1
|
Wu X, Jeong CB, Huang W, Ip JCH, Guo J, Lai KP, Liu W, Mo J. Environmental occurrence, biological effects, and health implications of zinc pyrithione: A review. MARINE POLLUTION BULLETIN 2024; 203:116466. [PMID: 38713926 DOI: 10.1016/j.marpolbul.2024.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/09/2024]
Abstract
Due to the detrimental effects on aquatic organisms and ecosystem, tributyltin as a antifouling agent have been banned worldwide since 1990s. As a replacement for tributyltin, zinc pyrithione (ZnPT) has emerged as a new environmentally friendly antifouling agent. However, the widespread use of ZnPT unavoidably leads to the occurrence and accumulation in aquatic environments, especially in waters with limited sunlight. Despite empirical evidence demonstrating the ecotoxicity and health risks of ZnPT to different organisms, there has been no attempt to compile and interpret this data. The present review revealed that over the past 50 years, numerous studies have documented the toxicity of ZnPT in various organisms, both in vitro and in vivo. However, long-term effects and underlying mechanisms of ZnPT on biota, particularly at environmentally realistic exposure levels, remain largely unexplored. In-depth studies are thus necessary to generate detailed ecotoxicological information of ZnPT for environmental risk assessment and management.
Collapse
Affiliation(s)
- Xintong Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Chang-Bum Jeong
- Department of Marine Science, Incheon National University, Incheon 22012, South Korea
| | - Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | | | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, Guilin 541004, China
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Huang Y, Ma D, Yang Z, Zhao Y, Guo J. Voltage-gated potassium channels KCNQs: Structures, mechanisms, and modulations. Biochem Biophys Res Commun 2023; 689:149218. [PMID: 37976835 DOI: 10.1016/j.bbrc.2023.149218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
KCNQ (Kv7) channels are voltage-gated, phosphatidylinositol 4,5-bisphosphate- (PIP2-) modulated potassium channels that play essential roles in regulating the activity of neurons and cardiac myocytes. Hundreds of mutations in KCNQ channels are closely related to various cardiac and neurological disorders, such as long QT syndrome, epilepsy, and deafness, which makes KCNQ channels important drug targets. During the past several years, the application of single-particle cryo-electron microscopy (cryo-EM) technique in the structure determination of KCNQ channels has greatly advanced our understanding of their molecular mechanisms. In this review, we summarize the currently available structures of KCNQ channels, analyze their special voltage gating mechanism, and discuss their activation mechanisms by both the endogenous membrane lipid and the exogenous synthetic ligands. These structural studies of KCNQ channels will guide the development of drugs targeting KCNQ channels.
Collapse
Affiliation(s)
- Yuan Huang
- Department of Cardiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Demin Ma
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhenni Yang
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yiwen Zhao
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050011, China
| | - Jiangtao Guo
- Department of Biophysics and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Yang GM, Tian FY, Shen YW, Yang CY, Yuan H, Li P, Gao ZB. Functional characterization and in vitro pharmacological rescue of KCNQ2 pore mutations associated with epileptic encephalopathy. Acta Pharmacol Sin 2023; 44:1589-1599. [PMID: 36932231 PMCID: PMC10374643 DOI: 10.1038/s41401-023-01073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/26/2023] [Indexed: 03/19/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding KV7.2 subunit that mediates neuronal M-current cause a severe form of developmental and epileptic encephalopathy (DEE). Electrophysiological evaluation of KCNQ2 mutations has been proved clinically useful in improving outcome prediction and choosing rational anti-seizure medications (ASMs). In this study we described the clinical characteristics, electrophysiological phenotypes and the in vitro response to KCNQ openers of five KCNQ2 pore mutations (V250A, N258Y, H260P, A265T and G290S) from seven patients diagnosed with KCNQ2-DEE. The KCNQ2 variants were transfected into Chinese hamster ovary (CHO) cells alone, in combination with KCNQ3 (1:1) or with wild-type KCNQ2 (KCNQ2-WT) and KCNQ3 in a ratio of 1:1:2, respectively. Their expression and electrophysiological function were assessed. When transfected alone or in combination with KCNQ3, none of these mutations affected the membrane expression of KCNQ2, but most failed to induce a potassium current except A265T, in which trace currents were observed when co-transfected with KCNQ3. When co-expressed with KCNQ2-WT and KCNQ3 (1:1:2), the currents at 0 mV of these mutations were decreased by 30%-70% compared to the KCNQ2/3 channel, which could be significantly rescued by applying KCNQ openers including the approved antiepileptic drug retigabine (RTG, 10 μM), as well as two candidates subjected to clinical trials, pynegabine (HN37, 1 μM) and XEN1101 (1 μM). These newly identified pathologic variants enrich the KCNQ2-DEE mutation hotspots in the pore-forming domain. This electrophysiological study provides a rational basis for personalized therapy with KCNQ openers in DEE patients carrying loss-of-function (LOF) mutations in KCNQ2.
Collapse
Affiliation(s)
- Gui-Mei Yang
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Fu-Yun Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Yan-Wen Shen
- Department of Pediatrics, The First Medical Center of PLA General Hospital, Beijing, 100853, China
- Department of Pediatric neurology, Children's Hospital of Fudan university at Xiamen, Xiamen, 361006, China
| | - Chuan-Yan Yang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yuan
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
| | - Ping Li
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Zhao-Bing Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China.
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China.
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Henton A, Zhao Y, Tzounopoulos T. A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage. J Neurosci 2023; 43:2277-2290. [PMID: 36813573 PMCID: PMC10072297 DOI: 10.1523/jneurosci.1070-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Damage to sensory organs triggers compensatory plasticity mechanisms in sensory cortices. These plasticity mechanisms result in restored cortical responses, despite reduced peripheral input, and contribute to the remarkable recovery of perceptual detection thresholds to sensory stimuli. Overall, peripheral damage is associated with a reduction of cortical GABAergic inhibition; however, less is known about changes in intrinsic properties and the underlying biophysical mechanisms. To study these mechanisms, we used a model of noise-induced peripheral damage in male and female mice. We uncovered a rapid, cell type-specific reduction in the intrinsic excitability of parvalbumin-expressing neurons (PVs) in layer (L) 2/3 of auditory cortex. No changes in the intrinsic excitability of either L2/3 somatostatin-expressing or L2/3 principal neurons (PNs) were observed. The decrease in L2/3 PV excitability was observed 1, but not 7, d after noise exposure, and was evidenced by a hyperpolarization of the resting membrane potential, depolarization of the action potential threshold, and reduction in firing frequency in response to depolarizing current. To uncover the underlying biophysical mechanisms, we recorded potassium currents. We found an increase in KCNQ potassium channel activity in L2/3 PVs of auditory cortex 1 d after noise exposure, associated with a hyperpolarizing shift in the minimal voltage activation of KCNQ channels. This increase contributes to the decreased intrinsic excitability of PVs. Our results highlight cell-type- and channel-specific mechanisms of plasticity after noise-induced hearing loss and will aid in understanding the pathologic processes involved in hearing loss and hearing loss-related disorders, such as tinnitus and hyperacusis.SIGNIFICANCE STATEMENT Noise-induced damage to the peripheral auditory system triggers central plasticity that compensates for the reduced peripheral input. The mechanisms of this plasticity are not fully understood. In the auditory cortex, this plasticity likely contributes to the recovery of sound-evoked responses and perceptual hearing thresholds. Importantly, other functional aspects of hearing do not recover, and peripheral damage may also lead to maladaptive plasticity-related disorders, such as tinnitus and hyperacusis. Here, after noise-induced peripheral damage, we highlight a rapid, transient, and cell type-specific reduction in the excitability of layer 2/3 parvalbumin-expressing neurons, which is due, at least in part, to increased KCNQ potassium channel activity. These studies may highlight novel strategies for enhancing perceptual recovery after hearing loss and mitigating hyperacusis and tinnitus.
Collapse
Affiliation(s)
- Amanda Henton
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Yanjun Zhao
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Thanos Tzounopoulos
- Pittsburgh Hearing Research Center and Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
5
|
Tian F, Cao B, Xu H, Zhan L, Nan F, Li N, Taglialatela M, Gao Z. Epilepsy phenotype and response to KCNQ openers in mice harboring the Kcnq2 R207W voltage-sensor mutation. Neurobiol Dis 2022; 174:105860. [PMID: 36113748 DOI: 10.1016/j.nbd.2022.105860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 10/31/2022] Open
Abstract
KCNQ2-encoded Kv7.2 subunits play a critical role in balancing neuronal excitability. Mutations in KCNQ2 are responsible for highly-heterogenous epileptic and neurodevelopmental phenotypes ranging from self-limited familial neonatal epilepsy (SeLFNE) to severe developmental and epileptic encephalopathy (DEE). Pathogenic KCNQ2 variants cluster at the voltage sensor domain (VSD), the pore domain, and the C-terminal tail. Although several knock-in mice harboring Kcnq2 pore variants have been developed, no mouse line carrying Kcnq2 voltage-sensor mutations has been described. KCNQ2-R207W is an epilepsy-causing mutation located in the VSD, mainly affecting voltage-dependent channel gating. To study the physiological consequence of Kcnq2 VSD dysfunction, we generated a Kcnq2-R207W mouse line and analyzed the pathological and pharmacological phenotypes of mutant mice. As a result, both homozygous (Kcnq2RW/RW) and heterozygous (Kcnq2RW/+) mice were viable. While Kcnq2RW/RW mice displayed a short lifespan, growth retardation, and spontaneous seizures, Kcnq2RW/+ mice survived and developed normally, although only a fraction (9/64; 14%) of them showed behavioral- and ECoG-confirmed spontaneous seizures. Kcnq2RW/+ mice displayed increased susceptibility to evoked seizures, which was dramatically ameliorated by treatment with the novel KCNQ opener pynegabine (HN37). Our results show that the Kcnq2-R207W mouse line, the first harboring a Kcnq2 voltage-sensor mutation, exhibits a unique epileptic phenotype with both spontaneous seizures and increased susceptibility to evoked seizures. In Kcnq2-R207W mice, the potent KCNQ opener HN37, currently in clinical phase I, shows strong anticonvulsant activity, suggesting it may represent a valuable option for the severe phenotypes of KCNQ2-related epilepsy.
Collapse
Affiliation(s)
- Fuyun Tian
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Birong Cao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Li Zhan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fajun Nan
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China; HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Maurizio Taglialatela
- Department of Neuroscience, University of Naples "Federico II", 80131 Naples, Italy.
| | - Zhaobing Gao
- Zhongshan Institute of Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Science, Zhongshan, Guangdong, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
6
|
Martin-Batista E, Manville RW, Rivero-Pérez B, Bartolomé-Martín D, Alvarez de la Rosa D, Abbott GW, Giraldez T. Activation of SGK1.1 Upregulates the M-current in the Presence of Epilepsy Mutations. Front Mol Neurosci 2021; 14:798261. [PMID: 34899186 PMCID: PMC8662703 DOI: 10.3389/fnmol.2021.798261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 11/13/2022] Open
Abstract
In the central nervous system, the M-current plays a critical role in regulating subthreshold electrical excitability of neurons, determining their firing properties and responsiveness to synaptic input. The M-channel is mainly formed by subunits Kv7.2 and Kv7.3 that co-assemble to form a heterotetrametric channel. Mutations in Kv7.2 and Kv7.3 are associated with hyperexcitability phenotypes including benign familial neonatal epilepsy (BFNE) and neonatal epileptic encephalopathy (NEE). SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), increases M-current density in neurons, leading to reduced excitability and protection against seizures. Herein, using two-electrode voltage clamp on Xenopus laevis oocytes, we demonstrate that SGK1.1 selectively activates heteromeric Kv7 subunit combinations underlying the M-current. Importantly, activated SGK1.1 increases M-channel activity in the presence of two different epilepsy mutations found in Kv7.2, R207W and A306T. In addition, proximity ligation assays in the N2a cell line allowed us to address the effect of these mutations on Kv7-SGK1.1-Nedd4 molecular associations, a proposed pathway underlying augmentation of M-channel activity by SGK1.1.
Collapse
Affiliation(s)
- Elva Martin-Batista
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Rían W Manville
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Belinda Rivero-Pérez
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - David Bartolomé-Martín
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Geoffrey W Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Teresa Giraldez
- Departamento de Ciencias Medicas Basicas and Instituto de Tecnologias Biomedicas, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
7
|
Dwivedi D, Bhalla US. Physiology and Therapeutic Potential of SK, H, and M Medium AfterHyperPolarization Ion Channels. Front Mol Neurosci 2021; 14:658435. [PMID: 34149352 PMCID: PMC8209339 DOI: 10.3389/fnmol.2021.658435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
SK, HCN, and M channels are medium afterhyperpolarization (mAHP)-mediating ion channels. The three channels co-express in various brain regions, and their collective action strongly influences cellular excitability. However, significant diversity exists in the expression of channel isoforms in distinct brain regions and various subcellular compartments, which contributes to an equally diverse set of specific neuronal functions. The current review emphasizes the collective behavior of the three classes of mAHP channels and discusses how these channels function together although they play specialized roles. We discuss the biophysical properties of these channels, signaling pathways that influence the activity of the three mAHP channels, various chemical modulators that alter channel activity and their therapeutic potential in treating various neurological anomalies. Additionally, we discuss the role of mAHP channels in the pathophysiology of various neurological diseases and how their modulation can alleviate some of the symptoms.
Collapse
Affiliation(s)
- Deepanjali Dwivedi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India.,Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Stanley Center at the Broad, Cambridge, MA, United States
| | - Upinder S Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bengaluru, India
| |
Collapse
|
8
|
Activation of KCNQ4 as a Therapeutic Strategy to Treat Hearing Loss. Int J Mol Sci 2021; 22:ijms22052510. [PMID: 33801540 PMCID: PMC7958948 DOI: 10.3390/ijms22052510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
Potassium voltage-gated channel subfamily q member 4 (KCNQ4) is a voltage-gated potassium channel that plays essential roles in maintaining ion homeostasis and regulating hair cell membrane potential. Reduction of the activity of the KCNQ4 channel owing to genetic mutations is responsible for nonsyndromic hearing loss, a typically late-onset, initially high-frequency loss progressing over time. In addition, variants of KCNQ4 have also been associated with noise-induced hearing loss and age-related hearing loss. Therefore, the discovery of small compounds activating or potentiating KCNQ4 is an important strategy for the curative treatment of hearing loss. In this review, we updated the current concept of the physiological role of KCNQ4 in the inner ear and the pathologic mechanism underlying the role of KCNQ4 variants with regard to hearing loss. Finally, we focused on currently developed KCNQ4 activators and their pros and cons, paving the way for the future development of specific KCNQ4 activators as a remedy for hearing loss.
Collapse
|
9
|
Mondejar-Parreño G, Perez-Vizcaino F, Cogolludo A. Kv7 Channels in Lung Diseases. Front Physiol 2020; 11:634. [PMID: 32676036 PMCID: PMC7333540 DOI: 10.3389/fphys.2020.00634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022] Open
Abstract
Lung diseases constitute a global health concern causing disability. According to WHO in 2016, respiratory diseases accounted for 24% of world population mortality, the second cause of death after cardiovascular diseases. The Kv7 channels family is a group of voltage-dependent K+ channels (Kv) encoded by KCNQ genes that are involved in various physiological functions in numerous cell types, especially, cardiac myocytes, smooth muscle cells, neurons, and epithelial cells. Kv7 channel α-subunits are regulated by KCNE1–5 ancillary β-subunits, which modulate several characteristics of Kv7 channels such as biophysical properties, cell-location, channel trafficking, and pharmacological sensitivity. Kv7 channels are mainly expressed in two large groups of lung tissues: pulmonary arteries (PAs) and bronchial tubes. In PA, Kv7 channels are expressed in pulmonary artery smooth muscle cells (PASMCs); while in the airway (trachea, bronchus, and bronchioles), Kv7 channels are expressed in airway smooth muscle cells (ASMCs), airway epithelial cells (AEPs), and vagal airway C-fibers (VACFs). The functional role of Kv7 channels may vary depending on the cell type. Several studies have demonstrated that the impairment of Kv7 channel has a strong impact on pulmonary physiology contributing to the pathophysiology of different respiratory diseases such as cystic fibrosis, asthma, chronic obstructive pulmonary disease, chronic coughing, lung cancer, and pulmonary hypertension. Kv7 channels are now recognized as playing relevant physiological roles in many tissues, which have encouraged the search for Kv7 channel modulators with potential therapeutic use in many diseases including those affecting the lung. Modulation of Kv7 channels has been proposed to provide beneficial effects in a number of lung conditions. Therefore, Kv7 channel openers/enhancers or drugs acting partly through these channels have been proposed as bronchodilators, expectorants, antitussives, chemotherapeutics and pulmonary vasodilators.
Collapse
Affiliation(s)
- Gema Mondejar-Parreño
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| | - Angel Cogolludo
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain.,Ciber Enfermedades Respiratorias (Ciberes), Madrid, Spain.,Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), Madrid, Spain
| |
Collapse
|
10
|
Abstract
The highly structurally similar drugs flupirtine and retigabine have been regarded as safe and effective for many years but lately they turned out to exert intolerable side effects. While the twin molecules share the mode of action, both stabilize the open state of voltage-gated potassium channels, the form and severity of adverse effects is different. The analgesic flupirtine caused drug-induced liver injury in rare but fatal cases, whereas prolonged use of the antiepileptic retigabine led to blue tissue discoloration. Because the adverse effects seem unrelated to the mode of action, it is likely, that both drugs that occupied important therapeutic niches, could be replaced. Reasons for the clinically relevant toxicity will be clarified and future substitutes for these drugs presented in this review.
Collapse
|
11
|
Eid BG, Gurney AM. Zinc pyrithione activates K+ channels and hyperpolarizes the membrane of rat pulmonary artery smooth muscle cells. PLoS One 2018; 13:e0192699. [PMID: 29474372 PMCID: PMC5824988 DOI: 10.1371/journal.pone.0192699] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/29/2018] [Indexed: 01/09/2023] Open
Abstract
The membrane potential helps determine pulmonary artery smooth muscle cell (PASMC) contraction. The Kv7 channel activators, retigabine and flupirtine, are thought to dilate pulmonary arteries by hyperpolarising PASMC. Zinc pyrithione activates Kv7 channels by a mechanism distinct from retigabine and with different Kv7 subunit selectivity. This study aimed to determine if zinc pyrithione selectively activates Kv7 channels in rat PASMC to evoke pulmonary artery dilation. Zinc pyrithione relaxed pulmonary arteries with half-maximal effect at 4.3μM. At 10μM it activated pronounced voltage-dependent K+ current and hyperpolarized PASMCs by around 10mV. Tetraethylammonium ions (TEA, 10mM) and paxilline (1μM) abolished both the current and hyperpolarisation. XE991 (10μM) blocked the hyperpolarization and reduced the current by 30%. Iberiotoxin (50nM) had no effect on the hyperpolarisation, but reduced the current by 40%. The XE991-sensitive current activated with an exponential time course (time constant 17ms), whereas the iberiotoxin-sensitive current followed a bi-exponential time course (time constants 6 and 57ms), suggesting that the drugs blocked different components of the zinc pyrithione-induced current. Zinc pyrithione therefore appears to activate at least two types of K+ channel in PASMC; an XE991, TEA and paxilline-sensitive Kv7 channel and a TEA, paxilline and iberiotoxin-sensitive BKCa channel. Both could contribute to the relaxing effect of zinc pyrithione on pulmonary artery.
Collapse
Affiliation(s)
- Basma G. Eid
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Alison M. Gurney
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Barrese V, Stott JB, Greenwood IA. KCNQ-Encoded Potassium Channels as Therapeutic Targets. Annu Rev Pharmacol Toxicol 2018; 58:625-648. [DOI: 10.1146/annurev-pharmtox-010617-052912] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Iain A. Greenwood
- Vascular Biology Research Centre, Molecular and Clinical Sciences Institute, St George's, University of London, London, SW17 0RE, United Kingdom;, ,
| |
Collapse
|
13
|
Yu F, Xu J, Xiao Z, Peng B, He X. Endoplasmic reticulum retention of KCNQ2 potassium channel mutants following temperature elevation. Biomed Mater Eng 2017; 28:S243-S253. [PMID: 28372301 DOI: 10.3233/bme-171647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND KCNQ2 plays a key role in the regulation of neuronal excitability. The R214W and Y284C mutants of KCNQ2 channels, which are associated with BFNC, can decrease channel function to cause neuronal hyperexcitability and promote seizures. Previous studies revealed that elevated temperature caused up-regulation of KCNQ2 expression. OBJECTIVE The present study sought to investigate the impact of temperature elevation on neuronal KCNQ2 ion channel mutants. METHODS Protein expression of wt KCNQ2 and the R214W, Y284C and truncated selective filter mutants at different temperatures was detected by live-cell confocal fluorescence microscopy and by Western blotting. Whole-cell patch clamp was performed to record the effect of temperature on the electrophysiological activity of KCNQ2 channels. RESULTS Temperature elevation caused an unexpected increase in voltage-dependent KCNQ2 channel activation but also increased the endoplasmic reticulum (ER) retention of KCNQ2 protein, and the ER retention was greater for mutants associated with BFNC than for wt KCNQ2. Temperature elevation did not increase the fluorescence intensity of cells transfected with a truncated selective filter mutant. CONCLUSIONS The direct effect of heat on KCNQ2 channels may be involved in excitability regulation of neurons, and the P-loop region is critical for temperature-dependent modulation of the expression and trafficking of KCNQ2 channels.
Collapse
Affiliation(s)
- Fang Yu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jian Xu
- Weifang Maternity and Child Hospital, Weifang, China
| | - Zheman Xiao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| | - Xiaohua He
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Abidi A, Devaux JJ, Molinari F, Alcaraz G, Michon FX, Sutera-Sardo J, Becq H, Lacoste C, Altuzarra C, Afenjar A, Mignot C, Doummar D, Isidor B, Guyen SN, Colin E, De La Vaissière S, Haye D, Trauffler A, Badens C, Prieur F, Lesca G, Villard L, Milh M, Aniksztejn L. A recurrent KCNQ2 pore mutation causing early onset epileptic encephalopathy has a moderate effect on M current but alters subcellular localization of Kv7 channels. Neurobiol Dis 2015; 80:80-92. [PMID: 26007637 DOI: 10.1016/j.nbd.2015.04.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/28/2015] [Accepted: 04/15/2015] [Indexed: 01/28/2023] Open
Abstract
Mutations in the KCNQ2 gene encoding the voltage-dependent potassium M channel Kv7.2 subunit cause either benign epilepsy or early onset epileptic encephalopathy (EOEE). It has been proposed that the disease severity rests on the inhibitory impact of mutations on M current density. Here, we have analyzed the phenotype of 7 patients carrying the p.A294V mutation located on the S6 segment of the Kv7.2 pore domain (Kv7.2(A294V)). We investigated the functional and subcellular consequences of this mutation and compared it to another mutation (Kv7.2(A294G)) associated with a benign epilepsy and affecting the same residue. We report that all the patients carrying the p.A294V mutation presented the clinical and EEG characteristics of EOEE. In CHO cells, the total expression of Kv7.2(A294V) alone, assessed by western blotting, was only 20% compared to wild-type. No measurable current was recorded in CHO cells expressing Kv7.2(A294V) channel alone. Although the total Kv7.2(A294V) expression was rescued to wild-type levels in cells co-expressing the Kv7.3 subunit, the global current density was still reduced by 83% compared to wild-type heteromeric channel. In a configuration mimicking the patients' heterozygous genotype i.e., Kv7.2(A294V)/Kv7.2/Kv7.3, the global current density was reduced by 30%. In contrast to Kv7.2(A294V), the current density of homomeric Kv7.2(A294G) was not significantly changed compared to wild-type Kv7.2. However, the current density of Kv7.2(A294G)/Kv7.2/Kv7.3 and Kv7.2(A294G)/Kv7.3 channels were reduced by 30% and 50% respectively, compared to wild-type Kv7.2/Kv7.3. In neurons, the p.A294V mutation induced a mislocalization of heteromeric mutant channels to the somato-dendritic compartment, while the p.A294G mutation did not affect the localization of the heteromeric channels to the axon initial segment. We conclude that this position is a hotspot of mutation that can give rise to a severe or a benign epilepsy. The p.A294V mutation does not exert a dominant-negative effect on wild-type subunits but alters the preferential axonal targeting of heteromeric Kv7 channels. Our data suggest that the disease severity is not necessarily a consequence of a strong inhibition of M current and that additional mechanisms such as abnormal subcellular distribution of Kv7 channels could be determinant.
Collapse
Affiliation(s)
- Affef Abidi
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - Jérôme J Devaux
- Aix-Marseille Université, CNRS, CRN2M-UMR7286, Marseille, France
| | - Florence Molinari
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Gisèle Alcaraz
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - François-Xavier Michon
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Julie Sutera-Sardo
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'Enfants de la Timone, Service de neurologie pédiatrique, Marseille, France
| | - Hélène Becq
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France
| | - Caroline Lacoste
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'enfants de la Timone, Département de génétique médicale et de biologie cellulaire, Marseille France
| | - Cécilia Altuzarra
- CHU Besançon, Service de génétique et neuropédiatrie, Besançon, France
| | - Alexandra Afenjar
- Université Pierre et Marie Curie, Groupe de Recherche Clinique « Déficiences Intellectuelles de Causes Rares », Paris, France; APHP, service de neurologie pédiatrique, Hôpital Trousseau, Paris, France
| | - Cyril Mignot
- APHP, Service de Génétique Médicale et Centre de Références « Déficiences Intellectuelles de Causes Rares », Groupe Hospitalier Pitié-Salpêtrière, Paris, France; Université Pierre et Marie Curie, Groupe de Recherche Clinique « Déficiences Intellectuelles de Causes Rares », Paris, France
| | - Diane Doummar
- APHP, service de neurologie pédiatrique, Hôpital Trousseau, Paris, France
| | - Bertrand Isidor
- CHU de Nantes, Service de génétique médicale, Nantes, France
| | - Sylvie N Guyen
- CHU d'Angers, Service de neurologie pédiatrique, Angers, France
| | - Estelle Colin
- CHU d'Angers, Département de Biochimie et Génétique, Angers, France
| | | | - Damien Haye
- CHU de Tours, Service de génétique, Tours, France
| | | | - Catherine Badens
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'enfants de la Timone, Département de génétique médicale et de biologie cellulaire, Marseille France
| | | | - Gaetan Lesca
- Hospices Civils de Lyon, Service de génétique, Lyon, France
| | - Laurent Villard
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France
| | - Mathieu Milh
- Aix-Marseille Université, GMGF, Marseille, France; INSERM, UMR_S 910, Marseille, France; APHM, Hôpital d'Enfants de la Timone, Service de neurologie pédiatrique, Marseille, France.
| | - Laurent Aniksztejn
- Aix-Marseille Université, Institut de Neurobiologie de la Méditerranée (INMED), Marseille, France; INSERM, UMR_S 901, Marseille, France.
| |
Collapse
|
15
|
Wang J, Li Y, Hui Z, Cao M, Shi R, Zhang W, Geng L, Zhou X. Functional analysis of potassium channels in Kv7.2 G271V mutant causing early onset familial epilepsy. Brain Res 2015; 1616:112-22. [PMID: 25960349 DOI: 10.1016/j.brainres.2015.04.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 01/23/2023]
Abstract
Kv7 (KCNQ) channels underlying a class of voltage-gated K+ current are best known for regulating neuronal excitability. The first glycine (G) residue in the pore helix of Kv7.2 (KCNQ2) subunit is highly conserved among different classes of Kv7 channel family. A missense mutation causing the replacement of the corresponding G residues with a valine (p.G271V) in Kv7.2 was found in a large, four-generation pedigree. Here, we set out to examine the molecular pathomechanism of G271V mutants using patch clamp technology combined with biochemical and immunocytochemical techniques in transiently transfected human embryonic kidney (HEK) 293 cells. The expression of Kv7.2 protein had the same intensity for both wild type (WT) and G271V. In transfected HEK cells, G271V mutants induced large depolarizing shifts of the conductance-voltage relationships and marked slowing of current activation kinetics compared to WT. In addition, G271V mutants abolished currents in homomeric channels, and resulted in about 50% reduction of current in Kv7.2/G271V/Kv7.3 heteromultimeric condition, indicating a more severe functional defect. To test for G271V mutant channel expression in surface membrane, we performed fluorescence confocal microscopy imaging, which revealed no differences between the mutant and WT, suggesting that G271V channels fail to open in response to depolarization even though they are present in the membrane. Furthermore, pharmacologic intervention experiments revealed that upon specific incubation of transfected HEK 293 cells expressing G271V heteromultimeric channels in presence of Kv7 channel enhancer retigabine (ezogabine), the potassium currents increased significantly, suggesting the potential of retigabine as gene-specific therapy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Yuan Li
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Zhiyan Hui
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Min Cao
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Ruiming Shi
- Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Wei Zhang
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Limeng Geng
- Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China
| | - Xihui Zhou
- Department of Neonatology, First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China; Ion Channel Disease Laboratory, Key Laboratory of Environment and Gene Associated Diseases, Ministry of Education, Xi'an Jiaotong University, No. 277, Yanta West Road, Xi'an, Shaanxi 710061, People's Republic of China.
| |
Collapse
|
16
|
Blom SM, Rottländer M, Kehler J, Bundgaard C, Schmitt N, Jensen HS. From pan-reactive KV7 channel opener to subtype selective opener/inhibitor by addition of a methyl group. PLoS One 2014; 9:e100209. [PMID: 24956197 PMCID: PMC4067310 DOI: 10.1371/journal.pone.0100209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/22/2014] [Indexed: 01/24/2023] Open
Abstract
The voltage-gated potassium channels of the KV7 family (KV7.1–5) play important roles in controlling neuronal excitability and are therefore attractive targets for treatment of CNS disorders linked to hyperexcitability. One of the main challenges in developing KV7 channel active drugs has been to identify compounds capable of discriminating between the neuronally expressed subtypes (KV7.2–5), aiding the identification of the subunit composition of KV7 currents in various tissues, and possessing better therapeutic potential for particular indications. By taking advantage of the structure-activity relationship of acrylamide KV7 channel openers and the effects of these compounds on mutant KV7 channels, we have designed and synthesized a novel KV7 channel modulator with a unique profile. The compound, named SMB-1, is an inhibitor of KV7.2 and an activator of KV7.4. SMB-1 inhibits KV7.2 by reducing the current amplitude and increasing the time constant for the slow component of the activation kinetics. The activation of KV7.4 is seen as an increase in the current amplitude and a slowing of the deactivation kinetics. Experiments studying mutant channels with a compromised binding site for the KV7.2–5 opener retigabine indicate that SMB-1 binds within the same pocket as retigabine for both inhibition of KV7.2 and activation of KV7.4. SMB-1 may serve as a valuable tool for KV7 channel research and may be used as a template for further design of better subtype selective KV7 channel modulators. A compound with this profile could hold novel therapeutic potential such as the treatment of both positive and cognitive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Sigrid Marie Blom
- Division of Neuroscience Drug Discovery, H. Lundbeck A/S, Copenhagen, Denmark
- Department of Biomedical Sciences and Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mario Rottländer
- Division of Discovery Chemistry and DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | - Jan Kehler
- Division of Discovery Chemistry and DMPK, H. Lundbeck A/S, Copenhagen, Denmark
| | | | - Nicole Schmitt
- Department of Biomedical Sciences and Danish National Research Foundation Centre for Cardiac Arrhythmia, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sindal Jensen
- Division of Neuroscience Drug Discovery, H. Lundbeck A/S, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
17
|
Stott JB, Jepps TA, Greenwood IA. KV7 potassium channels: a new therapeutic target in smooth muscle disorders. Drug Discov Today 2014; 19:413-24. [DOI: 10.1016/j.drudis.2013.12.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/21/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022]
|
18
|
Brueggemann LI, Haick JM, Neuburg S, Tate S, Randhawa D, Cribbs LL, Byron KL. KCNQ (Kv7) potassium channel activators as bronchodilators: combination with a β2-adrenergic agonist enhances relaxation of rat airways. Am J Physiol Lung Cell Mol Physiol 2014; 306:L476-86. [PMID: 24441871 PMCID: PMC3949081 DOI: 10.1152/ajplung.00253.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/16/2014] [Indexed: 12/19/2022] Open
Abstract
KCNQ (Kv7 family) potassium (K(+)) channels were recently found in airway smooth muscle cells (ASMCs) from rodent and human bronchioles. In the present study, we evaluated expression of KCNQ channels and their role in constriction/relaxation of rat airways. Real-time RT-PCR analysis revealed expression of KCNQ4 > KCNQ5 > KCNQ1 > KCNQ2 > KCNQ3, and patch-clamp electrophysiology detected KCNQ currents in rat ASMCs. In precision-cut lung slices, the KCNQ channel activator retigabine induced a concentration-dependent relaxation of small bronchioles preconstricted with methacholine (MeCh; EC50 = 3.6 ± 0.3 μM). Bronchoconstriction was also attenuated in the presence of two other structurally unrelated KCNQ channel activators: zinc pyrithione (ZnPyr; 1 μM; 22 ± 7%) and 2,5-dimethylcelecoxib (10 μM; 24 ± 8%). The same three KCNQ channel activators increased KCNQ currents in ASMCs by two- to threefold. The bronchorelaxant effects of retigabine and ZnPyr were prevented by inclusion of the KCNQ channel blocker XE991. A long-acting β2-adrenergic receptor agonist, formoterol (10 nM), did not increase KCNQ current amplitude in ASMCs, but formoterol (1-1,000 nM) did induce a time- and concentration-dependent relaxation of rat airways, with a notable desensitization during a 30-min treatment or with repetitive treatments. Coadministration of retigabine (10 μM) with formoterol produced a greater peak and sustained reduction of MeCh-induced bronchoconstriction and reduced the apparent desensitization observed with formoterol alone. Our findings support a role for KCNQ K(+) channels in the regulation of airway diameter. A combination of a β2-adrenergic receptor agonist with a KCNQ channel activator may improve bronchodilator therapy.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Dept. of Molecular Pharmacology & Therapeutics, Loyola Univ. Chicago, Stritch School of Medicine, 2160 S. First Ave., Bldg. 102, Rm. 3634, Maywood, IL 60153.
| | | | | | | | | | | | | |
Collapse
|
19
|
Li P, Chen Z, Xu H, Sun H, Li H, Liu H, Yang H, Gao Z, Jiang H, Li M. The gating charge pathway of an epilepsy-associated potassium channel accommodates chemical ligands. Cell Res 2013; 23:1106-18. [PMID: 23797855 PMCID: PMC3773576 DOI: 10.1038/cr.2013.82] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 04/16/2013] [Accepted: 05/09/2013] [Indexed: 01/05/2023] Open
Abstract
Voltage-gated potassium (Kv) channels derive their voltage sensitivity from movement of gating charges in voltage-sensor domains (VSDs). The gating charges translocate through a physical pathway in the VSD to open or close the channel. Previous studies showed that the gating charge pathways of Shaker and Kv1.2-2.1 chimeric channels are occluded, forming the structural basis for the focused electric field and gating charge transfer center. Here, we show that the gating charge pathway of the voltage-gated KCNQ2 potassium channel, activity reduction of which causes epilepsy, can accommodate various small molecule ligands. Combining mutagenesis, molecular simulation and electrophysiological recording, a binding model for the probe activator, ztz240, in the gating charge pathway was defined. This information was used to establish a docking-based virtual screening assay targeting the defined ligand-binding pocket. Nine activators with five new chemotypes were identified, and in vivo experiments showed that three ligands binding to the gating charge pathway exhibit significant anti-epilepsy activity. Identification of various novel activators by virtual screening targeting the pocket supports the presence of a ligand-binding site in the gating charge pathway. The capability of the gating charge pathway to accommodate small molecule ligands offers new insights into the gating charge pathway of the therapeutically relevant KCNQ2 channel.
Collapse
Affiliation(s)
- Ping Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pathogenic plasticity of Kv7.2/3 channel activity is essential for the induction of tinnitus. Proc Natl Acad Sci U S A 2013; 110:9980-5. [PMID: 23716673 DOI: 10.1073/pnas.1302770110] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tinnitus, the perception of phantom sound, is often a debilitating condition that affects many millions of people. Little is known, however, about the molecules that participate in the induction of tinnitus. In brain slices containing the dorsal cochlear nucleus, we reveal a tinnitus-specific increase in the spontaneous firing rate of principal neurons (hyperactivity). This hyperactivity is observed only in noise-exposed mice that develop tinnitus and only in the dorsal cochlear nucleus regions that are sensitive to high frequency sounds. We show that a reduction in Kv7.2/3 channel activity is essential for tinnitus induction and for the tinnitus-specific hyperactivity. This reduction is due to a shift in the voltage dependence of Kv7 channel activation to more positive voltages. Our in vivo studies demonstrate that a pharmacological manipulation that shifts the voltage dependence of Kv7 to more negative voltages prevents the development of tinnitus. Together, our studies provide an important link between the biophysical properties of the Kv7 channel and the generation of tinnitus. Moreover, our findings point to previously unknown biological targets for designing therapeutic drugs that may prevent the development of tinnitus in humans.
Collapse
|
21
|
Dynamic subunit stoichiometry confers a progressive continuum of pharmacological sensitivity by KCNQ potassium channels. Proc Natl Acad Sci U S A 2013; 110:8732-7. [PMID: 23650380 DOI: 10.1073/pnas.1300684110] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated KCNQ1 (Kv7.1) potassium channels are expressed abundantly in heart but they are also found in multiple other tissues. Differential coassembly with single transmembrane KCNE beta subunits in different cell types gives rise to a variety of biophysical properties, hence endowing distinct physiological roles for KCNQ1-KCNEx complexes. Mutations in either KCNQ1 or KCNE1 genes result in diseases in brain, heart, and the respiratory system. In addition to complexities arising from existence of five KCNE subunits, KCNE1 to KCNE5, recent studies in heterologous systems suggest unorthodox stoichiometric dynamics in subunit assembly is dependent on KCNE expression levels. The resultant KCNQ1-KCNE channel complexes may have a range of zero to two or even up to four KCNE subunits coassembling per KCNQ1 tetramer. These findings underscore the need to assess the selectivity of small-molecule KCNQ1 modulators on these different assemblies. Here we report a unique small-molecule gating modulator, ML277, that potentiates both homomultimeric KCNQ1 channels and unsaturated heteromultimeric (KCNQ1)4(KCNE1)n (n < 4) channels. Progressive increase of KCNE1 or KCNE3 expression reduces efficacy of ML277 and eventually abolishes ML277-mediated augmentation. In cardiomyocytes, the slowly activating delayed rectifier potassium current, or IKs, is believed to be a heteromultimeric combination of KCNQ1 and KCNE1, but it is not entirely clear whether IKs is mediated by KCNE-saturated KCNQ1 channels or by channels with intermediate stoichiometries. We found ML277 effectively augments IKs current of cultured human cardiomyocytes and shortens action potential duration. These data indicate that unsaturated heteromultimeric (KCNQ1)4(KCNE1)n channels are present as components of IKs and are pharmacologically distinct from KCNE-saturated KCNQ1-KCNE1 channels.
Collapse
|
22
|
Phosphatidylinositol 4,5-bisphosphate alters pharmacological selectivity for epilepsy-causing KCNQ potassium channels. Proc Natl Acad Sci U S A 2013; 110:8726-31. [PMID: 23650395 DOI: 10.1073/pnas.1302167110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pharmacological augmentation of neuronal KCNQ muscarinic (M) currents by drugs such as retigabine (RTG) represents a first-in-class therapeutic to treat certain hyperexcitatory diseases by dampening neuronal firing. Whereas all five potassium channel subtypes (KCNQ1-KCNQ5) are found in the nervous system, KCNQ2 and KCNQ3 are the primary players that mediate M currents. We investigated the plasticity of subtype selectivity by two M current effective drugs, retigabine and zinc pyrithione (ZnPy). Retigabine is more effective on KCNQ3 than KCNQ2, whereas ZnPy is more effective on KCNQ2 with no detectable effect on KCNQ3. In neurons, activation of muscarinic receptor signaling desensitizes effects by retigabine but not ZnPy. Importantly, reduction of phosphatidylinositol 4,5-bisphosphate (PIP2) causes KCNQ3 to become sensitive to ZnPy but lose sensitivity to retigabine. The dynamic shift of pharmacological selectivity caused by PIP2 may be induced orthogonally by voltage-sensitive phosphatase, or conversely, abolished by mutating a PIP2 site within the S4-S5 linker of KCNQ3. Therefore, whereas drug-channel binding is a prerequisite, the drug selectivity on M current is dynamic and may be regulated by receptor signaling pathways via PIP2.
Collapse
|
23
|
Zhang XF, Zhang D, Surowy CS, Yao B, Jarvis MF, McGaraughty S, Neelands TR. Development and validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel openers using QPatch HT. Assay Drug Dev Technol 2012; 11:17-24. [PMID: 23002961 DOI: 10.1089/adt.2012.446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The KCNQ2/3 channel has emerged as a drug target for a number of neurological disorders including pain and epilepsy. Known KCNQ2/3 openers have effects on two distinct biophysical properties of the channel: (1) a hyperpolarizing shift in the voltage dependence of channel activation (V(1/2)), and (2) an increase in channel open probability or peak whole-cell current. The current high-throughput screening assays for KCNQ2/3 openers measure changes of channel activity at sub-peak conductances and the output measure is a combination of effects on V(1/2) shift and peak current. Here, we describe a medium-throughput electrophysiological assay for screening KCNQ2/3 openers using the QPatch HT platform. We employed a double-pulse protocol that measures the shift in V(1/2) and the change in current amplitude at peak conductance voltage. Retigabine along with novel KCNQ2/3 openers were evaluated in this assay. Three classes of KCNQ2/3 openers were identified based on the hyperpolarizing shift in V(1/2) and the change in peak current. All three classes of compounds caused a hyperpolarizing shift in V(1/2), but they were differentiated by their respective effects on peak current amplitude (increase, decrease, or only modestly affecting peak current amplitude). KCNQ2/3 blockers were also identified with this assay. These compounds blocked currents without affecting voltage-dependent activation. In summary, we have developed a medium-throughput assay that can reliably detect changes in the biophysical properties of the KCNQ2/3 channel, V(1/2), and peak current amplitude, and therefore may serve as a reliable assay to evaluate KCNQ2/3 openers and blockers.
Collapse
Affiliation(s)
- Xu-Feng Zhang
- Neuroscience Research, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, Illinois 60064-6125, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Leitner MG, Feuer A, Ebers O, Schreiber DN, Halaszovich CR, Oliver D. Restoration of ion channel function in deafness-causing KCNQ4 mutants by synthetic channel openers. Br J Pharmacol 2012; 165:2244-59. [PMID: 21951272 DOI: 10.1111/j.1476-5381.2011.01697.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND PURPOSE DFNA2 is a frequent hereditary hearing disorder caused by loss-of-function mutations in the voltage-gated potassium channel KCNQ4 (Kv7.4). KCNQ4 mediates the predominant K(+) conductance, I(K,n) , of auditory outer hair cells (OHCs), and loss of KCNQ4 function leads to degeneration of OHCs resulting in progressive hearing loss. Here we explore the possible recovery of channel activity of mutant KCNQ4 induced by synthetic KCNQ channel openers. EXPERIMENTAL APPROACH Whole cell patch clamp recordings were performed on CHO cells transiently expressing KCNQ4 wild-type (wt) and DFNA2-relevant mutants, and from acutely isolated OHCs. KEY RESULTS Various known KCNQ channel openers robustly enhanced KCNQ4 currents. The strongest potentiation was observed with a combination of zinc pyrithione plus retigabine. A similar albeit less pronounced current enhancement was observed with native I(K,n) currents in rat OHCs. DFNA2 mutations located in the channel's pore region abolished channel function and these mutant channels were completely unresponsive to channel openers. However, the function of a DFNA2 mutation located in the proximal C-terminus was restored by the combined application of both openers. Co-expression of wt and KCNQ4 pore mutants suppressed currents to barely detectable levels. In this dominant-negative situation, channel openers essentially restored currents back to wt levels, most probably through strong activation of only the small fraction of homomeric wt channels. CONCLUSIONS AND IMPLICATIONS Our data suggest that by stabilizing the KCNQ4-mediated conductance in OHCs, chemical channel openers can protect against OHC degeneration and progression of hearing loss in DFNA2.
Collapse
Affiliation(s)
- Michael G Leitner
- Department of Neurophysiology, Philipps-University Marburg, Marburg, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Cavaliere S, Hodge JJL. Drosophila KCNQ channel displays evolutionarily conserved electrophysiology and pharmacology with mammalian KCNQ channels. PLoS One 2011; 6:e23898. [PMID: 21915266 PMCID: PMC3168433 DOI: 10.1371/journal.pone.0023898] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 07/26/2011] [Indexed: 11/19/2022] Open
Abstract
Of the five human KCNQ (Kv7) channels, KCNQ1 with auxiliary subunit KCNE1 mediates the native cardiac I(Ks) current with mutations causing short and long QT cardiac arrhythmias. KCNQ4 mutations cause deafness. KCNQ2/3 channels form the native M-current controlling excitability of most neurons, with mutations causing benign neonatal febrile convulsions. Drosophila contains a single KCNQ (dKCNQ) that appears to serve alone the functions of all the duplicated mammalian neuronal and cardiac KCNQ channels sharing roughly 50-60% amino acid identity therefore offering a route to investigate these channels. Current information about the functional properties of dKCNQ is lacking therefore we have investigated these properties here. Using whole cell patch clamp electrophysiology we compare the biophysical and pharmacological properties of dKCNQ with the mammalian neuronal and cardiac KCNQ channels expressed in HEK cells. We show that Drosophila KCNQ (dKCNQ) is a slowly activating and slowly-deactivating K(+) current open at sub-threshold potentials that has similar properties to neuronal KCNQ2/3 with some features of the cardiac KCNQ1/KCNE1 accompanied by conserved sensitivity to a number of clinically relevant KCNQ blockers (chromanol 293B, XE991, linopirdine) and opener (zinc pyrithione). We also investigate the molecular basis of the differential selectivity of KCNQ channels to the opener retigabine and show a single amino acid substitution (M217W) can confer sensitivity to dKCNQ. We show dKCNQ has similar electrophysiological and pharmacological properties as the mammalian KCNQ channels, allowing future study of physiological and pathological roles of KCNQ in Drosophila and whole organism screening for new modulators of KCNQ channelopathies.
Collapse
Affiliation(s)
- Sonia Cavaliere
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, Bristol, United Kingdom
| | - James J. L. Hodge
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, Bristol, United Kingdom
| |
Collapse
|
26
|
Miceli F, Soldovieri MV, Iannotti FA, Barrese V, Ambrosino P, Martire M, Cilio MR, Taglialatela M. The Voltage-Sensing Domain of K(v)7.2 Channels as a Molecular Target for Epilepsy-Causing Mutations and Anticonvulsants. Front Pharmacol 2011; 2:2. [PMID: 21687499 PMCID: PMC3108560 DOI: 10.3389/fphar.2011.00002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/13/2011] [Indexed: 11/30/2022] Open
Abstract
Understanding the molecular mechanisms underlying voltage-dependent gating in voltage-gated ion channels (VGICs) has been a major effort over the last decades. In recent years, changes in the gating process have emerged as common denominators for several genetically determined channelopathies affecting heart rhythm (arrhythmias), neuronal excitability (epilepsy, pain), or skeletal muscle contraction (periodic paralysis). Moreover, gating changes appear as the main molecular mechanism by which several natural toxins from a variety of species affect ion channel function. In this work, we describe the pathophysiological and pharmacological relevance of the gating process in voltage-gated K+ channels encoded by the Kv7 gene family. After reviewing the current knowledge on the molecular mechanisms and on the structural models of voltage-dependent gating in VGICs, we describe the physiological relevance of these channels, with particular emphasis on those formed by Kv7.2–Kv7.5 subunits having a well-established role in controlling neuronal excitability in humans. In fact, genetically determined alterations in Kv7.2 and Kv7.3 genes are responsible for benign familial neonatal convulsions, a rare seizure disorder affecting newborns, and the pharmacological activation of Kv7.2/3 channels can exert antiepileptic activity in humans. Both mutation-triggered channel dysfunction and drug-induced channel activation can occur by impeding or facilitating, respectively, channel sensitivity to membrane voltage and can affect overlapping molecular sites within the voltage-sensing domain of these channels. Thus, understanding the molecular steps involved in voltage-sensing in Kv7 channels will allow to better define the pathogenesis of rare human epilepsy, and to design innovative pharmacological strategies for the treatment of epilepsies and, possibly, other human diseases characterized by neuronal hyperexcitability.
Collapse
Affiliation(s)
- Francesco Miceli
- Division of Neurology, IRCCS Bambino Gesù Children's Hospital Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Qi J, Zhang F, Mi Y, Fu Y, Xu W, Zhang D, Wu Y, Du X, Jia Q, Wang K, Zhang H. Design, synthesis and biological activity of pyrazolo[1,5-a]pyrimidin-7(4H)-ones as novel Kv7/KCNQ potassium channel activators. Eur J Med Chem 2011; 46:934-43. [PMID: 21296466 DOI: 10.1016/j.ejmech.2011.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 12/20/2010] [Accepted: 01/10/2011] [Indexed: 11/17/2022]
Abstract
Voltage-gated Kv7/KCNQ/M-potassium channels play a pivotal role in controlling neuronal excitability. Genetic reduction of KCNQ channel activity as a result of mutations causes various human diseases such as epilepsy and arrhythmia. Therefore, discovery of small molecules that activate KCNQ channels is an important strategy for clinical intervention of membrane excitability related disorders. In this study, a series of pyrazolo[1,5-a]pyrimidin-7(4H)-ones (PPOs) have been found to be novel activators (openers) of KCNQ2/3 potassium channels through high-throughput screening by using atomic absorption rubidium efflux assay. Based on structure-activity relationship (SAR), the substituted PPOs have been optimized. The 5-(2,6-dichloro-5-fluoropyridin-3-yl)-3-phenyl-2-(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-7(4H)-one (17) was identified as a novel, potent, and selective KCNQ2/3 potassium channel opener by patch-clamp recording assay.
Collapse
Affiliation(s)
- Jinlong Qi
- Department of Development for New Drugs, School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Barrese V, Miceli F, Soldovieri MV, Ambrosino P, Iannotti FA, Cilio MR, Taglialatela M. Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2010; 2:225-36. [PMID: 22291509 PMCID: PMC3262367 DOI: 10.2147/cpaa.s15369] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite the availability of over 20 antiepileptic drugs, about 30% of epileptic patients do not achieve seizure control. Thus, identification of additional molecules targeting novel molecular mechanisms is a primary effort in today's antiepileptic drug research. This paper reviews the pharmacological development of retigabine, an antiepileptic drug with a novel mechanism of action, namely the activation of voltage-gated potassium channels of the Kv7 subfamily. These channels, which act as widespread regulators of intrinsic neuronal excitability and of neurotransmitter-induced network excitability changes, are currently viewed among the most promising targets for anticonvulsant pharmacotherapy. In particular, the present work reviews the pathophysiological role of Kv7 channels in neuronal function, the molecular mechanisms involved in the Kv7 channel-opening action of retigabine, the activity of retigabine in preclinical in vitro and in vivo studies predictive of anticonvulsant activities, and the clinical status of development for this drug as an add-on treatment for pharmacoresistant epilepsy. Particular efforts are devoted to highlighting the potential advantages and disadvantages of retigabine when compared with currently available compounds, in order to provide a comprehensive assessment of its role in therapy for treatment-resistant epilepsies.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Department of Neuroscience, University of Naples Federico II, Naples
| | | | | | | | | | | | | |
Collapse
|
29
|
Leitner MG, Halaszovich CR, Oliver D. Aminoglycosides Inhibit KCNQ4 Channels in Cochlear Outer Hair Cells via Depletion of Phosphatidylinositol(4,5)bisphosphate. Mol Pharmacol 2010; 79:51-60. [DOI: 10.1124/mol.110.068130] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
30
|
Brueggemann LI, Mackie AR, Martin JL, Cribbs LL, Byron KL. Diclofenac distinguishes among homomeric and heteromeric potassium channels composed of KCNQ4 and KCNQ5 subunits. Mol Pharmacol 2010; 79:10-23. [PMID: 20876743 DOI: 10.1124/mol.110.067496] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
KCNQ4 and KCNQ5 potassium channel subunits are expressed in vascular smooth muscle cells, although it remains uncertain how these subunits assemble to form functional channels. Using patch-clamp techniques, we compared the electrophysiological characteristics and effects of diclofenac, a known KCNQ channel activator, on human KCNQ4 and KCNQ5 channels expressed individually or together in A7r5 rat aortic smooth muscle cells. The conductance curves of the overexpressed channels were fitted by a single Boltzmann function in each case (V(0.5) values: -31, -44, and -38 mV for KCNQ4, KCNQ5, and KCNQ4/5, respectively). Diclofenac (100 μM) inhibited KCNQ5 channels, reducing maximum conductance by 53%, but increased maximum conductance of KCNQ4 channels by 38%. The opposite effects of diclofenac on KCNQ4 and KCNQ5 could not be attributed to the presence of a basic residue (lysine) in the voltage-sensing domain of KCNQ5, because mutation of this residue to neutral glycine (the residue present in KCNQ4) resulted in a more effective block of the channel. Differences in deactivation rates and distinct voltage-dependent effects of diclofenac on channel activation and deactivation observed with each of the subunit combinations (KCNQ4, KCNQ5, and KCNQ4/5) were used as diagnostic tools to evaluate native KCNQ currents in vascular smooth muscle cells. A7r5 cells express only KCNQ5 channels endogenously, and their responses to diclofenac closely resembled those of the overexpressed KCNQ5 currents. In contrast, mesenteric artery myocytes, which express both KCNQ4 and KCNQ5 channels, displayed whole-cell KCNQ currents with properties and diclofenac responses characteristic of overexpressed heteromeric KCNQ4/5 channels.
Collapse
Affiliation(s)
- Lioubov I Brueggemann
- Department of Molecular Pharmacology and Therapeutics, Loyola University Medical Center,Maywood, IL 60153, USA
| | | | | | | | | |
Collapse
|
31
|
|
32
|
Abstract
KCNQ genes encode five Kv7 K(+) channel subunits (Kv7.1-Kv7.5). Four of these (Kv7.2-Kv7.5) are expressed in the nervous system. Kv7.2 and Kv7.3 are the principal molecular components of the slow voltage-gated M-channel, which widely regulates neuronal excitability, although other subunits may contribute to M-like currents in some locations. M-channels are closed by receptors coupled to Gq such as M1 and M3 muscarinic receptors; this increases neuronal excitability and underlies some forms of cholinergic excitation. Muscarinic closure results from activation of phospholipase C and consequent hydrolysis and depletion of membrane phosphatidylinositol-4,5-bisphosphate, which is required for channel opening. Some effects of M-channel closure, determined from transmitter action, selective blocking drugs (linopirdine and XE991) and KCNQ2 gene disruption or manipulation, are as follows: (i) in sympathetic neurons: facilitation of repetitive discharges and conversion from phasic to tonic firing; (ii) in sensory nociceptive systems: facilitation of A-delta peripheral sensory fibre responses to noxious heat; and (iii) in hippocampal pyramidal neurons: facilitation of repetitive discharges, enhanced after-depolarization and burst-firing, and induction of spontaneous firing through a reduction of action potential threshold at the axon initial segment. Several drugs including flupirtine and retigabine enhance neural Kv7/M-channel activity, principally through a hyperpolarizing shift in their voltage gating. In consequence they reduce neural excitability and can inhibit nociceptive stimulation and transmission. Flupirtine is in use as a central analgesic; retigabine is under clinical trial as a broad-spectrum anticonvulsant and is an effective analgesic in animal models of chronic inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- David A Brown
- Department of Pharmacology, University College London, London, UK.
| | | |
Collapse
|
33
|
Johannessen Landmark C, Johannessen SI. Pharmacological management of epilepsy: recent advances and future prospects. Drugs 2009; 68:1925-39. [PMID: 18778117 DOI: 10.2165/00003495-200868140-00001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
There is still a need for new antiepileptic drugs (AEDs) as the clinical efficacy, tolerability, toxicity or pharmacokinetic properties of existing AEDs may not be satisfactory. One new AED has recently been approved (rufinamide in 2007) and six others are in late-stage development (phase III and onwards) [brivaracetam, carisbamate, eslicarbazepine, lacosamide, retigabine and stiripentol]. The purpose of this review is to provide updated data on proposed mechanisms of action, efficacy and tolerability on these new AEDs, and to discuss the rationale for their development and possible advantages compared with existing treatment, based on recent publications and MEDLINE searches.Rufinamide, brivaracetam and stiripentol have been given the status of orphan drugs. Rufinamide was approved in Europe in 2007 for the use in Lennox-Gastaut syndrome. Brivaracetam has gained orphan status for development in progressive and symptomatic myoclonic seizures in Europe and the US, respectively. Stiripentol has gained orphan status in children with Dravet's syndrome and pharmaco-resistant epilepsy. All of these drugs demonstrate efficacy as adjunctive therapy in partial seizures. Three of the drugs are derivatives of existing AEDs: brivaracetam is a derivative of levetiracetam with improved affinity for the target molecule; carisbamate is a derivative of felbamate with improved tolerability; and eslicarbazepine is a derivative of carbamazepine with less interaction potential and no auto-induction. Lacosamide, retigabine, rufinamide and stiripentol are new compounds, unrelated to other AEDs.Further investigation and development of new broad-spectrum drugs is important for improved treatment of patients with epilepsy and other neurological and psychiatric disorders.
Collapse
|
34
|
Lange W, Geißendörfer J, Schenzer A, Grötzinger J, Seebohm G, Friedrich T, Schwake M. Refinement of the Binding Site and Mode of Action of the Anticonvulsant Retigabine on KCNQ K+ Channels. Mol Pharmacol 2008; 75:272-80. [DOI: 10.1124/mol.108.052282] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
35
|
Structure, function, and modification of the voltage sensor in voltage-gated ion channels. Cell Biochem Biophys 2008; 52:149-74. [PMID: 18989792 DOI: 10.1007/s12013-008-9032-5] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2008] [Indexed: 01/12/2023]
Abstract
Voltage-gated ion channels are crucial for both neuronal and cardiac excitability. Decades of research have begun to unravel the intriguing machinery behind voltage sensitivity. Although the details regarding the arrangement and movement in the voltage-sensor domain are still debated, consensus is slowly emerging. There are three competing conceptual models: the helical-screw, the transporter, and the paddle model. In this review we explore the structure of the activated voltage-sensor domain based on the recent X-ray structure of a chimera between Kv1.2 and Kv2.1. We also present a model for the closed state. From this we conclude that upon depolarization the voltage sensor S4 moves approximately 13 A outwards and rotates approximately 180 degrees, thus consistent with the helical-screw model. S4 also moves relative to S3b which is not consistent with the paddle model. One interesting feature of the voltage sensor is that it partially faces the lipid bilayer and therefore can interact both with the membrane itself and with physiological and pharmacological molecules reaching the channel from the membrane. This type of channel modulation is discussed together with other mechanisms for how voltage-sensitivity is modified. Small effects on voltage-sensitivity can have profound effects on excitability. Therefore, medical drugs designed to alter the voltage dependence offer an interesting way to regulate excitability.
Collapse
|
36
|
Gao Z, Xiong Q, Sun H, Li M. Desensitization of chemical activation by auxiliary subunits: convergence of molecular determinants critical for augmenting KCNQ1 potassium channels. J Biol Chem 2008; 283:22649-58. [PMID: 18490447 DOI: 10.1074/jbc.m802426200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chemical openers for KCNQ potassium channels are useful probes both for understanding channel gating and for developing therapeutics. The five KCNQ isoforms (KCNQ1 to KCNQ5, or Kv7.1 to Kv7.5) are differentially localized. Therefore, the molecular specificity of chemical openers is an important subject of investigation. Native KCNQ1 normally exists in complex with auxiliary subunits known as KCNE. In cardiac myocytes, the KCNQ1-KCNE1 (IsK or minK) channel is thought to underlie the I(Ks) current, a component critical for membrane repolarization during cardiac action potential. Hence, the molecular and pharmacological differences between KCNQ1 and KCNQ1-KCNE1 channels have been important topics. Zinc pyrithione (ZnPy) is a newly identified KCNQ channel opener, which potently activates KCNQ2, KCNQ4, and KCNQ5. However, the ZnPy effects on cardiac KCNQ1 potassium channels remain largely unknown. Here we show that ZnPy effectively augments the KCNQ1 current, exhibiting an increase in current amplitude, reduction of inactivation, and slowing of both activation and deactivation. Some of these are reminiscent of effects by KCNE1. In addition, neither the heteromultimeric KCNQ1-KCNE1 channels nor native I(Ks) current displayed any sensitivity to ZnPy, indicating that the static occupancy by a KCNE subunit desensitizes the reversible effects by a chemical opener. Site-directed mutagenesis of KCNQ1 reveals that residues critical for the potentiation effects by either ZnPy or KCNE are clustered together in the S6 region overlapping with the critical gating determinants. Thus, the convergence of potentiation effects and molecular determinants critical for both an auxiliary subunit and a chemical opener argue for a mechanistic overlap in causing potentiation.
Collapse
Affiliation(s)
- Zhaobing Gao
- Department of Neuroscience and High Throughput Biology Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|