1
|
Shankar S, Pan J, Yang P, Bian Y, Oroszlán G, Yu Z, Mukherjee P, Filman DJ, Hogle JM, Shekhar M, Coen DM, Abraham J. Viral DNA polymerase structures reveal mechanisms of antiviral drug resistance. Cell 2024; 187:5572-5586.e15. [PMID: 39197451 DOI: 10.1016/j.cell.2024.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/27/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024]
Abstract
DNA polymerases are important drug targets, and many structural studies have captured them in distinct conformations. However, a detailed understanding of the impact of polymerase conformational dynamics on drug resistance is lacking. We determined cryoelectron microscopy (cryo-EM) structures of DNA-bound herpes simplex virus polymerase holoenzyme in multiple conformations and interacting with antivirals in clinical use. These structures reveal how the catalytic subunit Pol and the processivity factor UL42 bind DNA to promote processive DNA synthesis. Unexpectedly, in the absence of an incoming nucleotide, we observed Pol in multiple conformations with the closed state sampled by the fingers domain. Drug-bound structures reveal how antivirals may selectively bind enzymes that more readily adopt the closed conformation. Molecular dynamics simulations and the cryo-EM structure of a drug-resistant mutant indicate that some resistance mutations modulate conformational dynamics rather than directly impacting drug binding, thus clarifying mechanisms that drive drug selectivity.
Collapse
Affiliation(s)
- Sundaresh Shankar
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Junhua Pan
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Biomedical Research Institute and School of Life and Health Sciences, Hubei University of Technology, Wuhan, Hubei, China
| | - Pan Yang
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Yuemin Bian
- School of Medicine, Shanghai University, Shanghai, China; Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Gábor Oroszlán
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zishuo Yu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Purba Mukherjee
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York, UK
| | - David J Filman
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - James M Hogle
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mrinal Shekhar
- Center for the Development of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Donald M Coen
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA; Center for Integrated Solutions in Infectious Diseases, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
2
|
Banerjee T, Geethika K, Kanbayashi S, Takahashi S, Mandal SS, Kamagata K. Thermostable Nucleoid Protein Cren7 Slides Along DNA and Rapidly Dissociates From DNA While Not Inhibiting the Sliding of Other DNA-binding Protein. J Mol Biol 2024; 436:168803. [PMID: 39326492 DOI: 10.1016/j.jmb.2024.168803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
A nucleoid protein Cren7 compacts DNA, contributing to the living of Crenarchaeum in high temperature environment. In this study, we investigated the dynamic behavior of Cren7 on DNA and its functional relation using single-molecule fluorescence microscopy. We found two mobility modes of Cren7, sliding along DNA and pausing on it, and the rapid dissociation kinetics from DNA. The salt dependence analysis suggests a sliding with continuous contact to DNA, rather than hopping/jumping. The mutational analysis demonstrates that Cren7 slides along DNA while Trp (W26) residue interacts with the DNA. Furthermore, Cren7 does not impede the target search by a model transcription factor p53, implying no significant interference to other DNA-binding proteins on DNA. At high concentration of Cren7, the molecules form large clusters on DNA via bridging, which compacts DNA. We discuss how the dynamic behavior of Cren7 on DNA enables DNA-compaction and protein-bypass functions.
Collapse
Affiliation(s)
- Trishit Banerjee
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - K Geethika
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Satoshi Takahashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Soumit S Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India; Center for Atomic, Molecular and Optical Sciences & Technologies, Indian Institute of Science Education and Research (IISER), Tirupati 517507, India.
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Department of Chemistry, Graduate School of Science, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Faculty of Engineering and Graduate School of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Oh PS, Han YH, Lim S, Vetha BSS, Jeong HJ. Antiviral and synergistic effects of photo-energy with acyclovir on herpes simplex virus type 1 infection. Virology 2024; 595:110063. [PMID: 38564935 DOI: 10.1016/j.virol.2024.110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
This experimental study aimed to evaluate the antiviral and synergistic effects of photoenergy irradiation on human herpes simplex virus type I (HSV-1) infection. We assessed viral replication, plaque formation, and relevant viral gene expression to examine the antiviral and synergistic effects of blue light (BL) with acyclovir treatment. Our results showed that daily BL (10 J/cm2) irradiation inhibited plaque-forming ability and decreased viral copy numbers in HSV-1-infected monkey kidney epithelial Vero cells and primary human oral keratinocyte (HOK) cells. Combined treatment with the antiviral agent acyclovir and BL irradiation increased anti-viral activity, reducing viral titers and copy numbers. In particular, accumulated BL irradiation suppressed characteristic viral genes including UL19 and US6, and viral DNA replication-essential genes including UL9, UL30, UL42, and UL52 in HOK cells. Our results suggest that BL irradiation has anti-viral and synergistic properties, making it a promising therapeutic candidate for suppressing viral infections in clinical trials.
Collapse
Affiliation(s)
- Phil-Sun Oh
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Yeon-Hee Han
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - SeokTae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea
| | - Berwin Singh Swami Vetha
- Department of Foundational Sciences and Research, School of Dental Medicine, East Carolina University, 1851 MacGregor Downs Road, MS 701, Greenville, NC 27834, USA
| | - Hwan-Jeong Jeong
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonbuk National University Medical School and Hospital, Jeonju, Republic of Korea.
| |
Collapse
|
4
|
Packard JE, Williams MR, Fromuth DP, Dembowski JA. Proliferating cell nuclear antigen inhibitors block distinct stages of herpes simplex virus infection. PLoS Pathog 2023; 19:e1011539. [PMID: 37486931 PMCID: PMC10399828 DOI: 10.1371/journal.ppat.1011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/03/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA) forms a homotrimer that encircles replicating DNA and is bound by DNA polymerases to add processivity to cellular DNA synthesis. In addition, PCNA acts as a scaffold to recruit DNA repair and chromatin remodeling proteins to replicating DNA via its interdomain connecting loop (IDCL). Despite encoding a DNA polymerase processivity factor UL42, it was previously found that PCNA associates with herpes simplex virus type 1 (HSV-1) replication forks and is necessary for productive HSV-1 infection. To define the role that PCNA plays during viral DNA replication or a replication-coupled process, we investigated the effects that two mechanistically distinct PCNA inhibitors, PCNA-I1 and T2AA, have on the HSV-1 infectious cycle. PCNA-I1 binds at the interface between PCNA monomers, stabilizes the homotrimer, and may interfere with protein-protein interactions. T2AA inhibits select protein-protein interactions within the PCNA IDCL. Here we demonstrate that PCNA-I1 treatment results in reduced HSV-1 DNA replication, late gene expression, and virus production, while T2AA treatment results in reduced late viral gene expression and infectious virus production. To pinpoint the mechanisms by which PCNA inhibitors affect viral processes and protein recruitment to replicated viral DNA, we performed accelerated native isolation of proteins on nascent DNA (aniPOND). Results indicate that T2AA inhibits recruitment of the viral uracil glycosylase UL2 and transcription regulatory factors to viral DNA, likely leading to a defect in viral base excision repair and the observed defect in late viral gene expression and infectious virus production. In addition, PCNA-I1 treatment results in decreased association of the viral DNA polymerase UL30 and known PCNA-interacting proteins with viral DNA, consistent with the observed block in viral DNA replication and subsequent processes. Together, we conclude that inhibitors of cellular PCNA block recruitment of key viral and cellular factors to viral DNA to inhibit viral DNA synthesis and coupled processes.
Collapse
Affiliation(s)
- Jessica E. Packard
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Maya R. Williams
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Daniel P. Fromuth
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| | - Jill A. Dembowski
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
5
|
Mersch K, Sokoloski J, Nguyen B, Galletto R, Lohman T. "Helicase" Activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. Proc Natl Acad Sci U S A 2023; 120:e2216777120. [PMID: 37011199 PMCID: PMC10104510 DOI: 10.1073/pnas.2216777120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Replication protein A (RPA) is a eukaryotic single-stranded (ss) DNA-binding (SSB) protein that is essential for all aspects of genome maintenance. RPA binds ssDNA with high affinity but can also diffuse along ssDNA. By itself, RPA is capable of transiently disrupting short regions of duplex DNA by diffusing from a ssDNA that flanks the duplex DNA. Using single-molecule total internal reflection fluorescence and optical trapping combined with fluorescence approaches, we show that S. cerevisiae Pif1 can use its ATP-dependent 5' to 3' translocase activity to chemomechanically push a single human RPA (hRPA) heterotrimer directionally along ssDNA at rates comparable to those of Pif1 translocation alone. We further show that using its translocation activity, Pif1 can push hRPA from a ssDNA loading site into a duplex DNA causing stable disruption of at least 9 bp of duplex DNA. These results highlight the dynamic nature of hRPA enabling it to be readily reorganized even when bound tightly to ssDNA and demonstrate a mechanism by which directional DNA unwinding can be achieved through the combined action of a ssDNA translocase that pushes an SSB protein. These results highlight the two basic requirements for any processive DNA helicase: transient DNA base pair melting (supplied by hRPA) and ATP-dependent directional ssDNA translocation (supplied by Pif1) and that these functions can be unlinked by using two separate proteins.
Collapse
Affiliation(s)
- Kacey N. Mersch
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Joshua E. Sokoloski
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
- Department of Chemistry, Salisbury University, Salisbury, MD21801
| | - Binh Nguyen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| | - Timothy M. Lohman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO63110-1093
| |
Collapse
|
6
|
Kaur P, Barnes R, Pan H, Detwiler AC, Liu M, Mahn C, Hall J, Messenger Z, You C, Piehler J, Smart R, Riehn R, Opresko PL, Wang H. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res 2021; 49:13000-13018. [PMID: 34883513 PMCID: PMC8682769 DOI: 10.1093/nar/gkab1142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2-TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein-DNA structures, and monitoring of DNA-DNA and DNA-RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA-dsDNA, dsDNA-ssDNA and dsDNA-ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Zach Messenger
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Robert C Smart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
7
|
Kamagata K. Single-Molecule Microscopy Meets Molecular Dynamics Simulations for Characterizing the Molecular Action of Proteins on DNA and in Liquid Condensates. Front Mol Biosci 2021; 8:795367. [PMID: 34869607 PMCID: PMC8639857 DOI: 10.3389/fmolb.2021.795367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
DNA-binding proteins trigger various cellular functions and determine cellular fate. Before performing functions such as transcription, DNA repair, and DNA recombination, DNA-binding proteins need to search for and bind to their target sites in genomic DNA. Under evolutionary pressure, DNA-binding proteins have gained accurate and rapid target search and binding strategies that combine three-dimensional search in solution, one-dimensional sliding along DNA, hopping and jumping on DNA, and intersegmental transfer between two DNA molecules. These mechanisms can be achieved by the unique structural and dynamic properties of these proteins. Single-molecule fluorescence microscopy and molecular dynamics simulations have characterized the molecular actions of DNA-binding proteins in detail. Furthermore, these methodologies have begun to characterize liquid condensates induced by liquid-liquid phase separation, e.g., molecular principles of uptake and dynamics in droplets. This review discusses the molecular action of DNA-binding proteins on DNA and in liquid condensate based on the latest studies that mainly focused on the model protein p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
8
|
Abstract
Herpesviruses comprise a family of DNA viruses that cause a variety of human and veterinary diseases. During productive infection, mammalian, avian, and reptilian herpesviruses replicate their genomes using a set of conserved viral proteins that include a two subunit DNA polymerase. This enzyme is both a model system for family B DNA polymerases and a target for inhibition by antiviral drugs. This chapter reviews the structure, function, and mechanisms of the polymerase of herpes simplex viruses 1 and 2 (HSV), with only occasional mention of polymerases of other herpesviruses such as human cytomegalovirus (HCMV). Antiviral polymerase inhibitors have had the most success against HSV and HCMV. Detailed structural information regarding HSV DNA polymerase is available, as is much functional information regarding the activities of the catalytic subunit (Pol), which include a DNA polymerization activity that can utilize both DNA and RNA primers, a 3'-5' exonuclease activity, and other activities in DNA synthesis and repair and in pathogenesis, including some remaining to be biochemically defined. Similarly, much is known regarding the accessory subunit, which both resembles and differs from sliding clamp processivity factors such as PCNA, and the interactions of this subunit with Pol and DNA. Both subunits contribute to replication fidelity (or lack thereof). The availability of both pharmacologic and genetic tools not only enabled the initial identification of Pol and the pol gene, but has also helped dissect their functions. Nevertheless, important questions remain for this long-studied enzyme, which is still an attractive target for new drug discovery.
Collapse
|
9
|
Bigman LS, Greenblatt HM, Levy Y. What Are the Molecular Requirements for Protein Sliding along DNA? J Phys Chem B 2021; 125:3119-3131. [PMID: 33754737 PMCID: PMC8041311 DOI: 10.1021/acs.jpcb.1c00757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
DNA-binding proteins rely on linear
diffusion along the longitudinal
DNA axis, supported by their nonspecific electrostatic affinity for
DNA, to search for their target recognition sites. One may therefore
expect that the ability to engage in linear diffusion along DNA is
universal to all DNA-binding proteins, with the detailed biophysical
characteristics of that diffusion differing between proteins depending
on their structures and functions. One key question is whether the
linear diffusion mechanism is defined by translation coupled with
rotation, a mechanism that is often termed sliding. We conduct coarse-grained
and atomistic molecular dynamics simulations to investigate the minimal
requirements for protein sliding along DNA. We show that coupling,
while widespread, is not universal. DNA-binding proteins that slide
along DNA transition to uncoupled translation–rotation (i.e.,
hopping) at higher salt concentrations. Furthermore, and consistently
with experimental reports, we find that the sliding mechanism is the
less dominant mechanism for some DNA-binding proteins, even at low
salt concentrations. In particular, the toroidal PCNA protein is shown
to follow the hopping rather than the sliding mechanism.
Collapse
Affiliation(s)
- Lavi S Bigman
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Harry M Greenblatt
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaakov Levy
- Department of Chemical and Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Herpesvirus DNA polymerase processivity factors: Not just for DNA synthesis. Virus Res 2021; 298:198394. [PMID: 33775751 DOI: 10.1016/j.virusres.2021.198394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/22/2022]
Abstract
Herpesviruses encode multiple proteins directly involved in DNA replication, including a DNA polymerase and a DNA polymerase processivity factor. As the name implies, these processivity factors are essential for efficient DNA synthesis, however they also make additional contributions to DNA replication, as well as having novel roles in transcription and modulation of host processes. Here we review the mechanisms by which DNA polymerase processivity factors from all three families of mammalian herpesviruses contribute to viral DNA replication as well as to additional aspects of viral infection.
Collapse
|
11
|
Kaposi's Sarcoma-Associated Herpesvirus Processivity Factor, ORF59, Binds to Canonical and Linker Histones, and Its Carboxy Terminus Is Dispensable for Viral DNA Synthesis. J Virol 2021; 95:JVI.02169-20. [PMID: 33361421 DOI: 10.1128/jvi.02169-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a human oncogenic virus and the causative agent of Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. During lytic reactivation, there is a temporal cascade of viral gene expression that results in the production of new virions. One of the viral factors that is expressed during reactivation is open reading frame 59 (ORF59), the viral DNA polymerase processivity factor. ORF59 plays an essential role for DNA synthesis and is required for the nuclear localization of the viral DNA polymerase (ORF9) to the origin of lytic replication (oriLyt). In addition to its functions in viral DNA synthesis, ORF59 has been shown to interact with chromatin complexes, including histones and cellular methyltransferases. In this study, a series of KSHV BACmids containing 50-amino acid (aa) deletions within ORF59 were generated to determine the interaction domains between ORF59 and histones, as well as to assess the effects on replication fitness as a result of these interactions. These studies show that in the context of infection, ORF59 51 to 100 and 151 to 200 amino acids (aa) are required for interaction with histones, and ORF59 301 to 396 aa are not required for DNA synthesis. Since full-length ORF59 is known to localize to the nucleus, we performed an immunofluorescent assay (IFA) with the ORF59 deletion mutants and showed that all deletions are localized to the nucleus; this includes the ORF59 deletion without the previously identified nuclear localization signal (NLS). These studies further characterize ORF59 and demonstrate its essential role during lytic replication.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus and the causative agent of potentially fatal malignancies. Lytic replication of KSHV is an essential part of the viral life cycle, allowing for virus dissemination within the infected host and shedding to infect naive hosts. Viral DNA synthesis is a critical step in the production of new infectious virions. One of the proteins that is vital to this process is open reading frame 59 (ORF59), the viral encoded polymerase processivity factor. Previous work has demonstrated that the function of ORF59 is closely connected to its association with other viral and cellular factors. The studies presented here extend that work to include the interaction between ORF59 and histones. This interaction offers an additional level of regulation of the chromatinized viral genome, ultimately influencing DNA synthesis and transcription dynamics.
Collapse
|
12
|
Yakovlieva L, Ramírez-Palacios C, Marrink SJ, Walvoort MTC. Semiprocessive Hyperglycosylation of Adhesin by Bacterial Protein N-Glycosyltransferases. ACS Chem Biol 2021; 16:165-175. [PMID: 33401908 PMCID: PMC7812588 DOI: 10.1021/acschembio.0c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Processivity is an important feature
of enzyme families such as
DNA polymerases, polysaccharide synthases, and protein kinases, to
ensure high fidelity in biopolymer synthesis and modification. Here,
we reveal processive character in the family of cytoplasmic protein N-glycosyltransferases (NGTs). Through various activity
assays, intact protein mass spectrometry, and proteomics analysis,
we established that NGTs from nontypeable Haemophilus influenzae and Actinobacillus pleuropneumoniae modify an adhesin
protein fragment in a semiprocessive manner. Molecular modeling studies
suggest that the processivity arises from the shallow substrate binding
groove in NGT, which promotes the sliding of the adhesin over the
surface to allow further glycosylations without temporary dissociation.
We hypothesize that the processive character of these bacterial protein
glycosyltransferases is the mechanism to ensure multisite glycosylation
of adhesins in vivo, thereby creating the densely
glycosylated proteins necessary for bacterial self-aggregation and
adherence to human cells, as a first step toward infection.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
13
|
Jana T, Brodsky S, Barkai N. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites. Trends Genet 2021; 37:421-432. [PMID: 33414013 DOI: 10.1016/j.tig.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) regulate gene expression by binding DNA sequences recognized by their DNA-binding domains (DBDs). DBD-recognized motifs are short and highly abundant in genomes. The ability of TFs to bind a specific subset of motif-containing sites, and to do so rapidly upon activation, is fundamental for gene expression in all eukaryotes. Despite extensive interest, our understanding of the TF-target search process is fragmented; although binding specificity and detection speed are two facets of this same process, trade-offs between them are rarely addressed. In this opinion article, we discuss potential speed-specificity trade-offs in the context of existing models. We further discuss the recently described 'distributed specificity' paradigm, suggesting that intrinsically disordered regions (IDRs) promote specificity while reducing the TF-target search time.
Collapse
Affiliation(s)
- Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
14
|
Kamagata K, Itoh Y, Subekti DRG. How p53 Molecules Solve the Target DNA Search Problem: A Review. Int J Mol Sci 2020; 21:E1031. [PMID: 32033163 PMCID: PMC7037437 DOI: 10.3390/ijms21031031] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/11/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Interactions between DNA and DNA-binding proteins play an important role in many essential cellular processes. A key function of the DNA-binding protein p53 is to search for and bind to target sites incorporated in genomic DNA, which triggers transcriptional regulation. How do p53 molecules achieve "rapid" and "accurate" target search in living cells? The search dynamics of p53 were expected to include 3D diffusion in solution, 1D diffusion along DNA, and intersegmental transfer between two different DNA strands. Single-molecule fluorescence microscopy enabled the tracking of p53 molecules on DNA and the characterization of these dynamics quantitatively. Recent intensive single-molecule studies of p53 succeeded in revealing each of these search dynamics. Here, we review these studies and discuss the target search mechanisms of p53.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yuji Itoh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Genome Dynamics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Dwiky Rendra Graha Subekti
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; (Y.I.); (D.R.G.S.)
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
15
|
Ahmadi A, Till K, Hafting Y, Schüttpelz M, Bjørås M, Glette K, Tørresen J, Rowe AD, Dalhus B. Additive manufacturing of laminar flow cells for single-molecule experiments. Sci Rep 2019; 9:16784. [PMID: 31727950 PMCID: PMC6856346 DOI: 10.1038/s41598-019-53151-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/22/2019] [Indexed: 11/08/2022] Open
Abstract
A microfluidic laminar flow cell (LFC) forms an indispensable component in single-molecule experiments, enabling different substances to be delivered directly to the point under observation and thereby tightly controlling the biochemical environment immediately surrounding single molecules. Despite substantial progress in the production of such components, the process remains relatively inefficient, inaccurate and time-consuming. Here we address challenges and limitations in the routines, materials and the designs that have been commonly employed in the field, and introduce a new generation of LFCs designed for single-molecule experiments and assembled using additive manufacturing. We present single- and multi-channel, as well as reservoir-based LFCs produced by 3D printing to perform single-molecule experiments. Using these flow cells along with optical tweezers, we show compatibility with single-molecule experiments including the isolation and manipulation of single DNA molecules either attached to the surface of a coverslip or as freely movable DNA dumbbells, as well as direct observation of protein-DNA interactions. Using additive manufacturing to produce LFCs with versatility of design and ease of production allow experimentalists to optimize the flow cells to their biological experiments and provide considerable potential for performing multi-component single-molecule experiments.
Collapse
Affiliation(s)
- Arash Ahmadi
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway
| | - Katharina Till
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Yngve Hafting
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Mark Schüttpelz
- Biomolecular Photonics, Department of Physics, University of Bielefeld, Bielefeld, Germany
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway
| | - Kyrre Glette
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Jim Tørresen
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Alexander D Rowe
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Newborn Screening, Division of Child and Adolescent Medicine, Oslo University Hospital, Oslo, Norway.
| | - Bjørn Dalhus
- Department of Medical Biochemistry, Institute for Clinical Medicine, University of Oslo, Oslo, Norway.
- Department of Microbiology, Oslo University Hospital HF, Rikshospitalet and University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Piatt SC, Loparo JJ, Price AC. The Role of Noncognate Sites in the 1D Search Mechanism of EcoRI. Biophys J 2019; 116:2367-2377. [PMID: 31113551 PMCID: PMC6588823 DOI: 10.1016/j.bpj.2019.04.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/18/2019] [Accepted: 04/29/2019] [Indexed: 02/02/2023] Open
Abstract
A one-dimensional (1D) search is an essential step in DNA target recognition. Theoretical studies have suggested that the sequence dependence of 1D diffusion can help resolve the competing demands of a fast search and high target affinity, a conflict known as the speed-selectivity paradox. The resolution requires that the diffusion energy landscape is correlated with the underlying specific binding energies. In this work, we report observations of a 1D search by quantum dot-labeled EcoRI. Our data supports the view that proteins search DNA via rotation-coupled sliding over a corrugated energy landscape. We observed that whereas EcoRI primarily slides along DNA at low salt concentrations, at higher concentrations, its diffusion is a combination of sliding and hopping. We also observed long-lived pauses at genomic star sites, which differ by a single nucleotide from the target sequence. To reconcile these observations with prior biochemical and structural data, we propose a model of search in which the protein slides over a sequence-independent energy landscape during fast search but rapidly interconverts with a "hemispecific" binding mode in which a half site is probed. This half site interaction stabilizes the transition to a fully specific mode of binding, which can then lead to target recognition.
Collapse
Affiliation(s)
- Sadie C Piatt
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts
| | - Joseph J Loparo
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts.
| | - Allen C Price
- Department of Chemistry and Physics, Emmanuel College, Boston, Massachusetts.
| |
Collapse
|
17
|
Breaking the speed limit with multimode fast scanning of DNA by Endonuclease V. Nat Commun 2018; 9:5381. [PMID: 30568191 PMCID: PMC6300609 DOI: 10.1038/s41467-018-07797-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 11/27/2018] [Indexed: 01/04/2023] Open
Abstract
In order to preserve genomic stability, cells rely on various repair pathways for removing DNA damage. The mechanisms how enzymes scan DNA and recognize their target sites are incompletely understood. Here, by using high-localization precision microscopy along with 133 Hz high sampling rate, we have recorded EndoV and OGG1 interacting with 12-kbp elongated λ-DNA in an optical trap. EndoV switches between three distinct scanning modes, each with a clear range of activation energy barriers. These results concur with average diffusion rate and occupancy of states determined by a hidden Markov model, allowing us to infer that EndoV confinement occurs when the intercalating wedge motif is involved in rigorous probing of the DNA, while highly mobile EndoV may disengage from a strictly 1D helical diffusion mode and hop along the DNA. This makes EndoV the first example of a monomeric, single-conformation and single-binding-site protein demonstrating the ability to switch between three scanning modes. How DNA repair proteins locate their target sites on DNA is still a matter of debate. Here the authors characterize by single-molecule fluorescence imaging the modes of scanning adopted by bacterial endonuclease V as it moves along linear DNA tracks.
Collapse
|
18
|
Jeon Y, Choi YH, Jang Y, Yu J, Goo J, Lee G, Jeong YK, Lee SH, Kim IS, Kim JS, Jeong C, Lee S, Bae S. Direct observation of DNA target searching and cleavage by CRISPR-Cas12a. Nat Commun 2018; 9:2777. [PMID: 30018371 PMCID: PMC6050341 DOI: 10.1038/s41467-018-05245-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/20/2018] [Indexed: 12/24/2022] Open
Abstract
Cas12a (also called Cpf1) is a representative type V-A CRISPR effector RNA-guided DNA endonuclease, which provides an alternative to type II CRISPR-Cas9 for genome editing. Previous studies have revealed that Cas12a has unique features distinct from Cas9, but the detailed mechanisms of target searching and DNA cleavage by Cas12a are still unclear. Here, we directly observe this entire process by using single-molecule fluorescence assays to study Cas12a from Acidaminococcus sp. (AsCas12a). We determine that AsCas12a ribonucleoproteins search for their on-target site by a one-dimensional diffusion along elongated DNA molecules and induce cleavage in the two DNA strands in a well-defined order, beginning with the non-target strand. Furthermore, the protospacer-adjacent motif (PAM) for AsCas12a makes only a limited contribution of DNA unwinding during R-loop formation and shows a negligible role in the process of DNA cleavage, in contrast to the Cas9 PAM.
Collapse
Affiliation(s)
- Yongmoon Jeon
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - You Hee Choi
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Yunsu Jang
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea
| | - Jihyeon Yu
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea
| | - Jiyoung Goo
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - Gyejun Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea
| | - You Kyeong Jeong
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea
| | - Seung Hwan Lee
- Center for Genome Engineering, Institute for Basic Science, Seoul, 08826, South Korea
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, 28116, South Korea
| | - In-San Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, 08826, South Korea
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, 02792, South Korea.
- KHU-KIST Department of Converging Science and Technology, Kyunghee University, Seoul, 02447, South Korea.
| | - Sanghwa Lee
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
- Cell Logistics Research Center, Gwangju Institute of Science and Technology, Gwangju, 61005, South Korea.
| | - Sangsu Bae
- Department of Chemistry, Hanyang University, Seoul, 04763, South Korea.
- Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
19
|
Kamagata K, Mano E, Ouchi K, Kanbayashi S, Johnson RC. High Free-Energy Barrier of 1D Diffusion Along DNA by Architectural DNA-Binding Proteins. J Mol Biol 2018; 430:655-667. [PMID: 29307468 DOI: 10.1016/j.jmb.2018.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/13/2017] [Accepted: 01/02/2018] [Indexed: 01/25/2023]
Abstract
Architectural DNA-binding proteins function to regulate diverse DNA reactions and have the defining property of significantly changing DNA conformation. Although the 1D movement along DNA by other types of DNA-binding proteins has been visualized, the mobility of architectural DNA-binding proteins on DNA remains unknown. Here, we applied single-molecule fluorescence imaging on arrays of extended DNA molecules to probe the binding dynamics of three structurally distinct architectural DNA-binding proteins: Nhp6A, HU, and Fis. Each of these proteins was observed to move along DNA, and the salt concentration independence of the 1D diffusion implies sliding with continuous contact to DNA. Nhp6A and HU exhibit a single sliding mode, whereas Fis exhibits two sliding modes. Based on comparison of the diffusion coefficients and sizes of many DNA binding proteins, the architectural proteins are categorized into a new group distinguished by an unusually high free-energy barrier for 1D diffusion. The higher free-energy barrier for 1D diffusion by architectural proteins can be attributed to the large DNA conformational changes that accompany binding and impede rotation-coupled movement along the DNA grooves.
Collapse
Affiliation(s)
- Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan.
| | - Eriko Mano
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Kana Ouchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan; Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Aoba-ku, Sendai980-8577, Japan
| | - Saori Kanbayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
| | - Reid C Johnson
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA90095-1737, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
20
|
Kostiuk G, Dikic J, Schwarz FW, Sasnauskas G, Seidel R, Siksnys V. The dynamics of the monomeric restriction endonuclease BcnI during its interaction with DNA. Nucleic Acids Res 2017; 45:5968-5979. [PMID: 28453854 PMCID: PMC5449598 DOI: 10.1093/nar/gkx294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/13/2017] [Indexed: 11/24/2022] Open
Abstract
Endonucleases that generate DNA double strand breaks often employ two independent subunits such that the active site from each subunit cuts either DNA strand. Restriction enzyme BcnI is a remarkable exception. It binds to the 5΄-CC/SGG-3΄ (where S = C or G, ‘/’ designates the cleavage position) target as a monomer forming an asymmetric complex, where a single catalytic center approaches the scissile phosphodiester bond in one of DNA strands. Bulk kinetic measurements have previously shown that the same BcnI molecule cuts both DNA strands at the target site without dissociation from the DNA. Here, we analyse the BcnI DNA binding and target recognition steps at the single molecule level. We find, using FRET, that BcnI adopts either ‘open’ or ‘closed’ conformation in solution. Next, we directly demonstrate that BcnI slides over long distances on DNA using 1D diffusion and show that sliding is accompanied by occasional jumping events, where the enzyme leaves the DNA and rebinds immediately at a distant site. Furthermore, we quantify the dynamics of the BcnI interactions with cognate and non-cognate DNA, and determine the preferred binding orientation of BcnI to the target site. These results provide new insights into the intricate dynamics of BcnI–DNA interactions.
Collapse
Affiliation(s)
- Georgij Kostiuk
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Jasmina Dikic
- Molecular Biophysics group, Institute for Experimental Physics I, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Friedrich W Schwarz
- BCUBE, Technische Universitaet Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Giedrius Sasnauskas
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| | - Ralf Seidel
- Molecular Biophysics group, Institute for Experimental Physics I, Universität Leipzig, Linnéstr. 5, 04103 Leipzig, Germany
| | - Virginijus Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
21
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
22
|
Kamagata K, Murata A, Itoh Y, Takahashi S. Characterization of facilitated diffusion of tumor suppressor p53 along DNA using single-molecule fluorescence imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
23
|
Ma Y, Chen Y, Yu W, Luo K. How nonspecifically DNA-binding proteins search for the target in crowded environments. J Chem Phys 2016; 144:125102. [PMID: 27036479 DOI: 10.1063/1.4944905] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We investigate how a tracer particle searches a target located in DNA modeled by a stiff chain in crowded environments using theoretical analysis and Langevin dynamics simulations. First, we show that the three-dimensional (3D) diffusion coefficient of the tracer only depends on the density of crowders ϕ, while its one-dimensional (1D) diffusion coefficient is affected by not only ϕ but also the nonspecific binding energy ε. With increasing ϕ and ε, no obvious change in the average 3D diffusion time is observed, while the average 1D sliding time apparently increases. We propose theoretically that the 1D sliding of the tracer along the chain could be well captured by the Kramers' law of escaping rather than the Arrhenius law, which is verified directly by the simulations. Finally, the average search time increases monotonously with an increase in ϕ while it has a minimum as a function of ε, which could be understood from the different behaviors of the average number of search rounds with the increasing ϕ or ε. These results provide a deeper understanding of the role of facilitated diffusion in target search of proteins on DNA in vivo.
Collapse
Affiliation(s)
- Yiding Ma
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yuhao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
24
|
TALE proteins search DNA using a rotationally decoupled mechanism. Nat Chem Biol 2016; 12:831-7. [DOI: 10.1038/nchembio.2152] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 05/27/2016] [Indexed: 12/27/2022]
|
25
|
Mangel WF, McGrath WJ, Xiong K, Graziano V, Blainey PC. Molecular sled is an eleven-amino acid vehicle facilitating biochemical interactions via sliding components along DNA. Nat Commun 2016; 7:10202. [PMID: 26831565 PMCID: PMC4740752 DOI: 10.1038/ncomms10202] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/13/2015] [Indexed: 01/27/2023] Open
Abstract
Recently, we showed the adenovirus proteinase interacts productively with its protein substrates in vitro and in vivo in nascent virus particles via one-dimensional diffusion along the viral DNA. The mechanism by which this occurs has heretofore been unknown. We show sliding of these proteins along DNA occurs on a new vehicle in molecular biology, a 'molecular sled' named pVIc. This 11-amino acid viral peptide binds to DNA independent of sequence. pVIc slides on DNA, exhibiting the fastest one-dimensional diffusion constant, 26±1.8 × 10(6) (bp)(2) s(-1). pVIc is a 'molecular sled,' because it can slide heterologous cargos along DNA, for example, a streptavidin tetramer. Similar peptides, for example, from the C terminus of β-actin or NLSIII of the p53 protein, slide along DNA. Characteristics of the 'molecular sled' in its milieu (virion, nucleus) have implications for how proteins in the nucleus of cells interact and imply a new form of biochemistry, one-dimensional biochemistry.
Collapse
Affiliation(s)
- Walter F. Mangel
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, New York 11973, USA
| | - William J. McGrath
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, New York 11973, USA
| | - Kan Xiong
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Vito Graziano
- Department of Biology, Brookhaven National Laboratory, 50 Bell Avenue, Upton, New York 11973, USA
| | - Paul C. Blainey
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
26
|
Tsutsumi M, Muto H, Myoba S, Kimoto M, Kitamura A, Kamiya M, Kikukawa T, Takiya S, Demura M, Kawano K, Kinjo M, Aizawa T. In vivo fluorescence correlation spectroscopy analyses of FMBP-1, a silkworm transcription factor. FEBS Open Bio 2016; 6:106-25. [PMID: 27239433 PMCID: PMC4821344 DOI: 10.1002/2211-5463.12026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
Fibroin modulator-binding protein 1 (FMBP-1) is a silkworm transcription factor that has a unique DNA-binding domain called the one score and three amino acid peptide repeat (STPR). Here we used fluorescence correlation spectroscopy (FCS) to analyze the diffusion properties of an enhanced green fluorescent protein-tagged FMBP-1 protein (EGFP-FMBP-1) expressed in posterior silk gland (PSG) cells of Bombyx mori at the same developmental stage as natural FMBP-1 expression. EGFP-FMBP-1 clearly localized to cell nuclei. From the FCS analyses, we identified an immobile DNA-bound component and three discernible diffusion components. We also used FCS to observe the movements of wild-type and mutant EGFP-FMBP-1 proteins in HeLa cells, a simpler experimental system. Based on previous in vitro observation, we also introduced a single amino acid substitution in order to suppress stable FMBP-1-DNA binding; specifically, we replaced the ninth Arg in the third repeat within the STPR domain with Ala. This mutation completely disrupted the slowest diffusion component as well as the immobile component. The diffusion properties of other FMBP-1 mutants (e.g. mutants with N-terminal or C-terminal truncations) were also analyzed. Based on our observations, we suggest that the four identifiable movements might correspond to four distinct FMBP-1 states: (a) diffusion of free protein, (b) and
Collapse
Affiliation(s)
| | - Hideki Muto
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan; Biomedical Research Support Center Nagasaki University School of Medicine Nagasaki, Japan
| | - Shohei Myoba
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | - Mai Kimoto
- Faculty of Science Hokkaido University Sapporo Japan
| | - Akira Kitamura
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | - Masakatsu Kamiya
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | | | - Makoto Demura
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | - Keiichi Kawano
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan; Chitose Institute of Science and Technology Chitose, Japan
| | - Masataka Kinjo
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| | - Tomoyasu Aizawa
- Faculty of Advanced Life Science Hokkaido University Sapporo Japan
| |
Collapse
|
27
|
Liu L, Luo K. Molecular crowding effect on dynamics of DNA-binding proteins search for their targets. J Chem Phys 2015; 141:225102. [PMID: 25494769 DOI: 10.1063/1.4903505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA-binding proteins locate and bind their target sequences positioned on DNA in crowded environments, but the molecular crowding effect on this search process is not clear. Using analytical techniques and Langevin dynamics simulations in two dimensions (2D), we find that the essential physics for facilitated diffusion in 2D search and 3D search is the same. We observe that the average search times have minima at the same optimal nonspecific binding energy for the cases with and without the crowding particle. Moreover, the molecular crowding increases the search time by increasing the average search rounds and the one-dimensional (1D) sliding time of a round, but almost not changing the average 2D diffusion time of a round. In addition, the fraction of 1D sliding time out of the total search time increases with increasing the concentration of crowders. For 2D diffusion, the molecular crowding decreases the jumping length and narrows its distribution due to the cage effect from crowders. These results shed light on the role of facilitated diffusion in DNA targeting kinetics in living cells.
Collapse
Affiliation(s)
- Lin Liu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People's Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People's Republic of China
| |
Collapse
|
28
|
Murata A, Ito Y, Kashima R, Kanbayashi S, Nanatani K, Igarashi C, Okumura M, Inaba K, Tokino T, Takahashi S, Kamagata K. One-Dimensional Sliding of p53 Along DNA Is Accelerated in the Presence of Ca2+ or Mg2+ at Millimolar Concentrations. J Mol Biol 2015; 427:2663-78. [DOI: 10.1016/j.jmb.2015.06.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/27/2015] [Accepted: 06/25/2015] [Indexed: 01/08/2023]
|
29
|
Cuculis L, Abil Z, Zhao H, Schroeder CM. Direct observation of TALE protein dynamics reveals a two-state search mechanism. Nat Commun 2015; 6:7277. [PMID: 26027871 PMCID: PMC4458887 DOI: 10.1038/ncomms8277] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 11/29/2022] Open
Abstract
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. TALEs are programmable DNA-binding proteins with practical use in genome engineering and synthetic biology. Here the authors use single-molecule fluorescence microscopy to establish that TALE proteins function using two distinct DNA-interaction modes during sequence-specific target search.
Collapse
Affiliation(s)
- Luke Cuculis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Zhanar Abil
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Huimin Zhao
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [4] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [5] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles M Schroeder
- 1] Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [2] Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA [3] Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 USA [4] Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
30
|
Liu L, Luo K. DNA-binding protein searches for its target: Non-monotonic dependence of the search time on the density of roadblocks bound on the DNA chain. J Chem Phys 2015; 142:125101. [DOI: 10.1063/1.4916056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Lin Liu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| |
Collapse
|
31
|
Antiherpesviral DNA Polymerase Inhibitors. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Erie DA, Weninger KR. Single molecule studies of DNA mismatch repair. DNA Repair (Amst) 2014; 20:71-81. [PMID: 24746644 DOI: 10.1016/j.dnarep.2014.03.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 03/21/2014] [Accepted: 03/22/2014] [Indexed: 11/30/2022]
Abstract
DNA mismatch repair, which involves is a widely conserved set of proteins, is essential to limit genetic drift in all organisms. The same system of proteins plays key roles in many cancer related cellular transactions in humans. Although the basic process has been reconstituted in vitro using purified components, many fundamental aspects of DNA mismatch repair remain hidden due in part to the complexity and transient nature of the interactions between the mismatch repair proteins and DNA substrates. Single molecule methods offer the capability to uncover these transient but complex interactions and allow novel insights into mechanisms that underlie DNA mismatch repair. In this review, we discuss applications of single molecule methodology including electron microscopy, atomic force microscopy, particle tracking, FRET, and optical trapping to studies of DNA mismatch repair. These studies have led to formulation of mechanistic models of how proteins identify single base mismatches in the vast background of matched DNA and signal for their repair.
Collapse
Affiliation(s)
- Dorothy A Erie
- Department of Chemistry and Curriculum in Applied Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, United States
| |
Collapse
|
33
|
Lin J, Countryman P, Buncher N, Kaur P, E L, Zhang Y, Gibson G, You C, Watkins SC, Piehler J, Opresko PL, Kad NM, Wang H. TRF1 and TRF2 use different mechanisms to find telomeric DNA but share a novel mechanism to search for protein partners at telomeres. Nucleic Acids Res 2013; 42:2493-504. [PMID: 24271387 PMCID: PMC3936710 DOI: 10.1093/nar/gkt1132] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Human telomeres are maintained by the shelterin protein complex in which TRF1 and TRF2 bind directly to duplex telomeric DNA. How these proteins find telomeric sequences among a genome of billions of base pairs and how they find protein partners to form the shelterin complex remains uncertain. Using single-molecule fluorescence imaging of quantum dot-labeled TRF1 and TRF2, we study how these proteins locate TTAGGG repeats on DNA tightropes. By virtue of its basic domain TRF2 performs an extensive 1D search on nontelomeric DNA, whereas TRF1’s 1D search is limited. Unlike the stable and static associations observed for other proteins at specific binding sites, TRF proteins possess reduced binding stability marked by transient binding (∼9–17 s) and slow 1D diffusion on specific telomeric regions. These slow diffusion constants yield activation energy barriers to sliding ∼2.8–3.6 κBT greater than those for nontelomeric DNA. We propose that the TRF proteins use 1D sliding to find protein partners and assemble the shelterin complex, which in turn stabilizes the interaction with specific telomeric DNA. This ‘tag-team proofreading’ represents a more general mechanism to ensure a specific set of proteins interact with each other on long repetitive specific DNA sequences without requiring external energy sources.
Collapse
Affiliation(s)
- Jiangguo Lin
- Physics Department, North Carolina State University, Raleigh, NC 27695, USA, Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA, Electric and Computer Engineering Department, University of North Carolina at Charlotte, Charlotte, NC 28223, USA, Department of Industrial and System Engineering, North Carolina State University, Raleigh, NC 27695, USA, Department of Cell Biology, Center for Biologic Imaging, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15219, USA, Division of Biophysics, Universität Osnabrück, Barbarstrasse 11, 49076, Osnabrück, Germany and School of Biological Sciences, University of Essex, Colchester, Essex CO4 3SQ UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Khazanov N, Marcovitz A, Levy Y. Asymmetric DNA-search dynamics by symmetric dimeric proteins. Biochemistry 2013; 52:5335-44. [PMID: 23866074 DOI: 10.1021/bi400357m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We focus on dimeric DNA-binding proteins from two well-studied families: orthodox type II restriction endonucleases (REs) and transcription factors (TFs). Interactions of the protein's recognition sites with the DNA and, particularly, the contribution of each of the monomers to one-dimensional (1D) sliding along nonspecific DNA were studied using computational tools. Coarse-grained molecular dynamics simulations of DNA scanning by various TFs and REs provide insights into how the symmetry of a homodimer can be broken while they nonspecifically interact with DNA. The characteristics of protein sliding along DNA, such as the average sliding length, partitioning between 1D and 3D search, and the one-dimensional diffusion coefficient D1, strongly depend on the salt concentration, which in turn affects the probability of the two monomers adopting a cooperative symmetric sliding mechanism. Indeed, we demonstrate that maximal DNA search efficiency is achieved when the protein adopts an asymmetric search mode in which one monomer slides while its partner hops. We find that proteins classified as TFs have a higher affinity for the DNA, longer sliding lengths, and an increased probability of symmetric sliding in comparison with REs. Moreover, TFs can perform their biological function over a much wider range of salt concentrations than REs. Our results demonstrate that the different biological functions of DNA-binding proteins are related to the different nonspecific DNA search mechanisms they adopt.
Collapse
Affiliation(s)
- Netaly Khazanov
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
35
|
Abstract
Many aspects of biology depend on the ability of DNA-binding proteins to locate specific binding sites within the genome. Interest in this target search problem has been reinvigorated through the recent development of microscopy-based technologies capable of tracking individual proteins in real-time as they search for binding sites. In this review we discuss how two different proteins, lac repressor and RNA polymerase, have solved the target search problem through seemingly different mechanisms, with an emphasis on how recent in vitro single-molecule studies have influenced our understanding of these reactions.
Collapse
Affiliation(s)
- Sy Redding
- Department of Chemistry, Columbia University, New York, NY 10032, United States
| | | |
Collapse
|
36
|
Roles for Helicases as ATP-Dependent Molecular Switches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 767:225-44. [PMID: 23161014 DOI: 10.1007/978-1-4614-5037-5_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
On the basis of the familial name, a "helicase" might be expected to have an enzymatic activity that unwinds duplex polynucleotides to form single strands. A more encompassing taxonomy that captures alternative enzymatic roles has defined helicases as a sub-class of molecular motors that move directionally and processively along nucleic acids, the so-called "translocases". However, even this definition may be limiting in capturing the full scope of helicase mechanism and activity. Discussed here is another, alternative view of helicases-as machines which couple NTP-binding and hydrolysis to changes in protein conformation to resolve stable nucleoprotein assembly states. This "molecular switch" role differs from the classical view of helicases as molecular motors in that only a single catalytic NTPase cycle may be involved. This is illustrated using results obtained with the DEAD-box family of RNA helicases and with a model bacterial system, the ATP-dependent Type III restriction-modification enzymes. Further examples are discussed and illustrate the wide-ranging examples of molecular switches in genome metabolism.
Collapse
|
37
|
Isomura H, Stinski MF. Coordination of late gene transcription of human cytomegalovirus with viral DNA synthesis: recombinant viruses as potential therapeutic vaccine candidates. Expert Opin Ther Targets 2012; 17:157-66. [PMID: 23231449 DOI: 10.1517/14728222.2013.740460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION During productive infection, human cytomegalovirus (HCMV) genes are expressed in a temporal cascade, with temporal phases designated as immediate-early (IE), early, and late. The major IE (MIE) genes, UL123 and UL122 (IE1/IE2), play a critical role in subsequent viral gene expression and the efficiency of viral replication. The early viral genes encode proteins necessary for viral DNA replication. Following viral DNA replication, delayed-early and late viral genes are expressed which encode structural proteins for the virion. The late genes can be divided into two broad classes. At early times the gamma-1 or leaky-late class are expressed at low levels after infection and are dramatically upregulated at late times. In contrast, the gamma-2 or 'true' late genes are expressed exclusively after viral DNA replication. Expression of true late (gamma-2 class) viral genes is completely prevented by inhibition of viral DNA synthesis. AREAS COVERED This review addresses the viral genes required for HCMV late gene transcription. Recombinant viruses that are defective for late gene transcription allow for early viral gene expression and viral DNA synthesis, but not infectious virus production. Since current HCMV prophylaxis is limited by several shortcomings, the use of defective recombinant viruses to induce HCMV cell-mediated and humoral immunity is discussed. EXPERT OPINION HCMV DNA replication and late gene transcription are not completely linked. Viral-encoded trans-acting factors are required. Recombinant viruses proficient in MIE and early viral gene expression and defective in late gene expression may be an alternative therapeutic vaccine candidates for the induction of cell-mediated and humoral immunity.
Collapse
Affiliation(s)
- Hiroki Isomura
- Gunma University Graduate School of Medicine, Department of Virology and Preventive Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| | | |
Collapse
|
38
|
Blainey PC, Graziano V, Pérez-Berná AJ, McGrath WJ, Flint SJ, San Martín C, Xie XS, Mangel WF. Regulation of a viral proteinase by a peptide and DNA in one-dimensional space: IV. viral proteinase slides along DNA to locate and process its substrates. J Biol Chem 2012; 288:2092-102. [PMID: 23043138 DOI: 10.1074/jbc.m112.407460] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precursor proteins used in the assembly of adenovirus virions must be processed by the virally encoded adenovirus proteinase (AVP) before the virus particle becomes infectious. An activated adenovirus proteinase, the AVP-pVIc complex, was shown to slide along viral DNA with an extremely fast one-dimensional diffusion constant, 21.0 ± 1.9 × 10(6) bp(2)/s. In principle, one-dimensional diffusion can provide a means for DNA-bound proteinases to locate and process DNA-bound substrates. Here, we show that this is correct. In vitro, AVP-pVIc complexes processed a purified virion precursor protein in a DNA-dependent reaction; in a quasi in vivo environment, heat-disrupted ts-1 virions, AVP-pVIc complexes processed five different precursor proteins in DNA-dependent reactions. Sliding of AVP-pVIc complexes along DNA illustrates a new biochemical mechanism by which a proteinase can locate its substrates, represents a new paradigm for virion maturation, and reveals a new way of exploiting the surface of DNA.
Collapse
Affiliation(s)
- Paul C Blainey
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Herpes simplex virus (HSV) encodes seven proteins necessary for viral DNA synthesis-UL9 (origin-binding protein), ICP8 (single-strand DNA [ssDNA]-binding protein), UL30/UL42 (polymerase), and UL5/UL8/UL52 (helicase/primase). It is our intention to provide an up-to-date analysis of our understanding of the structures of these replication proteins and how they function during HSV replication. The potential roles of host repair and recombination proteins will also be discussed.
Collapse
Affiliation(s)
- Sandra K Weller
- Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
40
|
Cho WK, Jeong C, Kim D, Chang M, Song KM, Hanne J, Ban C, Fishel R, Lee JB. ATP alters the diffusion mechanics of MutS on mismatched DNA. Structure 2012; 20:1264-1274. [PMID: 22682745 DOI: 10.1016/j.str.2012.04.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 11/18/2022]
Abstract
The mismatch repair (MMR) initiation protein MutS forms at least two types of sliding clamps on DNA: a transient mismatch searching clamp (∼1 s) and an unusually stable (∼600 s) ATP-bound clamp that recruits downstream MMR components. Remarkably, direct visualization of single MutS particles on mismatched DNA has not been reported. We have combined real-time particle tracking with fluorescence resonance energy transfer (FRET) to image MutS diffusion dynamics on DNA containing a single mismatch. We show searching MutS rotates during diffusion independent of ionic strength or flow rate, suggesting continuous contact with the DNA backbone. In contrast, ATP-bound MutS clamps that are visually and successively released from the mismatch spin freely around the DNA, and their diffusion is affected by ionic strength and flow rate. These observations show that ATP binding alters the MutS diffusion mechanics on DNA, which has a number of implications for the mechanism of MMR.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Cherlhyun Jeong
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Daehyung Kim
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Minhyeok Chang
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Kyung-Mi Song
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Jeungphill Hanne
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
| | - Changill Ban
- Department of Chemistry, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| | - Richard Fishel
- Department of Molecular Virology, Immunology and Medical Genetics The Ohio State University, Columbus, OH 43210, USA
- Physics Department, The Ohio State University, Columbus, OH 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
- School of Interdisciplinary Bioscience and Bioengineering Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Korea
| |
Collapse
|
41
|
Sheinman M, Bénichou O, Kafri Y, Voituriez R. Classes of fast and specific search mechanisms for proteins on DNA. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:026601. [PMID: 22790348 DOI: 10.1088/0034-4885/75/2/026601] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Problems of search and recognition appear over different scales in biological systems. In this review we focus on the challenges posed by interactions between proteins, in particular transcription factors, and DNA and possible mechanisms which allow for fast and selective target location. Initially we argue that DNA-binding proteins can be classified, broadly, into three distinct classes which we illustrate using experimental data. Each class calls for a different search process and we discuss the possible application of different search mechanisms proposed over the years to each class. The main thrust of this review is a new mechanism which is based on barrier discrimination. We introduce the model and analyze in detail its consequences. It is shown that this mechanism applies to all classes of transcription factors and can lead to a fast and specific search. Moreover, it is shown that the mechanism has interesting transient features which allow for stability at the target despite rapid binding and unbinding of the transcription factor from the target.
Collapse
Affiliation(s)
- M Sheinman
- Department of Physics and Astronomy, Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
42
|
Schonhoft JD, Stivers JT. Timing facilitated site transfer of an enzyme on DNA. Nat Chem Biol 2012; 8:205-10. [PMID: 22231272 PMCID: PMC3262087 DOI: 10.1038/nchembio.764] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 11/01/2011] [Indexed: 12/29/2022]
Abstract
Many enzymes that react with specific sites in DNA exhibit the property of facilitated diffusion, where the DNA chain is used as a conduit to accelerate site location. Despite the importance of such mechanisms in gene regulation and DNA repair, there have been few viable approaches to elucidate the microscopic process of facilitated diffusion. Here we describe a new method where a small molecule trap (uracil) is used to clock a DNA repair enzyme as it hops and slides between damaged sites in DNA. The “molecular clock” provides unprecedented information: the mean length for DNA sliding, the 1D sliding constant, the maximum hopping radius and time frame for DNA hopping events. In addition, the data establish that the DNA phosphate backbone is a sufficient requirement for DNA sliding.
Collapse
Affiliation(s)
- Joseph D Schonhoft
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
43
|
Sanchez H, Suzuki Y, Yokokawa M, Takeyasu K, Wyman C. Protein-DNA interactions in high speed AFM: single molecule diffusion analysis of human RAD54. Integr Biol (Camb) 2011; 3:1127-34. [PMID: 21986699 DOI: 10.1039/c1ib00039j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
High-speed AFM (atomic force microscopy also called scanning force microscopy) provides nanometre spatial resolution and sub-second temporal resolution images of individual molecules. We exploit these features to study diffusion and motor activity of the RAD54 DNA repair factor. Human RAD54 functions at critical steps in recombinational-DNA repair. It is a member of the Swi2/Snf2 family of chromatin remodelers that translocate on DNA using ATP hydrolysis. A detailed single molecular description of DNA-protein interactions shows intermediate states and distribution of variable states, usually hidden by ensemble averaging. We measured the motion of individual proteins using single-particle tracking and observed that random walks were affected by imaging-buffer composition. Non-Brownian diffusion events were characterized in the presence and in the absence of nucleotide cofactors. Double-stranded DNA immobilized on the surface functioned as a trap reducing Brownian motion. Distinct short range slides and hops on DNA were visualized by high-speed AFM. These short-range interactions were usually inaccessible by other methods based on optical resolution. RAD54 monomers displayed a diffusive behavior unrelated to the motor activity.
Collapse
Affiliation(s)
- Humberto Sanchez
- Department of Cell Biology and Genetics, Cancer Genomics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
44
|
Pham P, Calabrese P, Park SJ, Goodman MF. Analysis of a single-stranded DNA-scanning process in which activation-induced deoxycytidine deaminase (AID) deaminates C to U haphazardly and inefficiently to ensure mutational diversity. J Biol Chem 2011; 286:24931-42. [PMID: 21572036 DOI: 10.1074/jbc.m111.241208] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Enzymes that scan single-stranded (ss) DNA have been studied far less extensively than those that scan double-stranded (ds) DNA. Activation-induced deoxycytidine deaminase (AID) deaminates C to U on single-stranded DNA to initiate immunological diversity. Except for processive deaminations favoring WRC hot motifs (W = (A/T) and R = (G/C)), the rules governing AID scanning remain vague. Here, we examine the patterns of deaminations on naked single-stranded DNA and during transcription of dsDNA by embedding cassettes containing combinations of motifs within a lacZ mutational reporter gene. Deaminations arise randomly, spatially distributed as isolated events and in clusters. The deamination frequency depends on the motif and its surrounding sequence. We propose a random walk model that fits the data well, having a deamination probability of 1-7% per motif encounter. We suggest that inefficient, haphazard deamination produces antibody diversity associated with AID.
Collapse
Affiliation(s)
- Phuong Pham
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2910, USA
| | | | | | | |
Collapse
|
45
|
DeSantis MC, Li JL, Wang YM. Protein sliding and hopping kinetics on DNA. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:021907. [PMID: 21405863 PMCID: PMC3683889 DOI: 10.1103/physreve.83.021907] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Indexed: 05/16/2023]
Abstract
Using Monte Carlo simulations, we deconvolved the sliding and hopping kinetics of GFP-LacI proteins on elongated DNA from their experimentally observed seconds-long diffusion trajectories. Our simulations suggest the following results: (i) in each diffusion trajectory, a protein makes on average hundreds of alternating slides and hops with a mean sliding time of several tens of milliseconds; (ii) sliding dominates the root-mean-square displacement of fast diffusion trajectories, whereas hopping dominates slow ones; (iii) flow and variations in salt concentration have limited effects on hopping kinetics, while in vivo DNA configuration is not expected to influence sliding kinetics; and (iv) the rate of occurrence for hops longer than 200 nm agrees with experimental data for EcoRV proteins.
Collapse
Affiliation(s)
- Michael C DeSantis
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
46
|
Gorman J, Plys AJ, Visnapuu ML, Alani E, Greene EC. Visualizing one-dimensional diffusion of eukaryotic DNA repair factors along a chromatin lattice. Nat Struct Mol Biol 2010; 17:932-8. [PMID: 20657586 DOI: 10.1038/nsmb.1858] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 05/20/2010] [Indexed: 11/09/2022]
Abstract
DNA-binding proteins survey genomes for targets using facilitated diffusion, which typically includes a one-dimensional (1D) scanning component for sampling local regions. Eukaryotic proteins must accomplish this task while navigating through chromatin. Yet it is unknown whether nucleosomes disrupt 1D scanning or eukaryotic DNA-binding factors can circumnavigate nucleosomes without falling off DNA. Here we use single-molecule microscopy in conjunction with nanofabricated curtains of DNA to show that the postreplicative mismatch repair protein complex Mlh1-Pms1 diffuses in 1D along DNA via a hopping/stepping mechanism and readily bypasses nucleosomes. This is the first experimental demonstration that a passively diffusing protein can traverse stationary obstacles. In contrast, Msh2-Msh6, a mismatch repair protein complex that slides while maintaining continuous contact with DNA, experiences a boundary upon encountering nucleosomes. These differences reveal important mechanistic constraints affecting intranuclear trafficking of DNA-binding proteins.
Collapse
Affiliation(s)
- Jason Gorman
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, New York, USA
| | | | | | | | | |
Collapse
|
47
|
Abstract
Replication of DNA is carried out by the replisome, a multiprotein complex responsible for the unwinding of parental DNA and the synthesis of DNA on each of the two DNA strands. The impressive speed and processivity with which the replisome duplicates DNA are a result of a set of tightly regulated interactions between the replication proteins. The transient nature of these protein interactions makes it challenging to study the dynamics of the replisome by ensemble-averaging techniques. This review describes single-molecule methods that allow the study of individual replication proteins and their functioning within the replisome. The ability to mechanically manipulate individual DNA molecules and record the dynamic behavior of the replisome while it duplicates DNA has led to an improved understanding of the molecular mechanisms underlying DNA replication.
Collapse
Affiliation(s)
- Antoine M van Oijen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
48
|
Minoura I, Katayama E, Sekimoto K, Muto E. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. Biophys J 2010; 98:1589-97. [PMID: 20409479 DOI: 10.1016/j.bpj.2009.12.4323] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 12/24/2009] [Accepted: 12/29/2009] [Indexed: 10/19/2022] Open
Abstract
Various proteins are known to exhibit one-dimensional Brownian motion along charged rodlike polymers, such as microtubules (MTs), actin, and DNA. The electrostatic interaction between the proteins and the rodlike polymers appears to be crucial for one-dimensional Brownian motion, although the underlying mechanism has not been fully clarified. We examined the interactions of positively-charged nanoparticles composed of polyacrylamide gels with MTs. These hydrophilic nanoparticles bound to MTs and displayed one-dimensional Brownian motion in a charge-dependent manner, which indicates that nonspecific electrostatic interaction is sufficient for one-dimensional Brownian motion. The diffusion coefficient decreased exponentially with an increasing particle charge (with the exponent being 0.10 kBT per charge), whereas the duration of the interaction increased exponentially (exponent of 0.22 kBT per charge). These results can be explained semiquantitatively if one assumes that a particle repeats a cycle of binding to and movement along an MT until it finally dissociates from the MT. During the movement, a particle is still electrostatically constrained in the potential valley surrounding the MT. This entire process can be described by a three-state model analogous to the Michaelis-Menten scheme, in which the two parameters of the equilibrium constant between binding and movement, and the rate of dissociation from the MT, are derived as a function of the particle charge density. This study highlights the possibility that the weak binding interactions between proteins and rodlike polymers, e.g., MTs, are mediated by a similar, nonspecific charge-dependent mechanism.
Collapse
Affiliation(s)
- Itsushi Minoura
- Laboratory for Molecular Biophysics, Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | | | | | | |
Collapse
|
49
|
Bogani F, Corredeira I, Fernandez V, Sattler U, Rutvisuttinunt W, Defais M, Boehmer PE. Association between the herpes simplex virus-1 DNA polymerase and uracil DNA glycosylase. J Biol Chem 2010; 285:27664-72. [PMID: 20601642 DOI: 10.1074/jbc.m110.131235] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herpes simplex virus-1 (HSV-1) is a large dsDNA virus that encodes its own DNA replication machinery and other enzymes involved in DNA transactions. We recently reported that the HSV-1 DNA polymerase catalytic subunit (UL30) exhibits apurinic/apyrimidinic and 5'-deoxyribose phosphate lyase activities. Moreover, UL30, in conjunction with the viral uracil DNA glycosylase (UL2), cellular apurinic/apyrimidinic endonuclease, and DNA ligase IIIalpha-XRCC1, performs uracil-initiated base excision repair. Base excision repair is required to maintain genome stability as a means to counter the accumulation of unusual bases and to protect from the loss of DNA bases. Here we show that the HSV-1 UL2 associates with the viral replisome. We identified UL2 as a protein that co-purifies with the DNA polymerase through numerous chromatographic steps, an interaction that was verified by co-immunoprecipitation and direct binding studies. The interaction between UL2 and the DNA polymerase is mediated through the UL30 subunit. Moreover, UL2 co-localizes with UL30 to nuclear viral prereplicative sites. The functional consequence of this interaction is that replication of uracil-containing templates stalls at positions -1 and -2 relative to the template uracil because of the fact that these are converted into non-instructional abasic sites. These findings support the existence of a viral repair complex that may be capable of replication-coupled base excision repair and further highlight the role of DNA repair in the maintenance of the HSV-1 genome.
Collapse
Affiliation(s)
- Federica Bogani
- Department of Basic Medical Sciences, The University of Arizona College of Medicine, Phoenix, Arizona 85004, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Many biological processes rely on the interaction of proteins with multiple DNA sites separated by thousands of base pairs. These long-range communication events can be driven by both the thermal motions of proteins and DNA, and directional protein motions that are rectified by ATP hydrolysis. The present review describes conflicting experiments that have sought to explain how the ATP-dependent Type III restriction-modification enzymes can cut DNA with two sites in an inverted repeat, but not DNA with two sites in direct repeat. We suggest that an ATPase activity may not automatically indicate a DNA translocase, but can alternatively indicate a molecular switch that triggers communication by thermally driven DNA sliding. The generality of this mechanism to other ATP-dependent communication processes such as mismatch repair is also discussed.
Collapse
|