1
|
Proviral ALV-LTR Sequence Is Essential for Continued Proliferation of the ALV-Transformed B Cell Line. Int J Mol Sci 2022; 23:ijms231911263. [PMID: 36232572 PMCID: PMC9569804 DOI: 10.3390/ijms231911263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/30/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
Avian leukosis virus (ALV) induces B-cell lymphomas and other malignancies in chickens through insertional activation of oncogenes, and c-myc activation has been commonly identified in ALV-induced tumors. Using ALV-transformed B-lymphoma-derived HP45 cell line, we applied in situ CRISPR-Cas9 editing of integrated proviral long terminal repeat (LTR) to examine the effects on gene expression and cell proliferation. Targeted deletion of LTR resulted in significant reduction in expression of a number of LTR-regulated genes including c-myc. LTR deletion also induced apoptosis of HP45 cells, affecting their proliferation, demonstrating the significance of LTR-mediated regulation of critical genes. Compared to the global effects on expression and functions of multiple genes in LTR-deleted cells, deletion of c-myc had a major effect on the HP45 cells proliferation with the phenotype similar to the LTR deletion, demonstrating the significance of c-myc expression in ALV-induced lymphomagenesis. Overall, our studies have not only shown the potential of targeted editing of the LTR for the global inhibition of retrovirus-induced transformation, but also have provided insights into the roles of LTR-regulated genes in ALV-induced neoplastic transformation.
Collapse
|
2
|
TELOMERASE MEDIATEDS PYROPTOSIS BY NF-κB Chicken telomerase reverse transcriptase mediates LMH cell pyroptosis by regulating the nuclear factor-kappa B signaling pathway. Poult Sci 2022; 101:101826. [PMID: 35385822 PMCID: PMC9170928 DOI: 10.1016/j.psj.2022.101826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/23/2021] [Accepted: 02/23/2022] [Indexed: 11/21/2022] Open
Abstract
The activation of human telomerase reverse transcriptase is regulated by the nuclear factor kappa B (NF-κB) signaling pathway to various degrees to promote the occurrence and development of tumors. However, the regulatory roles of chicken telomerase reverse transcriptase (chTERT) and the NF-κB signaling pathway in chickens are still elusive, particularly in respect to the regulation of cell pyroptosis. In this study, we found that chTERT upregulated the expression of p65 and p50, downregulated the expression of IκBα, promoted the phosphorylation of p65, p50, and IκBα, and significantly increased the transcript levels of the inflammatory cytokines IFNγ, TNFα, and IL-6 in LMH cells. The activity of NF-κB was significantly decreased after siRNA-mediated chTERT silencing. The expression of chTERT and telomerase activity were also significantly decreased when the NF-κB signaling pathway was blocked by p65 siRNA, MG132 or BAY 11-7082. In cells treated with LPS, the activity of NF-κB signaling pathway and the expression of chTERT were significantly upregulated. All of the results suggested that chTERT and the NF-κB pathway could regulate each other, reciprocally. Moreover, the expression of Caspase-1, NLRP3, GSDMA, IL-18, and IL-1β and caused membrane perforation, suggesting the development of pyroptosis by chTERT in LMH cells. And the expression of caspase-11 did not significantly increased in chTERT overexpression group. Genetic silence of NF-κB p65 or chTERT gene by siRNA suppressed the expression of these proinflammatory cytokines, indicating that chTERT mediates pyroptosis by regulating the NF-κB signaling pathway in LMH cells.
Collapse
|
3
|
Xiang Y, Liang C, Li Q, Chen Q, Zhou Y, Zheng X, Zhou D, Wang Z, Wang G, Cao W. Chicken telomerase reverse transcriptase promotes the tumorigenicity of avian leukosis virus subgroup J by regulating the Wnt/β-catenin signaling pathway. Vet Res 2022; 53:100. [PMID: 36461084 PMCID: PMC9717515 DOI: 10.1186/s13567-022-01120-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/24/2022] [Indexed: 12/03/2022] Open
Abstract
This research aimed to analyze the regulatory effect of chicken telomerase reverse transcriptase (chTERT) on the Wnt/β-catenin signaling pathway and its effect on the tumorigenicity of avian leukosis virus subgroup J (ALV-J) through in vivo experiments. The chTERT eukaryotic expression plasmid and its recombinant lentivirus particles were constructed for in vivo transfection of chTERT to analyze the effect of chTERT continuously overexpressed in chickens on the tumorigenicity of ALV-J. During 156 days of the artificial ALV-J tumor-inducing process, 7 solid tumors developed in 3 chickens in the chTERT-overexpression group (n = 26*2) and no tumors developed in the control group (n = 26*2). Another 18 tumors induced by ALV-J were confirmed and collected from breeding poultry farms. And we confirmed that chTERT was significantly highly expressed in ALV-J tumors. The ELISA data suggested that the protein levels of β-catenin and c-Myc in the chicken plasma of the chTERT-overexpressing group with ALV-J infected were consistently and significantly higher than those of the control group. Compared with that of the tumor-adjacent tissues, the activity of the Wnt/β-catenin signaling pathway and expression of the c-Myc was significantly increased in ALV-J tumors. And the percentage of apoptosis in ALV-J tumors significantly lower than that in tumor-adjacent tissues. Immunohistochemistry, Western blot and RT-qPCR suggested that the replication level of ALV-J in tumors was significantly higher than that in tumor-adjacent tissues. This study suggests that chTERT plays a critical role in the tumorigenicity of ALV-J by enhancing the Wnt/β-catenin signaling pathway, which will contribute to further elucidating the tumor-inducing mechanism of ALV-J.
Collapse
Affiliation(s)
- Yong Xiang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Canxin Liang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Qingbo Li
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Qinxi Chen
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Zhou
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoxue Zheng
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Di Zhou
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Zepeng Wang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Guyao Wang
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China
| | - Weisheng Cao
- grid.20561.300000 0000 9546 5767College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China ,grid.20561.300000 0000 9546 5767Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
4
|
Xiang Y, Yu Y, Li Q, Jiang Z, Li J, Liang C, Chen J, Li Y, Chen X, Cao W. Mutual regulation between chicken telomerase reverse transcriptase and the Wnt/β-catenin signalling pathway inhibits apoptosis and promotes the replication of ALV-J in LMH cells. Vet Res 2021; 52:110. [PMID: 34412690 PMCID: PMC8375160 DOI: 10.1186/s13567-021-00979-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
This study aimed to explore the mutual regulation between chicken telomerase reverse transcriptase (chTERT) and the Wnt/β-catenin signalling pathway and its effects on cell growth and avian leukosis virus subgroup J (ALV-J) replication in LMH cells. First, LMH cells stably overexpressing the chTERT gene (LMH-chTERT cells) and corresponding control cells (LMH-NC cells) were successfully constructed with a lentiviral vector expression system. The results showed that chTERT upregulated the expression of β-catenin, Cyclin D1, TCF4 and c-Myc. chTERT expression level and telomerase activity were increased when cells were treated with LiCl. When the cells were treated with ICG001 or IWP-2, the activity of the Wnt/β-catenin signalling pathway was significantly inhibited, and chTERT expression and telomerase activity were also inhibited. However, when the β-catenin gene was knocked down by small interfering RNA (siRNA), the changes in chTERT expression and telomerase activity were consistent with those in cells treated with ICG001 or IWP-2. These results indicated that chTERT and the Wnt/β-catenin signalling pathway can be mutually regulated. Subsequently, we found that chTERT not only shortened the cell cycle to promote proliferation but also inhibited apoptosis by downregulating the expression of Caspase 3, Caspase 9 and BAX; upregulating BCL-2 and BCL-X expression; and promoting autophagy. Moreover, chTERT significantly enhanced the migration ability of LMH cells, upregulated the protein and mRNA expression of ALV-J and increased the virus titre. ALV-J replication promoted chTERT expression and telomerase activity.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yun Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zeng Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyan Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Antitumour Activity of the Ribonuclease Binase from Bacillus pumilus in the RLS 40 Tumour Model Is Associated with the Reorganisation of the miRNA Network and Reversion of Cancer-Related Cascades to Normal Functioning. Biomolecules 2020; 10:biom10111509. [PMID: 33147876 PMCID: PMC7692507 DOI: 10.3390/biom10111509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/21/2022] Open
Abstract
The important role of miRNA in cell proliferation and differentiation has raised interest in exogenous ribonucleases (RNases) as tools to control tumour-associated intracellular and extracellular miRNAs. In this work, we evaluated the effects of the RNase binase from Bacillus pumilus on small non-coding regulatory RNAs in the context of mouse RLS40 lymphosarcoma inhibition. In vitro binase exhibited cytotoxicity towards RLS40 cells via apoptosis induction through caspase-3/caspase-7 activation and decreased the levels of miR-21a, let-7g, miR-31 and miR-155. Intraperitoneal injections of binase in RLS40-bearing mice resulted in the retardation of primary tumour growth by up to 60% and inhibition of metastasis in the liver by up to 86%, with a decrease in reactive inflammatory infiltration and mitosis in tumour tissue. In the blood serum of binase-treated mice, decreases in the levels of most studied miRNAs were observed, excluding let-7g, while in tumour tissue, the levels of oncomirs miR-21, miR-10b, miR-31 and miR-155, and the oncosuppressor let-7g, were upregulated. Analysis of binase-susceptible miRNAs and their regulatory networks showed that the main modulated events were transcription and translation control, the cell cycle, cell proliferation, adhesion and invasion, apoptosis and autophagy, as well as some other tumour-related cascades, with an impact on the observed antitumour effects.
Collapse
|
6
|
Lin W, Xu Z, Yan Y, Zhang H, Li H, Chen W, Chen F, Xie Q. Avian Leukosis Virus Subgroup J Attenuates Type I Interferon Production Through Blocking IκB Phosphorylation. Front Microbiol 2018; 9:1089. [PMID: 29887850 PMCID: PMC5980975 DOI: 10.3389/fmicb.2018.01089] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/07/2018] [Indexed: 12/14/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection, resulting in great economic losses. Although ALV-J-induced immunosuppression has been well established, the underlying molecular mechanism for such induction is still unclear. Here, we report that the inhibitory effect of ALV-J infection on type I interferon expression is associated with the down-regulation of transcriptional regulator NF-κB in host cells. We found that ALV-J possess the inhibitory effect on type I interferon production in HD11 cells and that ALV-J causes the up-regulation of IκBα and down-regulation of NF-κB p65, and that ALV-J blocks the phosphorylation of IκBα on Ser32/36 amino acid residues. Collectively, our findings provide insights into the pathogenesis of ALV-J.
Collapse
Affiliation(s)
- Wencheng Lin
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Zhouyi Xu
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiming Yan
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Huanmin Zhang
- Avian Disease and Oncology Laboratory, USDA, Agriculture Research Service, East Lansing, MI, United States
| | - Hongxin Li
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Weiguo Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Feng Chen
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| | - Qingmei Xie
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China.,South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China.,Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou, China
| |
Collapse
|
7
|
Avian leukosis virus subgroup J induces VEGF expression via NF-κB/PI3K-dependent IL-6 production. Oncotarget 2018; 7:80275-80287. [PMID: 27852059 PMCID: PMC5348319 DOI: 10.18632/oncotarget.13282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is an oncogenic virus causing hemangiomas and myeloid tumors in chickens. Interleukin-6 (IL-6) is a multifunctional pro-inflammatory interleukin involved in many types of cancer. We previously demonstrated that IL-6 expression was induced following ALV-J infection in chickens. The aim of this study is to characterize the mechanism by which ALV-J induces IL-6 expression, and the role of IL-6 in tumor development. Our results demonstrate that ALV-J infection increases IL-6 expression in chicken splenocytes, peripheral blood lymphocytes, and vascular endothelial cells. IL-6 production is induced by the ALV-J envelope protein gp85 and capsid protein p27 via PI3K- and NF-κB-mediated signaling. IL-6 in turn induced expression of vascular endothelial growth factor (VEGF)-A and its receptor, VEGFR-2, in vascular endothelial cells and embryonic vascular tissues. Suppression of IL-6 using siRNA inhibited the ALV-J induced VEGF-A and VEGFR-2 expression in vascular endothelial cells, indicating that the ALV-J-induced VEGF-A/VEGFR-2 expression is mediated by IL-6. As VEGF-A and VEGFR-2 are important factors in oncogenesis, our findings suggest that ALV-J hijacks IL-6 to promote tumorigenesis, and indicate that IL-6 could potentially serve as a therapeutic target in ALV-J infections.
Collapse
|
8
|
ALV Integration-Associated Hypomethylation at the TERT Promoter Locus. Viruses 2018; 10:v10020074. [PMID: 29439385 PMCID: PMC5850381 DOI: 10.3390/v10020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 12/13/2022] Open
Abstract
Avian leukosis virus (ALV) is a simple retrovirus that can induce B-cell lymphoma in chicken(s) and other birds by insertional mutagenesis. The promoter region of telomerase reverse transcriptase (TERT) has been identified as an important integration site for tumorigenesis. Tumors with TERT promoter integrations are associated with increased TERT expression. The mechanism of this activation is still under investigation. We asked whether insertion of proviral DNA perturbs the epigenome of the integration site and, subsequently, impacts the regulation of neighboring genes. DNA cytosine methylation, which generally acts to suppress transcription, is one major form of epigenetic regulation. In this study, we examine allele-specific methylation patterns of genomic DNA from chicken tumors by bisulfite sequencing. We observed that alleles with TERT promoter integrations are associated with decreased methylation in the host genome near the site of integration. Our observations suggest that insertion of ALV in the TERT promoter region may induce expression of TERT through inhibition of maintenance methylation in the TERT promoter region.
Collapse
|
9
|
A Novel Long Non-Coding RNA in the hTERT Promoter Region Regulates hTERT Expression. Noncoding RNA 2017; 4:ncrna4010001. [PMID: 29657298 PMCID: PMC5890388 DOI: 10.3390/ncrna4010001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 12/14/2022] Open
Abstract
A novel antisense transcript was identified in the human telomerase reverse transcriptase (hTERT) promoter region, suggesting that the hTERT promoter is bidirectional. This transcript, named hTERT antisense promoter-associated (hTAPAS) RNA, is a 1.6 kb long non-coding RNA. hTAPAS transcription is initiated 167 nucleotides upstream of the hTERT transcription start site and is present in both the nucleus and the cytoplasm. Surprisingly, we observed that a large fraction of the hTERT polyadenylated RNA is localized in the nucleus, suggesting this might be an additional means of regulating the cellular abundance of hTERT protein. Both hTAPAS and hTERT are expressed in immortalized B-cells and human embryonic stem cells but are not detected in normal somatic cells. hTAPAS expression inversely correlates with hTERT expression in different types of cancer samples. Moreover, hTAPAS expression is not promoted by an hTERT promoter mutation (-124 C>T). Antisense-oligonucleotide mediated knockdown of hTAPAS results in an increase in hTERT expression. Conversely, ectopic overexpression of hTAPAS down regulates hTERT expression, suggesting a negative role in hTERT gene regulation. These observations provide insights into hTAPAS as a novel player that negatively regulates hTERT expression and may be involved in telomere length homeostasis.
Collapse
|
10
|
Malhotra S, Winans S, Lam G, Justice J, Morgan R, Beemon K. Selection for avian leukosis virus integration sites determines the clonal progression of B-cell lymphomas. PLoS Pathog 2017; 13:e1006708. [PMID: 29099869 PMCID: PMC5687753 DOI: 10.1371/journal.ppat.1006708] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/15/2017] [Accepted: 10/23/2017] [Indexed: 12/19/2022] Open
Abstract
Avian leukosis virus (ALV) is a simple retrovirus that causes a wide range of tumors in chickens, the most common of which are B-cell lymphomas. The viral genome integrates into the host genome and uses its strong promoter and enhancer sequences to alter the expression of nearby genes, frequently inducing tumors. In this study, we compare the preferences for ALV integration sites in cultured cells and in tumors, by analysis of over 87,000 unique integration sites. In tissue culture we observed integration was relatively random with slight preferences for genes, transcription start sites and CpG islands. We also observed a preference for integrations in or near expressed and spliced genes. The integration pattern in cultured cells changed over the course of selection for oncogenic characteristics in tumors. In comparison to tissue culture, ALV integrations are more highly selected for proximity to transcription start sites in tumors. There is also a significant selection of ALV integrations away from CpG islands in the highly clonally expanded cells in tumors. Additionally, we utilized a high throughput method to quantify the magnitude of clonality in different stages of tumorigenesis. An ALV-induced tumor carries between 700 and 3000 unique integrations, with an average of 2.3 to 4 copies of proviral DNA per infected cell. We observed increasing tumor clonality during progression of B-cell lymphomas and identified gene players (especially TERT and MYB) and biological processes involved in tumor progression. The Avian Leukosis Virus (ALV) is a simple retrovirus that causes cancer in chickens. The virus integrates its genome into the host genome and induces changes in expression of nearby genes. Here, we determine the sites of viral integrations and their role in the progression of tumors. We report pathways and novel gene players that might cooperate and play a role in the progression of B-cell lymphomas. Our study provides new insights into the changes during lymphoma initiation, progression, and metastasis, as a result of selection for specific ALV integration sites.
Collapse
Affiliation(s)
- Sanandan Malhotra
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Shelby Winans
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Gary Lam
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - James Justice
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Robin Morgan
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States of America
| | - Karen Beemon
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
11
|
HRAS, EGFR, MET, and RON Genes Are Recurrently Activated by Provirus Insertion in Liver Tumors Induced by the Retrovirus Myeloblastosis-Associated Virus 2. J Virol 2017; 91:JVI.00467-17. [PMID: 28768863 DOI: 10.1128/jvi.00467-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/14/2017] [Indexed: 12/28/2022] Open
Abstract
Myeloblastosis-associated virus 2 (MAV-2) is a highly tumorigenic simple avian retrovirus. Chickens infected in ovo with MAV-2 develop tumors in the kidneys, lungs, and liver with a short latency, less than 8 weeks. Here we report the results of molecular analyses of MAV-2-induced liver tumors that fall into three classes: hepatic hemangiosarcomas (HHSs), intrahepatic cholangiocarcinomas (ICCs), and hepatocellular carcinomas (HCCs). Comprehensive inverse PCR-based screening of 92 chicken liver tumors revealed that in ca. 86% of these tumors, MAV-2 provirus had integrated into one of four gene loci: HRAS, EGFR, MET, and RON Insertionally mutated genes correlated with tumor type: HRAS was hit in HHSs, MET in ICCs, RON mostly in ICCs, and EGFR mostly in HCCs. The provirus insertions led to the overexpression of the affected genes and, in the case of EGFR and RON, also to the truncation of exons encoding the extracellular ligand-binding domains of these transmembrane receptors. The structures of truncated EGFR and RON closely mimic the structures of oncogenic variants of these genes frequently found in human tumors (EGFRvIII and sfRON).IMPORTANCE These data describe the mechanisms of oncogenesis induced in chickens by the MAV-2 retrovirus. They also show that molecular processes converting cellular regulatory genes to cancer genes may be remarkably similar in chickens and humans. We suggest that the MAV-2 retrovirus-based model can complement experiments performed using mouse models and provide data that could translate to human medicine.
Collapse
|
12
|
Winans S, Flynn A, Malhotra S, Balagopal V, Beemon KL. Integration of ALV into CTDSPL and CTDSPL2 genes in B-cell lymphomas promotes cell immortalization, migration and survival. Oncotarget 2017; 8:57302-57315. [PMID: 28915671 PMCID: PMC5593642 DOI: 10.18632/oncotarget.19328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/09/2017] [Indexed: 01/29/2023] Open
Abstract
Avian leukosis virus induces tumors in chickens by integrating into the genome and altering expression of nearby genes. Thus, ALV can be used as an insertional mutagenesis tool to identify novel genes involved in tumorigenesis. Deep sequencing analysis of viral integration sites has identified CTDSPL and CTDSPL2 as common integration sites in ALV-induced B-cell lymphomas, suggesting a potential role in driving oncogenesis. We show that in tumors with integrations in these genes, the viral promoter is driving the expression of a truncated fusion transcript. Overexpression in cultured chick embryo fibroblasts reveals that CTDSPL and CTDSPL2 have oncogenic properties, including promoting cell migration. We also show that CTDSPL2 has a previously uncharacterized role in protecting cells from apoptosis induced by oxidative stress. Further, the truncated viral fusion transcripts of both CTDSPL and CTDSPL2 promote immortalization in primary cell culture.
Collapse
Affiliation(s)
- Shelby Winans
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alyssa Flynn
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Sanandan Malhotra
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vidya Balagopal
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen L Beemon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
13
|
Lam G, Xian RR, Li Y, Burns KH, Beemon KL. Lack of TERT Promoter Mutations in Human B-Cell Non-Hodgkin Lymphoma. Genes (Basel) 2016; 7:genes7110093. [PMID: 27792139 PMCID: PMC5126779 DOI: 10.3390/genes7110093] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/21/2016] [Accepted: 10/13/2016] [Indexed: 11/23/2022] Open
Abstract
Non-Hodgkin lymphomas (NHL) are a heterogeneous group of immune cell neoplasms that comprise molecularly distinct lymphoma subtypes. Recent work has identified high frequency promoter point mutations in the telomerase reverse transcriptase (TERT) gene of different cancer types, including melanoma, glioma, liver and bladder cancer. TERT promoter mutations appear to correlate with increased TERT expression and telomerase activity in these cancers. In contrast, breast, pancreatic, and prostate cancer rarely demonstrate mutations in this region of the gene. TERT promoter mutation prevalence in NHL has not been thoroughly tested thus far. We screened 105 B-cell lymphoid malignancies encompassing nine NHL subtypes and acute lymphoblastic leukemia, for TERT promoter mutations. Our results suggest that TERT promoter mutations are rare or absent in most NHL. Thus, the classical TERT promoter mutations may not play a major oncogenic role in TERT expression and telomerase activation in NHL.
Collapse
Affiliation(s)
- Gary Lam
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| | - Rena R Xian
- Department of Pathology, Johns Hopkins Medical Institutes, Baltimore, MD 212105, USA.
- Department of Pathology, University of California Los Angeles, Los Angeles, CA 90095, USA.
| | - Yingying Li
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins Medical Institutes, Baltimore, MD 212105, USA.
| | - Karen L Beemon
- Department of Biology, Johns Hopkins University, Baltimore, MD 21210, USA.
| |
Collapse
|
14
|
Zhang X, Yan Z, Li X, Lin W, Dai Z, Yan Y, Lu P, Chen W, Zhang H, Chen F, Ma J, Xie Q. GADD45β, an anti-tumor gene, inhibits avian leukosis virus subgroup J replication in chickens. Oncotarget 2016; 7:68883-68893. [PMID: 27655697 PMCID: PMC5356597 DOI: 10.18632/oncotarget.12027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/05/2016] [Indexed: 01/29/2023] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) is a retroviruses that induces neoplasia, hepatomegaly, immunosuppression and poor performance in chickens. The tumorigenic and pathogenic mechanisms of ALV-J remain a hot topic. To explore anti-tumor genes that promote resistance to ALV-J infection in chickens, we bred ALV-J resistant and susceptible chickens (F3 generation). RNA-sequencing (RNA-Seq) of liver tissue from the ALV-J resistant and susceptible chickens identified 216 differentially expressed genes; 88 of those genes were up-regulated in the ALV-J resistant chickens (compared to the susceptible ones). We screened for significantly up-regulated genes (P < 0.01) of interest in the ALV-J resistant chickens, based on their involvement in biological signaling pathways. Functional analyses showed that overexpression of GADD45β inhibited ALV-J replication. GADD45β could enhance defense against ALV-J infection and may be used as a molecular marker to identify ALV-J infections.
Collapse
Affiliation(s)
- Xinheng Zhang
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Zhuanqiang Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
| | - Xinjian Li
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Zhenkai Dai
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Yiming Yan
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Piaopiao Lu
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Weiguo Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Huanmin Zhang
- USDA, Agriculture Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, U.S.A
| | - Feng Chen
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University & Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding & Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, 510642 P. R. China
- Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangdong, Guangzhou 510642, P. R. China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, P. R. China
| |
Collapse
|
15
|
Liu D, Qiu Q, Zhang X, Dai M, Qin J, Hao J, Liao M, Cao W. Infection of chicken bone marrow mononuclear cells with subgroup J avian leukosis virus inhibits dendritic cell differentiation and alters cytokine expression. INFECTION GENETICS AND EVOLUTION 2016; 44:130-136. [DOI: 10.1016/j.meegid.2016.06.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 06/17/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
|
16
|
Avian Leukosis Virus Activation of an Antisense RNA Upstream of TERT in B-Cell Lymphomas. J Virol 2016; 90:9509-17. [PMID: 27512065 DOI: 10.1128/jvi.01127-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Avian leukosis virus (ALV) induces tumors by integrating its proviral DNA into the chicken genome and altering the expression of nearby genes via strong promoter and enhancer elements. Viral integration sites that contribute to oncogenesis are selected in tumor cells. Deep-sequencing analysis of B-cell lymphoma DNA confirmed that the telomerase reverse transcriptase (TERT) gene promoter is a common ALV integration target. Twenty-six unique proviral integration sites were mapped between 46 and 3,552 nucleotides (nt) upstream of the TERT transcription start site, predominantly in the opposite transcriptional orientation to TERT Transcriptome-sequencing (RNA-seq) analysis of normal bursa revealed a transcribed region upstream of TERT in the opposite orientation, suggesting the TERT promoter is bidirectional. This transcript appears to be an uncharacterized antisense RNA. We have previously shown that TERT expression is upregulated in tumors with integrations in the TERT promoter region. We now report that the viral promoter drives the expression of a chimeric transcript containing viral sequences spliced to exons 4 through 7 of this antisense RNA. Clonal expansion of cells with ALV integrations driving overexpression of the TERT antisense RNA suggest it may have a role in tumorigenesis. IMPORTANCE The data suggest that ALV integrations in the TERT promoter region drive the overexpression of a novel antisense RNA and contribute to the development of lymphomas.
Collapse
|
17
|
Subgroup J avian leukosis virus infection of chicken dendritic cells induces apoptosis via the aberrant expression of microRNAs. Sci Rep 2016; 6:20188. [PMID: 26830017 PMCID: PMC4735322 DOI: 10.1038/srep20188] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/23/2015] [Indexed: 02/06/2023] Open
Abstract
Subgroup J avian leukosis virus (ALV-J) is an oncogenic retrovirus that causes immunosuppression and enhances susceptibility to secondary infection. The innate immune system is the first line of defense in preventing bacterial and viral infections, and dendritic cells (DCs) play important roles in innate immunity. Because bone marrow is an organ that is susceptible to ALV-J, the virus may influence the generation of bone marrow-derived DCs. In this study, DCs cultured in vitro were used to investigate the effects of ALV infection. The results revealed that ALV-J could infect these cells during the early stages of differentiation, and infection of DCs with ALV-J resulted in apoptosis. miRNA sequencing data of uninfected and infected DCs revealed 122 differentially expressed miRNAs, with 115 demonstrating upregulation after ALV-J infection and the other 7 showing significant downregulation. The miRNAs that exhibited the highest levels of upregulation may suppress nutrient processing and metabolic function. These results indicated that ALV-J infection of chicken DCs could induce apoptosis via aberrant microRNA expression. These results provide a solid foundation for the further study of epigenetic influences on ALV-J-induced immunosuppression.
Collapse
|
18
|
Abstract
Avian leukosis virus (ALV) induces B-cell lymphoma and other neoplasms in chickens by integrating within or near cancer genes and perturbing their expression. Four genes—MYC, MYB, Mir-155, and TERT—have previously been identified as common integration sites in these virus-induced lymphomas and are thought to play a causal role in tumorigenesis. In this study, we employ high-throughput sequencing to identify additional genes driving tumorigenesis in ALV-induced B-cell lymphomas. In addition to the four genes implicated previously, we identify other genes as common integration sites, including TNFRSF1A, MEF2C, CTDSPL, TAB2, RUNX1, MLL5, CXorf57, and BACH2. We also analyze the genome-wide ALV integration landscape in vivo and find increased frequency of ALV integration near transcriptional start sites and within transcripts. Previous work has shown ALV prefers a weak consensus sequence for integration in cultured human cells. We confirm this consensus sequence for ALV integration in vivo in the chicken genome. Avian leukosis virus induces B-cell lymphomas in chickens. Earlier studies showed that ALV can induce tumors through insertional mutagenesis, and several genes have been implicated in the development of these tumors. In this study, we use high-throughput sequencing to reveal the genome-wide ALV integration landscape in ALV-induced B-cell lymphomas. We find elevated levels of ALV integration near transcription start sites and use common integration site analysis to greatly expand the number of genes implicated in the development of these tumors. Interestingly, we identify several genes targeted by viral insertions that have not been previously shown to be involved in cancer.
Collapse
|
19
|
Lindqvist D, Epel ES, Mellon SH, Penninx BW, Révész D, Verhoeven JE, Reus VI, Lin J, Mahan L, Hough CM, Rosser R, Bersani FS, Blackburn EH, Wolkowitz OM. Psychiatric disorders and leukocyte telomere length: Underlying mechanisms linking mental illness with cellular aging. Neurosci Biobehav Rev 2015; 55:333-64. [PMID: 25999120 PMCID: PMC4501875 DOI: 10.1016/j.neubiorev.2015.05.007] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 05/06/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Many psychiatric illnesses are associated with early mortality and with an increased risk of developing physical diseases that are more typically seen in the elderly. Moreover, certain psychiatric illnesses may be associated with accelerated cellular aging, evidenced by shortened leukocyte telomere length (LTL), which could underlie this association. Shortened LTL reflects a cell's mitotic history and cumulative exposure to inflammation and oxidation as well as the availability of telomerase, a telomere-lengthening enzyme. Critically short telomeres can cause cells to undergo senescence, apoptosis or genomic instability, and shorter LTL correlates with poorer health and predicts mortality. Emerging data suggest that LTL may be reduced in certain psychiatric illnesses, perhaps in proportion to exposure to the psychiatric illnesses, although conflicting data exist. Telomerase has been less well characterized in psychiatric illnesses, but a role in depression and in antidepressant and neurotrophic effects has been suggested by preclinical and clinical studies. In this article, studies on LTL and telomerase activity in psychiatric illnesses are critically reviewed, potential mediators are discussed, and future directions are suggested. A deeper understanding of cellular aging in psychiatric illnesses could lead to re-conceptualizing them as systemic illnesses with manifestations inside and outside the brain and could identify new treatment targets.
Collapse
Affiliation(s)
- Daniel Lindqvist
- Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden; Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Elissa S Epel
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Synthia H Mellon
- Department of OB-GYN and Reproductive Sciences, UCSF School of Medicine, San Francisco, CA, USA
| | - Brenda W Penninx
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Dóra Révész
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Josine E Verhoeven
- Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| | - Laura Mahan
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Christina M Hough
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - Rebecca Rosser
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA
| | - F Saverio Bersani
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, CA, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco (UCSF), School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
20
|
The MET gene is a common integration target in avian leukosis virus subgroup J-induced chicken hemangiomas. J Virol 2015; 89:4712-9. [PMID: 25673726 DOI: 10.1128/jvi.03225-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 02/09/2015] [Indexed: 01/07/2023] Open
Abstract
UNLABELLED Avian leukosis virus subgroup J (ALV-J) is a simple retrovirus that can cause hemangiomas and myeloid tumors in chickens and is currently a major economic problem in Asia. Here we characterize ALV-J strain PDRC-59831, a newly studied U.S. isolate of ALV-J. Five-day-old chicken embryos were infected with this virus, and the chickens developed myeloid leukosis and hemangiomas within 2 months after hatching. To investigate the mechanism of pathogenesis, we employed high-throughput sequencing to analyze proviral integration sites in these tumors. We found expanded clones with integrations in the MET gene in two of the five hemangiomas studied. This integration locus was not seen in previous work characterizing ALV-J-induced myeloid leukosis. MET is a known proto-oncogene that acts through a diverse set of signaling pathways and is involved in many neoplasms. We show that tumors harboring MET integrations exhibit strong overexpression of MET mRNA. IMPORTANCE These data suggest that ALV-J induces oncogenesis by insertional mutagenesis, and integrations in the MET oncogene can drive the overexpression of MET and contribute to the development of hemangiomas.
Collapse
|
21
|
The MYC, TERT, and ZIC1 genes are common targets of viral integration and transcriptional deregulation in avian leukosis virus subgroup J-induced myeloid leukosis. J Virol 2013; 88:3182-91. [PMID: 24371071 DOI: 10.1128/jvi.02995-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED The integration of retroviruses into the host genome following nonrandom genome-wide patterns may lead to the deregulation of gene expression and oncogene activation near the integration sites. Slow-transforming retroviruses have been widely used to perform genetic screens for the identification of genes involved in cancer. To investigate the involvement of avian leukosis virus subgroup J (ALV-J) integration in myeloid leukosis (ML) in chickens, we utilized an ALV-J insertional identification platform based on hybrid capture target enrichment and next-generation sequencing (NGS). Using high-definition mapping of the viral integration sites in the chicken genome, 241 unique insertion sites were obtained from six different ALV-J-induced ML samples. On the basis of previous statistical definitions, MYC, TERT, and ZIC1 genes were identified as common insertion sites (CIS) of provirus integration in tumor cells; these three genes have previously been shown to be involved in the malignant transformation of different human cell types. Compared to control samples, the expression levels of all three CIS genes were significantly upregulated in chicken ML samples. Furthermore, they were frequently, but not in all field ML cases, deregulated at the mRNA level as a result of ALV-J infection. Our findings contribute to the understanding of the relationship between multipathotypes associated with ALV-J infection and the molecular background of tumorigenesis. IMPORTANCE ALV-Js have been successfully eradicated from chicken breeding flocks in the poultry industries of developed countries, and the control and eradication of ALV-J in China are now progressing steadily. To further study the pathogenesis of ALV-J infections, it will be necessary to elucidate the in vivo viral integration and tumorigenesis mechanism. In this study, 241 unique insertion sites were obtained from six different ALV-J-induced ML samples. In addition, MYC, TERT, and ZIC1 genes were identified as the CIS of ALV-J in tumor cells, which might be a putative "driver" for the activation of the oncogene. In addition, the CIS genes showed deregulated expression compared to nontumor samples. These results have potentially important implications for the mechanism of viral carcinogenesis.
Collapse
|
22
|
Yang F, Lei X, Rodriguez-Palacios A, Tang C, Yue H. Selection of reference genes for quantitative real-time PCR analysis in chicken embryo fibroblasts infected with avian leukosis virus subgroup J. BMC Res Notes 2013; 6:402. [PMID: 24099561 PMCID: PMC3851545 DOI: 10.1186/1756-0500-6-402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 10/02/2013] [Indexed: 01/12/2023] Open
Abstract
Background The selection of stably expressed reference genes is a prerequisite when evaluating gene expression, via real-time PCR, in cells in response to viral infections. The objective of our study was to identify suitable reference genes for mRNA expression analysis in chicken embryonic fibroblasts (CEF) after infection with avian leukosis virus subgroup J (ALV-J). Findings The expression levels of 11 potential reference genes in CEF infected with ALV-J were determined by real-time PCR. The expression stability of these genes were analyzed and ranked using the geNorm tool. Analysis indicated that the genes RPL30 (ribosomal protein L30) and SDHA (succinate dehydrogenase complex, subunit A) were the most stably expressed genes in the ALV-J infected CEF. Conclusions The RPL30 and SDHA were deemed suitable for use as reference genes for real-time PCR analysis of mRNA gene expression during ALV-J infection, whereas commonly used ACTB and GAPDH are unsuitable to be reference genes.
Collapse
Affiliation(s)
- Falong Yang
- Department of Veterinary Medicine, College of Life Science and Technology, Southwest University for Nationalities, Chengdu 610041, China.
| | | | | | | | | |
Collapse
|
23
|
Avian retroviral replication. Curr Opin Virol 2013; 3:664-9. [PMID: 24011707 DOI: 10.1016/j.coviro.2013.08.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/17/2022]
Abstract
Avian retroviruses were originally identified as cancer-inducting filterable agents in chicken neoplasms at the beginning of the 20th century. Since their discovery, the study of these simple retroviruses has contributed greatly to our understanding of viral replication and cancer. Avian retroviruses continue to evolve and have great economic importance in the poultry industry worldwide. The aim of this review is to provide a broad overview of the genome, pathology, and replication of avian retroviruses. Notable gaps in our current knowledge are highlighted, and areas where avian retroviruses differ from other retroviruses are emphasized.
Collapse
|
24
|
Mei Q, Li X, Meng Y, Wu Z, Guo M, Zhao Y, Fu X, Han W. A facile and specific assay for quantifying microRNA by an optimized RT-qPCR approach. PLoS One 2012; 7:e46890. [PMID: 23071657 PMCID: PMC3465266 DOI: 10.1371/journal.pone.0046890] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/06/2012] [Indexed: 02/07/2023] Open
Abstract
Background The spatiotemporal expression patterns of microRNAs (miRNAs) are important to the verification of their predicted function. RT-qPCR is the accepted technique for the quantification of miRNA expression; however, stem-loop RT-PCR and poly(T)-adapter assay, the two most frequently used methods, are not very convenient in practice and have poor specificity, respectively. Results We have developed an optimal approach that integrates these two methods and allows specific and rapid detection of tiny amounts of sample RNA and reduces costs relative to other techniques. miRNAs of the same sample are polyuridylated and reverse transcribed into cDNAs using a universal poly(A)-stem-loop RT primer and then used as templates for SYBR® Green real-time PCR. The technique has a dynamic range of eight orders of magnitude with a sensitivity of up to 0.2 fM miRNA or as little as 10 pg of total RNA. Virtually no cross-reaction is observed among the closely-related miRNA family members and with miRNAs that have only a single nucleotide difference in this highly specific assay. The spatial constraint of the stem-loop structure of the modified RT primer allowed detection of miRNAs directly from cell lysates without laborious total RNA isolation, and the poly(U) tail made it possible to use multiplex RT reactions of mRNA and miRNAs in the same run. Conclusions The cost-effective RT-qPCR of miRNAs with poly(A)-stem-loop RT primer is simple to perform and highly specific, which is especially important for samples that are precious and/or difficult to obtain.
Collapse
Affiliation(s)
- Qian Mei
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiang Li
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yuanguang Meng
- Department of Gynecologic Oncology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Zhiqiang Wu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Mingzhou Guo
- Department of Cancer Epigenetics, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yali Zhao
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaobing Fu
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
- * E-mail: (WH); (XF)
| | - Weidong Han
- Department of Molecular Biology, Institute of Basic Medicine, School of Life Sciences, Chinese PLA General Hospital, Beijing, People’s Republic of China
- * E-mail: (WH); (XF)
| |
Collapse
|
25
|
A 205-nucleotide deletion in the 3' untranslated region of avian leukosis virus subgroup J, currently emergent in China, contributes to its pathogenicity. J Virol 2012; 86:12849-60. [PMID: 22993155 DOI: 10.1128/jvi.01113-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In the past 5 years, an atypical clinical outbreak of avian leukosis virus subgroup J (ALV-J), which contains a unique 205-nucleotide deletion in its 3' untranslated region (3'UTR), has become epidemic in chickens in China. To determine the role of the 205-nucleotide deletion in the pathogenicity of ALV-J, a pair of viruses were constructed and rescued. The first virus was an ALV-J Chinese isolate (designated HLJ09SH01) containing the 205-nucleotide deletion in its 3'UTR. The second virus was a chimeric clone in which the 3'UTR contains a 205-nucleotide sequence corresponding to a region of the ALV-J prototype virus. The replication and pathogenicity of the rescued viruses (rHLJ09SH01 and rHLJ09SH01A205) were investigated. Compared to rHLJ09SH01A205, rHLJ09SH01 showed a moderate growth advantage in vitro and in vivo, in addition to exhibiting a higher oncogenicity rate and lethality rate in layers and broilers. Increased vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth receptor subtype 2 (VEGFR-2) expression was induced by rHLJ09SH01 more so than by rHLJ09SH01A205 during early embryonic vascular development, but this increased expression disappeared when the expression levels were normalized to the viral levels. This finding suggests that the expression of VEGF-A and VEGFR-2 is associated with viral replication and may also represent a novel molecular mechanism underlying the oncogenic potential of ALV-J. Overall, our findings not only indicate that the unique 205-nucleotide deletion in the ALV-J genome occurred naturally in China and contributes to increased pathogenicity but also point to the possible mechanism of ALV-J-induced oncogenicity.
Collapse
|
26
|
Feng SZ, Cao WS, Liao M. The PI3K/Akt pathway is involved in early infection of some exogenous avian leukosis viruses. J Gen Virol 2011; 92:1688-1697. [DOI: 10.1099/vir.0.030866-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Avian leukosis virus (ALV) is an enveloped and oncogenic retrovirus. Avian leukosis caused by the members of ALV subgroups A, B and J has become one of the major problems challenging the poultry industry in China. However, the cellular factors such as signal transduction pathways involved in ALV infection are not well defined. In this study, our data demonstrated that ALV-J strain NX0101 infection in primary chicken embryo fibroblasts or DF-1 cells was correlated with the activity and phosphorylation of Akt. Akt activation was initiated at a very early stage of infection independently of NX0101 replication. The specific phosphatidylinositol 3-kinase (PI3K) inhibitors LY294002 or wortmannin could suppress Akt phosphorylation, indicating that NX0101-induced Akt phosphorylation is PI3K-dependent. ALV-A strain GD08 or ALV-B strain CD08 infection also demonstrated a similar profile of PI3K/Akt activation. Treatment of DF-1 cells with the drug 5-(N, N-hexamethylene) amiloride that inhibits the activity of chicken Na+/H+ exchanger type 1 significantly reduced Akt activation induced by NX0101, but not by GD08 and CD08. Akt activation triggered by GD08 or CD08 was abolished by clathrin-mediated endocytosis inhibitor chlorpromazine. Receptor-mediated endocytosis inhibitor dansylcadaverine had a negligible effect on all ALV-induced Akt phosphorylation. Moreover, viral replication of ALV was suppressed by LY294002 in a dose-dependent manner, which was due to the inhibition of virus infection by LY294002. These data suggest that the activation of the PI3K/Akt signalling pathway by exogenous ALV infection plays an important role in viral entry, yet the precise mechanism remains under further investigation.
Collapse
Affiliation(s)
- Shao-zhen Feng
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Wei-sheng Cao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| | - Ming Liao
- Key Laboratory of Animal Disease Control and Prevention of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
27
|
Waidner LA, Burnside J, Anderson AS, Bernberg EL, German MA, Meyers BC, Green PJ, Morgan RW. A microRNA of infectious laryngotracheitis virus can downregulate and direct cleavage of ICP4 mRNA. Virology 2011; 411:25-31. [PMID: 21232778 DOI: 10.1016/j.virol.2010.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 12/02/2010] [Accepted: 12/13/2010] [Indexed: 10/18/2022]
Abstract
Viral microRNAs regulate gene expression using either translational repression or mRNA cleavage and decay. Two microRNAs from infectious laryngotracheitis virus (ILTV), iltv-miR-I5 and iltv-miR-I6, map antisense to the ICP4 gene. Post-transcriptional repression by these microRNAs was tested against a portion of the ICP4 coding sequence cloned downstream of firefly luciferase. Luciferase activity was downregulated by approximately 60% with the iltv-miR-I5 mimic. Addition of an iltv-miR-I5 antagomiR or mutagenesis of the target seed sequence alleviated this effect. The iltv-miR-I5 mimic, when co-transfected with a plasmid expressing ICP4, reduced ICP4 transcript levels by approximately 50%, and inhibition was relieved by an iltv-miR-I5 antagomiR. In infected cells, iltv-miR-I5 mediated cleavage at the canonical site, as indicated by modified RACE analysis. Thus, in this system, iltv-miR-I5 decreased ILTV ICP4 mRNA levels via transcript cleavage and degradation. Downregulation of ICP4 could impact the balance between the lytic and latent states of the virus in vivo.
Collapse
Affiliation(s)
- Lisa A Waidner
- Elcriton, Inc. 15 Innovation Way, Suite 288, Newark, DE 19711, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Jarrous N, Gopalan V. Archaeal/eukaryal RNase P: subunits, functions and RNA diversification. Nucleic Acids Res 2010; 38:7885-94. [PMID: 20716516 PMCID: PMC3001073 DOI: 10.1093/nar/gkq701] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNase P, a catalytic ribonucleoprotein (RNP), is best known for its role in precursor tRNA processing. Recent discoveries have revealed that eukaryal RNase P is also required for transcription and processing of select non-coding RNAs, thus enmeshing RNase P in an intricate network of machineries required for gene expression. Moreover, the RNase P RNA seems to have been subject to gene duplication, selection and divergence to generate two new catalytic RNPs, RNase MRP and MRP-TERT, which perform novel functions encompassing cell cycle control and stem cell biology. We present new evidence and perspectives on the functional diversification of the RNase P RNA to highlight it as a paradigm for the evolutionary plasticity that underlies the extant broad repertoire of catalytic and unexpected regulatory roles played by RNA-driven RNPs.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | | |
Collapse
|
29
|
Dolcetti R, De Rossi A. Telomere/telomerase interplay in virus-driven and virus-independent lymphomagenesis: pathogenic and clinical implications. Med Res Rev 2010; 32:233-53. [PMID: 20549676 DOI: 10.1002/med.20211] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Telomerase is a ribonucleoprotein complex critically involved in extending and maintaining telomeres. Unlike the majority of somatic cells, in which hTERT and telomerase activity are generally silent, normal lymphocytes show transient physiological hTERT expression and telomerase activity according to their differentiation/activation status. During lymphomagenesis, induction of persistent telomerase expression and activity may occur before or after telomere shortening, as a consequence of the different mechanisms through which transforming factors/agents may activate telomerase. Available data indicate that the timing of telomerase activation may allow the distinction of two different lymphomagenetic models: (i) an early activation of telomerase via exogenous regulators of hTERT, along with an increased lymphocyte growth and a subsequent selection of cells with increased transforming potential may characterize several virus-related lymphoid malignancies; (ii) a progressive shortening of telomeres, leading to genetic instability which favors a subsequent activation of telomerase via endogenous regulators may occur in most virus-unrelated lymphoid tumors. These models may have clinically relevant implications, particularly for the tailoring of therapeutic strategies targeting telomerase.
Collapse
Affiliation(s)
- Riccardo Dolcetti
- Cancer Bio-Immunotherapy Unit, Department of Medical Oncology, CRO-IRCCS, National Cancer Institute, Aviano, Italy.
| | | |
Collapse
|
30
|
Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies. Blood 2010; 116:1317-20. [PMID: 20460502 DOI: 10.1182/blood-2009-09-240440] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Sequence variants at the TERT-CLPTM1L locus in chromosome 5p have been recently associated with disposition for various cancers. Here we show that this locus including the gene encoding the telomerase reverse-transcriptase TERT at 5p13.33 is rarely but recurrently targeted by somatic chromosomal translocations to IGH and non-IG loci in B-cell neoplasms, including acute lymphoblastic leukemia, chronic lymphocytic leukemia, mantle cell lymphoma and splenic marginal zone lymphoma. In addition, cases with genomic amplification of TERT locus were identified. Tumors bearing chromosomal aberrations involving TERT showed higher TERT transcriptional expression and increased telomerase activity. These data suggest that deregulation of TERT gene by chromosomal abnormalities leading to increased telomerase activity might contribute to B-cell lymphomagenesis.
Collapse
|
31
|
Reticuloendotheliosis virus strain T induces miR-155, which targets JARID2 and promotes cell survival. J Virol 2009; 83:12009-17. [PMID: 19759154 DOI: 10.1128/jvi.01182-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oncogenic microRNA miR-155 is upregulated by several oncogenic viruses. The precursor of miR-155, termed bic, was first observed to cooperate with myc in chicken B-cell lymphomas induced by avian leukosis proviral integrations. We identified another oncogenic retrovirus, reticuloendotheliosis virus strain T (REV-T), that upregulates miR-155 in chicken embryo fibroblasts. We also observed very high levels of miR-155 in REV-T-induced B-cell lymphomas. To study the role of miR-155 in these tumors, we identified JARID2/Jumonji, a cell cycle regulator and part of a histone methyltransferase complex, as a target of miR-155. The overexpression of miR-155 decreased levels of endogenous JARID2 mRNA. We confirmed that miR-155 directly targets both human and chicken JARID2 by assaying the repression of reporters containing the JARID2 3'-untranslated regions. Further, the overexpression of a sponge complementary to miR-155 in a tumor cell line increased endogenous JARID2 mRNA levels. The overexpression of JARID2 in chicken fibroblasts led to decreased cell numbers and an increase in apoptotic cells. The overexpression of miR-155 rescued cells undergoing cytopathic effect caused by infection with subgroup B avian retroviruses. Therefore, we propose that miR-155 has a prosurvival function that is mediated through the downregulation of targets including JARID2.
Collapse
|
32
|
Deville L, Hillion J, Ségal-Bendirdjian E. Telomerase regulation in hematological cancers: a matter of stemness? Biochim Biophys Acta Mol Basis Dis 2009; 1792:229-39. [PMID: 19419697 DOI: 10.1016/j.bbadis.2009.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 01/30/2009] [Accepted: 01/30/2009] [Indexed: 01/02/2023]
Abstract
Human telomerase is a nuclear ribonucleoprotein enzyme complex that catalyzes the synthesis and extension of telomeric DNA. This enzyme is highly expressed and active in most malignant tumors while it is usually not or transiently detectable in normal somatic cells, suggesting that it plays an important role in cellular immortalization and tumorigenesis. As most leukemic cells are generally telomerase-positive and have often shortened telomeres, our understanding of how telomerase is deregulated in these diseases could help to define novel therapies targeting the telomere/telomerase complex. Nonetheless, considering that normal hematopoietic stem cells and some of their progeny do express a functional telomerase, it is tempting to consider such an activity in leukemias as a sustained stemness feature and important to understand how telomere length and telomerase activity are regulated in the various forms of leukemias.
Collapse
Affiliation(s)
- Laure Deville
- INSERM UMR-S 685, Institut d'Hématologie, Hôpital Saint-Louis, 75475 Paris cedex 10, France
| | | | | |
Collapse
|
33
|
Vaccination against Marek's disease reduces telomerase activity and viral gene transcription in peripheral blood leukocytes from challenged chickens. Vaccine 2008; 26:4904-12. [PMID: 18680776 DOI: 10.1016/j.vaccine.2008.07.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 07/02/2008] [Accepted: 07/16/2008] [Indexed: 11/24/2022]
Abstract
We investigated whether telomerase activity and viral gene transcription were associated with protection against the RB-1B strain of Marek's disease virus (MDV) in chickens vaccinated with Rispens CVI988 or the herpes virus of turkey (HVT). Telomerase activity in peripheral blood leukocytes (PBLs) seemed to be an appropriate marker of lymphoma and levels of viral transcription were correlated with the virulence of MDV strains. Vaccinated protected birds had lower levels of telomerase activity and RB-1B viral gene transcription than unvaccinated chickens infected with RB-1B. The decrease in RB-1B viral transcription was more marked in chickens vaccinated with CVI988 than in those vaccinated with HVT. Indeed, RB-1B viral transcription was not detectable after 14 days post-challenge. In conclusion, telomerase activity and gene transcription in challenge MDV strains are potential new reliable criteria of protection in vaccinated chickens.
Collapse
|
34
|
Fujii YR. Formulation of New Algorithmics for miRNAs. Open Virol J 2008; 2:37-43. [PMID: 19440463 PMCID: PMC2678821 DOI: 10.2174/1874357900802010037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/02/2008] [Accepted: 04/07/2008] [Indexed: 12/12/2022] Open
Abstract
microRNAs (miRNAs) are a class of small RNAs, 21-25 nucleotides (nts) long with single-stranded RNA. miRNA targets the sequences of messenger RNA (mRNA) through incomplete base-pairing of the target sequence. The incomplete pairing of miRNA to mRNA triggers either translational repression or epigenetically mediated transcriptional gene silencing (TGS). miRNA and RNA silencing in mammalian cells may participate in natural ecological interactions and miRNA itself should contain the original information that is required to control viral proliferation, according to the hypothesis of RNA waves. While the hypothesis involves so-called resident and genomic miRNA as the genetic information, resident miRNAs may evolve and jump into other RNAs, and then become genomic miRNAs. Thus, the inheritable character may be acquired by both types of miRNAs. It is reasonable to believe that preparations of new algorithmics models for the flow of miRNAs may provide an opportunity to overcome the acquired immunodeficiency syndrome (AIDS) pandemic.
Collapse
|