenous genes on chromosome 12. Using the RNA-guided nuclease Cas9, we induced two DNA double-strand breaks, one each in the GAPDH and CD4 genes, that caused a deletion rearrangement leading to CD4 expression from the GAPDH promoter. We observed that this GAPDH-CD4 deletion rearrangement activates CD4+ cells that can be readily detected by flow cytometry. Similarly, double-strand breaks in the LPCAT3 and CD4 genes induced an LPCAT3-CD4 inversion rearrangement resulting in CD4 expression. Studying the GAPDH-CD4 deletion rearrangement in multiple cell lines, we found that the canonical non-homologous end joining (C-NHEJ) factor XLF promotes these rearrangements. Junction analysis uncovered that the relative contribution of C-NHEJ appears lower in U2OS than in HEK293 and A549 cells. Furthermore, an ATM kinase inhibitor increased C-NHEJ-mediated rearrangements only in U2OS cells. We also found that an XLF residue that is critical for an interaction with the C-NHEJ factor X-ray repair cross-complementing 4 (XRCC4), and XRCC4 itself are each important for promoting both this deletion rearrangement and end joining without insertion/deletion mutations. In summary, a reporter assay based on endogenous genes on chromosome 12 reveals that XLF-dependent C-NHEJ promotes deletion rearrangements in human cells and that cell type-specific differences in the contribution of C-NHEJ and ATM kinase inhibition influence these rearrangements.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | | | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010.
| |
Collapse
|
21
|
Ferreira da Silva J, Salic S, Wiedner M, Datlinger P, Essletzbichler P, Hanzl A, Superti-Furga G, Bock C, Winter G, Loizou JI. Genome-scale CRISPR screens are efficient in non-homologous end-joining deficient cells. Sci Rep 2019; 9:15751. [PMID: 31673055 PMCID: PMC6823505 DOI: 10.1038/s41598-019-52078-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/07/2019] [Indexed: 11/09/2022] Open
Abstract
The mutagenic repair of Cas9 generated breaks is thought to predominantly rely on non-homologous end-joining (NHEJ), leading to insertions and deletions within DNA that culminate in gene knock-out (KO). In this study, by taking focused as well as genome-wide approaches, we show that this pathway is dispensable for the repair of such lesions. Genetic ablation of NHEJ is fully compensated for by alternative end joining (alt-EJ), in a POLQ-dependent manner, resulting in a distinct repair signature with larger deletions that may be exploited for large-scale genome editing. Moreover, we show that cells deficient for both NHEJ and alt-EJ were still able to repair CRISPR-mediated DNA double-strand breaks, highlighting how little is yet known about the mechanisms of CRISPR-based genome editing.
Collapse
Affiliation(s)
- Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Sejla Salic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Marc Wiedner
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Paul Datlinger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Patrick Essletzbichler
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Alexander Hanzl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Georg Winter
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090, Vienna, Austria.
| |
Collapse
|
22
|
Ferreira S, Dutreix M. DNA repair inhibitors to enhance radiotherapy: Progresses and limitations. Cancer Radiother 2019; 23:883-890. [PMID: 31615730 DOI: 10.1016/j.canrad.2019.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023]
Abstract
Radiotherapy is one of the most common form of treatment in oncology care. Indeed, radiotherapy proved to be very effective in treating a wide range of malignancies. Nevertheless, certain tumours are intrinsically radioresistant or may evolve to become radioresistant. Resistance to radiotherapy is often associated with dysregulated DNA damage response and repair. Recently, a number of strategies have been developed to improve radiotherapy efficacy by targeting the DNA damage response and repair pathways. Ongoing clinical trials showed the potential of some of these approaches in enhancing radiotherapy, but also highlighted the possible limitations. Here, we will describe (i) the main mechanisms involved in double-strand break repair; (ii) available strategies that target these DNA repair processes to improve radiotherapy and (iii) the clinical outcomes and challenges that have emerged so far.
Collapse
Affiliation(s)
- S Ferreira
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France
| | - M Dutreix
- Centre universitaire, institut Curie, UMR « Etic », bâtiment 110, 91405 Orsay cedex, France; Université PSL, 91405 Orsay, France; CNRS, UMR 3347, 91405 Orsay, France; Inserm, UMR 3347, 91405 Orsay, France; Université Paris-Sud université Paris-Saclay, 91405 Orsay, France.
| |
Collapse
|
23
|
Owens DDG, Caulder A, Frontera V, Harman JR, Allan AJ, Bucakci A, Greder L, Codner GF, Hublitz P, McHugh PJ, Teboul L, de Bruijn MFTR. Microhomologies are prevalent at Cas9-induced larger deletions. Nucleic Acids Res 2019; 47:7402-7417. [PMID: 31127293 PMCID: PMC6698657 DOI: 10.1093/nar/gkz459] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 11/18/2022] Open
Abstract
The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.
Collapse
Affiliation(s)
- Dominic D G Owens
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Caulder
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Joe R Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alasdair J Allan
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Akin Bucakci
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lucas Greder
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Gemma F Codner
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Philip Hublitz
- WIMM Genome Engineering Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon OX11 0RD, UK
| | - Marella F T R de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
24
|
Guo T, Feng YL, Xiao JJ, Liu Q, Sun XN, Xiang JF, Kong N, Liu SC, Chen GQ, Wang Y, Dong MM, Cai Z, Lin H, Cai XJ, Xie AY. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing. Genome Biol 2018; 19:170. [PMID: 30340517 PMCID: PMC6195759 DOI: 10.1186/s13059-018-1518-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/25/2018] [Indexed: 11/25/2022] Open
Abstract
Background Many applications of CRISPR/Cas9-mediated genome editing require Cas9-induced non-homologous end joining (NHEJ), which was thought to be error prone. However, with directly ligatable ends, Cas9-induced DNA double strand breaks may be repaired preferentially by accurate NHEJ. Results In the repair of two adjacent double strand breaks induced by paired Cas9-gRNAs at 71 genome sites, accurate NHEJ accounts for about 50% of NHEJ events. This paired Cas9-gRNA approach underestimates the level of accurate NHEJ due to frequent + 1 templated insertions, which can be avoided by the predefined Watson/Crick orientation of protospacer adjacent motifs (PAMs). The paired Cas9-gRNA strategy also provides a flexible, reporter-less approach for analyzing both accurate and mutagenic NHEJ in cells and in vivo, and it has been validated in cells deficient for XRCC4 and in mouse liver. Due to high frequencies of precise deletions of defined “3n”-, “3n + 1”-, or “3n + 2”-bp length, accurate NHEJ is used to improve the efficiency and homogeneity of gene knockouts and targeted in-frame deletions. Compared to “3n + 1”-bp, “3n + 2”-bp can overcome + 1 templated insertions to increase the frequency of out-of-frame mutations. By applying paired Cas9-gRNAs to edit MDC1 and key 53BP1 domains, we are able to generate predicted, precise deletions for functional analysis. Lastly, a Plk3 inhibitor promotes NHEJ with bias towards accurate NHEJ, providing a chemical approach to improve genome editing requiring precise deletions. Conclusions NHEJ is inherently accurate in repair of Cas9-induced DNA double strand breaks and can be harnessed to improve CRISPR/Cas9 genome editing requiring precise deletion of a defined length. Electronic supplementary material The online version of this article (10.1186/s13059-018-1518-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yi-Li Feng
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Jing-Jing Xiao
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Qian Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Xiu-Na Sun
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Ji-Feng Xiang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.,Department of General Surgery, Chongqing General Hospital, Chongqing, 400013, China
| | - Na Kong
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Si-Cheng Liu
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Guo-Qiao Chen
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Yue Wang
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China
| | - Meng-Meng Dong
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Zhen Cai
- Multiple Myeloma Treatment Center & Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, 310003, Hangzhou, China
| | - Hui Lin
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China
| | - Xiu-Jun Cai
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China.
| | - An-Yong Xie
- Department of General Surgery, Innovation Center for Minimally Invasive Techniques and Devices, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, 310019, Hangzhou, China. .,Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, 310029, Hangzhou, China.
| |
Collapse
|
25
|
Taheri-Ghahfarokhi A, Taylor BJ, Nitsch R, Lundin A, Cavallo AL, Madeyski-Bengtson K, Karlsson F, Clausen M, Hicks R, Mayr LM, Bohlooly-Y M, Maresca M. Decoding non-random mutational signatures at Cas9 targeted sites. Nucleic Acids Res 2018; 46:8417-8434. [PMID: 30032200 PMCID: PMC6144780 DOI: 10.1093/nar/gky653] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 12/15/2022] Open
Abstract
The mutation patterns at Cas9 targeted sites contain unique information regarding the nuclease activity and repair mechanisms in mammalian cells. However, analytical framework for extracting such information are lacking. Here, we present a novel computational platform called Rational InDel Meta-Analysis (RIMA) that enables an in-depth comprehensive analysis of Cas9-induced genetic alterations, especially InDels mutations. RIMA can be used to quantitate the contribution of classical microhomology-mediated end joining (c-MMEJ) pathway in the formation of mutations at Cas9 target sites. We used RIMA to compare mutational signatures at 15 independent Cas9 target sites in human A549 wildtype and A549-POLQ knockout cells to elucidate the role of DNA polymerase θ in c-MMEJ. Moreover, the single nucleotide insertions at the Cas9 target sites represent duplications of preceding nucleotides, suggesting that the flexibility of the Cas9 nuclease domains results in both blunt- and staggered-end cuts. Thymine at the fourth nucleotide before protospacer adjacent motif (PAM) results in a two-fold higher occurrence of single nucleotide InDels compared to guanine at the same position. This study provides a novel approach for the characterization of the Cas9 nucleases with improved accuracy in predicting genome editing outcomes and a potential strategy for homology-independent targeted genomic integration.
Collapse
Affiliation(s)
- Amir Taheri-Ghahfarokhi
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Benjamin J M Taylor
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Roberto Nitsch
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anders Lundin
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Anna-Lina Cavallo
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Karlsson
- Quantitative Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Maryam Clausen
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
- GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham HP7 9LL, UK
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
26
|
Bhargava R, Sandhu M, Muk S, Lee G, Vaidehi N, Stark JM. C-NHEJ without indels is robust and requires synergistic function of distinct XLF domains. Nat Commun 2018; 9:2484. [PMID: 29950655 PMCID: PMC6021437 DOI: 10.1038/s41467-018-04867-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 05/25/2018] [Indexed: 01/17/2023] Open
Abstract
To investigate the fidelity of canonical non-homologous end joining (C-NHEJ), we developed an assay to detect EJ between distal ends of two Cas9-induced chromosomal breaks that are joined without causing insertion/deletion mutations (indels). Here we find that such EJ requires several core C-NHEJ factors, including XLF. Using variants of this assay, we find that C-NHEJ is required for EJ events that use 1-2, but not ≥3, nucleotides of terminal microhomology. We also investigated XLF residues required for EJ without indels, finding that one of two binding domains is essential (L115 or C-terminal lysines that bind XRCC4 and KU/DNA, respectively), and that disruption of one of these domains sensitizes XLF to mutations that affect its dimer interface, which we examined with molecular dynamic simulations. Thus, C-NHEJ, including synergistic function of distinct XLF domains, is required for EJ of chromosomal breaks without indels.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Manbir Sandhu
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Sanychen Muk
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Gabriella Lee
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
- Department of Molecular Immunology, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA, 91010, USA.
| |
Collapse
|
27
|
Brinkman EK, Chen T, de Haas M, Holland HA, Akhtar W, van Steensel B. Kinetics and Fidelity of the Repair of Cas9-Induced Double-Strand DNA Breaks. Mol Cell 2018; 70:801-813.e6. [PMID: 29804829 PMCID: PMC5993873 DOI: 10.1016/j.molcel.2018.04.016] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
The RNA-guided DNA endonuclease Cas9 is a powerful tool for genome editing. Little is known about the kinetics and fidelity of the double-strand break (DSB) repair process that follows a Cas9 cutting event in living cells. Here, we developed a strategy to measure the kinetics of DSB repair for single loci in human cells. Quantitative modeling of repaired DNA in time series after Cas9 activation reveals variable and often slow repair rates, with half-life times up to ∼10 hr. Furthermore, repair of the DSBs tends to be error prone. Both classical and microhomology-mediated end joining pathways contribute to the erroneous repair. Estimation of their individual rate constants indicates that the balance between these two pathways changes over time and can be altered by additional ionizing radiation. Our approach provides quantitative insights into DSB repair kinetics and fidelity in single loci and indicates that Cas9-induced DSBs are repaired in an unusual manner.
Collapse
Affiliation(s)
- Eva K Brinkman
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Tao Chen
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Marcel de Haas
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Hanna A Holland
- Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands
| | - Bas van Steensel
- Oncode Institute; Division of Gene Regulation, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, the Netherlands.
| |
Collapse
|
28
|
Luteijn RD, Drexler I, Smith GL, Lebbink RJ, Wiertz EJHJ. Mutagenic repair of double-stranded DNA breaks in vaccinia virus genomes requires cellular DNA ligase IV activity in the cytosol. J Gen Virol 2018; 99:790-804. [PMID: 29676720 PMCID: PMC7614823 DOI: 10.1099/jgv.0.001034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Poxviruses comprise a group of large dsDNA viruses that include members relevant to human and animal health, such as variola virus, monkeypox virus, cowpox virus and vaccinia virus (VACV). Poxviruses are remarkable for their unique replication cycle, which is restricted to the cytoplasm of infected cells. The independence from the host nucleus requires poxviruses to encode most of the enzymes involved in DNA replication, transcription and processing. Here, we use the CRISPR/Cas9 genome engineering system to induce DNA damage to VACV (strain Western Reserve) genomes. We show that targeting CRISPR/Cas9 to essential viral genes limits virus replication efficiently. Although VACV is a strictly cytoplasmic pathogen, we observed extensive viral genome editing at the target site; this is reminiscent of a non-homologous end-joining DNA repair mechanism. This pathway was not dependent on the viral DNA ligase, but critically involved the cellular DNA ligase IV. Our data show that DNA ligase IV can act outside of the nucleus to allow repair of dsDNA breaks in poxvirus genomes. This pathway might contribute to the introduction of mutations within the genome of poxviruses and may thereby promote the evolution of these viruses.
Collapse
Affiliation(s)
- Rutger David Luteijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Present address: Department of Molecular and Cell Biology, University of California, Berkeley, USA
| | - Ingo Drexler
- Institute for Virology, University Hospital Düsseldorf, Düsseldorf, Germany
| | | | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J H J Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
29
|
Fouquin A, Guirouilh-Barbat J, Lopez B, Hall J, Amor-Guéret M, Pennaneach V. PARP2 controls double-strand break repair pathway choice by limiting 53BP1 accumulation at DNA damage sites and promoting end-resection. Nucleic Acids Res 2017; 45:12325-12339. [PMID: 29036662 PMCID: PMC5716083 DOI: 10.1093/nar/gkx881] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022] Open
Abstract
Double strand breaks (DSBs) are one of the most toxic lesions to cells. DSB repair by the canonical non-homologous end-joining (C-EJ) pathway involves minor, if any, processing of the broken DNA-ends, whereas the initiation of DNA resection channels the broken-ends toward DNA repair pathways using various lengths of homology. Mechanisms that control the resection initiation are thus central to the regulation to the choice of DSB repair pathway. Therefore, understanding the mechanisms which regulate the initiation of DNA end-resection is of prime importance. Our findings reveal that poly(ADP-ribose) polymerase 2 (PARP2) is involved in DSBR pathway choice independently of its PAR synthesis activity. We show that PARP2 favors repair by homologous recombination (HR), single strand annealing (SSA) and alternative-end joining (A-EJ) rather than the C-EJ pathway and increases the deletion sizes at A-EJ junctions. We demonstrate that PARP2 specifically limits the accumulation of the resection barrier factor 53BP1 at DNA damage sites, allowing efficient CtIP-dependent DNA end-resection. Collectively, we have identified a new PARP2 function, independent of its PAR synthesis activity, which directs DSBs toward resection-dependent repair pathways.
Collapse
Affiliation(s)
- Alexis Fouquin
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Josée Guirouilh-Barbat
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Bernard Lopez
- Université Paris Sud, Institut de Cancérologie Gustave Roussy, CNRS UMR8200, 94805 Villejuif, France. Team labeled by la Ligue contre le cancer 'Ligue 2017'
| | - Janet Hall
- Centre de Recherche en Cancérologie de Lyon, INSERM, CNRS, UMR 1052-5286, 69424 Lyon, France
| | - Mounira Amor-Guéret
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| | - Vincent Pennaneach
- Institut Curie, PSL Research University, UMR 3348, 91405 Orsay, France.,CNRS, UMR3348, Centre Universitaire, Bât. 110, 91405 Orsay, France.,Université Paris Sud, Université Paris-Saclay, UMR 3348, 91405 Orsay, France
| |
Collapse
|
30
|
Deniz M, Romashova T, Kostezka S, Faul A, Gundelach T, Moreno-Villanueva M, Janni W, Friedl TWP, Wiesmüller L. Increased single-strand annealing rather than non-homologous end-joining predicts hereditary ovarian carcinoma. Oncotarget 2017; 8:98660-98676. [PMID: 29228718 PMCID: PMC5716758 DOI: 10.18632/oncotarget.21720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/26/2017] [Indexed: 12/22/2022] Open
Abstract
Mutations in genes encoding DNA double-strand break (DSB) repair components, especially homologous recombination (HR) proteins, were found to predispose to breast and ovarian cancer. Beyond high penetrance risk gene mutations underlying monogenic defects, low risk gene mutations generate polygenic defects, enlarging the fraction of individuals with a predisposing phenotype. DSB repair dysfunction opens new options for targeted therapies; poly (ADP-ribose) polymerase (PARP) inhibitors have been approved for BRCA-mutated and platinum-responsive ovarian cancers. In this work, we performed functional analyses in peripheral blood lymphocytes (PBLs) using a case-control design. We examined 38 women with familial history of breast and/or ovarian cancer, 40 women with primary ovarian cancer and 34 healthy controls. Using a GFP-based test we analyzed error-prone DSB repair mechanisms which are known to compensate for HR defects and to generate chromosomal instabilities. While non-homologous end-joining (NHEJ) did not discriminate between cases and controls, we found increases of single-strand annealing (SSA) in women with familial risk vs. controls (P=0.016) and patients with ovarian cancer vs. controls (P=0.002). Consistent with compromised HR we also detected increased sensitivities to carboplatin in PBLs from high-risk individuals (P<0.0001) as well as patients (P=0.0011) compared to controls. Conversely, neither PARP inhibitor responses nor PARP activities were altered in PBLs from the case groups, but PARP activities increased with age in high-risk individuals, providing novel clues for differential drug mode-of-action. Our findings indicate the great potential of detecting SSA activities to deliver an estimate of ovarian cancer susceptibility and therapeutic responsiveness beyond the limitations of genotyping.
Collapse
Affiliation(s)
- Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Tatiana Romashova
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Sarah Kostezka
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Anke Faul
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Theresa Gundelach
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | | | - Wolfgang Janni
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
31
|
Bhargava R, Carson CR, Lee G, Stark JM. Contribution of canonical nonhomologous end joining to chromosomal rearrangements is enhanced by ATM kinase deficiency. Proc Natl Acad Sci U S A 2017; 114:728-733. [PMID: 28057860 PMCID: PMC5278456 DOI: 10.1073/pnas.1612204114] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A likely mechanism of chromosomal rearrangement formation involves joining the ends from two different chromosomal double-strand breaks (DSBs). These events could potentially be mediated by either of two end-joining (EJ) repair pathways [canonical nonhomologous end joining (C-NHEJ) or alternative end joining (ALT-EJ)], which cause distinct rearrangement junction patterns. The relative role of these EJ pathways during rearrangement formation has remained controversial. Along these lines, we have tested whether the DNA damage response mediated by the Ataxia Telangiectasia Mutated (ATM) kinase may affect the relative influence of C-NHEJ vs. ALT-EJ on rearrangement formation. We developed a reporter in mouse cells for a 0.4-Mbp deletion rearrangement that is formed by EJ between two DSBs induced by the Cas9 endonuclease. We found that disruption of the ATM kinase causes an increase in the frequency of the rearrangement as well as a shift toward rearrangement junctions that show hallmarks of C-NHEJ. Furthermore, ATM suppresses rearrangement formation in an experimental condition, in which C-NHEJ is the predominant EJ repair event (i.e., expression of the 3' exonuclease Trex2). Finally, several C-NHEJ factors are required for the increase in rearrangement frequency caused by inhibition of the ATM kinase. We also examined ATM effectors and found that H2AX shows a similar influence as ATM, whereas the influence of ATM on this rearrangement seems independent of 53BP1. We suggest that the contribution of the C-NHEJ pathway to the formation of a 0.4-Mbp deletion rearrangement is enhanced in ATM-deficient cells.
Collapse
Affiliation(s)
- Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Caree R Carson
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Gabriella Lee
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010;
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010
| |
Collapse
|
32
|
Gu P, Wang Y, Bisht KK, Wu L, Kukova L, Smith EM, Xiao Y, Bailey SM, Lei M, Nandakumar J, Chang S. Pot1 OB-fold mutations unleash telomere instability to initiate tumorigenesis. Oncogene 2016; 36:1939-1951. [PMID: 27869160 PMCID: PMC5383532 DOI: 10.1038/onc.2016.405] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/02/2016] [Accepted: 09/19/2016] [Indexed: 02/06/2023]
Abstract
Chromosomal aberrations are a hallmark of human cancers, with complex cytogenetic rearrangements leading to genetic changes permissive for cancer initiation and progression. Protection of Telomere 1 (POT1) is an essential component of the shelterin complex and functions to maintain chromosome stability by repressing the activation of aberrant DNA damage and repair responses at telomeres. Sporadic and familial mutations in the oligosaccharide-oligonucleotide (OB) folds of POT1 have been identified in many human cancers, but the mechanism underlying how hPOT1 mutations initiate tumorigenesis has remained unclear. Here we show that the human POT1’s OB-folds are essential for the protection of newly replicated telomeres. Oncogenic mutations in hPOT1 OB-fold fail to bind to ss telomeric DNA, eliciting a DNA damage response at telomeres that promote inappropriate chromosome fusions via the mutagenic alternative non-homologous end joining (A-NHEJ) pathway. hPOT1 mutations also result in telomere elongation and the formation of transplantable hematopoietic malignancies. Strikingly, conditional deletion of both mPot1a and p53 in mouse mammary epithelium resulted in development of highly invasive breast carcinomas and the formation of whole chromosomes containing massive arrays of telomeric fusions reminiscent of chromothripsis. Our results reveal that hPOT1 OB-folds are required to protect and prevent newly replicated telomeres from engaging in A-NHEJ mediated fusions that would otherwise promote genome instability to fuel tumorigenesis.
Collapse
Affiliation(s)
- P Gu
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Y Wang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - K K Bisht
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - L Wu
- Department of GI Medical Oncology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - L Kukova
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - E M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - Y Xiao
- Section of Hematology-Oncology, Department of Medicine and Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - S M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - M Lei
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - J Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.,Program in Chemical Biology, University of Michigan, Ann Arbor, MI, USA
| | - S Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA.,Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
33
|
Guirouilh-Barbat J, Gelot C, Xie A, Dardillac E, Scully R, Lopez BS. 53BP1 Protects against CtIP-Dependent Capture of Ectopic Chromosomal Sequences at the Junction of Distant Double-Strand Breaks. PLoS Genet 2016; 12:e1006230. [PMID: 27798638 PMCID: PMC5087911 DOI: 10.1371/journal.pgen.1006230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/09/2016] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSB) are very harmful lesions that can generate genome rearrangements. In this study, we used intrachromosomal reporters to compare both the efficiency and accuracy of end-joining occurring with close (34 bp apart) vs. distant DSBs (3200 bp apart) in human fibroblasts. We showed that a few kb between two intrachromosomal I-SceI-induced DSBs are sufficient to foster deletions and capture/insertions at the junction scar. Captured sequences are mostly coupled to deletions and can be partial duplications of the reporter (i.e., sequences adjacent to the DSB) or insertions of ectopic chromosomal sequences (ECS). Interestingly, silencing 53BP1 stimulates capture/insertions with distant but not with close double-strand ends (DSEs), although deletions were stimulated in both case. This shows that 53BP1 protects both close and distant DSEs from degradation and that the association of unprotection with distance between DSEs favors ECS capture. Reciprocally, silencing CtIP lessens ECS capture both in control and 53BP1-depleted cells. We propose that close ends are immediately/rapidly tethered and ligated, whereas distant ends first require synapsis of the distant DSEs prior to ligation. This "spatio-temporal" gap gives time and space for CtIP to initiate DNA resection, suggesting an involvement of single-stranded DNA tails for ECS capture. We therefore speculate that the resulting single-stranded DNA copies ECS through microhomology-mediated template switching.
Collapse
Affiliation(s)
- Josée Guirouilh-Barbat
- CNRS UMR 8200, Institut de Cancérologie Gustave Roussy, Université Paris Sud, Equipe labélisée "LIGUE 2014", Rue Edouard Vaillant
| | - Camille Gelot
- CNRS UMR 8200, Institut de Cancérologie Gustave Roussy, Université Paris Sud, Equipe labélisée "LIGUE 2014", Rue Edouard Vaillant
| | - Anyong Xie
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston
| | - Elodie Dardillac
- CNRS UMR 8200, Institut de Cancérologie Gustave Roussy, Université Paris Sud, Equipe labélisée "LIGUE 2014", Rue Edouard Vaillant
| | - Ralph Scully
- Department of Medicine, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston
| | - Bernard S Lopez
- CNRS UMR 8200, Institut de Cancérologie Gustave Roussy, Université Paris Sud, Equipe labélisée "LIGUE 2014", Rue Edouard Vaillant
| |
Collapse
|
34
|
Budke B, Lv W, Kozikowski AP, Connell PP. Recent Developments Using Small Molecules to Target RAD51: How to Best Modulate RAD51 for Anticancer Therapy? ChemMedChem 2016; 11:2468-2473. [PMID: 27781374 DOI: 10.1002/cmdc.201600426] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Indexed: 11/11/2022]
Abstract
Homologous recombination (HR) is an evolutionarily conserved DNA repair process. Overexpression of the key HR protein RAD51 is a common feature of malignant cells. RAD51 plays two distinct genome-stabilizing roles, including HR-mediated repair of double-strand breaks (DSBs) and the promotion of replication fork stability during replication stress. Because upregulation of RAD51 in cancer cells can promote tumor resistance to DNA-damaging oncologic therapies, we and others have worked to develop cancer therapeutics that target various aspects of RAD51 protein function. Herein, we provide an overview of recent developments in this field, together with our perspectives on the challenges associated with these evolving anticancer strategies.
Collapse
Affiliation(s)
- Brian Budke
- Department of Radiation and Cellular Oncology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| | - Wei Lv
- Department of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Alan P Kozikowski
- Department of Medicinal Chemistry and Pharmacognosy, Drug Discovery Program, University of Illinois at Chicago, 833 S. Wood Street, Chicago, IL, 60612, USA
| | - Philip P Connell
- Department of Radiation and Cellular Oncology, University of Chicago, 5841 S. Maryland Ave., Chicago, IL, 60637, USA
| |
Collapse
|
35
|
Guan J, Zhao Q, Mao W. Nuclear PTEN interferes with binding of Ku70 at double-strand breaks through post-translational poly(ADP-ribosyl)ation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:3106-3115. [PMID: 27741411 DOI: 10.1016/j.bbamcr.2016.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/27/2016] [Accepted: 10/07/2016] [Indexed: 01/12/2023]
Abstract
PTEN is a tumor suppressor gene characterized as a phosphatase that antagonizes the phosphatidylinositol 3-kinase signaling pathway in the cytoplasm. Nuclear PTEN plays roles in chromosomal stability, in which the double-strand breaks (DSB) repair mediated by homologous recombination (HR) and non-homologous end joining (NHEJ) is critical. Herein, the role of nuclear PTEN in DSB repair and the underlying molecular mechanism was investigated in this study. Using human breast cancer BT549 and MDA-MB-231 cell lines, we reveal a specific feature of PTEN that controls poly(ADP-ribosyl)ation of Ku70 and interferes with binding of Ku70 at DSB. Plasmid-based end joining and reporter assays showed that nuclear PTEN restrained NHEJ efficacy. Electrophoretic mobility shift assays showed that nuclear PTEN impaired Ku70 complex binding to DSB by 3-fold. Co-immunoprecipitation assay showed PTEN regulated poly(ADP-ribosyl)ation of Ku70 instead of directly interacting with Ku70, while PTEN promoted the poly(ADP-ribosyl)ation of PARP1 and induced the degradation of PARP1 in PTEN-WT cells exposed to DSB agents. Of note, the role of PTEN in DSB repair mostly depends on its nuclear localization rather than its phosphatase activity. As a result, the absence of nuclear PTEN rather than phosphatase-negative PTEN confers cell hypersensitivity to anti-tumor DNA damage drugs. This finding contributes to understanding the effect of PTEN in repair of DSB and using defined anti-tumor DSB drugs to treat tumor cells with aberrant PTEN.
Collapse
Affiliation(s)
- Jiawei Guan
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Qian Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weifeng Mao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
36
|
Success and Failures of Combined Modalities in Glioblastoma Multiforme: Old Problems and New Directions. Semin Radiat Oncol 2016; 26:281-98. [DOI: 10.1016/j.semradonc.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
37
|
Nishizawa-Yokoi A, Cermak T, Hoshino T, Sugimoto K, Saika H, Mori A, Osakabe K, Hamada M, Katayose Y, Starker C, Voytas DF, Toki S. A Defect in DNA Ligase4 Enhances the Frequency of TALEN-Mediated Targeted Mutagenesis in Rice. PLANT PHYSIOLOGY 2016; 170:653-66. [PMID: 26668331 PMCID: PMC4734567 DOI: 10.1104/pp.15.01542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 12/10/2015] [Indexed: 05/02/2023]
Abstract
We have established methods for site-directed mutagenesis via transcription activator-like effector nucleases (TALENs) in the endogenous rice (Oryza sativa) waxy gene and demonstrated stable inheritance of TALEN-induced somatic mutations to the progeny. To analyze the role of classical nonhomologous end joining (cNHEJ) and alternative nonhomologous end joining (altNHEJ) pathways in TALEN-induced mutagenesis in plant cells, we investigated whether a lack of DNA Ligase4 (Lig4) affects the kinetics of TALEN-induced double-strand break repair in rice cells. Deep-sequencing analysis revealed that the frequency of all types of mutations, namely deletion, insertion, combination of insertion with deletion, and substitution, in lig4 null mutant calli was higher than that in a lig4 heterozygous mutant or the wild type. In addition, the ratio of large deletions (greater than 10 bp) and deletions repaired by microhomology-mediated end joining (MMEJ) to total deletion mutations in lig4 null mutant calli was higher than that in the lig4 heterozygous mutant or wild type. Furthermore, almost all insertions (2 bp or greater) were shown to be processed via copy and paste of one or more regions around the TALENs cleavage site and rejoined via MMEJ regardless of genetic background. Taken together, our findings indicate that the dysfunction of cNHEJ leads to a shift in the repair pathway from cNHEJ to altNHEJ or synthesis-dependent strand annealing.
Collapse
Affiliation(s)
- Ayako Nishizawa-Yokoi
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Tomas Cermak
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Tomoki Hoshino
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Kazuhiko Sugimoto
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Hiroaki Saika
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Akiko Mori
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Keishi Osakabe
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Masao Hamada
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Yuichi Katayose
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Colby Starker
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Daniel F Voytas
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| | - Seiichi Toki
- Plant Genome Engineering Research Unit (A.N.-Y., H.S., A.M., S.T.), Rice Applied Genomics Research Unit (T.H., K.S.), and Advanced Genomics Laboratory (M.H., Y.K.), National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan;Department of Genetics, Cell Biology, and Development and Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (T.C., C.S., D.F.V.);Center for Collaboration among Agriculture, Industry, and Commerce, University of Tokushima, Tokushima 770-8503, Japan (K.O.); andKihara Institute for Biological Research, Yokohama City University, Yokohama 244-0813, Japan (S.T.)
| |
Collapse
|
38
|
Gelot C, Guirouilh-Barbat J, Le Guen T, Dardillac E, Chailleux C, Canitrot Y, Lopez BS. The Cohesin Complex Prevents the End Joining of Distant DNA Double-Strand Ends. Mol Cell 2016; 61:15-26. [PMID: 26687679 DOI: 10.1016/j.molcel.2015.11.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 09/25/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
The end joining of distant DNA double-strand ends (DSEs) can produce potentially deleterious rearrangements. We show that depletion of cohesion complex proteins specifically stimulates the end joining (both C-NHEJ and A-EJ) of distant, but not close, I-SceI-induced DSEs in S/G2 phases. At the genome level, whole-exome sequencing showed that ablation of RAD21 or Sororin produces large chromosomal rearrangements (translocation, duplication, deletion). Moreover, cytogenetic analysis showed that RAD21 silencing leads to the formation of chromosome fusions synergistically with replication stress, which generates distant single-ended DSEs. These data reveal a role for the cohesin complex in protecting against genome rearrangements arising from the ligation of distant DSEs in S/G2 phases (both long-range DSEs and those that are only a few kilobases apart), while keeping end joining fully active for close DSEs. Therefore, this role likely involves limitation of DSE motility specifically in S phase, rather than inhibition of the end-joining machinery itself.
Collapse
Affiliation(s)
- Camille Gelot
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Josée Guirouilh-Barbat
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Tangui Le Guen
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Elodie Dardillac
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France
| | - Catherine Chailleux
- Université de Toulouse UPS, CNRS UMR 5088, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), 31062 Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse UPS, CNRS UMR 5088, Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération (LBCMCP), 31062 Toulouse, France
| | - Bernard S Lopez
- Centre National de la Recherche Scientifique (CNRS) UMR 8200, Institut de Cancérologie Gustave-Roussy, Université Paris-Saclay, Equipe Labellisée Ligue Contre le Cancer, 114 Rue Edouard Vaillant, 94805 Villejuif, France.
| |
Collapse
|
39
|
Elevated levels of TRF2 induce telomeric ultrafine anaphase bridges and rapid telomere deletions. Nat Commun 2015; 6:10132. [PMID: 26640040 PMCID: PMC4686832 DOI: 10.1038/ncomms10132] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/05/2015] [Indexed: 01/23/2023] Open
Abstract
The shelterin protein TRF2 is essential for chromosome-end protection. Depletion of TRF2 causes chromosome end-to-end fusions, initiating genomic instability that can be cancer promoting. Paradoxically, significant increased levels of TRF2 are observed in a subset of human cancers. Experimental overexpression of TRF2 has also been shown to induce telomere shortening, through an unknown mechanism. Here we report that TRF2 overexpression results in replication stalling in duplex telomeric repeat tracts and the subsequent formation of telomeric ultrafine anaphase bridges (UFBs), ultimately leading to stochastic loss of telomeric sequences. These TRF2 overexpression-induced telomere deletions generate chromosome fusions resembling those detected in human cancers and in mammalian cells containing critically shortened telomeres. Therefore, our findings have uncovered a second pathway by which altered TRF2 protein levels can induce end-to-end fusions. The observations also provide mechanistic insight into the molecular basis of genomic instability in tumour cells containing significantly increased TRF2 levels.
Collapse
|
40
|
Yuan Y, Britton S, Delteil C, Coates J, Jackson SP, Barboule N, Frit P, Calsou P. Single-stranded DNA oligomers stimulate error-prone alternative repair of DNA double-strand breaks through hijacking Ku protein. Nucleic Acids Res 2015; 43:10264-76. [PMID: 26350212 PMCID: PMC4666393 DOI: 10.1093/nar/gkv894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/26/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
In humans, DNA double-strand breaks (DSBs) are repaired by two mutually-exclusive mechanisms, homologous recombination or end-joining. Among end-joining mechanisms, the main process is classical non-homologous end-joining (C-NHEJ) which relies on Ku binding to DNA ends and DNA Ligase IV (Lig4)-mediated ligation. Mostly under Ku- or Lig4-defective conditions, an alternative end-joining process (A-EJ) can operate and exhibits a trend toward microhomology usage at the break junction. Homologous recombination relies on an initial MRN-dependent nucleolytic degradation of one strand at DNA ends. This process, named DNA resection generates 3' single-stranded tails necessary for homologous pairing with the sister chromatid. While it is believed from the current literature that the balance between joining and recombination processes at DSBs ends is mainly dependent on the initiation of resection, it has also been shown that MRN activity can generate short single-stranded DNA oligonucleotides (ssO) that may also be implicated in repair regulation. Here, we evaluate the effect of ssO on end-joining at DSB sites both in vitro and in cells. We report that under both conditions, ssO inhibit C-NHEJ through binding to Ku and favor repair by the Lig4-independent microhomology-mediated A-EJ process.
Collapse
Affiliation(s)
- Ying Yuan
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Sébastien Britton
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Christine Delteil
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Julia Coates
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN England, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN England, UK
| | - Nadia Barboule
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Philippe Frit
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| | - Patrick Calsou
- CNRS, IPBS (Institut de Pharmacologie et de Biologie Structurale), BP 64182, 205 route de Narbonne, F-31077 Toulouse, Cedex4, France Université de Toulouse, UPS, IPBS, F-31077 Toulouse, France Equipe labellisée Ligue Nationale Contre le Cancer, France
| |
Collapse
|
41
|
Taty-Taty GC, Chailleux C, Quaranta M, So A, Guirouilh-Barbat J, Lopez BS, Bertrand P, Trouche D, Canitrot Y. Control of alternative end joining by the chromatin remodeler p400 ATPase. Nucleic Acids Res 2015; 44:1657-68. [PMID: 26578561 PMCID: PMC4770216 DOI: 10.1093/nar/gkv1202] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks occurs in a chromatin context that needs to be modified and remodeled to allow suitable access to the different DNA repair machineries. Of particular importance for the maintenance of genetic stability is the tight control of error-prone pathways, such as the alternative End Joining pathway. Here, we show that the chromatin remodeler p400 ATPase is a brake to the use of alternative End Joining. Using specific intracellular reporter susbstrates we observed that p400 depletion increases the frequency of alternative End Joining events, and generates large deletions following repair of double-strand breaks. This increase of alternative End Joining events is largely dependent on CtIP-mediated resection, indicating that it is probably related to the role of p400 in late steps of homologous recombination. Moreover, p400 depletion leads to the recruitment of poly(ADP) ribose polymerase (PARP) and DNA ligase 3 at DNA double-strand breaks, driving to selective killing by PARP inhibitors. All together these results show that p400 acts as a brake to prevent alternative End Joining-dependent genetic instability and underline its potential value as a clinical marker.
Collapse
Affiliation(s)
- Gemael-Cedrick Taty-Taty
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Catherine Chailleux
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Muriel Quaranta
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Ayeong So
- Université Paris Sud, CNRS UMR8200, IGR, Villejuif, France
| | | | | | - Pascale Bertrand
- CEA DSV, UMR 967 CEA-INSERM-Université Paris Diderot-Université Paris Sud, Fontenay aux roses, France
| | - Didier Trouche
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| | - Yvan Canitrot
- Université de Toulouse, UPS, LBCMCP, F-31062 Toulouse, France CNRS UMR5088, LBCMCP, F-31062 Toulouse, France
| |
Collapse
|
42
|
Genome-Wide Mutational Signature of the Chemotherapeutic Agent Mitomycin C in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2015; 6:133-40. [PMID: 26564951 PMCID: PMC4704711 DOI: 10.1534/g3.115.021915] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cancer therapy largely depends on chemotherapeutic agents that generate DNA lesions. However, our understanding of the nature of the resulting lesions as well as the mutational profiles of these chemotherapeutic agents is limited. Among these lesions, DNA interstrand crosslinks are among the more toxic types of DNA damage. Here, we have characterized the mutational spectrum of the commonly used DNA interstrand crosslinking agent mitomycin C (MMC). Using a combination of genetic mapping, whole genome sequencing, and genomic analysis, we have identified and confirmed several genomic lesions linked to MMC-induced DNA damage in Caenorhabditis elegans. Our data indicate that MMC predominantly causes deletions, with a 5'-CpG-3' sequence context prevalent in the deleted regions of DNA. Furthermore, we identified microhomology flanking the deletion junctions, indicative of DNA repair via nonhomologous end joining. Based on these results, we propose a general repair mechanism that is likely to be involved in the biological response to this highly toxic agent. In conclusion, the systematic study we have described provides insight into potential sequence specificity of MMC with DNA.
Collapse
|
43
|
Iliakis G, Murmann T, Soni A. Alternative end-joining repair pathways are the ultimate backup for abrogated classical non-homologous end-joining and homologous recombination repair: Implications for the formation of chromosome translocations. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:166-75. [DOI: 10.1016/j.mrgentox.2015.07.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
|
44
|
Muraki K, Han L, Miller D, Murnane JP. Processing by MRE11 is involved in the sensitivity of subtelomeric regions to DNA double-strand breaks. Nucleic Acids Res 2015. [PMID: 26209132 PMCID: PMC4652756 DOI: 10.1093/nar/gkv714] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The caps on the ends of chromosomes, called telomeres, keep the ends of chromosomes from appearing as DNA double-strand breaks (DSBs) and prevent chromosome fusion. However, subtelomeric regions are sensitive to DSBs, which in normal cells is responsible for ionizing radiation-induced cell senescence and protection against oncogene-induced replication stress, but promotes chromosome instability in cancer cells that lack cell cycle checkpoints. We have previously reported that I-SceI endonuclease-induced DSBs near telomeres in a human cancer cell line are much more likely to generate large deletions and gross chromosome rearrangements (GCRs) than interstitial DSBs, but found no difference in the frequency of I-SceI-induced small deletions at interstitial and subtelomeric DSBs. We now show that inhibition of MRE11 3′–5′ exonuclease activity with Mirin reduces the frequency of large deletions and GCRs at both interstitial and subtelomeric DSBs, but has little effect on the frequency of small deletions. We conclude that large deletions and GCRs are due to excessive processing of DSBs, while most small deletions occur during classical nonhomologous end joining (C-NHEJ). The sensitivity of subtelomeric regions to DSBs is therefore because they are prone to undergo excessive processing, and not because of a deficiency in C-NHEJ in subtelomeric regions.
Collapse
Affiliation(s)
- Keiko Muraki
- Department of Radiation Oncology, University of California, San Francisco, 2340 Sutter St. San Francisco, CA 94143-1330, USA
| | - Limei Han
- Department of Radiation Oncology, University of California, San Francisco, 2340 Sutter St. San Francisco, CA 94143-1330, USA
| | - Douglas Miller
- Department of Radiation Oncology, University of California, San Francisco, 2340 Sutter St. San Francisco, CA 94143-1330, USA
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, 2340 Sutter St. San Francisco, CA 94143-1330, USA
| |
Collapse
|
45
|
Association of genetic polymorphisms in PRKDC and XRCC4 with risk of ESCC in a high-incidence region of North China. TUMORI JOURNAL 2015; 102:131-4. [PMID: 26166223 DOI: 10.5301/tj.5000306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 11/20/2022]
Abstract
BACKGROUND The nonhomologous end-joining (NHEJ) pathway is the main mechanism repairing DNA double-strand breaks (DSBs) in human cells. This research was designed to study the association between selected variants in NHEJ members and esophageal squamous cell carcinoma (ESCC). METHODS Two single nucleotide polymorphisms (SNPs), PRKDC (rs7003908) and X-ray repair cross complementing group 4 (XRCC4; rs1805377), were genotyped in a total of 189 patients with ESCC and 189 unrelated control individuals in a high-risk area for ESCC in North China, and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method was applied. RESULTS A significantly different distribution was found in the frequency of PRKDC (rs7003908) genotype between the ESCC group and controls. Individuals homozygous for the C allele had a significant (3.185-fold) increased risk of ESCC. As for XRCC4 (rs1805377) polymorphism, no difference was found in distribution between the ESCC and control groups. CONCLUSIONS Our results suggest that variation in DNA repair genes may be associated with risk of ESCC.
Collapse
|
46
|
Soni A, Siemann M, Pantelias GE, Iliakis G. Marked contribution of alternative end-joining to chromosome-translocation-formation by stochastically induced DNA double-strand-breaks in G2-phase human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 793:2-8. [PMID: 26520366 DOI: 10.1016/j.mrgentox.2015.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 07/01/2015] [Indexed: 01/15/2023]
Abstract
Ionizing radiation (IR) induces double strand breaks (DSBs) in cellular DNA, which if not repaired correctly can cause chromosome translocations leading to cell death or cancer. Incorrect joining of DNA ends generating chromosome translocations can be catalyzed either by the dominant DNA-PKcs-dependent, classical non-homologous end-joining (c-NHEJ), or by an alternative end-joining (alt-EJ) process, functioning as backup to abrogated c-NHEJ, or homologous recombination repair. Alt-EJ operates with slower kinetics as compared to c-NHEJ and generates larger alterations at the junctions; it is also considered crucial to chromosome translocation-formation. A recent report posits that this view only holds for rodent cells and that in human cells c-NHEJ is the main mechanism of chromosome translocation formation. Since this report uses designer nucleases that induce DSBs with unique characteristics in specific genomic locations and PCR to detect translocations, we revisit the issue using stochastically distributed DSBs induced in the human genome by IR during the G2-phase of the cell cycle. For visualization and analysis of chromosome translocations, which manifest as chromatid translocations in cells irradiated in G2, we employ classical cytogenetics. In wild-type cells, we observe a significant contribution of alt-EJ to translocation formation, as demonstrated by a yield-reduction after treatment with inhibitors of Parp, or of DNA ligases 1 and 3 (Lig1, Lig3). Notably, a nearly fourfold increase in translocation formation is seen in c-NHEJ mutants with defects in DNA ligase 4 (Lig4) that remain largely sensitive to inhibitors of Parp, and of Lig1/Lig3. We conclude that similar to rodent cells, chromosome translocation formation from randomly induced DSBs in human cells largely relies on alt-EJ. We discuss DSB localization in the genome, characteristics of the DSB and the cell cycle as potential causes of the divergent results generated with IR and designer nucleases.
Collapse
Affiliation(s)
- Aashish Soni
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Maria Siemann
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany
| | - Gabriel E Pantelias
- Institute of Nuclear Technology and Radiation Protection, National Centre for Scientific Research "Demokritos,"Aghia Paraskevi Attikis, Athens, Greece
| | - George Iliakis
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Essen, Germany.
| |
Collapse
|
47
|
Strong CL, Guerra HP, Mathew KR, Roy N, Simpson LR, Schiller MR. Damaging the Integrated HIV Proviral DNA with TALENs. PLoS One 2015; 10:e0125652. [PMID: 25946221 PMCID: PMC4422436 DOI: 10.1371/journal.pone.0125652] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/17/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 integrates its proviral DNA genome into the host genome, presenting barriers for virus eradication. Several new gene-editing technologies have emerged that could potentially be used to damage integrated proviral DNA. In this study, we use transcription activator-like effector nucleases (TALENs) to target a highly conserved sequence in the transactivation response element (TAR) of the HIV-1 proviral DNA. We demonstrated that TALENs cleave a DNA template with the HIV-1 proviral target site in vitro. A GFP reporter, under control of HIV-1 TAR, was efficiently inactivated by mutations introduced by transfection of TALEN plasmids. When infected cells containing the full-length integrated HIV-1 proviral DNA were transfected with TALENs, the TAR region accumulated indels. When one of these mutants was tested, the mutated HIV-1 proviral DNA was incapable of producing detectable Gag expression. TALEN variants engineered for degenerate recognition of select nucleotide positions also cleaved proviral DNA in vitro and the full-length integrated proviral DNA genome in living cells. These results suggest a possible design strategy for the therapeutic considerations of incomplete target sequence conservation and acquired resistance mutations. We have established a new strategy for damaging integrated HIV proviral DNA that may have future potential for HIV-1 proviral DNA eradication.
Collapse
Affiliation(s)
- Christy L. Strong
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Horacio P. Guerra
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Kiran R. Mathew
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Nervik Roy
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Lacy R. Simpson
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine and School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sharma S, Javadekar SM, Pandey M, Srivastava M, Kumari R, Raghavan SC. Homology and enzymatic requirements of microhomology-dependent alternative end joining. Cell Death Dis 2015; 6:e1697. [PMID: 25789972 PMCID: PMC4385936 DOI: 10.1038/cddis.2015.58] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 01/19/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major double-strand break (DSB) repair pathways in higher eukaryotes. Recently, it has been shown that alternative NHEJ (A-NHEJ) occurs in the absence of classical NHEJ and is implicated in chromosomal translocations leading to cancer. In the present study, we have developed a novel biochemical assay system utilizing DSBs flanked by varying lengths of microhomology to study microhomology-mediated alternative end joining (MMEJ). We show that MMEJ can operate in normal cells, when microhomology is present, irrespective of occurrence of robust classical NHEJ. Length of the microhomology determines the efficiency of MMEJ, 5 nt being obligatory. Using this biochemical approach, we show that products obtained are due to MMEJ, which is dependent on MRE11, NBS1, LIGASE III, XRCC1, FEN1 and PARP1. Thus, we define the enzymatic machinery and microhomology requirements of alternative NHEJ using a well-defined biochemical system.
Collapse
Affiliation(s)
- S Sharma
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - S M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - M Pandey
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - M Srivastava
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - R Kumari
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - S C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
49
|
NF-κB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia 2015; 29:1543-54. [PMID: 25652738 DOI: 10.1038/leu.2015.28] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/30/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPC), that is, the cell population giving rise not only to all mature hematopoietic lineages but also the presumed target for leukemic transformation, can transmit (adverse) genetic events, such as are acquired from chemotherapy or ionizing radiation. Data on the repair of DNA double-strand-breaks (DSB) and its accuracy in HSPC are scarce, in part contradictory, and mostly obtained in murine models. We explored the activity, quality and molecular components of DSB repair in human HSPC as compared with mature peripheral blood lymphocytes (PBL). To consider chemotherapy/radiation-induced compensatory proliferation, we established cycling HSPC cultures. Comparison of pathway-specific repair activities using reporter systems revealed that HSPC were severely compromised in non-homologous end joining and homologous recombination but not microhomology-mediated end joining. We observed a more pronounced radiation-induced accumulation of nuclear 53BP1 in HSPC relative to PBL, despite evidence for comparable DSB formation from cytogenetic analysis and γH2AX signal quantification, supporting differential pathway usage. Functional screening excluded a major influence of phosphatidylinositol-3-OH-kinase (ATM/ATR/DNA-PK)- and p53-signaling as well as chromatin remodeling. We identified diminished NF-κB signaling as the molecular component underlying the observed differences between HSPC and PBL, limiting the expression of DSB repair genes and bearing the risk of an inaccurate repair.
Collapse
|
50
|
Badie S, Carlos AR, Folio C, Okamoto K, Bouwman P, Jonkers J, Tarsounas M. BRCA1 and CtIP promote alternative non-homologous end-joining at uncapped telomeres. EMBO J 2015; 34:410-24. [PMID: 25582120 PMCID: PMC4339125 DOI: 10.15252/embj.201488947] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/29/2014] [Accepted: 11/25/2014] [Indexed: 12/15/2022] Open
Abstract
Loss of telomere protection occurs during physiological cell senescence and ageing, due to attrition of telomeric repeats and insufficient retention of the telomere-binding factor TRF2. Subsequently formed telomere fusions trigger rampant genomic instability leading to cell death or tumorigenesis. Mechanistically, telomere fusions require either the classical non-homologous end-joining (C-NHEJ) pathway dependent on Ku70/80 and LIG4, or the alternative non-homologous end-joining (A-NHEJ), which relies on PARP1 and LIG3. Here, we show that the tumour suppressor BRCA1, together with its interacting partner CtIP, both acting in end resection, also promotes end-joining of uncapped telomeres. BRCA1 and CtIP do not function in the ATM-dependent telomere damage signalling, nor in telomere overhang removal, which are critical for telomere fusions by C-NHEJ. Instead, BRCA1 and CtIP act in the same pathway as LIG3 to promote joining of de-protected telomeres by A-NHEJ. Our work therefore ascribes novel roles for BRCA1 and CtIP in end-processing and fusion reactions at uncapped telomeres, underlining the complexity of DNA repair pathways that act at chromosome ends lacking protective structures. Moreover, A-NHEJ provides a mechanism of previously unanticipated significance in telomere dysfunction-induced genome instability.
Collapse
Affiliation(s)
- Sophie Badie
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Ana Rita Carlos
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Cecilia Folio
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| | - Keiji Okamoto
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Peter Bouwman
- Division of Molecular Pathology and Cancer Systems Biology Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology and Cancer Systems Biology Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Madalena Tarsounas
- Telomere and Genome Stability Group, The CR-UK/MRC Gray Institute for Radiation Oncology and Biology, Oxford, UK
| |
Collapse
|