1
|
Zeng Y, Ren X, Jin P, Zhang Y, Zhuo M, Wang J. Development of MPS1 Inhibitors: Recent Advances and Perspectives. J Med Chem 2023; 66:16484-16514. [PMID: 38095579 DOI: 10.1021/acs.jmedchem.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Monopolar spindle kinase 1 (MPS1) plays a pivotal role as a dual-specificity kinase governing spindle assembly checkpoint activation and sister chromatid separation in mitosis. Its overexpression has been observed in various human malignancies. MPS1 reduces spindle assembly checkpoint sensitivity, allowing tumor cells with a high degree of aneuploidy to complete mitosis and survive. Thus, MPS1 has emerged as a promising candidate for cancer therapy. Despite the identification of numerous MPS1 inhibitors, only five have advanced to clinical trials with none securing FDA approval for cancer treatment. In this perspective, we provide a concise overview of the structural and functional characteristics of MPS1 by highlighting its relevance to cancer. Additionally, we explore the structure-activity relationships, selectivity, and pharmacokinetics of MPS1 inhibitors featuring diverse scaffolds. Moreover, we review the reported work on enhancing MPS1 inhibitor selectivity, offering valuable insights into the discovery of novel, highly potent small-molecule MPS1 inhibitors.
Collapse
Affiliation(s)
- Yangjie Zeng
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Pengyao Jin
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yali Zhang
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Ming Zhuo
- Medical College, Guizhou University, Guiyang, Guizhou 550025, China
| | - Jubo Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| |
Collapse
|
2
|
Lacroix B, Lorca T, Castro A. Structural, enzymatic and spatiotemporal regulation of PP2A-B55 phosphatase in the control of mitosis. Front Cell Dev Biol 2022; 10:967909. [PMID: 36105360 PMCID: PMC9465306 DOI: 10.3389/fcell.2022.967909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022] Open
Abstract
Cells require major physical changes to induce a proper repartition of the DNA. Nuclear envelope breakdown, DNA condensation and spindle formation are promoted at mitotic entry by massive protein phosphorylation and reversed at mitotic exit by the timely and ordered dephosphorylation of mitotic substrates. This phosphorylation results from the balance between the activity of kinases and phosphatases. The role of kinases in the control of mitosis has been largely studied, however, the impact of phosphatases has long been underestimated. Recent data have now established that the regulation of phosphatases is crucial to confer timely and ordered cellular events required for cell division. One major phosphatase involved in this process is the phosphatase holoenzyme PP2A-B55. This review will be focused in the latest structural, biochemical and enzymatic insights provided for PP2A-B55 phosphatase as well as its regulators and mechanisms of action.
Collapse
Affiliation(s)
- Benjamin Lacroix
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Thierry Lorca
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
| | - Anna Castro
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS UMR5237, Université de Montpellier, CNRS UMR5237Montpellier, France
- Équipe Labellisée “Ligue Nationale Contre le Cancer”, Paris, France
- *Correspondence: Anna Castro,
| |
Collapse
|
3
|
Neo SP, Alli-Shaik A, Wee S, Lim Z, Gunaratne J. Englerin A Rewires Phosphosignaling via Hsp27 Hyperphosphorylation to Induce Cytotoxicity in Renal Cancer Cells. J Proteome Res 2022; 21:1948-1960. [PMID: 35838755 DOI: 10.1021/acs.jproteome.2c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Englerin A (EA) is a small-molecule natural product with selective cytotoxicity against renal cancer cells. EA has been shown to induce apoptosis and cell death through cell-cycle arrest and/or insulin signaling pathways. However, its biological mode of action or targets in renal cancer remains enigmatic. In this study, we employed advanced mass spectrometry-based phosphoproteomics approaches to identify EA's functional roles in renal cancer. We identified 10,940 phosphorylation sites, of which 706 sites exhibited EA-dependent phosphorylation changes. Integrated analysis of motifs and interaction networks suggested activation of stress-activated kinases including p38 upon EA treatment. Of note, a downstream target of p38, Hsp27, was found to be hyperphosphorylated on multiple sites upon EA treatment. Among these, a novel site Ser65 on Hsp27, which was further validated by targeted proteomics, was shown to be crucial for EA-induced cytotoxicity in renal cancer cells. Taken together, these data reveal the complex signaling cascade that is induced upon EA treatment and importantly provide insights into its effects on downstream molecular signaling.
Collapse
Affiliation(s)
- Suat Peng Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Asfa Alli-Shaik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Sheena Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Zijie Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore
| | - Jayantha Gunaratne
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Singapore 138673, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| |
Collapse
|
4
|
Schöffski P, Awada A, de la Bigne AM, Felloussi Z, Burbridge M, Cantero F, Colombo R, Maruzzelli S, Ammattatelli K, de Jonge M, Aftimos P, Dumez H, Sleijfer S. First-in-man, first-in-class phase I study with the monopolar spindle 1 kinase inhibitor S81694 administered intravenously in adult patients with advanced, metastatic solid tumours. Eur J Cancer 2022; 169:135-145. [PMID: 35567919 DOI: 10.1016/j.ejca.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND S81694 is an inhibitor of monopolar spindle 1 kinase, a target expressed in proliferating cells. CL1-81694-001 was the first-in-human study aiming at identifying a safe dosing schedule in solid tumour patients. PATIENTS AND METHODS This trial was based on inter-individual dose-escalation of single agent S81694 in cohorts of ≥3 patients to assess the safety and tolerability and determine dose-limiting toxicities (DLTs), maximum tolerated dose (MTD) and recommended phase II dose (RP2D), with S81694 given on days 1,8,15 of a 28-day cycle as 1-h infusion. RESULTS 38 patients were treated at doses ranging from 4 to 135 mg/m2/week; 144 cycles were administered (median 2/patient; range 1-32 cycles). Patients discontinued treatment for disease progression (78.9%), adverse events (AE; 18.4%) or withdrawal of consent (2.6%). Treatment modifications occurred in 22 patients (57.9%; 49 cycles). Common treatment-emergent AEs were fatigue (22 patients;57.9%), anaemia (17;44.7%) and nausea (12;31.6%). Haematological toxicity was mild, with Grade 3 anaemia observed in three patients and neutropenia mainly seen at the 135 mg/m2 dose level. Three first cycle DLTs included G3 anaemia (4 mg/m2 dose), G4 hypertension (20 mg/m2), G3 fatigue (135 mg/m2). MTD was not reached due to premature discontinuation of enrolment based on a sponsor decision. Among 35 patients evaluable for response, one (renal cell carcinoma) had a complete response, one (hepatocellular carcinoma) had a transient decrease of target lesions and 13 had stable disease. Seven patients remained on study for ≥6 cycles, two at the 135 mg/m2 dose. CONCLUSIONS S81694 can be administered safely as a single agent in adults with solid tumours on days 1,8,15 of a 28-day cycle up to a dose of 135 mg/m2/week without reaching MTD. The RP2D was not defined due to the prioritization of the use of S81694 in combination with cytotoxic agents, based on emerging preclinical data. TRIAL REGISTRATION EudraCT number: 2014-002023-10; ISRCTN registry ISRCTN35641359.
Collapse
Affiliation(s)
- Patrick Schöffski
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium.
| | - Ahmad Awada
- Clinical Trials Conduct Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Zakia Felloussi
- TA Oncology, Institut de Recherches Internationales Servier, Suresnes, France
| | - Mike Burbridge
- TA Oncology, Institut de Recherches Internationales Servier, Suresnes, France
| | - Frederique Cantero
- TA Oncology, Institut de Recherches Internationales Servier, Suresnes, France
| | | | | | | | - Maja de Jonge
- Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Philippe Aftimos
- Clinical Trials Conduct Unit, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Herlinde Dumez
- Department of General Medical Oncology, University Hospitals Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Stefan Sleijfer
- Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Mitotic phosphorylation of tumor suppressor DAB2IP maintains spindle assembly checkpoint and chromosomal stability through activating PLK1-Mps1 signal pathway and stabilizing mitotic checkpoint complex. Oncogene 2022; 41:489-501. [PMID: 34775484 PMCID: PMC8782720 DOI: 10.1038/s41388-021-02106-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/19/2021] [Accepted: 10/27/2021] [Indexed: 11/09/2022]
Abstract
Chromosomal instability (CIN) is a driving force for cancer development. The most common causes of CIN include the dysregulation of the spindle assembly checkpoint (SAC), which is a surveillance mechanism that prevents premature chromosome separation during mitosis by targeting anaphase-promoting complex/cyclosome (APC/C). DAB2IP is frequently silenced in advanced prostate cancer (PCa) and is associated with aggressive phenotypes of PCa. Our previous study showed that DAB2IP activates PLK1 and functions in mitotic regulation. Here, we report the novel mitotic phosphorylation of DAB2IP by Cdks, which mediates DAB2IP's interaction with PLK1 and the activation of the PLK1-Mps1 pathway. DAB2IP interacts with Cdc20 in a phosphorylation-independent manner. However, the phosphorylation of DAB2IP inhibits the ubiquitylation of Cdc20 in response to SAC, and blocks the premature release of the APC/C-MCC. The PLK1-Mps1 pathway plays an important role in mitotic checkpoint complex (MCC) assembly. It is likely that DAB2IP acts as a scaffold to aid PLK1-Mps1 in targeting Cdc20. Depletion or loss of the Cdks-mediated phosphorylation of DAB2IP destabilizes the MCC, impairs the SAC, and increases chromosome missegregation and subsequent CIN, thus contributing to tumorigenesis. Collectively, these results demonstrate the mechanism of DAB2IP in SAC regulation and provide a rationale for targeting the SAC to cause lethal CIN against DAB2IP-deficient aggressive PCa, which exhibits a weak SAC.
Collapse
|
6
|
Gui P, Sedzro DM, Yuan X, Liu S, Hei M, Tian W, Zohbi N, Wang F, Yao Y, Aikhionbare FO, Gao X, Wang D, Yao X, Dou Z. Mps1 dimerization and multisite interactions with Ndc80 complex enable responsive spindle assembly checkpoint signaling. J Mol Cell Biol 2021; 12:486-498. [PMID: 32219319 PMCID: PMC7493027 DOI: 10.1093/jmcb/mjaa006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 03/18/2020] [Indexed: 12/21/2022] Open
Abstract
Error-free mitosis depends on accurate chromosome attachment to spindle microtubules, which is monitored by the spindle assembly checkpoint (SAC) signaling. As an upstream factor of SAC, the precise and dynamic kinetochore localization of Mps1 kinase is critical for initiating and silencing SAC signaling. However, the underlying molecular mechanism remains elusive. Here, we demonstrated that the multisite interactions between Mps1 and Ndc80 complex (Ndc80C) govern Mps1 kinetochore targeting. Importantly, we identified direct interaction between Mps1 tetratricopeptide repeat domain and Ndc80C. We further identified that Mps1 C-terminal fragment, which contains the protein kinase domain and C-tail, enhances Mps1 kinetochore localization. Mechanistically, Mps1 C-terminal fragment mediates its dimerization. Perturbation of C-tail attenuates the kinetochore targeting and activity of Mps1, leading to aberrant mitosis due to compromised SAC function. Taken together, our study highlights the importance of Mps1 dimerization and multisite interactions with Ndc80C in enabling responsive SAC signaling.
Collapse
Affiliation(s)
- Ping Gui
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China.,Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Divine M Sedzro
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Sikai Liu
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Mohan Hei
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Tian
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Najdat Zohbi
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Fangwei Wang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou 310058, China
| | - Yihan Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Felix O Aikhionbare
- Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xinjiao Gao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Zhen Dou
- MOE Key Laboratory of Membraneless Organelle and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
7
|
Chemical tools for dissecting cell division. Nat Chem Biol 2021; 17:632-640. [PMID: 34035515 PMCID: PMC10157795 DOI: 10.1038/s41589-021-00798-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 04/13/2021] [Indexed: 02/03/2023]
Abstract
Components of the cell division machinery typically function at varying cell cycle stages and intracellular locations. To dissect cellular mechanisms during the rapid division process, small-molecule probes act as complementary approaches to genetic manipulations, with advantages of temporal and in some cases spatial control and applicability to multiple model systems. This Review focuses on recent advances in chemical probes and applications to address select questions in cell division. We discuss uses of both enzyme inhibitors and chemical inducers of dimerization, as well as emerging techniques to promote future investigations. Overall, these concepts may open new research directions for applying chemical probes to advance cell biology.
Collapse
|
8
|
Sarkar S, Sahoo PK, Mahata S, Pal R, Ghosh D, Mistry T, Ghosh S, Bera T, Nasare VD. Mitotic checkpoint defects: en route to cancer and drug resistance. Chromosome Res 2021; 29:131-144. [PMID: 33409811 DOI: 10.1007/s10577-020-09646-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
Loss of mitosis regulation is a common feature of malignant cells that leads to aberrant cell division with inaccurate chromosome segregation. The mitotic checkpoint is responsible for faithful transmission of genetic material to the progeny. Defects in this checkpoint, such as mutations and changes in gene expression, lead to abnormal chromosome content or aneuploidy that may facilitate cancer development. Furthermore, a defective checkpoint response is indicated in the development of drug resistance to microtubule poisons that are used in treatment of various blood and solid cancers for several decades. Mitotic slippage and senescence are important cell fates that occur even with an active mitotic checkpoint and are held responsible for the resistance. However, contradictory findings in both the scenarios of carcinogenesis and drug resistance have aroused questions on whether mitotic checkpoint defects are truly responsible for these dismal outcomes. Here, we discuss the possible contribution of the faulty checkpoint signaling in cancer development and drug resistance, followed by the latest research on this pathway for better outcomes in cancer treatment.
Collapse
Affiliation(s)
- Sinjini Sarkar
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Pranab Kumar Sahoo
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sutapa Mahata
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Ranita Pal
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Dipanwita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanuma Mistry
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Sushmita Ghosh
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tanmoy Bera
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Vilas D Nasare
- Department of Pathology and Cancer Screening, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
9
|
Asai Y, Matsumura R, Hasumi Y, Susumu H, Nagata K, Watanabe Y, Terada Y. SET/TAF1 forms a distance-dependent feedback loop with Aurora B and Bub1 as a tension sensor at centromeres. Sci Rep 2020; 10:15653. [PMID: 32973131 PMCID: PMC7518443 DOI: 10.1038/s41598-020-71955-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022] Open
Abstract
During mitosis, spatiotemporal regulation of phosphorylation at the kinetochore is essential for accurate chromosome alignment and proper chromosome segregation. Aurora B kinase phosphorylates kinetochore substrates to correct improper kinetochore-microtubule (KT-MT) attachments, whereas tension across the centromeres inactivates Aurora B kinase, and PP2A phosphatase dephosphorylates the kinetochore proteins to stabilize the attachments. However, the molecular entity of the tension sensing mechanism remains elusive. In a previous report, we showed that centromeric SET/TAF1 on Sgo2 up-regulates Aurora B kinase activity via PP2A inhibition in prometaphase. Here we show that Aurora B and Bub1 at the centromere/kinetochore regulate both kinase activities one another in an inter-kinetochore distance-dependent manner, indicating a positive feedback loop. We further show that the centromeric pool of SET on Sgo2 depends on Bub1 kinase activity, and the centromeric localization of SET decreases in a distance-dependent manner, thereby inactivating Aurora B in metaphase. Consistently, ectopic targeting of SET to the kinetochores during metaphase hyperactivates Aurora B via PP2A inhibition, and thereby rescues the feedback loop. Thus, we propose that SET, Aurora B and Bub1 form a distance-dependent positive feedback loop, which spatiotemporally may act as a tension sensor at centromeres.
Collapse
Affiliation(s)
- Yuichiro Asai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Rieko Matsumura
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Yurina Hasumi
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Hiroaki Susumu
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Yayoi, Tokyo, 113-0032, Japan
| | - Kyosuke Nagata
- Department of Infection Biology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan
| | - Yoshinori Watanabe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, BN1 9RQ, Sussex, UK
| | - Yasuhiko Terada
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
10
|
Endo Y, Saeki K, Watanabe M, Miyajima-Magara N, Igarashi M, Mochizuki M, Nishimura R, Sugano S, Sasaki N, Nakagawa T. Spindle assembly checkpoint competence in aneuploid canine malignant melanoma cell lines. Tissue Cell 2020; 67:101403. [PMID: 32835936 DOI: 10.1016/j.tice.2020.101403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/18/2020] [Accepted: 07/03/2020] [Indexed: 02/03/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism that prevents unequal segregation of chromosomes during mitosis. Abnormalities in the SAC are associated with chromosome instability and resultant aneuploidy. This study was performed to evaluate the SAC competence in canine malignant melanoma (CMM) using four aneuploid cell lines (CMeC1, CMeC2, KMeC, and LMeC). After treatment with nocodazole, a microtubule disrupting agent, CMeC1, KMeC, and LMeC cells were arrested in M phase, whereas CMeC2 cells were not arrested, and progressed into the next cell cycle phase without cytokinesis. Chromosome spread analysis revealed a significantly increased rate of premature sister chromatid separation in CMeC2 cells. Expression of the phosphorylated form of the SAC regulator, monopolar spindle 1 (Mps1), was lower in CMeC2 cells than in the other CMM cell lines. These results indicate that the SAC is defective in CMeC2 cells, which may partially explain aneuploidy in CMM. Thus, CMeC2 cells may be useful for further studies of the SAC mechanism in CMM and in determining the relationship between SAC incompetence and aneuploidy.
Collapse
Affiliation(s)
- Yoshifumi Endo
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; Laboratory of Veterinary Clinical Oncology, Graduate School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido 069-8501, Japan
| | - Kohei Saeki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Manabu Watanabe
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan
| | - Nozomi Miyajima-Magara
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Maki Igarashi
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan; Biochemistry Division, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo, Tokyo 104-0045, Japan
| | - Manabu Mochizuki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ryohei Nishimura
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Sumio Sugano
- Laboratory of Functional Genomics, Department of Medical Genome Science, Graduate School of Frontier Science, the University of Tokyo, Minato-ku, Tokyo 113-8657, Japan
| | - Nobuo Sasaki
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
11
|
Pachis ST, Hiruma Y, Tromer EC, Perrakis A, Kops GJPL. Interactions between N-terminal Modules in MPS1 Enable Spindle Checkpoint Silencing. Cell Rep 2020; 26:2101-2112.e6. [PMID: 30784592 DOI: 10.1016/j.celrep.2019.01.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/13/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
Abstract
Faithful chromosome segregation relies on the ability of the spindle assembly checkpoint (SAC) to delay anaphase onset until chromosomes are attached to the mitotic spindle via their kinetochores. MPS1 kinase is recruited to kinetochores to initiate SAC signaling and is removed from kinetochores once stable microtubule attachments have been formed to allow normal mitotic progression. Here, we show that a helical fragment within the kinetochore-targeting N-terminal extension (NTE) module of MPS1 is required for interactions with kinetochores and forms intramolecular interactions with its adjacent tetratricopeptide repeat (TPR) domain. Bypassing this NTE-TPR interaction results in high MPS1 levels at kinetochores due to loss of regulatory input into MPS1 localization, inefficient MPS1 delocalization upon microtubule attachment, and SAC silencing defects. These results show that SAC responsiveness to attachments relies on regulated intramolecular interactions in MPS1 and highlight the sensitivity of mitosis to perturbations in the dynamics of the MPS1-NDC80-C interactions.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands
| | - Yoshitaka Hiruma
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Eelco C Tromer
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, UK
| | - Anastassis Perrakis
- Department of Biochemistry, the Netherlands Cancer Institute, Amsterdam, 1066 CX, the Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, 3584 CT, the Netherlands.
| |
Collapse
|
12
|
Curtis NL, Ruda GF, Brennan P, Bolanos-Garcia VM. Deregulation of Chromosome Segregation and Cancer. ANNUAL REVIEW OF CANCER BIOLOGY 2020. [DOI: 10.1146/annurev-cancerbio-030419-033541] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The mitotic spindle assembly checkpoint (SAC) is an intricate cell signaling system that ensures the high fidelity and timely segregation of chromosomes during cell division. Mistakes in this process can lead to the loss, gain, or rearrangement of the genetic material. Gross chromosomal aberrations are usually lethal but can cause birth and development defects as well as cancer. Despite advances in the identification of SAC protein components, important details of the interactions underpinning chromosome segregation regulation remain to be established. This review discusses the current understanding of the function, structure, mode of regulation, and dynamics of the assembly and disassembly of SAC subcomplexes, which ultimately safeguard the accurate transmission of a stable genome to descendants. We also discuss how diverse oncoviruses take control of human cell division by exploiting the SAC and the potential of this signaling circuitry as a pool of drug targets to develop effective cancer therapies.
Collapse
Affiliation(s)
- Natalie L. Curtis
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Gian Filippo Ruda
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Paul Brennan
- Target Discovery Institute and Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Victor M. Bolanos-Garcia
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| |
Collapse
|
13
|
Fulcher LJ, Sapkota GP. Mitotic kinase anchoring proteins: the navigators of cell division. Cell Cycle 2020; 19:505-524. [PMID: 32048898 PMCID: PMC7100989 DOI: 10.1080/15384101.2020.1728014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/14/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.
Collapse
Affiliation(s)
- Luke J Fulcher
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland, UK
| |
Collapse
|
14
|
Chandler BC, Moubadder L, Ritter CL, Liu M, Cameron M, Wilder-Romans K, Zhang A, Pesch AM, Michmerhuizen AR, Hirsh N, Androsiglio M, Ward T, Olsen E, Niknafs YS, Merajver S, Thomas DG, Brown PH, Lawrence TS, Nyati S, Pierce LJ, Chinnaiyan A, Speers C. TTK inhibition radiosensitizes basal-like breast cancer through impaired homologous recombination. J Clin Invest 2020; 130:958-973. [PMID: 31961339 PMCID: PMC6994133 DOI: 10.1172/jci130435] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/31/2019] [Indexed: 12/12/2022] Open
Abstract
Increased rates of locoregional recurrence are observed in patients with basal-like breast cancer (BC) despite the use of radiation therapy (RT); therefore, approaches that result in radiosensitization of basal-like BC are critically needed. Using patients' tumor gene expression data from 4 independent data sets, we correlated gene expression with recurrence to find genes significantly correlated with early recurrence after RT. The highest-ranked gene, TTK, was most highly expressed in basal-like BC across multiple data sets. Inhibition of TTK by both genetic and pharmacologic methods enhanced radiosensitivity in multiple basal-like cell lines. Radiosensitivity was mediated, at least in part, through persistent DNA damage after treatment with TTK inhibition and RT. Inhibition of TTK impaired homologous recombination (HR) and repair efficiency, but not nonhomologous end-joining, and decreased the formation of Rad51 foci. Reintroduction of wild-type TTK rescued both radioresistance and HR repair efficiency after TTK knockdown; however, reintroduction of kinase-dead TTK did not. In vivo, TTK inhibition combined with RT led to a significant decrease in tumor growth in both heterotopic and orthotopic, including patient-derived xenograft, BC models. These data support the rationale for clinical development of TTK inhibition as a radiosensitizing strategy for patients with basal-like BC, and efforts toward this end are currently underway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dafydd G. Thomas
- Rogel Cancer Center
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Powel H. Brown
- Department of Cancer Prevention, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Shyam Nyati
- Department of Radiation Oncology
- Rogel Cancer Center
| | | | - Arul Chinnaiyan
- Rogel Cancer Center
- Michigan Center for Translation Pathology
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Corey Speers
- Department of Radiation Oncology
- Rogel Cancer Center
- Cancer Biology Program
| |
Collapse
|
15
|
Hayward D, Bancroft J, Mangat D, Alfonso-Pérez T, Dugdale S, McCarthy J, Barr FA, Gruneberg U. Checkpoint signaling and error correction require regulation of the MPS1 T-loop by PP2A-B56. J Cell Biol 2019; 218:3188-3199. [PMID: 31511308 PMCID: PMC6781431 DOI: 10.1083/jcb.201905026] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 01/16/2023] Open
Abstract
During mitosis, the formation of microtubule-kinetochore attachments is monitored by the serine/threonine kinase monopolar spindle 1 (MPS1). MPS1 is recruited to unattached kinetochores where it phosphorylates KNL1, BUB1, and MAD1 to initiate the spindle assembly checkpoint. This arrests the cell cycle until all kinetochores have been stably captured by microtubules. MPS1 also contributes to the error correction process rectifying incorrect kinetochore attachments. MPS1 activity at kinetochores requires autophosphorylation at multiple sites including threonine 676 in the activation segment or "T-loop." We now demonstrate that the BUBR1-bound pool of PP2A-B56 regulates MPS1 T-loop autophosphorylation and hence activation status in mammalian cells. Overriding this regulation using phosphomimetic mutations in the MPS1 T-loop to generate a constitutively active kinase results in a prolonged mitotic arrest with continuous turnover of microtubule-kinetochore attachments. Dynamic regulation of MPS1 catalytic activity by kinetochore-localized PP2A-B56 is thus critical for controlled MPS1 activity and timely cell cycle progression.
Collapse
Affiliation(s)
- Daniel Hayward
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - James Bancroft
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | | | - Sholto Dugdale
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Julia McCarthy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Francis A Barr
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ulrike Gruneberg
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
16
|
Molecular design and anticancer activities of small-molecule monopolar spindle 1 inhibitors: A Medicinal chemistry perspective. Eur J Med Chem 2019; 175:247-268. [DOI: 10.1016/j.ejmech.2019.04.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/21/2022]
|
17
|
Vallardi G, Cordeiro MH, Saurin AT. A Kinase-Phosphatase Network that Regulates Kinetochore-Microtubule Attachments and the SAC. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 56:457-484. [PMID: 28840249 DOI: 10.1007/978-3-319-58592-5_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The KMN network (for KNL1, MIS12 and NDC80 complexes) is a hub for signalling at the outer kinetochore. It integrates the activities of two kinases (MPS1 and Aurora B) and two phosphatases (PP1 and PP2A-B56) to regulate kinetochore-microtubule attachments and the spindle assembly checkpoint (SAC). We will first discuss each of these enzymes separately, to describe how they are regulated at kinetochores and why this is important for their primary function in controlling either microtubule attachments or the SAC. We will then discuss why inhibiting any one of them individually produces secondary effects on all the others. This cross-talk may help to explain why all enzymes have been linked to both processes, even though the direct evidence suggests they each control only one. This chapter therefore describes how a network of kinases and phosphatases work together to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Giulia Vallardi
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Marilia Henriques Cordeiro
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Adrian Thomas Saurin
- Division of Cancer Research, School of Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK.
| |
Collapse
|
18
|
Pachis ST, Kops GJPL. Leader of the SAC: molecular mechanisms of Mps1/TTK regulation in mitosis. Open Biol 2019; 8:rsob.180109. [PMID: 30111590 PMCID: PMC6119859 DOI: 10.1098/rsob.180109] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 07/19/2018] [Indexed: 12/14/2022] Open
Abstract
Discovered in 1991 in a screen for genes involved in spindle pole body duplication, the monopolar spindle 1 (Mps1) kinase has since claimed a central role in processes that ensure error-free chromosome segregation. As a result, Mps1 kinase activity has become an attractive candidate for pharmaceutical companies in the search for compounds that target essential cellular processes to eliminate, for example, tumour cells or pathogens. Research in recent decades has offered many insights into the molecular function of Mps1 and its regulation. In this review, we integrate the latest knowledge regarding the regulation of Mps1 activity and its spatio-temporal distribution, highlight gaps in our understanding of these processes and propose future research avenues to address them.
Collapse
Affiliation(s)
- Spyridon T Pachis
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Geert J P L Kops
- Oncode Institute, Hubrecht Institute - KNAW and University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
19
|
Moura M, Conde C. Phosphatases in Mitosis: Roles and Regulation. Biomolecules 2019; 9:E55. [PMID: 30736436 PMCID: PMC6406801 DOI: 10.3390/biom9020055] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023] Open
Abstract
Mitosis requires extensive rearrangement of cellular architecture and of subcellular structures so that replicated chromosomes can bind correctly to spindle microtubules and segregate towards opposite poles. This process originates two new daughter nuclei with equal genetic content and relies on highly-dynamic and tightly regulated phosphorylation of numerous cell cycle proteins. A burst in protein phosphorylation orchestrated by several conserved kinases occurs as cells go into and progress through mitosis. The opposing dephosphorylation events are catalyzed by a small set of protein phosphatases, whose importance for the accuracy of mitosis is becoming increasingly appreciated. This review will focus on the established and emerging roles of mitotic phosphatases, describe their structural and biochemical properties, and discuss recent advances in understanding the regulation of phosphatase activity and function.
Collapse
Affiliation(s)
- Margarida Moura
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313 Porto, Portugal.
| | - Carlos Conde
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde da Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
20
|
Roorda JC, Joosten RP, Perrakis A, Hiruma Y. A crystal structure of the human protein kinase Mps1 reveals an ordered conformation of the activation loop. Proteins 2019; 87:348-352. [PMID: 30582207 PMCID: PMC6590424 DOI: 10.1002/prot.25651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/11/2022]
Abstract
Monopolar spindle 1 (Mps1) is a dual-specificity protein kinase, orchestrating faithful chromosome segregation during mitosis. All reported structures of the Mps1 kinase adopt the hallmarks of an inactive conformation, which includes a mostly disordered activation loop. Here, we present a 2.4 Å resolution crystal structure of an "extended" version of the Mps1 kinase domain, which shows an ordered activation loop. However, the other structural characteristics of an active kinase are not present. Our structure shows that the Mps1 activation loop can fit to the ATP binding pocket and interferes with ATP, but less so with inhibitors binding, partly explain the potency of various Mps1 inhibitors.
Collapse
Affiliation(s)
- Jacomina C Roorda
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Robbie P Joosten
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Anastassis Perrakis
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Yoshitaka Hiruma
- Division of Biochemistry, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Saurin AT. Kinase and Phosphatase Cross-Talk at the Kinetochore. Front Cell Dev Biol 2018; 6:62. [PMID: 29971233 PMCID: PMC6018199 DOI: 10.3389/fcell.2018.00062] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/31/2018] [Indexed: 01/26/2023] Open
Abstract
Multiple kinases and phosphatases act on the kinetochore to control chromosome segregation: Aurora B, Mps1, Bub1, Plk1, Cdk1, PP1, and PP2A-B56, have all been shown to regulate both kinetochore-microtubule attachments and the spindle assembly checkpoint. Given that so many kinases and phosphatases converge onto two key mitotic processes, it is perhaps not surprising to learn that they are, quite literally, entangled in cross-talk. Inhibition of any one of these enzymes produces secondary effects on all the others, which results in a complicated picture that is very difficult to interpret. This review aims to clarify this picture by first collating the direct effects of each enzyme into one overarching schematic of regulation at the Knl1/Mis12/Ndc80 (KMN) network (a major signaling hub at the outer kinetochore). This schematic will then be used to discuss the implications of the cross-talk that connects these enzymes; both in terms of why it may be needed to produce the right type of kinetochore signals and why it nevertheless complicates our interpretations about which enzymes control what processes. Finally, some general experimental approaches will be discussed that could help to characterize kinetochore signaling by dissociating the direct from indirect effect of kinase or phosphatase inhibition in vivo. Together, this review should provide a framework to help understand how a network of kinases and phosphatases cooperate to regulate two key mitotic processes.
Collapse
Affiliation(s)
- Adrian T. Saurin
- Jacqui Wood Cancer Centre, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
22
|
Combes G, Barysz H, Garand C, Gama Braga L, Alharbi I, Thebault P, Murakami L, Bryne DP, Stankovic S, Eyers PA, Bolanos-Garcia VM, Earnshaw WC, Maciejowski J, Jallepalli PV, Elowe S. Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Curr Biol 2018; 28:872-883.e5. [PMID: 29502948 PMCID: PMC5863767 DOI: 10.1016/j.cub.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a “prone-to-autophosphorylate” Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells. Mps1 autophosphorylation at the NTE promotes activity independent of localization NTE phosphorylation relieves an NTE-dependent autoinhibition Mps1 autophosphorylation at its NTE is essential for the SAC, but not congression
Collapse
Affiliation(s)
- Guillaume Combes
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Helena Barysz
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chantal Garand
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luciano Gama Braga
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Ibrahim Alharbi
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Philippe Thebault
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luc Murakami
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Dominic P Bryne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stasa Stankovic
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sabine Elowe
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
23
|
Ji W, Luo Y, Ahmad E, Liu ST. Direct interactions of mitotic arrest deficient 1 (MAD1) domains with each other and MAD2 conformers are required for mitotic checkpoint signaling. J Biol Chem 2017; 293:484-496. [PMID: 29162720 DOI: 10.1074/jbc.ra117.000555] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/15/2017] [Indexed: 11/06/2022] Open
Abstract
As a sensitive signaling system, the mitotic checkpoint ensures faithful chromosome segregation by delaying anaphase onset even when a single kinetochore is unattached to mitotic spindle microtubules. The key signal amplification reaction for the checkpoint is the conformational conversion of "open" mitotic arrest deficient 2 (O-MAD2) into "closed" MAD2 (C-MAD2). The reaction has been suggested to be catalyzed by an unusual catalyst, a MAD1:C-MAD2 tetramer, but how the catalysis is executed and regulated remains elusive. Here, we report that in addition to the well-characterized middle region of MAD1 containing the MAD2-interaction motif (MIM), both N- and C-terminal domains (NTD and CTD) of MAD1 also contribute to mitotic checkpoint signaling. Unlike the MIM, which stably associated only with C-MAD2, the NTD and CTD in MAD1 surprisingly bound both O- and C-MAD2, suggesting that these two domains interact with both substrates and products of the O-to-C conversion. MAD1NTD and MAD1CTD also interacted with each other and with the MPS1 protein kinase, which phosphorylated both NTD and CTD. This phosphorylation decreased the NTD:CTD interaction and also CTD's interaction with MPS1. Of note, mutating the phosphorylation sites in the MAD1CTD, including Thr-716, compromised MAD2 binding and the checkpoint responses. We further noted that Ser-610 and Tyr-634 also contribute to the mitotic checkpoint signaling. Our results have uncovered that the MAD1NTD and MAD1CTD directly interact with each other and with MAD2 conformers and are regulated by MPS1 kinase, providing critical insights into mitotic checkpoint signaling.
Collapse
Affiliation(s)
- Wenbin Ji
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Yibo Luo
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ejaz Ahmad
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Song-Tao Liu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
24
|
Mps1 Regulates Kinetochore-Microtubule Attachment Stability via the Ska Complex to Ensure Error-Free Chromosome Segregation. Dev Cell 2017; 41:143-156.e6. [PMID: 28441529 DOI: 10.1016/j.devcel.2017.03.025] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 02/16/2017] [Accepted: 03/30/2017] [Indexed: 12/18/2022]
Abstract
The spindle assembly checkpoint kinase Mps1 not only inhibits anaphase but also corrects erroneous attachments that could lead to missegregation and aneuploidy. However, Mps1's error correction-relevant substrates are unknown. Using a chemically tuned kinetochore-targeting assay, we show that Mps1 destabilizes microtubule attachments (K fibers) epistatically to Aurora B, the other major error-correcting kinase. Through quantitative proteomics, we identify multiple sites of Mps1-regulated phosphorylation at the outer kinetochore. Substrate modification was microtubule sensitive and opposed by PP2A-B56 phosphatases that stabilize chromosome-spindle attachment. Consistently, Mps1 inhibition rescued K-fiber stability after depleting PP2A-B56. We also identify the Ska complex as a key effector of Mps1 at the kinetochore-microtubule interface, as mutations that mimic constitutive phosphorylation destabilized K fibers in vivo and reduced the efficiency of the Ska complex's conversion from lattice diffusion to end-coupled microtubule binding in vitro. Our results reveal how Mps1 dynamically modifies kinetochores to correct improper attachments and ensure faithful chromosome segregation.
Collapse
|
25
|
Ikeda M, Tanaka K. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis. Sci Rep 2017; 7:8794. [PMID: 28821799 PMCID: PMC5562746 DOI: 10.1038/s41598-017-09114-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/24/2017] [Indexed: 12/21/2022] Open
Abstract
For faithful chromosome segregation, the formation of stable kinetochore-microtubule attachment and its monitoring by the spindle assembly checkpoint (SAC) are coordinately regulated by mechanisms that are currently ill-defined. Here, we show that polo-like kinase 1 (Plk1), which is instrumental in forming stable kinetochore-microtubule attachments, is also involved in the maintenance of SAC activity by binding to Bub1, but not by binding to CLASP2 or CLIP-170. The effect of Plk1 on the SAC was found to be mediated through phosphorylation of Mps1, an essential kinase for the SAC, as well as through phosphorylation of the MELT repeats in Knl1. Bub1 acts as a platform for assembling other SAC components on the phosphorylated MELT repeats. We propose that Bub1-bound Plk1 is important for the maintenance of SAC activity by supporting Bub1 localization to kinetochores in prometaphase, a time when the kinetochore Mps1 level is reduced, until the formation of stable kinetochore-microtubule attachment is completed. Our study reveals an intricate mechanism for coordinating the formation of stable kinetochore-microtubule attachment and SAC activity.
Collapse
Affiliation(s)
- Masanori Ikeda
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan
| | - Kozo Tanaka
- Department of Molecular Oncology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
26
|
Hiruma Y, Koch A, Hazraty N, Tsakou F, Medema RH, Joosten RP, Perrakis A. Understanding inhibitor resistance in Mps1 kinase through novel biophysical assays and structures. J Biol Chem 2017; 292:14496-14504. [PMID: 28726638 DOI: 10.1074/jbc.m117.783555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/06/2017] [Indexed: 01/09/2023] Open
Abstract
Monopolar spindle 1 (Mps1/TTK) is a protein kinase essential in mitotic checkpoint signaling, preventing anaphase until all chromosomes are properly attached to spindle microtubules. Mps1 has emerged as a potential target for cancer therapy, and a variety of compounds have been developed to inhibit its kinase activity. Mutations in the catalytic domain of Mps1 that give rise to inhibitor resistance, but retain catalytic activity and do not display cross-resistance to other Mps1 inhibitors, have been described. Here we characterize the interactions of two such mutants, Mps1 C604Y and C604W, which raise resistance to two closely related compounds, NMS-P715 and its derivative Cpd-5, but not to the well characterized Mps1 inhibitor, reversine. We show that estimates of the IC50 (employing a novel specific and efficient assay that utilizes a fluorescently labeled substrate) and the binding affinity (KD ) indicate that, in both mutants, Cpd-5 should be better tolerated than the closely related NMS-P715. To gain further insight, we determined the crystal structure of the Mps1 kinase mutants bound to Cpd-5 and NMS-P715 and compared the binding modes of Cpd-5, NMS-P715, and reversine. The difference in steric hindrance between Tyr/Trp604 and the trifluoromethoxy moiety of NMS-P715, the methoxy moiety of Cpd-5, and complete absence of such a group in reversine, account for differences we observe in vitro Our analysis enforces the notion that inhibitors targeting Mps1 drug-resistant mutations can emerge as a feasible intervention strategy based on existing scaffolds, if the clinical need arises.
Collapse
Affiliation(s)
| | - Andre Koch
- Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | - René H Medema
- Cell Biology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
27
|
Moura M, Osswald M, Leça N, Barbosa J, Pereira AJ, Maiato H, Sunkel CE, Conde C. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing. eLife 2017; 6. [PMID: 28463114 PMCID: PMC5433843 DOI: 10.7554/elife.25366] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit. DOI:http://dx.doi.org/10.7554/eLife.25366.001
Collapse
Affiliation(s)
- Margarida Moura
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Mariana Osswald
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Nelson Leça
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - António J Pereira
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Helder Maiato
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biomedicina, Unidade de Biologia Experimental, FMUP - Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Claudio E Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Departamento de Biologia Molecular, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
28
|
Faisal A, Mak GWY, Gurden MD, Xavier CPR, Anderhub SJ, Innocenti P, Westwood IM, Naud S, Hayes A, Box G, Valenti MR, De Haven Brandon AK, O'Fee L, Schmitt J, Woodward HL, Burke R, vanMontfort RLM, Blagg J, Raynaud FI, Eccles SA, Hoelder S, Linardopoulos S. Characterisation of CCT271850, a selective, oral and potent MPS1 inhibitor, used to directly measure in vivo MPS1 inhibition vs therapeutic efficacy. Br J Cancer 2017; 116:1166-1176. [PMID: 28334731 PMCID: PMC5418449 DOI: 10.1038/bjc.2017.75] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The main role of the cell cycle is to enable error-free DNA replication, chromosome segregation and cytokinesis. One of the best characterised checkpoint pathways is the spindle assembly checkpoint, which prevents anaphase onset until the appropriate attachment and tension across kinetochores is achieved. MPS1 kinase activity is essential for the activation of the spindle assembly checkpoint and has been shown to be deregulated in human tumours with chromosomal instability and aneuploidy. Therefore, MPS1 inhibition represents an attractive strategy to target cancers. METHODS To evaluate CCT271850 cellular potency, two specific antibodies that recognise the activation sites of MPS1 were used and its antiproliferative activity was determined in 91 human cancer cell lines. DLD1 cells with induced GFP-MPS1 and HCT116 cells were used in in vivo studies to directly measure MPS1 inhibition and efficacy of CCT271850 treatment. RESULTS CCT271850 selectively and potently inhibits MPS1 kinase activity in biochemical and cellular assays and in in vivo models. Mechanistically, tumour cells treated with CCT271850 acquire aberrant numbers of chromosomes and the majority of cells divide their chromosomes without proper alignment because of abrogation of the mitotic checkpoint, leading to cell death. We demonstrated a moderate level of efficacy of CCT271850 as a single agent in a human colorectal carcinoma xenograft model. CONCLUSIONS CCT271850 is a potent, selective and orally bioavailable MPS1 kinase inhibitor. On the basis of in vivo pharmacodynamic vs efficacy relationships, we predict that more than 80% inhibition of MPS1 activity for at least 24 h is required to achieve tumour stasis or regression by CCT271850.
Collapse
Affiliation(s)
- Amir Faisal
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Grace W Y Mak
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Mark D Gurden
- Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| | - Cristina P R Xavier
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Simon J Anderhub
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Paolo Innocenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Isaac M Westwood
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Sébastien Naud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Angela Hayes
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Melanie R Valenti
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Alexis K De Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Lisa O'Fee
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Jessica Schmitt
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Hannah L Woodward
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Rosemary Burke
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Rob L M vanMontfort
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Swen Hoelder
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
| | - Spiros Linardopoulos
- Cancer Research UK Cancer Therapeutics Unit, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK
- Breast Cancer Now, Division of Breast Cancer Research, The Institute of Cancer Research, London, UK
| |
Collapse
|
29
|
Loss of Centromere Cohesion in Aneuploid Human Oocytes Correlates with Decreased Kinetochore Localization of the Sac Proteins Bub1 and Bubr1. Sci Rep 2017; 7:44001. [PMID: 28287092 PMCID: PMC5347135 DOI: 10.1038/srep44001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/03/2017] [Indexed: 12/11/2022] Open
Abstract
In human eggs, aneuploidy increases with age and can result in infertility and genetic diseases. Studies in mouse oocytes suggest that reduced centromere cohesion and spindle assembly checkpoint (SAC) activity could be at the origin of chromosome missegregation. Little is known about these two features in humans. Here, we show that in human eggs, inter-kinetochore distances of bivalent chromosomes strongly increase with age. This results in the formation of univalent chromosomes during metaphase I (MI) and of single chromatids in metaphase II (MII). We also investigated SAC activity by checking the localization of BUB1 and BUBR1. We found that they localize at the kinetochore with a similar temporal timing than in mitotic cells and in a MPS1-dependent manner, suggesting that the SAC signalling pathway is active in human oocytes. Moreover, our data also suggest that this checkpoint is inactivated when centromere cohesion is lost in MI and consequently cannot inhibit premature sister chromatid separation. Finally, we show that the kinetochore localization of BUB1 and BUBR1 decreases with the age of the oocyte donors. This could contribute to oocyte aneuploidy.
Collapse
|
30
|
Restuccia A, Yang F, Chen C, Lu L, Dai W. Mps1 is SUMO-modified during the cell cycle. Oncotarget 2016; 7:3158-70. [PMID: 26675261 PMCID: PMC4823097 DOI: 10.18632/oncotarget.6552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/21/2015] [Indexed: 11/30/2022] Open
Abstract
Mps1 is a dual specificity protein kinase that regulates the spindle assembly checkpoint and mediates proper microtubule attachment to chromosomes during mitosis. However, the molecular mechanism that controls Mps1 protein level and its activity during the cell cycle remains unclear. Given that sumoylation plays an important role in mitotic progression, we investigated whether Mps1 was SUMO-modified and whether sumoylation affects its activity in mitosis. Our results showed that Mps1 was sumoylated in both asynchronized and mitotic cell populations. Mps1 was modified by both SUMO-1 and SUMO-2. Our further studies revealed that lysine residues including K71, K287, K367 and K471 were essential for Mps1 sumoylation. Sumoylation appeared to play a role in mediating kinetochore localization of Mps1, thus affecting normal mitotic progression. Furthermore, SUMO-resistant mutants of Mps1 interacted with BubR1 more efficiently than it did with the wild-type control. Combined, our results indicate that Mps1 is SUMO-modified that plays an essential role in regulating Mps1 functions during mitosis.
Collapse
Affiliation(s)
- Agnese Restuccia
- Division of Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Feikun Yang
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo Park, NY, USA
| | - Changyan Chen
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Lou Lu
- Division of Molecular Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Torrance, CA, USA
| | - Wei Dai
- Departments of Environmental Medicine, Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo Park, NY, USA
| |
Collapse
|
31
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
32
|
Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint. PLoS Genet 2016; 12:e1006310. [PMID: 27631493 PMCID: PMC5025047 DOI: 10.1371/journal.pgen.1006310] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 08/19/2016] [Indexed: 01/06/2023] Open
Abstract
The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. Cdk1 phosphorylates many substrates in mitosis and simultaneoulsy reduces the activity of the corresponding phosphatase PP2A through the Greatwall kinase/Mastl. When Mastl is deleted, cells progress through mitosis with missegregated chromosomes, which become unraveled. However, the molecular mechansims by which Mastl promotes proper chromosome segregation and mitotic progression remain elusive. In this study, we show that the Cdk1->Greatwall kinase/Mastl->PP2A pathway plays a central role in regulating the spindle assembly checkpoint (SAC) by preventing premature SAC silencing. We further demonstrate that Mastl is required for multi-site phosphorylation of the essntial SAC protein MPS1 as well as robust MPS1 kinase activity in mitosis by inhibiting PP2A/B55-mediated MPS1 dephosphorylation. Our findings establish the requirement of Mastl for robust SAC maintenance.
Collapse
|
33
|
Isokane M, Walter T, Mahen R, Nijmeijer B, Hériché JK, Miura K, Maffini S, Ivanov MP, Kitajima TS, Peters JM, Ellenberg J. ARHGEF17 is an essential spindle assembly checkpoint factor that targets Mps1 to kinetochores. J Cell Biol 2016; 212:647-59. [PMID: 26953350 PMCID: PMC4792069 DOI: 10.1083/jcb.201408089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) ensures genome stability during cell division. Here, a new essential SAC factor, ARHGEF17, is characterized by quantitative imaging, biochemical, and biophysical experiments, which show that it targets the checkpoint kinase Mps1 to kinetochores. To prevent genome instability, mitotic exit is delayed until all chromosomes are properly attached to the mitotic spindle by the spindle assembly checkpoint (SAC). In this study, we characterized the function of ARHGEF17, identified in a genome-wide RNA interference screen for human mitosis genes. Through a series of quantitative imaging, biochemical, and biophysical experiments, we showed that ARHGEF17 is essential for SAC activity, because it is the major targeting factor that controls localization of the checkpoint kinase Mps1 to the kinetochore. This mitotic function is mediated by direct interaction of the central domain of ARHGEF17 with Mps1, which is autoregulated by the activity of Mps1 kinase, for which ARHGEF17 is a substrate. This mitosis-specific role is independent of ARHGEF17’s RhoGEF activity in interphase. Our study thus assigns a new mitotic function to ARHGEF17 and reveals the molecular mechanism for a key step in SAC establishment.
Collapse
Affiliation(s)
- Mayumi Isokane
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Thomas Walter
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Robert Mahen
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Bianca Nijmeijer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jean-Karim Hériché
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Kota Miura
- Centre for Molecular and Cellular Imaging, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Miroslav Penchev Ivanov
- Molecular and Cellular Biology, Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Tomoya S Kitajima
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jan-Michael Peters
- Molecular and Cellular Biology, Research Institute of Molecular Pathology, 1030 Vienna, Austria
| | - Jan Ellenberg
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|
34
|
Srinivas V, Kitagawa M, Wong J, Liao PJ, Lee SH. The Tumor Suppressor Cdkn3 Is Required for Maintaining the Proper Number of Centrosomes by Regulating the Centrosomal Stability of Mps1. Cell Rep 2015; 13:1569-77. [PMID: 26586430 DOI: 10.1016/j.celrep.2015.10.039] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/06/2015] [Accepted: 10/13/2015] [Indexed: 10/22/2022] Open
Abstract
Supernumerary centrosomes promote the assembly of abnormal spindles in many human cancers. The observation that modest changes in the centrosomal levels of Mps1 kinase can cause centrosome overduplication in human cells suggests the existence of a regulatory system that may tightly control its centrosomal stability. Here, we show that Cdkn3, a Cdk-associated phosphatase, prevents Mps1-mediated centrosome overduplication. We identify Cdkn3 as a direct binding partner of Mps1. The interaction between Mps1 and Cdkn3 is required for Mps1 to recruit Cdkn3 to centrosomes. Subsequently, Mps1-bound Cdkn3 forms a regulatory system that controls the centrosomal levels of Mps1 through proteasome-mediated degradation and thereby prevents Mps1-mediated centrosome overduplication. Conversely, knockdown of Cdkn3 stabilizes Mps1 at centrosomes, which promotes centrosome overduplication. We suggest that Mps1 and Cdkn3 form a self-regulated feedback loop at centrosomes to tightly control the centrosomal levels of Mps1, which prevents centrosome overduplication in human cells.
Collapse
Affiliation(s)
- Vinayaka Srinivas
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Mayumi Kitagawa
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Jasmine Wong
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Pei-Ju Liao
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sang Hyun Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
35
|
PLK4 trans-Autoactivation Controls Centriole Biogenesis in Space. Dev Cell 2015; 35:222-35. [DOI: 10.1016/j.devcel.2015.09.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 01/11/2023]
|
36
|
Dynamic localization of Mps1 kinase to kinetochores is essential for accurate spindle microtubule attachment. Proc Natl Acad Sci U S A 2015; 112:E4546-55. [PMID: 26240331 DOI: 10.1073/pnas.1508791112] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a conserved signaling pathway that monitors faithful chromosome segregation during mitosis. As a core component of SAC, the evolutionarily conserved kinase monopolar spindle 1 (Mps1) has been implicated in regulating chromosome alignment, but the underlying molecular mechanism remains unclear. Our molecular delineation of Mps1 activity in SAC led to discovery of a previously unidentified structural determinant underlying Mps1 function at the kinetochores. Here, we show that Mps1 contains an internal region for kinetochore localization (IRK) adjacent to the tetratricopeptide repeat domain. Importantly, the IRK region determines the kinetochore localization of inactive Mps1, and an accumulation of inactive Mps1 perturbs accurate chromosome alignment and mitotic progression. Mechanistically, the IRK region binds to the nuclear division cycle 80 complex (Ndc80C), and accumulation of inactive Mps1 at the kinetochores prevents a dynamic interaction between Ndc80C and spindle microtubules (MTs), resulting in an aberrant kinetochore attachment. Thus, our results present a previously undefined mechanism by which Mps1 functions in chromosome alignment by orchestrating Ndc80C-MT interactions and highlight the importance of the precise spatiotemporal regulation of Mps1 kinase activity and kinetochore localization in accurate mitotic progression.
Collapse
|
37
|
Ji Z, Gao H, Yu H. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 2015; 348:1260-4. [PMID: 26068854 DOI: 10.1126/science.aaa4029] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The spindle checkpoint of the cell division cycle senses kinetochores that are not attached to microtubules and prevents precocious onset of anaphase, which can lead to aneuploidy. The nuclear division cycle 80 complex (Ndc80C) is a major microtubule receptor at the kinetochore. Ndc80C also mediates the kinetochore recruitment of checkpoint proteins. We found that the checkpoint protein kinase monopolar spindle 1 (Mps1) directly bound to Ndc80C through two independent interactions. Both interactions involved the microtubule-binding surfaces of Ndc80C and were directly inhibited in the presence of microtubules. Elimination of one such interaction in human cells caused checkpoint defects expected from a failure to detect unattached kinetochores. Competition between Mps1 and microtubules for Ndc80C binding thus constitutes a direct mechanism for the detection of unattached kinetochores.
Collapse
Affiliation(s)
- Zhejian Ji
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 74390, USA
| | - Haishan Gao
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 74390, USA
| | - Hongtao Yu
- Howard Hughes Medical Institute, Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 74390, USA.
| |
Collapse
|
38
|
Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression. PLoS One 2014; 9:e104723. [PMID: 25265012 PMCID: PMC4179234 DOI: 10.1371/journal.pone.0104723] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/15/2014] [Indexed: 11/19/2022] Open
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.
Collapse
|
39
|
Sacristan C, Kops GJPL. Joined at the hip: kinetochores, microtubules, and spindle assembly checkpoint signaling. Trends Cell Biol 2014; 25:21-8. [PMID: 25220181 DOI: 10.1016/j.tcb.2014.08.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 01/01/2023]
Abstract
Error-free chromosome segregation relies on stable connections between kinetochores and spindle microtubules. The spindle assembly checkpoint (SAC) monitors such connections and relays their absence to the cell cycle machinery to delay cell division. The molecular network at kinetochores that is responsible for microtubule binding is integrated with the core components of the SAC signaling system. Molecular-mechanistic understanding of how the SAC is coupled to the kinetochore-microtubule interface has advanced significantly in recent years. The latest insights not only provide a striking view of the dynamics and regulation of SAC signaling events at the outer kinetochore but also create a framework for understanding how that signaling may be terminated when kinetochores and microtubules connect.
Collapse
Affiliation(s)
- Carlos Sacristan
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Geert J P L Kops
- Molecular Cancer Research, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Cancer Genomics Netherlands, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
40
|
Abstract
The propagation of all organisms depends on the accurate and orderly segregation of chromosomes in mitosis and meiosis. Budding yeast has long served as an outstanding model organism to identify the components and underlying mechanisms that regulate chromosome segregation. This review focuses on the kinetochore, the macromolecular protein complex that assembles on centromeric chromatin and maintains persistent load-bearing attachments to the dynamic tips of spindle microtubules. The kinetochore also serves as a regulatory hub for the spindle checkpoint, ensuring that cell cycle progression is coupled to the achievement of proper microtubule-kinetochore attachments. Progress in understanding the composition and overall architecture of the kinetochore, as well as its properties in making and regulating microtubule attachments and the spindle checkpoint, is discussed.
Collapse
|
41
|
Bayliss R, Fry A, Haq T, Yeoh S. On the molecular mechanisms of mitotic kinase activation. Open Biol 2013; 2:120136. [PMID: 23226601 PMCID: PMC3513839 DOI: 10.1098/rsob.120136] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/12/2012] [Indexed: 12/15/2022] Open
Abstract
During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.
Collapse
Affiliation(s)
- Richard Bayliss
- Department of Biochemistry, Henry Wellcome Laboratories for Structural Biology, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | |
Collapse
|
42
|
Conde C, Osswald M, Barbosa J, Moutinho-Santos T, Pinheiro D, Guimarães S, Matos I, Maiato H, Sunkel CE. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation. EMBO J 2013; 32:1761-77. [PMID: 23685359 DOI: 10.1038/emboj.2013.109] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 04/23/2013] [Indexed: 11/09/2022] Open
Abstract
Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.
Collapse
Affiliation(s)
- Carlos Conde
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
During mitosis and meiosis, the spindle assembly checkpoint acts to maintain genome stability by delaying cell division until accurate chromosome segregation can be guaranteed. Accuracy requires that chromosomes become correctly attached to the microtubule spindle apparatus via their kinetochores. When not correctly attached to the spindle, kinetochores activate the spindle assembly checkpoint network, which in turn blocks cell cycle progression. Once all kinetochores become stably attached to the spindle, the checkpoint is inactivated, which alleviates the cell cycle block and thus allows chromosome segregation and cell division to proceed. Here we review recent progress in our understanding of how the checkpoint signal is generated, how it blocks cell cycle progression and how it is extinguished.
Collapse
Affiliation(s)
- Pablo Lara-Gonzalez
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | |
Collapse
|
44
|
Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem Sci 2013; 38:302-11. [PMID: 23598156 DOI: 10.1016/j.tibs.2013.03.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/13/2022]
Abstract
Accurate chromosome segregation during mitosis is critical for maintaining genomic stability. The kinetochore--a large protein assembly on centromeric chromatin--functions as the docking site for spindle microtubules and a signaling hub for the spindle checkpoint. At metaphase, spindle microtubules from opposing spindle poles capture each pair of sister kinetochores, exert pulling forces, and create tension across sister kinetochores. The spindle checkpoint detects improper kinetochore-microtubule attachments and translates these defects into biochemical activities that inhibit the anaphase-promoting complex or cyclosome (APC/C) throughout the cell to delay anaphase onset. A deficient spindle checkpoint leads to premature sister-chromatid separation and aneuploidy. Here, we review recent progress on the generation, propagation, transmission, and silencing of the spindle checkpoint signals from kinetochores to APC/C.
Collapse
|
45
|
Hennrich ML, Marino F, Groenewold V, Kops GJPL, Mohammed S, Heck AJR. Universal quantitative kinase assay based on diagonal SCX chromatography and stable isotope dimethyl labeling provides high-definition kinase consensus motifs for PKA and human Mps1. J Proteome Res 2013; 12:2214-24. [PMID: 23510141 DOI: 10.1021/pr400074f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to understand cellular signaling, a clear understanding of kinase-substrate relationships is essential. Some of these relationships are defined by consensus recognition motifs present in substrates making them amendable for phosphorylation by designated kinases. Here, we explore a method that is based on two sequential steps of strong cation exchange chromatography combined with differential stable isotope labeling, to define kinase consensus motifs with high accuracy. We demonstrate the value of our method by evaluating the motifs of two very distinct kinases: cAMP regulated protein kinase A (PKA) and human monopolar spindle 1 (Mps1) kinase, also known as TTK. PKA is a well-studied basophilic kinase with a relatively well-defined motif and numerous known substrates in vitro and in vivo. Mps1, a kinase involved in chromosome segregation, has been less well characterized. Its substrate specificity is unclear and here we show that Mps1 is an acidophilic kinase with a striking tendency for phosphorylation of threonines. The final outcomes of our work are high-definition kinase consensus motifs for PKA and Mps1. Our generic method, which makes use of proteolytic cell lysates as a source for peptide-substrate libraries, can be implemented for any kinase present in the kinome.
Collapse
Affiliation(s)
- Marco L Hennrich
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584CH, Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
Centrosomes serve to organize new centrioles in cycling cells, whereas in quiescent cells they assemble primary cilia. We have recently shown that the mitochondrial porin VDAC3 is also a centrosomal protein that is predominantly associated with the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes. Here, we show that depletion of VDAC3 causes inappropriate ciliogenesis in cycling cells, while expression of GFP-VDAC3 suppresses ciliogenesis in quiescent cells. Mps1 also negatively regulates ciliogenesis, and the inappropriate ciliogenesis caused by VDAC3 depletion can be bypassed by targeting Mps1 to centrosomes independently of VDAC3. Thus, our data show that a VDAC3-Mps1 module at the centrosome promotes ciliary disassembly during cell cycle entry and suppresses cilia assembly in proliferating cells. Our data also suggests that VDAC3 might be a link between mitochondrial dysfunction and ciliopathies in mammalian cells.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
47
|
de Oliveira EAG, Romeiro NC, Ribeiro EDS, Santa-Catarina C, Oliveira AEA, Silveira V, de Souza Filho GA, Venancio TM, Cruz MAL. Structural and functional characterization of the protein kinase Mps1 in Arabidopsis thaliana. PLoS One 2012; 7:e45707. [PMID: 23049844 PMCID: PMC3458904 DOI: 10.1371/journal.pone.0045707] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/22/2012] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site, DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes.
Collapse
Affiliation(s)
- Eduardo Alves Gamosa de Oliveira
- Laboratório de Biotecnologia Vegetal, Núcleo em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- Laboratório Integrado de Computação Científica, Núcleo em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Nelilma Correia Romeiro
- Laboratório Integrado de Computação Científica, Núcleo em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
| | - Elane da Silva Ribeiro
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Gonçalo Apolinário de Souza Filho
- Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
- * E-mail: (TMV); (MALC)
| | - Marco Antônio Lopes Cruz
- Laboratório de Biotecnologia Vegetal, Núcleo em Ecologia e Desenvolvimento Sócio-ambiental de Macaé, Universidade Federal do Rio de Janeiro, Macaé, Rio de Janeiro, Brazil
- * E-mail: (TMV); (MALC)
| |
Collapse
|
48
|
Majumder S, Slabodnick M, Pike A, Marquardt J, Fisk HA. VDAC3 regulates centriole assembly by targeting Mps1 to centrosomes. Cell Cycle 2012; 11:3666-78. [PMID: 22935710 DOI: 10.4161/cc.21927] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Centrioles are duplicated during S-phase to generate the two centrosomes that serve as mitotic spindle poles during mitosis. The centrosomal pool of the Mps1 kinase is important for centriole assembly, but how Mps1 is delivered to centrosomes is unknown. Here we have identified a centrosome localization domain within Mps1 and identified the mitochondrial porin VDAC3 as a protein that binds to this region of Mps1. Moreover, we show that VDAC3 is present at the mother centriole and modulates centriole assembly by recruiting Mps1 to centrosomes.
Collapse
Affiliation(s)
- Shubhra Majumder
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | | | | | | | | |
Collapse
|
49
|
Althoff F, Karess RE, Lehner CF. Spindle checkpoint-independent inhibition of mitotic chromosome segregation by Drosophila Mps1. Mol Biol Cell 2012; 23:2275-91. [PMID: 22553353 PMCID: PMC3374747 DOI: 10.1091/mbc.e12-02-0117] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/17/2012] [Accepted: 04/24/2012] [Indexed: 01/07/2023] Open
Abstract
Monopolar spindle 1 (Mps1) is essential for the spindle assembly checkpoint (SAC), which prevents anaphase onset in the presence of misaligned chromosomes. Moreover, Mps1 kinase contributes in a SAC-independent manner to the correction of erroneous initial attachments of chromosomes to the spindle. Our characterization of the Drosophila homologue reveals yet another SAC-independent role. As in yeast, modest overexpression of Drosophila Mps1 is sufficient to delay progression through mitosis during metaphase, even though chromosome congression and metaphase alignment do not appear to be affected. This delay in metaphase depends on the SAC component Mad2. Although Mps1 overexpression in mad2 mutants no longer causes a metaphase delay, it perturbs anaphase. Sister kinetochores barely move apart toward spindle poles. However, kinetochore movements can be restored experimentally by separase-independent resolution of sister chromatid cohesion. We propose therefore that Mps1 inhibits sister chromatid separation in a SAC-independent manner. Moreover, we report unexpected results concerning the requirement of Mps1 dimerization and kinase activity for its kinetochore localization in Drosophila. These findings further expand Mps1's significance for faithful mitotic chromosome segregation and emphasize the importance of its careful regulation.
Collapse
Affiliation(s)
- Friederike Althoff
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Roger E. Karess
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Unité Mixte de Recherche 7592, Université Paris Diderot, Paris Cedex 13, France
| | - Christian F. Lehner
- Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
50
|
Abstract
MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.
Collapse
Affiliation(s)
- Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|