1
|
Edlow BL, Olchanyi M, Freeman HJ, Li J, Maffei C, Snider SB, Zöllei L, Iglesias JE, Augustinack J, Bodien YG, Haynes RL, Greve DN, Diamond BR, Stevens A, Giacino JT, Destrieux C, van der Kouwe A, Brown EN, Folkerth RD, Fischl B, Kinney HC. Sustaining wakefulness: Brainstem connectivity in human consciousness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.13.548265. [PMID: 37502983 PMCID: PMC10369992 DOI: 10.1101/2023.07.13.548265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Consciousness is comprised of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that modulate awareness in the human brain, but knowledge about the subcortical networks that sustain arousal is lacking. We integrated data from ex vivo diffusion MRI, immunohistochemistry, and in vivo 7 Tesla functional MRI to map the connectivity of a subcortical arousal network that we postulate sustains wakefulness in the resting, conscious human brain, analogous to the cortical default mode network (DMN) that is believed to sustain self-awareness. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain by correlating ex vivo diffusion MRI with immunohistochemistry in three human brain specimens from neurologically normal individuals scanned at 600-750 μm resolution. We performed deterministic and probabilistic tractography analyses of the diffusion MRI data to map dAAN intra-network connections and dAAN-DMN internetwork connections. Using a newly developed network-based autopsy of the human brain that integrates ex vivo MRI and histopathology, we identified projection, association, and commissural pathways linking dAAN nodes with one another and with cortical DMN nodes, providing a structural architecture for the integration of arousal and awareness in human consciousness. We release the ex vivo diffusion MRI data, corresponding immunohistochemistry data, network-based autopsy methods, and a new brainstem dAAN atlas to support efforts to map the connectivity of human consciousness.
Collapse
Affiliation(s)
- Brian L. Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Mark Olchanyi
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Holly J. Freeman
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jian Li
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Chiara Maffei
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Samuel B. Snider
- Department of Neurology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lilla Zöllei
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - J. Eugenio Iglesias
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Yelena G. Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Robin L. Haynes
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Douglas N. Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Bram R. Diamond
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Allison Stevens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Joseph T. Giacino
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital and Harvard Medical School, Charlestown, MA 02129 USA
| | - Christophe Destrieux
- UMR 1253, iBrain, Université de Tours, Inserm, 10 Boulevard Tonnellé, 37032, Tours, France
- CHRU de Tours, 2 Boulevard Tonnellé, Tours, France
| | - Andre van der Kouwe
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
| | - Emery N. Brown
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Bruce Fischl
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129, USA
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Hannah C. Kinney
- Department of Pathology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kow LM, Kandel H, Kilinc M, Daniels MA, Magarinos AM, Jiang CS, Pfaff DW. Potassium channels and the development of arousal-relevant action potential trains in primary hindbrain neurons. Brain Res 2021; 1768:147574. [PMID: 34274325 PMCID: PMC8513459 DOI: 10.1016/j.brainres.2021.147574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/17/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Neurons in nucleus gigantocellularis (NGC) have been shown by many lines of evidence to be important for regulating generalized CNS arousal. Our previous study on mouse pups suggested that the development of NGC neurons' capability to fire action potential (AP) trains may both lead to the development of behavioral arousal and may itself depend on an increase in delayed rectifier currents. Here with whole-cell patch clamp we studied delayed rectifier currents in two stages. First, primary cultured neurons isolated from E12.5 embryonic hindbrain (HB), a dissection which contains all of NGC, were used to take advantage of studying neurons in vitro over using neurons in situ or in brain slices. HB neurons were tested with Guangxitoxin-1E and Resveratrol, two inhibitors of Kv2 channels which mediate the main bulk of delayed rectifier currents. Both inhibitors depressed delayed rectifier currents, but differentially: Resveratrol, but not Guangxitoxin-1E, reduced or abolished action potentials in AP trains. Since Resveratrol affects the Kv2.2 subtype, the development of the delayed rectifier mediated through Kv2.2 channels may lead to the development of HB neurons' capability to generate AP trains. Stage Two in this work found that electrophysiological properties of the primary HB neurons recorded are essentially the same as those of NGC neurons. Thus, from the two stages combined, we propose that currents mediated through Kv2.2 are crucial for generating AP trains which, in turn, lead to the development of mouse pup behavioral arousal.
Collapse
Affiliation(s)
- Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States.
| | - Hagar Kandel
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Murat Kilinc
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Martin A Daniels
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Ana M Magarinos
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Caroline S Jiang
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| |
Collapse
|
3
|
Mueller SG, Muller AM. Brainstem Dysfunction in Healthy Aging. Neuroimage 2021; 238:118241. [PMID: 34116149 DOI: 10.1016/j.neuroimage.2021.118241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/29/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
The brainstem controls sub-cortical and cortical activity and influences the processing of incoming information. The goal of this study was to characterize age related alterations of brainstem-brain interactions during different brain states detected by dynamic analysis of task-free fMRI. 79 young (20-40 years) and 51 older adults (55-80 years) were studied. Internal brainstem structures were segmented using a new multi-contrast segmentation approach. Brain and brainstem gray matter segmentations were warped onto a population template. The ICV-corrected Jacobian determinants were converted into z-score maps and the means from 420 cortical/subcortical/brainstem rois extracted. The fMRI was preprocessed in SPM12/Conn18 and the BOLD signal from 420 cortical/subcortical/brainstem rois extracted. A dynamic task-free analysis approach based on hierarchical cluster analysis was used to identify 15 brain states that were characterized using graph analysis (strength, diversity, modularity). Kruskal-Wallis tests and Spearman correlations were used for statistical analysis. One brain state (cluster 21) occurred more often in older adults (p=0.008). It was characterized by a lower mean modular strength and brainstem-cortical strength in older adults compared to younger adults. Global age related gray matter differences were positively correlated with brain state 21's modular strength. Furthermore, brain state 21 duration was negatively correlated with working memory (r = -0.28, p=0.002). The findings suggest an age related weakening of the within and between network synchronization at the brainstem level during brain state 21 in older adults that negatively affects cortical and subcortical synchronization and working memory performance.
Collapse
Affiliation(s)
- S G Mueller
- Dept. of Radiology, University of California, San Francisco, CA.
| | - A M Muller
- Dept. of Radiology, University of California, San Francisco, CA.
| |
Collapse
|
4
|
Molecular profiling of reticular gigantocellularis neurons indicates that eNOS modulates environmentally dependent levels of arousal. Proc Natl Acad Sci U S A 2018; 115:E6900-E6909. [PMID: 29967172 DOI: 10.1073/pnas.1806123115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neurons of the medullary reticular nucleus gigantocellularis (NGC) and their targets have recently been a focus of research on mechanisms supporting generalized CNS arousal (GA) required for proper cognitive functions. Using the retro-TRAP method, we characterized transcripts enriched in NGC neurons which have projections to the thalamus. The unique expression and activation of the endothelial nitric oxide (eNOS) signaling pathway in these cells and their intimate connections with blood vessels indicate that these neurons exert direct neurovascular coupling. Production of nitric oxide (NO) within eNOS-positive NGC neurons increases after environmental perturbations, indicating a role for eNOS/NO in modulating environmentally appropriate levels of GA. Inhibition of NO production causes dysregulated behavioral arousal after exposure to environmental perturbation. Further, our findings suggest interpretations for associations between psychiatric disorders and mutations in the eNOS locus.
Collapse
|
5
|
Magariños AM, Pedron S, Creixell M, Kilinc M, Tabansky I, Pfaff DW, Harley BAC. The Feasibility of Encapsulated Embryonic Medullary Reticular Cells to Grow and Differentiate Into Neurons in Functionalized Gelatin-Based Hydrogels. FRONTIERS IN MATERIALS 2018; 5:40. [PMID: 30687706 PMCID: PMC6345411 DOI: 10.3389/fmats.2018.00040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The study of the behavior of embryonic neurons in controlled in vitro conditions require methodologies that take advantage of advanced tissue engineering approaches to replicate elements of the developing brain extracellular matrix. We report here a series of experiments that explore the potential of photo-polymerized gelatin hydrogels to culture primary embryonic neurons. We employed large medullary reticular neurons whose activity is essential for brain arousal as well as a library of gelatin hydrogels that span a range of mechanical properties, inclusion of brain-mimetic hyaluronic acid, and adhesion peptides. These hydrogel platforms showed inherent capabilities to sustain neuronal viability and were permissive for neuronal differentiation, resulting in the development of neurite outgrowth under specific conditions. The maturation of embryonic medullary reticular cells took place in the absence of growth factors or other exogenous bioactive molecules. Immunocytochemistry labeling of neuron-specific tubulin confirmed the initiation of neural differentiation. Thus, this methodology provides an important validation for future studies of nerve cell growth and maintenance.
Collapse
Affiliation(s)
- Ana M. Magariños
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Sara Pedron
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Marc Creixell
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Murat Kilinc
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Inna Tabansky
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Donald W. Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, NY, United States
| | - Brendan A. C. Harley
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
6
|
Amat-Foraster M, Leiser SC, Herrik KF, Richard N, Agerskov C, Bundgaard C, Bastlund JF, de Jong IE. The 5-HT6 receptor antagonist idalopirdine potentiates the effects of donepezil on gamma oscillations in the frontal cortex of anesthetized and awake rats without affecting sleep-wake architecture. Neuropharmacology 2017; 113:45-59. [DOI: 10.1016/j.neuropharm.2016.09.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 08/14/2016] [Accepted: 09/15/2016] [Indexed: 01/21/2023]
|
7
|
Liu X, Pfaff DW, Calderon DP, Tabansky I, Wang X, Wang Y, Kow LM. Development of Electrophysiological Properties of Nucleus Gigantocellularis Neurons Correlated with Increased CNS Arousal. Dev Neurosci 2016; 38:295-310. [PMID: 27788521 DOI: 10.1159/000449035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 08/09/2016] [Indexed: 01/28/2023] Open
Abstract
Many types of data have suggested that neurons in the nucleus gigantocellularis (NGC) in the medullary reticular formation are critically important for CNS arousal and behavioral responsiveness. To extend this topic to a developmental framework, whole-cell patch-recorded characteristics of NGC neurons in brainstem slices and measures of arousal-dependent locomotion of postnatal day 3 (P3) to P6 mouse pups were measured and compared. These neuronal characteristics developed in an orderly, statistically significant monotonic manner over the course of P3-P6: (1) proportion of neurons capable of firing action potential (AP) trains, (2) AP amplitude, (3) AP threshold, (4) amplitude of inward and outward currents, (5) amplitude of negative peak currents, and (6) steady state currents (in I-V plot). These measurements reflect the maturation of sodium and certain potassium channels. Similarly, all measures of locomotion, latency to first movement, total locomotion duration, net locomotion distance, and total quiescence time also developed monotonically over P3-P6. Most importantly, electrophysiological and behavioral measures were significantly correlated. Interestingly, the behavioral measures were not correlated with frequency of excitatory postsynaptic currents or the proportion of neurons showing these currents, responses to a battery of neurotransmitter agents, or rapid activating potassium currents (including IA). Considering the results here in the context of a large body of literature on NGC, we hypothesize that the developmental increase in NGC neuronal excitability participates in causing the increased behavioral responsivity during the postnatal period from P3 to P6.
Collapse
Affiliation(s)
- Xu Liu
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, N.Y., USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Nieuwenhuis S, De Geus EJ, Aston-Jones G. The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology 2015; 48:162-75. [PMID: 20557480 DOI: 10.1111/j.1469-8986.2010.01057.x] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many psychophysiologists have noted the striking similarities between the antecedent conditions for the P3 component of the event-related potential and the orienting response: both are typically elicited by salient, unexpected, novel, task-relevant, and other motivationally significant stimuli. Although the close coupling of the P3 and orienting response has been well documented, the neural basis and functional role of this relationship is still poorly understood. Here we propose that the simultaneous occurrence of the P3 and autonomic components of the orienting response reflects the co-activation of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system by their common major afferent: the rostral ventrolateral medulla, a key sympathoexcitatory region. A comparison of the functional significance of the locus coeruleus-norepinephrine system and the peripheral sympathetic nervous system suggests that the P3 and orienting response reflect complementary cognitive and physical contributions to the mobilization for action following motivationally significant stimuli.
Collapse
Affiliation(s)
- Sander Nieuwenhuis
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Eco J De Geus
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| | - Gary Aston-Jones
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, The NetherlandsInstitute of Psychology, Leiden University, Leiden, The NetherlandsDepartment of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The NetherlandsDepartment of Neurosciences, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
9
|
Neuroanatomical localization of nitric oxide synthase (nNOS) in the central nervous system of carp,
Labeo rohita
during post‐embryonic development. Int J Dev Neurosci 2015; 46:14-26. [DOI: 10.1016/j.ijdevneu.2015.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 02/05/2023] Open
|
10
|
Gattass R, Galkin TW, Desimone R, Ungerleider LG. Subcortical connections of area V4 in the macaque. J Comp Neurol 2014; 522:1941-65. [PMID: 24288173 PMCID: PMC3984622 DOI: 10.1002/cne.23513] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
Abstract
Area V4 has numerous, topographically organized connections with multiple cortical areas, some of which are important for spatially organized visual processing, and others which seem important for spatial attention. Although the topographic organization of V4's connections with other cortical areas has been established, the detailed topography of its connections with subcortical areas is unclear. We therefore injected retrograde and anterograde tracers in different topographical regions of V4 in nine macaques to determine the organization of its subcortical connections. The injection sites included representations ranging from the fovea to far peripheral eccentricities in both the upper and lower visual fields. The topographically organized connections of V4 included bidirectional connections with four subdivisions of the pulvinar, two subdivisions of the claustrum, and the interlaminar portions of the lateral geniculate nucleus, and efferent projections to the superficial and intermediate layers of the superior colliculus, the thalamic reticular nucleus, and the caudate nucleus. All of these structures have a possible role in spatial attention. The nontopographic, or converging, connections included bidirectional connections with the lateral nucleus of the amygdala, afferent inputs from the dorsal raphe, median raphe, locus coeruleus, ventral tegmentum and nucleus basalis of Meynert, and efferent projections to the putamen. Any role of these structures in attention may be less spatially specific.
Collapse
Affiliation(s)
- Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ,Rio de Janeiro, RJ, 21941-900, Brazil
| | - Thelma W Galkin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
| | - Robert Desimone
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
- McGovern Institute, MIT,Cambridge, Massachusetts, 02139-4307, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
| |
Collapse
|
11
|
Hubscher CH, Gupta DS, Brink TS. Convergence and cross talk in urogenital neural circuitries. J Neurophysiol 2013; 110:1997-2005. [DOI: 10.1152/jn.00297.2013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Despite common comorbidity of sexual and urinary dysfunctions, the interrelationships between the neural control of these functions are poorly understood. The medullary reticular formation (MRF) contributes to both mating/arousal functions and micturition, making it a good site to test circuitry interactions. Urethane-anesthetized adult Wistar rats were used to examine the impact of electrically stimulating different nerve targets [dorsal nerve of the penis (DNP) or clitoris (DNC); L6/S1 trunk] on responses of individual extracellularly recorded MRF neurons. The effect of bladder filling on MRF neurons was also examined, as was stimulation of DNP on bladder reflexes via cystometry. In total, 236 MRF neurons responded to neurostimulation: 102 to DNP stimulation (12 males), 64 to DNC stimulation (12 females), and 70 to L6/S1 trunk stimulation (12 males). Amplitude thresholds were significantly different at DNP (15.0 ± 0.6 μA), DNC (10.5 ± 0.7 μA), and L6/S1 trunk (54.2 ± 4.6 μA), whereas similar frequency responses were found (max responses near 30–40 Hz). In five males, filling/voiding cycles were lengthened with DNP stimulation (11.0 ± 0.9 μA), with a maximal effective frequency plateau beginning at 30 Hz. Bladder effects lasted ∼2 min after DNP stimulus offset. Many MRF neurons receiving DNP/DNC input responded to bladder filling (35.0% and 68.3%, respectively), either just before (43%) or simultaneously with (57%) the voiding reflex. Taken together, MRF-evoked responses with neurostimulation of multiple nerve targets along with different responses to bladder infusion have implications for the role of MRF in multiple aspects of urogenital functions.
Collapse
Affiliation(s)
- C. H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - D. S. Gupta
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - T. S. Brink
- Neuromodulation Research, Medtronic Incorporated, Minneapolis, Minnesota
| |
Collapse
|
12
|
Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 2012; 35:468-76. [PMID: 22626543 DOI: 10.1016/j.tins.2012.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 04/18/2012] [Accepted: 04/23/2012] [Indexed: 01/12/2023]
Abstract
The existence of a primitive CNS function involved in the activation of all vertebrate behaviors, generalized arousal (GA), has been proposed. Here, we provide an overview of the neuroanatomical, neurophysiological and molecular properties of reticular neurons within the nucleus gigantocellularis (NGC) of the mammalian medulla, and propose that the properties of these neurons equip them to contribute powerfully to GA. We also explore the hypothesis that these neurons may have evolved from the Mauthner cell in the medulla of teleost fish, although NGC neurons have a wider range of action far beyond the specific escape network served by Mauthner cells. Understanding the neuronal circuits that control and regulate GA is central to understanding how motivated behaviors such as hunger, thirst and sexual behaviors arise.
Collapse
|
13
|
Activation of inactivation process initiates rapid eye movement sleep. Prog Neurobiol 2012; 97:259-76. [PMID: 22521402 DOI: 10.1016/j.pneurobio.2012.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 04/01/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
Interactions among REM-ON and REM-OFF neurons form the basic scaffold for rapid eye movement sleep (REMS) regulation; however, precise mechanism of their activation and cessation, respectively, was unclear. Locus coeruleus (LC) noradrenalin (NA)-ergic neurons are REM-OFF type and receive GABA-ergic inputs among others. GABA acts postsynaptically on the NA-ergic REM-OFF neurons in the LC and presynaptically on the latter's projection terminals and modulates NA-release on the REM-ON neurons. Normally during wakefulness and non-REMS continuous release of NA from the REM-OFF neurons, which however, is reduced during the latter phase, inhibits the REM-ON neurons and prevents REMS. At this stage GABA from substantia nigra pars reticulate acting presynaptically on NA-ergic terminals on REM-ON neurons withdraws NA-release causing the REM-ON neurons to escape inhibition and being active, may be even momentarily. A working-model showing neurochemical-map explaining activation of inactivation process, showing contribution of GABA-ergic presynaptic inhibition in withdrawing NA-release and dis-inhibition induced activation of REM-ON neurons, which in turn activates other GABA-ergic neurons and shutting-off REM-OFF neurons for the initiation of REMS-generation has been explained. Our model satisfactorily explains yet unexplained puzzles (i) why normally REMS does not appear during waking, rather, appears following non-REMS; (ii) why cessation of LC-NA-ergic-REM-OFF neurons is essential for REMS-generation; (iii) factor(s) which does not allow cessation of REM-OFF neurons causes REMS-loss; (iv) the association of changes in levels of GABA and NA in the brain during REMS and its deprivation and associated symptoms; v) why often dreams are associated with REMS.
Collapse
|
14
|
Quinkert AW, Vimal V, Weil ZM, Reeke GN, Schiff ND, Banavar JR, Pfaff DW. Quantitative descriptions of generalized arousal, an elementary function of the vertebrate brain. Proc Natl Acad Sci U S A 2011; 108 Suppl 3:15617-23. [PMID: 21555568 PMCID: PMC3176607 DOI: 10.1073/pnas.1101894108] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We review a concept of the most primitive, fundamental function of the vertebrate CNS, generalized arousal (GA). Three independent lines of evidence indicate the existence of GA: statistical, genetic, and mechanistic. Here we ask, is this concept amenable to quantitative analysis? Answering in the affirmative, four quantitative approaches have proven useful: (i) factor analysis, (ii) information theory, (iii) deterministic chaos, and (iv) application of a Gaussian equation. It strikes us that, to date, not just one but at least four different quantitative approaches seem necessary for describing different aspects of scientific work on GA.
Collapse
Affiliation(s)
- Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior and Laboratory of Biological Modelling, The Rockefeller University, New York, NY 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Martin EM, Devidze N, Shelley DN, Westberg L, Fontaine C, Pfaff DW. Molecular and neuroanatomical characterization of single neurons in the mouse medullary gigantocellular reticular nucleus. J Comp Neurol 2011; 519:2574-93. [PMID: 21456014 DOI: 10.1002/cne.22639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Medullary gigantocellular reticular nucleus (mGi) neurons have been ascribed a variety of behaviors, many of which may fall under the concepts of either arousal or motivation. Despite this, many details of the connectivity of mGi neurons, particularly in reference to those neurons with ascending axons, remain unknown. To provide a neuroanatomical and molecular characterization of these cells, with reference to arousal and level-setting systems, large medullary reticular neurons were characterized with retrograde dye techniques and with real-time reverse transcriptase PCR (RT-PCR) analyses of single-neuron mRNA expression in the mouse. We have shown that receptors consistent with participation in generalized arousal are expressed by single mGi neurons and that receptors from different families of arousal-related neurotransmitters are rarely coexpressed. Through retrograde labeling, we have shown that neurons with ascending axons and neurons with descending axons tend to form like-with-like clusters, a finding that is consistent across age and gender. In comparing the two groups of retrogradely labeled neurons in neonatal animals, those neurons with axons that ascend to the midbrain show markers for GABAergic or coincident GABAergic and glutamatergic function; in contrast, approximately 60% of the neurons with axons that descend to the spinal cord are glutamatergic. We discuss the mGi's relationship to the voluntary and emotional motor systems and speculate that neurons in the mGi may represent a mammalian analogue to Mauthner cells, with a separation of function for neurons with ascending and descending axons.
Collapse
Affiliation(s)
- E M Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Quinkert AW, Schiff ND, Pfaff DW. Temporal patterning of pulses during deep brain stimulation affects central nervous system arousal. Behav Brain Res 2010; 214:377-85. [PMID: 20558210 DOI: 10.1016/j.bbr.2010.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 06/05/2010] [Indexed: 11/29/2022]
Abstract
Regulation of CNS arousal is important for a wide variety of functions, including the initiation of all motivated behaviors. Usually studied with pharmacological or hormonal tools, CNS arousal can also be elevated by deep brain stimulation (DBS), in the human brain and in animals. The effectiveness of DBS is conventionally held to depend on pulse width, frequency, amplitude and stimulation duration. We demonstrate a novel approach for testing the effectiveness of DBS to increase arousal in intact female mice: all of the foregoing parameters are held constant. Only the temporal patterning of the pulses within the stimulation is varied. To create differentially patterned pulse trains, a deterministic nonlinear dynamic equation was used to generate a series of pulses with a predetermined average frequency. Three temporal patterns of stimulation were defined: two nonlinear patterns, Nonlinear1 (NL1) and Nonlinear2 (NL2), and the conventional pattern, Fixed Frequency (FF). Female mice with bilateral monopolar electrodes were observed before, during and after hippocampal or medial thalamic stimulation. NL1 hippocampal stimulation was significantly more effective at increasing behavioral arousal than either FF or NL2; however, FF and NL2 stimulation of the medial thalamus were more effective than NL1. During the same experiments, we recorded an unpredicted increase in the spectral power of slow waves in the cortical EEG. Our data comprise the first demonstration that the temporal pattern of DBS can be used to elevate its effectiveness, and also point the way toward the use of nonlinear dynamics in the exploration of means to optimize DBS.
Collapse
Affiliation(s)
- Amy Wells Quinkert
- Laboratory of Neurobiology and Behavior, Rockefeller University, 1230 York Ave, New York, NY 10065, United States.
| | | | | |
Collapse
|
17
|
Gubellini P, Salin P, Kerkerian-Le Goff L, Baunez C. Deep brain stimulation in neurological diseases and experimental models: From molecule to complex behavior. Prog Neurobiol 2009; 89:79-123. [DOI: 10.1016/j.pneurobio.2009.06.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 04/28/2009] [Accepted: 06/18/2009] [Indexed: 11/30/2022]
|
18
|
Overk CR, Kelley CM, Mufson EJ. Brainstem Alzheimer's-like pathology in the triple transgenic mouse model of Alzheimer's disease. Neurobiol Dis 2009; 35:415-25. [PMID: 19524671 DOI: 10.1016/j.nbd.2009.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 05/28/2009] [Accepted: 06/04/2009] [Indexed: 01/15/2023] Open
Abstract
The triple transgenic mouse (3xTgAD), harboring human APP(Swe), PS1(M146V) and Tau(P301L) genes, develops age-dependent forebrain intraneuronal Abeta and tau as well as extraneuronal plaques. We evaluated brainstem AD-like pathology using 6E10, AT8, and Alz50 antibodies and unbiased stereology in young and old 3xTgAD mice. Intraneuronal Abeta occurred in the tectum, periaqueductal gray, substantia nigra, red nucleus, tegmentum and mesencephalic V nucleus at all ages. Abeta-positive neuron numbers significantly decreased in the superior colliculus and substantia nigra while AT8-positive superior colliculus, red nucleus, principal sensory V, vestibular nuclei, and tegmental neurons significantly increased between 2 and 12 months. Alz50-positive neuron numbers increased only in the inferior colliculus between these ages. Dual labeling revealed a few Abeta- and tau-positive neurons. Plaques occurred only in the pons of female 3xTgAD mice starting at 9 months. 3xTgAD mice provide a platform to define in vivo mechanisms of Abeta and tau brainstem pathology.
Collapse
Affiliation(s)
- Cassia R Overk
- Department of Neurological Sciences, Rush University Medical Center, 1735 W. Harrison Street, Suite 300, Chicago, IL 60612, USA
| | | | | |
Collapse
|
19
|
Allman BL, Keniston LP, Meredith MA. Subthreshold auditory inputs to extrastriate visual neurons are responsive to parametric changes in stimulus quality: sensory-specific versus non-specific coding. Brain Res 2008; 1242:95-101. [PMID: 18479671 DOI: 10.1016/j.brainres.2008.03.086] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 03/10/2008] [Accepted: 03/29/2008] [Indexed: 02/04/2023]
Abstract
A new subthreshold form of multisensory processing has been recently identified that results from the convergence of suprathreshold excitatory inputs from one modality with subthreshold inputs from another. Because of the subthreshold nature of the second modality, descriptive measures of sensory features such as receptive field properties or location are not directly apparent as they are for traditional bimodal neurons. This raises the question of whether or not subthreshold signals actually convey sensory-specific receptive field information as seen in their bimodal counterparts, or if they represent non-specific effects such as arousal. The present experiment addressed this issue in visually-responsive neurons from the cat posterolateral lateral suprasylvian cortex (PLLS). Single-unit electrophysiological techniques were used to record neuronal responses to visual, auditory and combined visual-auditory stimuli while the intensity of stimulation in the subthreshold auditory modality was systematically altered. The results showed that subthreshold multisensory neurons were sensitive to changes in auditory stimulus intensity. These receptive field sensitivities are similar to those observed in bimodal neurons and thereby represent sensory-specific, not arousal-related responses. In addition, these results provide further support for the notion that multisensory processing occurs along a dynamic continuum of neuronal convergence patterns from bimodal to purely sensory-specific.
Collapse
Affiliation(s)
- Brian L Allman
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, School of Medicine, 1101 E. Marshall St., Richmond, VA 23298-0709, USA.
| | | | | |
Collapse
|