1
|
Bondanza M, Nottoli T, Nottoli M, Cupellini L, Lipparini F, Mennucci B. The OpenMMPol library for polarizable QM/MM calculations of properties and dynamics. J Chem Phys 2024; 160:134106. [PMID: 38557842 DOI: 10.1063/5.0198251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
We present a new library designed to provide a simple and straightforward way to implement QM/AMOEBA (Atomic Multipole Optimized Energetics for Biomolecular Applications) and other polarizable QM/MM (Molecular Mechanics) methods based on induced point dipoles. The library, herein referred to as OpenMMPol, is free and open-sourced and is engineered to address the increasing demand for accurate and efficient QM/MM simulations. OpenMMPol is specifically designed to allow polarizable QM/MM calculations of ground state energies and gradients and excitation properties. Key features of OpenMMPol include a modular architecture facilitating extensibility, parallel computing capabilities for enhanced performance on modern cluster architectures, a user-friendly interface for intuitive implementation, and a simple and flexible structure for providing input data. To show the capabilities offered by the library, we present an interface with PySCF to perform QM/AMOEBA molecular dynamics, geometry optimization, and excited-state calculation based on (time-dependent) density functional theory.
Collapse
Affiliation(s)
- Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Tommaso Nottoli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Michele Nottoli
- Institute of Applied Analysis and Numerical Simulation, Universität Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
2
|
Maity A, Wulffelé J, Ayala I, Favier A, Adam V, Bourgeois D, Brutscher B. Structural Heterogeneity in a Phototransformable Fluorescent Protein Impacts its Photochemical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306272. [PMID: 38146132 PMCID: PMC10933604 DOI: 10.1002/advs.202306272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/29/2023] [Indexed: 12/27/2023]
Abstract
Photoconvertible fluorescent proteins (PCFP) are important cellular markers in advanced imaging modalities such as photoactivatable localization microscopy (PALM). However, their complex photophysical and photochemical behavior hampers applications such as quantitative and single-particle-tracking PALM. This work employs multidimensional NMR combined with ensemble fluorescence measurements to show that the popular mEos4b in its Green state populates two conformations (A and B), differing in side-chain protonation of the conserved residues E212 and H62, altering the hydrogen-bond network in the chromophore pocket. The interconversion (protonation/deprotonation) between these two states, which occurs on the minutes time scale in the dark, becomes strongly accelerated in the presence of UV light, leading to a population shift. This work shows that the reversible photoswitching and Green-to-Red photoconversion properties differ between the A and B states. The chromophore in the A-state photoswitches more efficiently and is proposed to be more prone to photoconversion, while the B-state shows a higher level of photobleaching. Altogether, this data highlights the central role of conformational heterogeneity in fluorescent protein photochemistry.
Collapse
Affiliation(s)
- Arijit Maity
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Jip Wulffelé
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Isabel Ayala
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Adrien Favier
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Virgile Adam
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Dominique Bourgeois
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| | - Bernhard Brutscher
- CEACNRSInstitut de Biologie Structurale (IBS)Université Grenoble Alpes71 avenue des Martyrs, Cedex 9Grenoble38044France
| |
Collapse
|
3
|
Yang Y, Fan S, Webb JA, Ma Y, Goyette J, Chen X, Gaus K, Tilley RD, Gooding JJ. Electrochemical fluorescence switching of enhanced green fluorescent protein. Biosens Bioelectron 2023; 237:115467. [PMID: 37437456 DOI: 10.1016/j.bios.2023.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 07/14/2023]
Abstract
Switchable fluorescent proteins, for which fluorescence can be switched ON and OFF, are widely used for molecule tracking and super resolution imaging. However, the robust use of the switchable fluorescent proteins is still limited as either the switching is not repeatable, or such switching requires irradiation with coupled lasers of different wavelengths. Herein, we report an electrochemical approach to reversible fluorescence switching for enhanced green fluorescent proteins (EGFP) on indium tin oxide coated glass. Our results demonstrate that negative and positive electrochemical potentials can efficiently switch the fluorescent proteins between the dim (OFF) and bright (ON) states at the single molecule level. The electrochemical fluorescence switching is fast, reversible, and may be performed up to hundreds of cycles before photobleaching occurs. These findings highlight that this method of electrochemical fluorescence switching can be incorporated into advanced fluorescence microscopy.
Collapse
Affiliation(s)
- Ying Yang
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Sanjun Fan
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - James A Webb
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Yuanqing Ma
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, 2052, Sydney, Australia
| | - Xueqian Chen
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, The University of New South Wales, 2052, Sydney, Australia
| | - Richard D Tilley
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia; Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, 2052, Australia
| | - J Justin Gooding
- School of Chemistry and Australian Centre for NanoMedicine, University of New South Wales, Sydney, 2052, Australia.
| |
Collapse
|
4
|
Fadini A, Hutchison CDM, Morozov D, Chang J, Maghlaoui K, Perrett S, Luo F, Kho JCX, Romei MG, Morgan RML, Orr CM, Cordon-Preciado V, Fujiwara T, Nuemket N, Tosha T, Tanaka R, Owada S, Tono K, Iwata S, Boxer SG, Groenhof G, Nango E, van Thor JJ. Serial Femtosecond Crystallography Reveals that Photoactivation in a Fluorescent Protein Proceeds via the Hula Twist Mechanism. J Am Chem Soc 2023. [PMID: 37418747 PMCID: PMC10375524 DOI: 10.1021/jacs.3c02313] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
Chromophore cis/trans photoisomerization is a fundamental process in chemistry and in the activation of many photosensitive proteins. A major task is understanding the effect of the protein environment on the efficiency and direction of this reaction compared to what is observed in the gas and solution phases. In this study, we set out to visualize the hula twist (HT) mechanism in a fluorescent protein, which is hypothesized to be the preferred mechanism in a spatially constrained binding pocket. We use a chlorine substituent to break the twofold symmetry of the embedded phenolic group of the chromophore and unambiguously identify the HT primary photoproduct. Through serial femtosecond crystallography, we then track the photoreaction from femtoseconds to the microsecond regime. We observe signals for the photoisomerization of the chromophore as early as 300 fs, obtaining the first experimental structural evidence of the HT mechanism in a protein on its femtosecond-to-picosecond timescale. We are then able to follow how chromophore isomerization and twisting lead to secondary structure rearrangements of the protein β-barrel across the time window of our measurements.
Collapse
Affiliation(s)
- Alisia Fadini
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Christopher D M Hutchison
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Dmitry Morozov
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Jeffrey Chang
- Department of Physics, Stanford University, Stanford, California 94305, United States
| | - Karim Maghlaoui
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Samuel Perrett
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Fangjia Luo
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
| | - Jeslyn C X Kho
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Matthew G Romei
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - R Marc L Morgan
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Christian M Orr
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, U.K
| | - Violeta Cordon-Preciado
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Takaaki Fujiwara
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Nipawan Nuemket
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Takehiko Tosha
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
| | - Rie Tanaka
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Shigeki Owada
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan
| | - Kensuke Tono
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5198, Japan
| | - So Iwata
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe, Sakyo, Kyoto 606-8501, Japan
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Eriko Nango
- RIKEN Spring-8 Center, 1-1-1 Kouto, Sayo, Sayo, Hyogo 679-5148, Japan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi 980-8577, Japan
| | - Jasper J van Thor
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|
5
|
Gao TT, Oh T, Mehta K, Huang YA, Camp T, Fan H, Han JW, Barnes CM, Zhang K. The clinical potential of optogenetic interrogation of pathogenesis. Clin Transl Med 2023; 13:e1243. [PMID: 37132114 PMCID: PMC10154842 DOI: 10.1002/ctm2.1243] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Opsin-based optogenetics has emerged as a powerful biomedical tool using light to control protein conformation. Such capacity has been initially demonstrated to control ion flow across the cell membrane, enabling precise control of action potential in excitable cells such as neurons or muscle cells. Further advancement in optogenetics incorporates a greater variety of photoactivatable proteins and results in flexible control of biological processes, such as gene expression and signal transduction, with commonly employed light sources such as LEDs or lasers in optical microscopy. Blessed by the precise genetic targeting specificity and superior spatiotemporal resolution, optogenetics offers new biological insights into physiological and pathological mechanisms underlying health and diseases. Recently, its clinical potential has started to be capitalized, particularly for blindness treatment, due to the convenient light delivery into the eye. AIMS AND METHODS This work summarizes the progress of current clinical trials and provides a brief overview of basic structures and photophysics of commonly used photoactivable proteins. We highlight recent achievements such as optogenetic control of the chimeric antigen receptor, CRISPR-Cas system, gene expression, and organelle dynamics. We discuss conceptual innovation and technical challenges faced by current optogenetic research. CONCLUSION In doing so, we provide a framework that showcases ever-growing applications of optogenetics in biomedical research and may inform novel precise medicine strategies based on this enabling technology.
Collapse
Affiliation(s)
- Tianyu Terry Gao
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Teak‐Jung Oh
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kritika Mehta
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Yu‐En Andrew Huang
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
| | - Tyler Camp
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Huaxun Fan
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Jeong Won Han
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Collin Michael Barnes
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
| | - Kai Zhang
- University of Illinois at Urbana‐ChampaignDepartment of BiochemistryUrbanaIllinoisUSA
- University of Illinois at Urbana‐ChampaignCenter for Biophysics and Quantitative BiologyUrbanaIllinoisUSA
- Cancer Center at IllinoisUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
6
|
Chernov KG, Manoilov KY, Oliinyk OS, Shcherbakova DM, Verkhusha VV. Photodegradable by Yellow-Orange Light degFusionRed Optogenetic Module with Autocatalytically Formed Chromophore. Int J Mol Sci 2023; 24:6526. [PMID: 37047499 PMCID: PMC10095432 DOI: 10.3390/ijms24076526] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Optogenetic systems driven by yellow-orange light are required for the simultaneous regulation of several cellular processes. We have engineered the red fluorescent protein FusionRed into a 26 kDa monomeric optogenetic module, called degFusionRed. Unlike other fluorescent protein-based optogenetic domains, which exhibit light-induced self-inactivation by generating reactive oxygen species, degFusionRed undergoes proteasomal degradation upon illumination with 567 nm light. Similarly to the parent protein, degFusionRed has minimal absorbance at 450 nm and above 650 nm, making it spectrally compatible with blue and near-infrared-light-controlled optogenetic tools. The autocatalytically formed chromophore provides degFusionRed with an additional advantage over most optogenetic tools that require the binding of the exogenous chromophores, the amount of which varies in different cells. The degFusionRed efficiently performed in the engineered light-controlled transcription factor and in the targeted photodegradation of the protein of interest, demonstrating its versatility as the optogenetic module of choice for spectral multiplexed interrogation of various cellular processes.
Collapse
Affiliation(s)
| | - Kyrylo Yu. Manoilov
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Olena S. Oliinyk
- Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Daria M. Shcherbakova
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Vladislav V. Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Genetics and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
7
|
Mukherjee S, Manna P, Douglas N, Chapagain PP, Jimenez R. Conformational Dynamics of mCherry Variants: A Link between Side-Chain Motions and Fluorescence Brightness. J Phys Chem B 2023; 127:52-61. [PMID: 36574626 DOI: 10.1021/acs.jpcb.2c05584] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The 3-fold higher brightness of the recently developed mCherry-XL red fluorescent protein (FP) compared to its progenitor, mCherry, is due to a significant decrease in the nonradiative decay rate underlying its increased fluorescence quantum yield. To examine the structural and dynamic role of the four mutations that distinguish the two FPs and closely related variants, we employed microsecond time scale, all-atom molecular dynamics simulations. The simulations revealed that the I197R mutation leads to the formation of multiple hydrogen-bonded contacts and increased rigidity of the β-barrel. In particular, mCherryXL showed reduced nanosecond time scale breathing of the gap between the β7 and β10-strands, which was previously shown to be the most flexible region of mCherry. Together with experimental results, the simulations also reveal steric interactions of residue 161 and a network of hydrogen-bonding interactions of the chromophore with residues at positions 59, 143, and 163 that are critical in perturbing the chromophore electronic structure. Finally, we shed light on the conformational dynamics of the conserved residues R95 and S146, which are hydrogen-bonded to the chromophore, and provide physical insights into the observed photophysics. To the best of our knowledge, this is the first study that evaluates the conformational space for a set of closely related FPs generated by directed evolution.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Nancy Douglas
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Prem P Chapagain
- Department of Physics, Florida International University, 11200 SW Eighth Street, CP204, Miami, Florida 33199, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States.,Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
8
|
Addison K, Roy P, Bressan G, Skudaite K, Robb J, Bulman Page PC, Ashworth EK, Bull JN, Meech SR. Photophysics of the red-form Kaede chromophore. Chem Sci 2023; 14:3763-3775. [PMID: 37035701 PMCID: PMC10074405 DOI: 10.1039/d3sc00368j] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The chromophore responsible for colour switching in the optical highlighting protein Kaede has unexpectedly complicated excited state dynamics, which are measured and analysed here. This will inform the development of new imaging proteins.
Collapse
Affiliation(s)
- Kiri Addison
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Palas Roy
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Giovanni Bressan
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Karolina Skudaite
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Josh Robb
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | | | - Eleanor K. Ashworth
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - James N. Bull
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| | - Stephen R. Meech
- School of Chemistry, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
9
|
Krueger TD, Tang L, Chen C, Zhu L, Breen IL, Wachter RM, Fang C. To twist or not to twist: From chromophore structure to dynamics inside engineered photoconvertible and photoswitchable fluorescent proteins. Protein Sci 2023; 32:e4517. [PMID: 36403093 PMCID: PMC9793981 DOI: 10.1002/pro.4517] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (FPs) are vital biomimetic tools for powerful techniques such as super-resolution imaging. A unique Kaede-type FP named the least evolved ancestor (LEA) enables delineation of the evolutionary step to acquire photoconversion capability from the ancestral green fluorescent protein (GFP). A key residue, Ala69, was identified through several steady-state and time-resolved spectroscopic techniques that allows LEA to effectively photoswitch and enhance the green-to-red photoconversion. However, the inner workings of this functional protein have remained elusive due to practical challenges of capturing the photoexcited chromophore motions in real time. Here, we implemented femtosecond stimulated Raman spectroscopy and transient absorption on LEA-A69T, aided by relevant crystal structures and control FPs, revealing that Thr69 promotes a stronger π-π stacking interaction between the chromophore phenolate (P-)ring and His193 in FP mutants that cannot photoconvert or photoswitch. Characteristic time constants of ~60-67 ps are attributed to P-ring twist as the onset for photoswitching in LEA (major) and LEA-A69T (minor) with photoconversion capability, different from ~16/29 ps in correlation with the Gln62/His62 side-chain twist in ALL-GFP/ALL-Q62H, indicative of the light-induced conformational relaxation preferences in various local environments. A minor subpopulation of LEA-A69T capable of positive photoswitching was revealed by time-resolved electronic spectroscopies with targeted light irradiation wavelengths. The unveiled chromophore structure and dynamics inside engineered FPs in an aqueous buffer solution can be generalized to improve other green-to-red photoconvertible FPs from the bottom up for deeper biophysics with molecular biology insights and powerful bioimaging advances.
Collapse
Affiliation(s)
| | - Longteng Tang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Cheng Chen
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Liangdong Zhu
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| | - Isabella L. Breen
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Rebekka M. Wachter
- School of Molecular Sciences, Center for Bioenergy and Photosynthesis, Biodesign Center for Applied Structural DiscoveryArizona State UniversityTempeArizonaUSA
| | - Chong Fang
- Department of ChemistryOregon State UniversityCorvallisOregonUSA
| |
Collapse
|
10
|
Rajbongshi BK, Rafiq S, Bhowmik S, Sen P. Ultrafast Excited State Relaxation of a Model Green Fluorescent Protein Chromophore: Femtosecond Fluorescence and Transient Absorption Study. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Tang L, Fang C. Photoswitchable Fluorescent Proteins: Mechanisms on Ultrafast Timescales. Int J Mol Sci 2022; 23:6459. [PMID: 35742900 PMCID: PMC9223536 DOI: 10.3390/ijms23126459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
The advancement of super-resolution imaging (SRI) relies on fluorescent proteins with novel photochromic properties. Using light, the reversibly switchable fluorescent proteins (RSFPs) can be converted between bright and dark states for many photocycles and their emergence has inspired the invention of advanced SRI techniques. The general photoswitching mechanism involves the chromophore cis-trans isomerization and proton transfer for negative and positive RSFPs and hydration-dehydration for decoupled RSFPs. However, a detailed understanding of these processes on ultrafast timescales (femtosecond to millisecond) is lacking, which fundamentally hinders the further development of RSFPs. In this review, we summarize the current progress of utilizing various ultrafast electronic and vibrational spectroscopies, and time-resolved crystallography in investigating the on/off photoswitching pathways of RSFPs. We show that significant insights have been gained for some well-studied proteins, but the real-time "action" details regarding the bidirectional cis-trans isomerization, proton transfer, and intermediate states remain unclear for most systems, and many other relevant proteins have not been studied yet. We expect this review to lay the foundation and inspire more ultrafast studies on existing and future engineered RSFPs. The gained mechanistic insights will accelerate the rational development of RSFPs with enhanced two-way switching rate and efficiency, better photostability, higher brightness, and redder emission colors.
Collapse
Affiliation(s)
- Longteng Tang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| | - Chong Fang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, OR 97331-4003, USA
| |
Collapse
|
12
|
Uriarte LM, Vitale R, Niziński S, Hadjidemetriou K, Zala N, Lukacs A, Greetham GM, Sazanovich IV, Weik M, Ruckebusch C, Meech SR, Sliwa M. Structural Information about the trans-to- cis Isomerization Mechanism of the Photoswitchable Fluorescent Protein rsEGFP2 Revealed by Multiscale Infrared Transient Absorption. J Phys Chem Lett 2022; 13:1194-1202. [PMID: 35085441 DOI: 10.1021/acs.jpclett.1c02920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.
Collapse
Affiliation(s)
- Lucas M Uriarte
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Raffaele Vitale
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stanisław Niziński
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznan 61-614, Poland
| | | | - Ninon Zala
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Szigeti ut 12, 7624 Pecs, Hungary
| | - Gregory M Greetham
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Igor V Sazanovich
- Central Laser Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, U.K
| | - Martin Weik
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000 Grenoble, France
| | - Cyril Ruckebusch
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, U.K
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, Lille 59000, France
| |
Collapse
|
13
|
Mukherjee S, Jimenez R. Photophysical Engineering of Fluorescent Proteins: Accomplishments and Challenges of Physical Chemistry Strategies. J Phys Chem B 2022; 126:735-750. [DOI: 10.1021/acs.jpcb.1c05629] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
14
|
Du N, Ye F, Sun J, Liu K. Stimuli-Responsive Natural Proteins and Their Applications. Chembiochem 2021; 23:e202100416. [PMID: 34773331 DOI: 10.1002/cbic.202100416] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/12/2021] [Indexed: 01/02/2023]
Abstract
Natural proteins are essential biomacromolecules that fulfill versatile functions in the living organism, such as their usage as cytoskeleton, nutriment transporter, homeostasis controller, catalyzer, or immune guarder. Due to the excellent mechanical properties and good biocompatibility/biodegradability, natural protein-based biomaterials are well equipped for prospective applications in various fields. Among these natural proteins, stimuli-responsive proteins can be reversibly and precisely manipulated on demand, rendering the protein-based biomaterials promising candidates for numerous applications, including disease detection, drug delivery, bio-sensing, and regenerative medicine. Therefore, we present some typical natural proteins with diverse physical stimuli-responsive properties, including temperature, light, force, electrical, and magnetic sensing in this review. The structure-function mechanism of these proteins is discussed in detail. Finally, we give a summary and perspective for the development of stimuli-responsive proteins.
Collapse
Affiliation(s)
- Na Du
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China.,State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Fangfu Ye
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Jing Sun
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.,Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
15
|
Nottoli M, Nifosì R, Mennucci B, Lipparini F. Energy, Structures, and Response Properties with a Fully Coupled QM/AMOEBA/ddCOSMO Implementation. J Chem Theory Comput 2021; 17:5661-5672. [PMID: 34476941 PMCID: PMC8444335 DOI: 10.1021/acs.jctc.1c00555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
We present the implementation
of a fully coupled polarizable QM/MM/continuum
model based on the AMOEBA polarizable force field and the domain decomposition
implementation of the conductor-like screening model. Energies, response
properties, and analytical gradients with respect to both QM and MM
nuclear positions are available, and a generic, atomistic cavity can
be employed. The model is linear scaling in memory requirements and
computational cost with respect to the number of classical atoms and
is therefore suited to model large, complex systems. Using three variants
of the green-fluorescent protein, we investigate the overall computational
cost of such calculations and the effect of the continuum model on
the convergence of the computed properties with respect to the size
of the embedding. We also demonstrate the fundamental role of polarization
effects by comparing polarizable and nonpolarizable embeddings to
fully QM ones.
Collapse
Affiliation(s)
- Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Riccardo Nifosì
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, I-56127 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| |
Collapse
|
16
|
Abstract
We examine changes in the picosecond structural dynamics with irreversible photobleaching of red fluorescent proteins (RFP) mCherry, mOrange2 and TagRFP-T. Measurements of the protein dynamical transition using terahertz time-domain spectroscopy show in all cases an increase in the turn-on temperature in the bleached state. The result is surprising given that there is little change in the protein surface, and thus, the solvent dynamics held responsible for the transition should not change. A spectral analysis of the measurements guided by quasiharmonic calculations of the protein absorbance reveals that indeed the solvent dynamical turn-on temperature is independent of the thermal stability/photostate however the protein dynamical turn-on temperature shifts to higher temperatures. This is the first demonstration of switching the protein dynamical turn-on temperature with protein functional state. The observed shift in protein dynamical turn-on temperature relative to the solvent indicates an increase in the required mobile waters necessary for the protein picosecond motions, that is, these motions are more collective. Melting-point measurements reveal that the photobleached state is more thermally stable, and structural analysis of related RFP’s shows that there is an increase in internal water channels as well as a more uniform atomic root mean squared displacement. These observations are consistent with previous suggestions that water channels form with extended light excitation providing O2 access to the chromophore and subsequent fluorescence loss. We report that these same channels increase internal coupling enhancing thermal stability and collectivity of the picosecond protein motions. The terahertz spectroscopic characterization of the protein and solvent dynamical onsets can be applied generally to measure changes in collectivity of protein motions.
Collapse
|
17
|
Abstract
Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light. Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques.
Collapse
Affiliation(s)
- Jihye Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea;
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, California 94305, USA;
- Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
18
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure-Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System*. Angew Chem Int Ed Engl 2021; 60:10073-10081. [PMID: 33543524 DOI: 10.1002/anie.202015201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 11/05/2022]
Abstract
Anisotropic environments can drastically alter the spectroscopy and photochemistry of molecules, leading to complex structure-function relationships. We examined this using fluorescent proteins as easy-to-modify model systems. Starting from a single scaffold, we have developed a range of 27 photochromic fluorescent proteins that cover a broad range of spectroscopic properties, including the determination of 43 crystal structures. Correlation and principal component analysis confirmed the complex relationship between structure and spectroscopy, but also allowed us to identify consistent trends and to relate these to the spatial organization. We find that changes in spectroscopic properties can come about through multiple underlying mechanisms, of which polarity, hydrogen bonding and presence of water molecules are key modulators. We anticipate that our findings and rich structure/spectroscopy dataset can open opportunities for the development and evaluation of new and existing protein engineering methods.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: University Grenoble Alpes, CEA, CNRS, IBS, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Siewert Hugelier
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium.,Present address: Advanced Optical Microscopy Centre, Hasselt University, Agoralaan building C, 3590, Diepenbeek, Belgium
| | - Wim Vandenberg
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Alison G Tebo
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Luc Van Meervelt
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| | - Peter Dedecker
- Department of Chemistry, KU Leuven, Celestijnenlaan 200G - box 2403, 3001, Leuven, Belgium
| |
Collapse
|
19
|
De Zitter E, Hugelier S, Duwé S, Vandenberg W, Tebo AG, Van Meervelt L, Dedecker P. Structure–Function Dataset Reveals Environment Effects within a Fluorescent Protein Model System**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elke De Zitter
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: University Grenoble Alpes CEA CNRS IBS 71 Avenue des Martyrs 38000 Grenoble France
| | - Siewert Hugelier
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Sam Duwé
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
- Present address: Advanced Optical Microscopy Centre Hasselt University Agoralaan building C 3590 Diepenbeek Belgium
| | - Wim Vandenberg
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Alison G. Tebo
- Janelia Research Campus Howard Hughes Medical Institute 19700 Helix Drive Ashburn Virginia 20147 USA
| | - Luc Van Meervelt
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| | - Peter Dedecker
- Department of Chemistry KU Leuven Celestijnenlaan 200G – box 2403 3001 Leuven Belgium
| |
Collapse
|
20
|
Lu X, Shen Y, Campbell RE. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators. Int J Mol Sci 2020; 21:E6522. [PMID: 32906617 PMCID: PMC7555876 DOI: 10.3390/ijms21186522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Optogenetic (photo-responsive) actuators engineered from photoreceptors are widely used in various applications to study cell biology and tissue physiology. In the toolkit of optogenetic actuators, the key building blocks are genetically encodable light-sensitive proteins. Currently, most optogenetic photosensory modules are engineered from naturally-occurring photoreceptor proteins from bacteria, fungi, and plants. There is a growing demand for novel photosensory domains with improved optical properties and light-induced responses to satisfy the needs of a wider variety of studies in biological sciences. In this review, we focus on progress towards engineering of non-opsin-based photosensory domains, and their representative applications in cell biology and physiology. We summarize current knowledge of engineering of light-sensitive proteins including light-oxygen-voltage-sensing domain (LOV), cryptochrome (CRY2), phytochrome (PhyB and BphP), and fluorescent protein (FP)-based photosensitive domains (Dronpa and PhoCl).
Collapse
Affiliation(s)
- Xiaocen Lu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
De Zitter E, Ridard J, Thédié D, Adam V, Lévy B, Byrdin M, Gotthard G, Van Meervelt L, Dedecker P, Demachy I, Bourgeois D. Mechanistic Investigations of Green mEos4b Reveal a Dynamic Long-Lived Dark State. J Am Chem Soc 2020; 142:10978-10988. [PMID: 32463688 DOI: 10.1021/jacs.0c01880] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green-to-red photoconvertible fluorescent proteins (PCFPs) are key players in advanced microscopy schemes such as photoactivated localization microscopy (PALM). Whereas photoconversion and red-state blinking in PCFPs have been studied intensively, their green-state photophysical behavior has received less attention. Yet dark states in green PCFPs can become strongly populated in PALM schemes and exert an indirect but considerable influence on the quality of data recorded in the red channel. Furthermore, green-state photoswitching in PCFPs can be used directly for PALM and has been engineered to design highly efficient reversibly switchable fluorescent proteins (RSFPs) amenable to various nanoscopy schemes. Here, we demonstrate that green mEos4b efficiently switches to a long-lived dark state through cis-trans isomerization of its chromophore, as do most RSFPs. However, by combining kinetic crystallography, molecular dynamics simulations, and Raman spectroscopy, we find that the dark state in green mEos4b is much more dynamic than that seen in switched-off green IrisFP, a biphotochromic PCFP engineered from the common EosFP parent. Our data suggest that H-bonding patterns maintained by the chromophore in green PCFPs and RSFPs in both their on- and off-states collectively control photoswitching quantum yields. The reduced number of H-bonds maintained by the dynamic dark chromophore in green mEos4b thus largely accounts for the observed lower switching contrast as compared to that of IrisFP. We also compare the long-lived dark states reached from green and red mEos4b, on the basis of their X-ray structures and Raman signatures. Altogether, these data provide a unifying picture of the complex photophysics of PCFPs and RSFPs.
Collapse
Affiliation(s)
- Elke De Zitter
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Jacqueline Ridard
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Daniel Thédié
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Bernard Lévy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| | - Guillaume Gotthard
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble 38000, France
| | | | - Peter Dedecker
- Department of Chemistry, KU Leuven, Heverlee 3001, Belgium
| | - Isabelle Demachy
- Institut de Chimie Physique UMR8000, Université Paris-Saclay, CNRS, Orsay 91405, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble 38044, France
| |
Collapse
|
22
|
Botman D, van Heerden JH, Teusink B. An Improved ATP FRET Sensor For Yeast Shows Heterogeneity During Nutrient Transitions. ACS Sens 2020; 5:814-822. [PMID: 32077276 PMCID: PMC7106129 DOI: 10.1021/acssensors.9b02475] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 02/20/2020] [Indexed: 01/07/2023]
Abstract
Adenosine 5-triphosphate (ATP) is the main free energy carrier in metabolism. In budding yeast, shifts to glucose-rich conditions cause dynamic changes in ATP levels, but it is unclear how heterogeneous these dynamics are at a single-cell level. Furthermore, pH also changes and affects readout of fluorescence-based biosensors for single-cell measurements. To measure ATP changes reliably in single yeast cells, we developed yAT1.03, an adapted version of the AT1.03 ATP biosensor, that is pH-insensitive. We show that pregrowth conditions largely affect ATP dynamics during transitions. Moreover, single-cell analyses showed a large variety in ATP responses, which implies large differences of glycolytic startup between individual cells. We found three clusters of dynamic responses, and we show that a small subpopulation of wild-type cells reached an imbalanced state during glycolytic startup, characterized by low ATP levels. These results confirm the need for new tools to study dynamic responses of individual cells in dynamic environments.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Johan H. van Heerden
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Biology Lab/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
24
|
Fang C, Tang L. Mapping Structural Dynamics of Proteins with Femtosecond Stimulated Raman Spectroscopy. Annu Rev Phys Chem 2020; 71:239-265. [PMID: 32075503 DOI: 10.1146/annurev-physchem-071119-040154] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structure-function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
Collapse
Affiliation(s)
- Chong Fang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| | - Longteng Tang
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA;
| |
Collapse
|
25
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
26
|
Christou NE, Ayala I, Giandoreggio-Barranco K, Byrdin M, Adam V, Bourgeois D, Brutscher B. NMR Reveals Light-Induced Changes in the Dynamics of a Photoswitchable Fluorescent Protein. Biophys J 2019; 117:2087-2100. [PMID: 31733726 DOI: 10.1016/j.bpj.2019.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of fluorescent proteins with distinct phototransformation properties is crucial for a wide range of applications in advanced fluorescence microscopy and biotechnology. To rationally design new variants optimized for specific applications, a detailed understanding of the mechanistic features underlying phototransformation is essential. At present, little is known about the conformational dynamics of fluorescent proteins at physiological temperature and how these dynamics contribute to the observed phototransformation properties. Here, we apply high-resolution NMR spectroscopy in solution combined with in situ sample illumination at different wavelengths to investigate the conformational dynamics of rsFolder, a GFP-derived protein that can be reversibly switched between a green fluorescent state and a nonfluorescent state. Our results add a dynamic view to the static structures obtained by x-ray crystallography. Including a custom-tailored NMR toolbox in fluorescent protein research provides new opportunities for investigating the effect of mutations or changes in the environmental conditions on the conformational dynamics of phototransformable fluorescent proteins and their correlation with the observed photochemical and photophysical properties.
Collapse
Affiliation(s)
- Nina-Eleni Christou
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
27
|
Nifosì R, Mennucci B, Filippi C. The key to the yellow-to-cyan tuning in the green fluorescent protein family is polarisation. Phys Chem Chem Phys 2019; 21:18988-18998. [PMID: 31464320 DOI: 10.1039/c9cp03722e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computational approaches have to date failed to fully capture the large (about 0.4 eV) excitation energy tuning displayed by the nearly identical anionic chromophore in different green fluorescent protein (GFP) variants. Here, we present a thorough comparative study of a set of proteins in this sub-family, including the most red- (phiYFP) and blue-shifted (mTFP0.7) ones. We employ a classical polarisable embedding through induced dipoles and combine it with time-dependent density functional theory and multireference perturbation theory in order to capture both state-specific induction contributions and the coupling of the polarisation of the protein to the chromophore transition density. The obtained results show that only upon inclusion of both these two effects generated by the mutual polarisation between the chromophore and the protein can the full spectral tuning be replicated. We finally discuss how this mutual polarisation affects the correlation between excitation energies, dipole moment variation, and molecular electrostatic field.
Collapse
Affiliation(s)
- Riccardo Nifosì
- NEST, CNR - Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via Giuseppe Moruzzi 13, 56124 Pisa, Italy
| | - Claudia Filippi
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
28
|
Jöhr R, Bauer MS, Schendel LC, Kluger C, Gaub HE. Dronpa: A Light-Switchable Fluorescent Protein for Opto-Biomechanics. NANO LETTERS 2019; 19:3176-3181. [PMID: 30912662 DOI: 10.1021/acs.nanolett.9b00639] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Since the development of the green fluorescent protein, fluorescent proteins (FP) are indispensable tools in molecular biology. Some FPs change their structure under illumination, which affects their interaction with other biomolecules or proteins. In particular, FPs that are able to form switchable dimers became an important tool in the field of optogenetics. They are widely used for the investigation of signaling pathways, the control of surface recruitment, as well as enzyme and gene regulation. However, optogenetics did not yet develop tools for the investigation of biomechanical processes. This could be leveraged if one could find a light-switchable FP dimer that is able to withstand sufficiently high forces. In this work, we measure the rupture force of the switchable interface in pdDronpa1.2 dimers using atomic force microscopy-based single molecule force spectroscopy. The most probable dimer rupture force amounts to around 80 pN at a pulling speed of 1600 nm/s. After switching of the dimer using illumination at 488 nm, there are hardly any measurable interface interactions, which indicates the successful dissociation of the dimers. Hence this Dronpa dimer could expand the current toolbox in optogenetics with new opto-biomechanical applications like the control of tension in adhesion processes.
Collapse
Affiliation(s)
- Res Jöhr
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Magnus S Bauer
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Leonard C Schendel
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Carleen Kluger
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| | - Hermann E Gaub
- Lehrstuhl für Angewandte Physik and Center for Nanoscience , Ludwig-Maximilians-Universität , Munich 80799 , Germany
| |
Collapse
|
29
|
Botman D, de Groot DH, Schmidt P, Goedhart J, Teusink B. In vivo characterisation of fluorescent proteins in budding yeast. Sci Rep 2019; 9:2234. [PMID: 30783202 PMCID: PMC6381139 DOI: 10.1038/s41598-019-38913-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/14/2018] [Indexed: 02/05/2023] Open
Abstract
Fluorescent proteins (FPs) are widely used in many organisms, but are commonly characterised in vitro. However, the in vitro properties may poorly reflect in vivo performance. Therefore, we characterised 27 FPs in vivo using Saccharomyces cerevisiae as model organism. We linked the FPs via a T2A peptide to a control FP, producing equimolar expression of the 2 FPs from 1 plasmid. Using this strategy, we characterised the FPs for brightness, photostability, photochromicity and pH-sensitivity, achieving a comprehensive in vivo characterisation. Many FPs showed different in vivo properties compared to existing in vitro data. Additionally, various FPs were photochromic, which affects readouts due to complex bleaching kinetics. Finally, we codon optimized the best performing FPs for optimal expression in yeast, and found that codon-optimization alters FP characteristics. These FPs improve experimental signal readout, opening new experimental possibilities. Our results may guide future studies in yeast that employ fluorescent proteins.
Collapse
Affiliation(s)
- Dennis Botman
- Systems Bioinformatics/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Daan Hugo de Groot
- Systems Bioinformatics/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Phillipp Schmidt
- Systems Bioinformatics/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas Teusink
- Systems Bioinformatics/AIMMS, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
30
|
Gao A, Wang M, Ding J. Ultrafasttrans-cisphotoisomerization of the neutral chromophore in green fluorescent proteins: Surface-hopping dynamics simulation. J Chem Phys 2018; 149:074304. [DOI: 10.1063/1.5043246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Aihua Gao
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Meishan Wang
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Junxia Ding
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
31
|
Abstract
The native cell microenvironment is extraordinarily dynamic, with reciprocal regulation pathways between cells and the extracellular matrix guiding many physiological processes, such as cell migration, stem cell differentiation, and tissue formation. Providing the correct sequence of biochemical cues to cells, both in vivo and in vitro, is critical for triggering specific biological outcomes. There has been a diversity of methods developed for exposing cells in culture to spatiotemporally varying cues, many of which have centered on dynamic control over cell-material interactions in an attempt to recapitulate the role of the extracellular matrix in cell signaling. This review highlights several mechanisms that have been employed to control bioactive ligand presentation in biomaterials, and looks ahead toward the potential for genetically encoded approaches to dynamically regulate material bioactivity using light.
Collapse
Affiliation(s)
- Joshua A Hammer
- Department of Biomedical Engineering , Duke University , 101 Science Drive , Campus Box 90281, Durham , North Carolina 27708-0281 , United States
| | - Jennifer L West
- Department of Biomedical Engineering , Duke University , 101 Science Drive , Campus Box 90281, Durham , North Carolina 27708-0281 , United States
| |
Collapse
|
32
|
Laptenok SP, Gil AA, Hall CR, Lukacs A, Iuliano JN, Jones GA, Greetham GM, Donaldson P, Miyawaki A, Tonge PJ, Meech SR. Infrared spectroscopy reveals multi-step multi-timescale photoactivation in the photoconvertible protein archetype dronpa. Nat Chem 2018; 10:845-852. [PMID: 29892029 DOI: 10.1038/s41557-018-0073-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Photochromic fluorescent proteins play key roles in super-resolution microscopy and optogenetics. The light-driven structural changes that modulate the fluorescence involve both trans-to-cis isomerization and proton transfer. The mechanism, timescale and relative contribution of chromophore and protein dynamics are currently not well understood. Here, the mechanism of off-to-on-state switching in dronpa is studied using femtosecond-to-millisecond time-resolved infrared spectroscopy and isotope labelling. Chromophore and protein dynamics are shown to occur on multiple timescales, from picoseconds to hundreds of microseconds. Following excitation of the trans chromophore, a ground-state primary product is formed within picoseconds. Surprisingly, the characteristic vibrational spectrum of the neutral cis isomer appears only after several tens of nanoseconds. Further fluctuations in protein structure around the neutral cis chromophore are required to form a new intermediate, which promotes the final proton-transfer reaction. These data illustrate the interplay between chromophore dynamics and the protein environment underlying fluorescent protein photochromism.
Collapse
Affiliation(s)
- Sergey P Laptenok
- School of Chemistry, University of East Anglia, Norwich, UK.,Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Agnieszka A Gil
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Christopher R Hall
- School of Chemistry, University of East Anglia, Norwich, UK.,ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia
| | - Andras Lukacs
- Department of Biophysics, Medical School, University of Pecs, Pecs, Hungary
| | - James N Iuliano
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA
| | - Garth A Jones
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Gregory M Greetham
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Paul Donaldson
- Central Laser Facility, Harwell Science and Innovation Campus, Didcot, Oxfordshire, UK
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Peter J Tonge
- Department of Chemistry, Stony Brook University, Stony Brook, NY, USA.
| | - Stephen R Meech
- School of Chemistry, University of East Anglia, Norwich, UK.
| |
Collapse
|
33
|
Smyrnova D, Marín MDC, Olivucci M, Ceulemans A. Systematic Excited State Studies of Reversibly Switchable Fluorescent Proteins. J Chem Theory Comput 2018; 14:3163-3172. [PMID: 29772175 DOI: 10.1021/acs.jctc.8b00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The reversibly switchable fluorescent proteins Dronpa, rsFastLime, rsKame, Padron, and bsDronpa feature the same chromophore but display a 40 nm variation in absorption maxima and an only 18 nm variation in emission maxima. In the present contribution, we employ QM/MM models to investigate the mechanism of such remarkably different spectral variations, which are caused by just a few amino acid replacements. We show that the models, which are based on CASPT2//CASSCF level of QM theory, reproduce the observed trends in absorption maxima, with only a 3.5 kcal/mol blue-shift, and in emission maxima, with an even smaller 1.5 kcal/mol blue-shift with respect to the observed quantities. In order to explain the variations across the series, we look at the chromophore's electronic structure change during absorption and emission. Such analysis indicates that a change in charge-transfer character, which is more pronounced during absorption, triggers a cascade of hydrogen-bond-network rearrangements, suggesting preparation to an isomerization event. We also show how the contribution of Arg 89 and Arg 64 residues to the chromophore conformational changes correlate with the spectral variations in absorption and emission. Furthermore, we describe how the conical intersection stability is related to the protein's photophysical properties. While for the Dronpa, rsFastLime, and rsKame triad, the stability correlates with the photoswitching speed, this does not happen for bsDronpa and Padron, suggesting a less obvious photoisomerization mechanism.
Collapse
Affiliation(s)
- Daryna Smyrnova
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Heverlee , Belgium
| | - María Del Carmen Marín
- Department of Biotechnology, Chemistry, and Pharmacy , Universitá di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry, and Pharmacy , Universitá di Siena , via A. Moro 2 , I-53100 Siena , Italy.,Department of Chemistry , Bowling Green State University , Bowling Green , Ohio 43403 , United States
| | - Arnout Ceulemans
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Heverlee , Belgium
| |
Collapse
|
34
|
Leopold AV, Chernov KG, Verkhusha VV. Optogenetically controlled protein kinases for regulation of cellular signaling. Chem Soc Rev 2018; 47:2454-2484. [PMID: 29498733 DOI: 10.1039/c7cs00404d] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinases are involved in the regulation of many cellular processes including cell differentiation, survival, migration, axon guidance and neuronal plasticity. A growing set of optogenetic tools, termed opto-kinases, allows activation and inhibition of different protein kinases with light. The optogenetic regulation enables fast, reversible and non-invasive manipulation of protein kinase activities, complementing traditional methods, such as treatment with growth factors, protein kinase inhibitors or chemical dimerizers. In this review, we summarize the properties of the existing optogenetic tools for controlling tyrosine kinases and serine-threonine kinases. We discuss how the opto-kinases can be applied for studies of spatial and temporal aspects of protein kinase signaling in cells and organisms. We compare approaches for chemical and optogenetic regulation of protein kinase activity and present guidelines for selection of opto-kinases and equipment to control them with light. We also describe strategies to engineer novel opto-kinases on the basis of various photoreceptors.
Collapse
Affiliation(s)
- Anna V Leopold
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | | | | |
Collapse
|
35
|
Byrdin M, Duan C, Bourgeois D, Brettel K. A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins. J Am Chem Soc 2018; 140:2897-2905. [PMID: 29394055 DOI: 10.1021/jacs.7b12755] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Though ubiquitously used as selective fluorescence markers in cellular biology, fluorescent proteins (FPs) still have not disclosed all of their surprising properties. One important issue, notably for single-molecule applications, is the nature of the triplet state, suggested to be the starting point for many possible photochemical reactions leading to phenomena such as blinking or bleaching. Here, we applied transient absorption spectroscopy to characterize dark states in the prototypical enhanced green fluorescent protein (EGFP) of hydrozoan origin and, for comparison, in IrisFP, a representative phototransformable FP of anthozoan origin. We identified a long-lived (approximately 5 ms) dark state that is formed with a quantum yield of approximately 1% and has pronounced absorption throughout the visible-NIR range (peak at around 900 nm). Detection of phosphorescence emission with identical kinetics and excitation spectrum allowed unambiguous identification of this state as the first excited triplet state of the deprotonated chromophore. This triplet state was further characterized by determining its phosphorescence emission spectrum, the temperature dependence of its decay kinetics and its reactivity toward oxygen and electron acceptors and donors. It is suggested that it is this triplet state that lies at the origin of oxidative photochemistry in green FPs, leading to phenomena such as so-called "oxidative redding", "primed photoconversion", or, in a manner similar to that previously observed for organic dyes, redox induced blinking control with the reducing and oxidizing system ("ROXS").
Collapse
Affiliation(s)
- Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS , 38044 Grenoble, France
| | - Chenxi Duan
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS , 38044 Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS , 38044 Grenoble, France
| | - Klaus Brettel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
36
|
Conyard J, Heisler IA, Chan Y, Bulman Page PC, Meech SR, Blancafort L. A new twist in the photophysics of the GFP chromophore: a volume-conserving molecular torsion couple. Chem Sci 2018; 9:1803-1812. [PMID: 29675225 PMCID: PMC5892128 DOI: 10.1039/c7sc04091a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/30/2017] [Indexed: 01/19/2023] Open
Abstract
Dynamics of a nonplanar GFP chromophore are studied experimentally and theoretically. Coupled torsional motion is responsible for the ultrafast decay.
The simple structure of the chromophore of the green fluorescent protein (GFP), a phenol and an imidazolone ring linked by a methyne bridge, supports an exceptionally diverse range of excited state phenomena. Here we describe experimentally and theoretically the photochemistry of a novel sterically crowded nonplanar derivative of the GFP chromophore. It undergoes an excited state isomerization reaction accompanied by an exceptionally fast (sub 100 fs) excited state decay. The decay dynamics are essentially independent of solvent polarity and viscosity. Excited state structural dynamics are probed by high level quantum chemical calculations revealing that the fast decay is due to a conical intersection characterized by a twist of the rings and pyramidalization of the methyne bridge carbon. The intersection can be accessed without a barrier from the pre-twisted Franck–Condon structure, and the lack of viscosity dependence is due to the fact that the rings twist in the same direction, giving rise to a volume-conserving decay coordinate. Moreover, the rotation of the phenyl, methyl and imidazolone groups is coupled in the sterically crowded structure, with the methyl group translating the rotation of one ring to the next. As a consequence, the excited state dynamics can be viewed as a torsional couple, where the absorbed photon energy leads to conversion of the out-of-plane orientation from one ring to the other in a volume conserving fashion. A similar modification of the range of methyne dyes may provide a new family of devices for molecular machines, specifically torsional couples.
Collapse
Affiliation(s)
- Jamie Conyard
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Ismael A Heisler
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Yohan Chan
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Philip C Bulman Page
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Stephen R Meech
- School of Chemistry , University of East Anglia , Norwich Research Park , Norwich NR4 7TJ , UK .
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi , Departament de Química , Facultat de Ciències , Universitat de Girona , C/ M. A. Capmany 69 , 17003 Girona , Spain .
| |
Collapse
|
37
|
Gozem S, Luk HL, Schapiro I, Olivucci M. Theory and Simulation of the Ultrafast Double-Bond Isomerization of Biological Chromophores. Chem Rev 2017; 117:13502-13565. [DOI: 10.1021/acs.chemrev.7b00177] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Samer Gozem
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30302, United States
| | - Hoi Ling Luk
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
| | - Igor Schapiro
- Fritz
Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Massimo Olivucci
- Chemistry
Department, Bowling Green State University, Overman Hall, Bowling Green, Ohio 43403, United States
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università di Siena, via A. Moro
2, 53100 Siena, Italy
| |
Collapse
|
38
|
Wachter RM. Photoconvertible Fluorescent Proteins and the Role of Dynamics in Protein Evolution. Int J Mol Sci 2017; 18:ijms18081792. [PMID: 32962314 PMCID: PMC5578180 DOI: 10.3390/ijms18081792] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/12/2022] Open
Abstract
Photoconvertible fluorescent proteins (pcFPs) constitute a large group of fluorescent proteins related to green fluorescent protein (GFP) that, when exposed to blue light, bear the capability of irreversibly switching their emission color from green to red. Not surprisingly, this fascinating class of FPs has found numerous applications, in particular for the visualization of biological processes. A detailed understanding of the photoconversion mechanism appears indispensable in the design of improved variants for applications such as super-resolution imaging. In this article, recent work is reviewed that involves using pcFPs as a model system for studying protein dynamics. Evidence has been provided that the evolution of pcFPs from a green ancestor involved the natural selection for altered dynamical features of the beta-barrel fold. It appears that photoconversion may be the outcome of a long-range positional shift of a fold-anchoring region. A relatively stiff, rigid element appears to have migrated away from the chromophore-bearing section to the opposite edge of the barrel, thereby endowing pcFPs with increased active site flexibility while keeping the fold intact. In this way, the stage was set for the coupling of light absorption with subsequent chemical transformations. The emerging mechanistic model suggests that highly specific dynamic motions are linked to key chemical steps, preparing the system for a concerted deprotonation and β-elimination reaction that enlarges the chromophore's π-conjugation to generate red color.
Collapse
Affiliation(s)
- Rebekka M Wachter
- School of Molecular Sciences and Center for Bioenergy and Photosynthesis, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
39
|
Lin CY, Both J, Do K, Boxer SG. Mechanism and bottlenecks in strand photodissociation of split green fluorescent proteins (GFPs). Proc Natl Acad Sci U S A 2017; 114:E2146-E2155. [PMID: 28242710 PMCID: PMC5358378 DOI: 10.1073/pnas.1618087114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Split GFPs have been widely applied for monitoring protein-protein interactions by expressing GFPs as two or more constituent parts linked to separate proteins that only fluoresce on complementing with one another. Although this complementation is typically irreversible, it has been shown previously that light accelerates dissociation of a noncovalently attached β-strand from a circularly permuted split GFP, allowing the interaction to be reversible. Reversible complementation is desirable, but photodissociation has too low of an efficiency (quantum yield <1%) to be useful as an optogenetic tool. Understanding the physical origins of this low efficiency can provide strategies to improve it. We elucidated the mechanism of strand photodissociation by measuring the dependence of its rate on light intensity and point mutations. The results show that strand photodissociation is a two-step process involving light-activated cis-trans isomerization of the chromophore followed by light-independent strand dissociation. The dependence of the rate on temperature was then used to establish a potential energy surface (PES) diagram along the photodissociation reaction coordinate. The resulting energetics-function model reveals the rate-limiting process to be the transition from the electronic excited-state to the ground-state PES accompanying cis-trans isomerization. Comparisons between split GFPs and other photosensory proteins, like photoactive yellow protein and rhodopsin, provide potential strategies for improving the photodissociation quantum yield.
Collapse
Affiliation(s)
- Chi-Yun Lin
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Johan Both
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Keunbong Do
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, CA 94305-5012
| |
Collapse
|
40
|
Smyrnova D, Zinovjev K, Tuñón I, Ceulemans A. Thermal Isomerization Mechanism in Dronpa and Its Mutants. J Phys Chem B 2016; 120:12820-12825. [PMID: 28002952 DOI: 10.1021/acs.jpcb.6b10859] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The photoswitching speed of the reversibly switchable fluorescent proteins (RSFPs) from the family of green fluorescent proteins (GFPs) changes upon mutation which is of direct importance for various high-resolution techniques. Dronpa is one of the most used RSFPs. Its point mutants rsFastLime (Dronpa V157G) and rsKame (Dronpa V157L) exhibit a striking difference in their photoswitching speed. Here the QM/MM on-the-fly string method is used in order to explore the details of the thermal isomerization mechanism. The four principal ways in which isomerization may occur have been scrutinized for each of the three proteins. It has been shown that thermal isomerization occurs via a one-bond-flip mechanism in all three proteins, although, in rsKame, where the chromophore is constrained more, the activation free energy difference between hula-twist and one-bond-flip is significantly smaller. Functional mode analysis has been applied to examine the motions of the amino acids during the isomerization. It clearly identifies the importance of Val/Leu 157 as well as the amino acids in the α-helix during the isomerization.
Collapse
Affiliation(s)
- Daryna Smyrnova
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Kirill Zinovjev
- Departament de Química Física, Universitat de València , 46100 Burjassot, Spain
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València , 46100 Burjassot, Spain
| | - Arnout Ceulemans
- Quantum Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven , Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
41
|
Nienhaus K, Nienhaus GU. Chromophore photophysics and dynamics in fluorescent proteins of the GFP family. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:443001. [PMID: 27604321 DOI: 10.1088/0953-8984/28/44/443001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins of the green fluorescent protein (GFP) family are indispensable for fluorescence imaging experiments in the life sciences, particularly of living specimens. Their essential role as genetically encoded fluorescence markers has motivated many researchers over the last 20 years to further advance and optimize these proteins by using protein engineering. Amino acids can be exchanged by site-specific mutagenesis, starting with naturally occurring proteins as templates. Optical properties of the fluorescent chromophore are strongly tuned by the surrounding protein environment, and a targeted modification of chromophore-protein interactions requires a profound knowledge of the underlying photophysics and photochemistry, which has by now been well established from a large number of structural and spectroscopic experiments and molecular-mechanical and quantum-mechanical computations on many variants of fluorescent proteins. Nevertheless, such rational engineering often does not meet with success and thus is complemented by random mutagenesis and selection based on the optical properties. In this topical review, we present an overview of the key structural and spectroscopic properties of fluorescent proteins. We address protein-chromophore interactions that govern ground state optical properties as well as processes occurring in the electronically excited state. Special emphasis is placed on photoactivation of fluorescent proteins. These light-induced reactions result in large structural changes that drastically alter the fluorescence properties of the protein, which enables some of the most exciting applications, including single particle tracking, pulse chase imaging and super-resolution imaging. We also present a few examples of fluorescent protein application in live-cell imaging experiments.
Collapse
Affiliation(s)
- Karin Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang Gaede-Straße 1, 76131 Karlsruhe, Germany
| | | |
Collapse
|
42
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
43
|
Zhao H, Fu Y, Glasser C, Andrade Alba EJ, Mayer ML, Patterson G, Schuck P. Monochromatic multicomponent fluorescence sedimentation velocity for the study of high-affinity protein interactions. eLife 2016; 5. [PMID: 27436096 PMCID: PMC4985284 DOI: 10.7554/elife.17812] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/19/2016] [Indexed: 01/05/2023] Open
Abstract
The dynamic assembly of multi-protein complexes underlies fundamental processes in cell biology. A mechanistic understanding of assemblies requires accurate measurement of their stoichiometry, affinity and cooperativity, and frequently consideration of multiple co-existing complexes. Sedimentation velocity analytical ultracentrifugation equipped with fluorescence detection (FDS-SV) allows the characterization of protein complexes free in solution with high size resolution, at concentrations in the nanomolar and picomolar range. Here, we extend the capabilities of FDS-SV with a single excitation wavelength from single-component to multi-component detection using photoswitchable fluorescent proteins (psFPs). We exploit their characteristic quantum yield of photo-switching to imprint spatio-temporal modulations onto the sedimentation signal that reveal different psFP-tagged protein components in the mixture. This novel approach facilitates studies of heterogeneous multi-protein complexes at orders of magnitude lower concentrations and for higher-affinity systems than previously possible. Using this technique we studied high-affinity interactions between the amino-terminal domains of GluA2 and GluA3 AMPA receptors.
Collapse
Affiliation(s)
- Huaying Zhao
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Yan Fu
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Carla Glasser
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Eric J Andrade Alba
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Mark L Mayer
- Laboratory of Cellular and Molecular Neurophysiology, Porter Neuroscience Research Center, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - George Patterson
- Section on Biophotonics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Peter Schuck
- Dynamics of Macromolecular Assembly Section, Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| |
Collapse
|
44
|
Evolution and characterization of a new reversibly photoswitching chromogenic protein, Dathail. J Mol Biol 2016; 428:1776-89. [DOI: 10.1016/j.jmb.2016.02.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 12/11/2022]
|
45
|
Abstract
The discovery of light-gated ion channels and their application to controlling neural activities have had a transformative impact on the field of neuroscience. In recent years, the concept of using light-activated proteins to control biological processes has greatly diversified into other fields, driven by the natural diversity of photoreceptors and decades of knowledge obtained from their biophysical characterization. In this chapter, we will briefly discuss the origin and development of optogenetics and highlight the basic concepts that make it such a powerful technology. We will review how these enabling concepts have developed over the past decade, and discuss future perspectives.
Collapse
Affiliation(s)
- Yong Ku Cho
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA. .,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| | - Dan Li
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
46
|
Morozov D, Groenhof G. Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201508452] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Morozov D, Groenhof G. Hydrogen Bond Fluctuations Control Photochromism in a Reversibly Photo-Switchable Fluorescent Protein. Angew Chem Int Ed Engl 2015; 55:576-8. [DOI: 10.1002/anie.201508452] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/04/2015] [Indexed: 11/09/2022]
|
48
|
Duwé S, De Zitter E, Gielen V, Moeyaert B, Vandenberg W, Grotjohann T, Clays K, Jakobs S, Van Meervelt L, Dedecker P. Expression-Enhanced Fluorescent Proteins Based on Enhanced Green Fluorescent Protein for Super-resolution Microscopy. ACS NANO 2015; 9:9528-41. [PMID: 26308583 DOI: 10.1021/acsnano.5b04129] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
"Smart fluorophores", such as reversibly switchable fluorescent proteins, are crucial for advanced fluorescence imaging. However, only a limited number of such labels is available, and many display reduced biological performance compared to more classical variants. We present the development of robustly photoswitchable variants of enhanced green fluorescent protein (EGFP), named rsGreens, that display up to 30-fold higher fluorescence in E. coli colonies grown at 37 °C and more than 4-fold higher fluorescence when expressed in HEK293T cells compared to their ancestor protein rsEGFP. This enhancement is not due to an intrinsic increase in the fluorescence brightness of the probes, but rather due to enhanced expression levels that allow many more probe molecules to be functional at any given time. We developed rsGreens displaying a range of photoswitching kinetics and show how these can be used for multimodal diffraction-unlimited fluorescence imaging such as pcSOFI and RESOLFT, achieving a spatial resolution of ∼70 nm. By determining the first ever crystal structures of a negative reversibly switchable FP derived from Aequorea victoria in both the "on"- and "off"-conformation we were able to confirm the presence of a cis-trans isomerization and provide further insights into the mechanisms underlying the photochromism. Our work demonstrates that genetically encoded "smart fluorophores" can be readily optimized for biological performance and provides a practical strategy for developing maturation- and stability-enhanced photochromic fluorescent proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Tim Grotjohann
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | | | - Stefan Jakobs
- Department of Neurology, University of Goettingen Medical School , Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry , Am Fassberg 11, 37077 Goettingen, Germany
| | | | | |
Collapse
|
49
|
Smyrnova D, Moeyaert B, Michielssens S, Hofkens J, Dedecker P, Ceulemans A. Molecular Dynamic Indicators of the Photoswitching Properties of Green Fluorescent Proteins. J Phys Chem B 2015; 119:12007-16. [DOI: 10.1021/acs.jpcb.5b04826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daryna Smyrnova
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Benjamien Moeyaert
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Servaas Michielssens
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Peter Dedecker
- Molecular
Imaging and Photonics Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| | - Arnout Ceulemans
- Quantum
Chemistry and Physical Chemistry Division, Department of Chemistry, KU Leuven, Celestijnenenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
50
|
Uno SN, Tiwari DK, Kamiya M, Arai Y, Nagai T, Urano Y. A guide to use photocontrollable fluorescent proteins and synthetic smart fluorophores for nanoscopy. Microscopy (Oxf) 2015; 64:263-77. [PMID: 26152215 DOI: 10.1093/jmicro/dfv037] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/12/2015] [Indexed: 12/28/2022] Open
Abstract
Recent advances in nanoscopy, which breaks the diffraction barrier and can visualize structures smaller than the diffraction limit in cells, have encouraged biologists to investigate cellular processes at molecular resolution. Since nanoscopy depends not only on special optics but also on 'smart' photophysical properties of photocontrollable fluorescent probes, including photoactivatability, photoswitchability and repeated blinking, it is important for biologists to understand the advantages and disadvantages of fluorescent probes and to choose appropriate ones for their specific requirements. Here, we summarize the characteristics of currently available fluorescent probes based on both proteins and synthetic compounds applicable to nanoscopy and provide a guideline for selecting optimal probes for specific applications.
Collapse
Affiliation(s)
- Shin-Nosuke Uno
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Dhermendra K Tiwari
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Yoshiyuki Arai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research, Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | - Yasuteru Urano
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|