1
|
Hang JT, Wang H, Wang BC, Xu GK. Anisotropic power-law viscoelasticity of living cells is dominated by cytoskeletal network structure. Acta Biomater 2024; 180:197-205. [PMID: 38599439 DOI: 10.1016/j.actbio.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
During physiological and pathological processes, cells experience significant morphological alterations with the re-arrangement of cytoskeletal filaments, resulting in anisotropic viscoelasticity. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. We investigate how cell shape affects its creep responses in longitudinal and perpendicular directions. It is shown that cells exhibit power-law rheological behavior in both longitudinal and perpendicular directions under step stress, with a more solid-like behavior along the longitudinal direction. We reveal that the cell volume and cytoskeletal filament orientation, which have been neglected in most existing models, play a critical role in regulating cellular anisotropic viscoelasticity. The stiffness of the cell in both directions increases linearly with increasing its aspect ratio, due to the decrease of cell volume. Moreover, the increase in the cell's aspect ratio produces the aggregation of cytoskeletal filaments along the longitudinal direction, resulting in higher stiffness in this direction. It is also shown that the increase in cell's aspect ratio corresponds to a process of cellular ordering, which can be quantitatively characterized by the orientational entropy of cytoskeletal filaments. In addition, we present a simple yet robust method to establish the relationship between cell's aspect ratio and cell volume, thus providing a theoretical framework to capture the anisotropic viscoelastic behavior of cells. This study suggests that the structure-based cell models may be further developed to investigate cellular rheological responses to external mechanical stimuli and may be extended to the tissue scale. STATEMENT OF SIGNIFICANCE: The viscoelastic behaviors of cells hold significant importance in comprehending the roles of mechanical forces in embryo development, invasion, and metastasis of cancer cells. Here, a structure-based cell model is proposed to study the anisotropic viscoelastic mechanical behaviors of living cells. Our study highlights the crucial role of previously neglected factors, such as cell volume and cytoskeletal filament orientation, in regulating cellular anisotropic viscoelasticity. We further propose an orientational entropy of cytoskeletal filaments to quantitatively characterize the ordering process of cells with increasing aspect ratios. Moreover, we derived the analytical interrelationships between cell aspect ratio, cell stiffness, cell volume, and cytoskeletal fiber orientation. This study provides a theoretical framework to describe the anisotropic viscoelastic mechanical behavior of cells.
Collapse
Affiliation(s)
- Jiu-Tao Hang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Huan Wang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bi-Cong Wang
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guang-Kui Xu
- Laboratory for Multiscale Mechanics and Medical Science, Department of Engineering Mechanics, SVL, School of Aerospace Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
2
|
Wu MC, Yu HW, Chen YQ, Ou MH, Serrano R, Huang GL, Wang YK, Lin KH, Fan YJ, Wu CC, Del Álamo JC, Chiou A, Chien S, Kuo JC. Early committed polarization of intracellular tension in response to cell shape determines the osteogenic differentiation of mesenchymal stromal cells. Acta Biomater 2023; 163:287-301. [PMID: 36328121 PMCID: PMC11389728 DOI: 10.1016/j.actbio.2022.10.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Within the heterogeneous tissue architecture, a comprehensive understanding of how cell shapes regulate cytoskeletal mechanics by adjusting focal adhesions (FAs) signals to correlate with the lineage commitment of mesenchymal stromal cells (MSCs) remains obscure. Here, via engineered extracellular matrices, we observed that the development of mature FAs, coupled with a symmetrical pattern of radial fiber bundles, appeared at the right-angle vertices in cells with square shape. While circular cells aligned the transverse fibers parallel to the cell edge, and moved them centripetally in a counter-clockwise direction, symmetrical bundles of radial fibers at the vertices of square cells disrupted the counter-clockwise swirling and bridged the transverse fibers to move centripetally. In square cells, the contractile force, generated by the myosin IIA-enriched transverse fibers, were concentrated and transmitted outwards along the symmetrical bundles of radial fibers, to the extracellular matrix through FAs, and thereby driving FA organization and maturation. The symmetrical radial fiber bundles concentrated the transverse fibers contractility inward to the linkage between the actin cytoskeleton and the nuclear envelope. The tauter cytoskeletal network adjusted the nuclear-actomyosin force balance to cause nuclear deformability and to increase nuclear translocation of the transcription co-activator YAP, which in turn modulated the switch in MSC commitment. Thus, FAs dynamically respond to geometric cues and remodel actin cytoskeletal network to re-distribute intracelluar tension towards the cell nucleus, and thereby controlling YAP mechanotransduction signaling in regulating MSC fate decision. STATEMENT OF SIGNIFICANCE: We decipher how cellular mechanics is self-organized depending on extracellular geometric features to correlate with mesenchymal stromal cell lineage commitment. In response to geometry constrains on cell morphology, symmetrical radial fiber bundles are assembled and clustered depending on the maturation state of focal adhesions and bridge with the transverse fibers, and thereby establishing the dynamic cytoskeletal network. Contractile force, generated by the myosin-IIA-enriched transverse fibers, is transmitted and dynamically drives the retrograde movement of the actin cytoskeletal network, which appropriately adjusts the nuclear-actomyosin force balance and deforms the cell nucleus for YAP mechano-transduction signaling in regulating mesenchymal stromal cell fate decision.
Collapse
Affiliation(s)
- Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Meng-Hsin Ou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Ricardo Serrano
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Guan-Lin Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kung-Hui Lin
- Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Chi-Chang Wu
- Department of Electronic Engineering, National Chin-Yi University of Technology, Taichung 411030, Taiwan
| | - Juan C Del Álamo
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA; Center for Cardiovascular Biology, University of Washington, School of Medicine, Seattle, WA, 98109, USA; Mechanical Engineering Department, University of Washington, Seattle, WA, 98195, USA
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Shu Chien
- Department of Bioengineering and Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan.
| |
Collapse
|
3
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
4
|
How do cells stiffen? Biochem J 2022; 479:1825-1842. [PMID: 36094371 DOI: 10.1042/bcj20210806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Cell stiffness is an important characteristic of cells and their response to external stimuli. In this review, we survey methods used to measure cell stiffness, summarize stimuli that alter cell stiffness, and discuss signaling pathways and mechanisms that control cell stiffness. Several pathological states are characterized by changes in cell stiffness, suggesting this property can serve as a potential diagnostic marker or therapeutic target. Therefore, we consider the effect of cell stiffness on signaling and growth processes required for homeostasis and dysfunction in healthy and pathological states. Specifically, the composition and structure of the cell membrane and cytoskeleton are major determinants of cell stiffness, and studies have identified signaling pathways that affect cytoskeletal dynamics both directly and by altered gene expression. We present the results of studies interrogating the effects of biophysical and biochemical stimuli on the cytoskeleton and other cellular components and how these factors determine the stiffness of both individual cells and multicellular structures. Overall, these studies represent an intersection of the fields of polymer physics, protein biochemistry, and mechanics, and identify specific mechanisms involved in mediating cell stiffness that can serve as therapeutic targets.
Collapse
|
5
|
Sahan AZ, Baday M, Patel CB. Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels 2022; 8:gels8080496. [PMID: 36005097 PMCID: PMC9407355 DOI: 10.3390/gels8080496] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/26/2022] [Accepted: 07/02/2022] [Indexed: 11/18/2022] Open
Abstract
Hydrogels are biocompatible polymers that are tunable to the system under study, allowing them to be widely used in medicine, bioprinting, tissue engineering, and biomechanics. Hydrogels are used to mimic the three-dimensional microenvironment of tissues, which is essential to understanding cell–cell interactions and intracellular signaling pathways (e.g., proliferation, apoptosis, growth, and survival). Emerging evidence suggests that the malignant properties of cancer cells depend on mechanical cues that arise from changes in their microenvironment. These mechanobiological cues include stiffness, shear stress, and pressure, and have an impact on cancer proliferation and invasion. The hydrogels can be tuned to simulate these mechanobiological tissue properties. Although interest in and research on the biomedical applications of hydrogels has increased in the past 25 years, there is still much to learn about the development of biomimetic hydrogels and their potential applications in biomedical and clinical settings. This review highlights the application of hydrogels in developing pre-clinical cancer models and their potential for translation to human disease with a focus on reviewing the utility of such models in studying glioblastoma progression.
Collapse
Affiliation(s)
- Ayse Z. Sahan
- Biomedical Sciences Graduate Program, Department of Pharmacology, School of Medicine, University California at San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA
| | - Murat Baday
- Department of Neurology and Neurological Sciences, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Precision Health and Integrated Diagnostics Center, School of Medicine, Stanford University, Stanford, CA 94305, USA
- Correspondence: (M.B.); (C.B.P.)
| | - Chirag B. Patel
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences (GSBS), Houston, TX 77030, USA
- Correspondence: (M.B.); (C.B.P.)
| |
Collapse
|
6
|
METTL3-dependent N 6-methyladenosine RNA modification mediates the atherogenic inflammatory cascades in vascular endothelium. Proc Natl Acad Sci U S A 2021; 118:2025070118. [PMID: 33579825 DOI: 10.1073/pnas.2025070118] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is characterized by the plaque formation that restricts intraarterial blood flow. The disturbed blood flow with the associated oscillatory stress (OS) at the arterial curvatures and branch points can trigger endothelial activation and is one of the risk factors of atherosclerosis. Many studies reported the mechanotransduction related to OS and atherogenesis; however, the transcriptional and posttranscriptional regulatory mechanisms of atherosclerosis remain unclear. Herein, we investigated the role of N6-methyladenosine (m6A) RNA methylation in mechanotransduction in endothelial cells (ECs) because of its important role in epitranscriptome regulation. We have identified m6A methyltransferase METTL3 as a responsive hub to hemodynamic forces and atherogenic stimuli in ECs. OS led to an up-regulation of METTL3 expression, accompanied by m6A RNA hypermethylation, increased NF-κB p65 Ser536 phosphorylation, and enhanced monocyte adhesion. Knockdown of METTL3 abrogated this OS-induced m6A RNA hypermethylation and other manifestations, while METTL3 overexpression led to changes resembling the OS effects. RNA-sequencing and m6A-enhanced cross-linking and immunoprecipitation (eCLIP) experiments revealed NLRP1 and KLF4 as two hemodynamics-related downstream targets of METTL3-mediated hypermethylation. The METTL3-mediated RNA hypermethylation up-regulated NLRP1 transcript and down-regulated KLF4 transcript through YTHDF1 and YTHDF2 m6A reader proteins, respectively. In the in vivo atherosclerosis model, partial ligation of the carotid artery led to plaque formation and up-regulation of METTL3 and NLRP1, with down-regulation of KLF4; knockdown of METTL3 via repetitive shRNA administration prevented the atherogenic process, NLRP3 up-regulation, and KLF4 down-regulation. Collectively, we have demonstrated that METTL3 serves a central role in the atherogenesis induced by OS and disturbed blood flow.
Collapse
|
7
|
Liao TT, Cheng WC, Yang CY, Chen YQ, Su SH, Yeh TY, Lan HY, Lee CC, Lin HH, Lin CC, Lu RH, Chiou AET, Jiang JK, Hwang WL. The microRNA-210-Stathmin1 Axis Decreases Cell Stiffness to Facilitate the Invasiveness of Colorectal Cancer Stem Cells. Cancers (Basel) 2021; 13:cancers13081833. [PMID: 33921319 PMCID: PMC8069838 DOI: 10.3390/cancers13081833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Metastasis of tumor cells is the leading cause of death in cancer patients. Concurrent therapy with surgical removal of primary and metastatic lesions is the main approach for cancer therapy. Currently, therapeutic resistant properties of cancer stem cells (CSCs) are known to drive malignant cancer progression, including metastasis. Our study aimed to identify molecular tools dedicated to the detection and treatment of CSCs. We confirmed that microRNA-210-3p (miR-210) was upregulated in colorectal stem-like cancer cells, which targeted stathmin1 (STMN1), to decrease cell elasticity for increasing mobility. We envision that strategies for softening cellular elasticity will reduce the onset of CSC-orientated metastasis. Abstract Cell migration is critical for regional dissemination and distal metastasis of cancer cells, which remain the major causes of poor prognosis and death in patients with colorectal cancer (CRC). Although cytoskeletal dynamics and cellular deformability contribute to the migration of cancer cells and metastasis, the mechanisms governing the migratory ability of cancer stem cells (CSCs), a nongenetic source of tumor heterogeneity, are unclear. Here, we expanded colorectal CSCs (CRCSCs) as colonospheres and showed that CRCSCs exhibited higher cell motility in transwell migration assays and 3D invasion assays and greater deformability in particle tracking microrheology than did their parental CRC cells. Mechanistically, in CRCSCs, microRNA-210-3p (miR-210) targeted stathmin1 (STMN1), which is known for inducing microtubule destabilization, to decrease cell elasticity in order to facilitate cell motility without affecting the epithelial–mesenchymal transition (EMT) status. Clinically, the miR-210-STMN1 axis was activated in CRC patients with liver metastasis and correlated with a worse clinical outcome. This study elucidates a miRNA-oriented mechanism regulating the deformability of CRCSCs beyond the EMT process.
Collapse
Affiliation(s)
- Tsai-Tsen Liao
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Wei-Chung Cheng
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, China Medical University, Taichung 406, Taiwan;
- Research Center for Cancer Biology, China Medical University, Taichung 406, Taiwan
| | - Chih-Yung Yang
- Department of Education and Research, Taipei City Hospital, Taipei 106, Taiwan;
- General Education Center, University of Taipei, Taipei 100, Taiwan
| | - Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Shu-Han Su
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Tzu-Yu Yeh
- Institution of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan; (S.-H.S.); (T.-Y.Y.)
| | - Hsin-Yi Lan
- Graduate Institute of Medical Science, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (T.-T.L.); (H.-Y.L.)
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Chih-Chan Lee
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Hung-Hsin Lin
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
| | - Chun-Chi Lin
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Lu
- Department of Surgery, Zhongxing Branch, Taipei City Hospital, Taipei 106, Taiwan;
| | - Arthur Er-Terg Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Jeng-Kai Jiang
- Division of Colon & Rectal Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| | - Wei-Lun Hwang
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei 112, Taiwan
- Correspondence: (J.-K.J.); (W.-L.H.); Tel.: +886-2-2826-7000 (ext. 65832) (W.-L.H.)
| |
Collapse
|
8
|
Ariga T, Tomishige M, Mizuno D. Experimental and theoretical energetics of walking molecular motors under fluctuating environments. Biophys Rev 2020; 12:503-510. [PMID: 32173796 DOI: 10.1007/s12551-020-00684-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/02/2020] [Indexed: 01/10/2023] Open
Abstract
Molecular motors are nonequilibrium open systems that convert chemical energy to mechanical work. Their energetics are essential for various dynamic processes in cells, but largely remain unknown because fluctuations typically arising in small systems prevent investigation of the nonequilibrium behavior of the motors in terms of thermodynamics. Recently, Harada and Sasa proposed a novel equality to measure the dissipation of nonequilibrium small systems. By utilizing this equality, we have investigated the nonequilibrium energetics of the single-molecule walking motor kinesin-1. The dissipation from kinesin movement was measured through the motion of an attached probe particle and its response to external forces, indicating that large hidden dissipation exists. In this short review, aiming to readers who are not familiar with nonequilibrium physics, we briefly introduce the theoretical basis of the dissipation measurement as well as our recent experimental results and mathematical model analysis and discuss the physiological implications of the hidden dissipation in kinesin. In addition, further perspectives on the efficiency of motors are added by considering their actual working environment: living cells.
Collapse
Affiliation(s)
- Takayuki Ariga
- Graduate School of Medicine, Yamaguchi University, Ube, Japan.
| | - Michio Tomishige
- Department of Physics and Mathematics, Aoyama Gakuin University, Sagamihara, Japan
| | - Daisuke Mizuno
- Department of Physics, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
He M, Martin M, Marin T, Chen Z, Gongol B. Endothelial mechanobiology. APL Bioeng 2020; 4:010904. [PMID: 32095737 PMCID: PMC7032971 DOI: 10.1063/1.5129563] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/19/2020] [Indexed: 12/11/2022] Open
Abstract
Lining the luminal surface of the vasculature, endothelial cells (ECs) are in direct
contact with and differentially respond to hemodynamic forces depending on their anatomic
location. Pulsatile shear stress (PS) is defined by laminar flow and is predominantly
located in straight vascular regions, while disturbed or oscillatory shear stress (OS) is
localized to branch points and bifurcations. Such flow patterns have become a central
focus of vascular diseases, such as atherosclerosis, because the focal distribution of
endothelial dysfunction corresponds to regions exposed to OS, whereas endothelial
homeostasis is maintained in regions defined by PS. Deciphering the mechanotransduction
events that occur in ECs in response to differential flow patterns has required the
innovation of multidisciplinary approaches in both in vitro and
in vivo systems. The results from these studies have identified a
multitude of shear stress-regulated molecular networks in the endothelium that are
implicated in health and disease. This review outlines the significance of scientific
findings generated in collaboration with Dr. Shu Chien.
Collapse
Affiliation(s)
- Ming He
- Department of Medicine, University of California, San Diego, California 92093, USA
| | - Marcy Martin
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Traci Marin
- Department of Health Sciences, Victor Valley College, Victorville, California 92395, USA
| | - Zhen Chen
- Department of Diabetes Complications and Metabolism, Beckman Research Institute, City of Hope, California 91010, USA
| | - Brendan Gongol
- Department of Medicine, University of California, San Diego, California 92093, USA
| |
Collapse
|
10
|
Efremov YM, Velay-Lizancos M, Weaver CJ, Athamneh AI, Zavattieri PD, Suter DM, Raman A. Anisotropy vs isotropy in living cell indentation with AFM. Sci Rep 2019; 9:5757. [PMID: 30962474 PMCID: PMC6453879 DOI: 10.1038/s41598-019-42077-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
The measurement of local mechanical properties of living cells by nano/micro indentation relies on the foundational assumption of locally isotropic cellular deformation. As a consequence of assumed isotropy, the cell membrane and underlying cytoskeleton are expected to locally deform axisymmetrically when indented by a spherical tip. Here, we directly observe the local geometry of deformation of membrane and cytoskeleton of different living adherent cells during nanoindentation with the integrated Atomic Force (AFM) and spinning disk confocal (SDC) microscope. We show that the presence of the perinuclear actin cap (apical stress fibers), such as those encountered in cells subject to physiological forces, causes a strongly non-axisymmetric membrane deformation during indentation reflecting local mechanical anisotropy. In contrast, axisymmetric membrane deformation reflecting mechanical isotropy was found in cells without actin cap: cancerous cells MDA-MB-231, which naturally lack the actin cap, and NIH 3T3 cells in which the actin cap is disrupted by latrunculin A. Careful studies were undertaken to quantify the effect of the live cell fluorescent stains on the measured mechanical properties. Using finite element computations and the numerical analysis, we explored the capability of one of the simplest anisotropic models – transverse isotropy model with three local mechanical parameters (longitudinal and transverse modulus and planar shear modulus) – to capture the observed non-axisymmetric deformation. These results help identifying which cell types are likely to exhibit non-isotropic properties, how to measure and quantify cellular deformation during AFM indentation using live cell stains and SDC, and suggest modelling guidelines to recover quantitative estimates of the mechanical properties of living cells.
Collapse
Affiliation(s)
- Yuri M Efremov
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA.,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA
| | | | - Cory J Weaver
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA.,University of South Carolina, Department of Biological Sciences, Jones PSC Building, 712 Main Street, room 517, Columbia, SC, 29208, USA
| | - Ahmad I Athamneh
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA
| | - Pablo D Zavattieri
- Lyles School of Civil Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Daniel M Suter
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA. .,Department of Biological Sciences, Purdue University, West Lafayette, Indiana, USA. .,Bindley Bioscience Center, Purdue University, West Lafayette, Indiana, USA. .,Purdue Institute for Integrative Neuroscience, West Lafayette, Indiana, USA.
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA. .,Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
11
|
Moerland CP, van IJzendoorn LJ, Prins MWJ. Rotating magnetic particles for lab-on-chip applications - a comprehensive review. LAB ON A CHIP 2019; 19:919-933. [PMID: 30785138 DOI: 10.1039/c8lc01323c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Magnetic particles are widely used in lab-on-chip and biosensing applications, because they have a high surface-to-volume ratio, they can be actuated with magnetic fields and many biofunctionalization options are available. The most well-known actuation method is to apply a magnetic field gradient which generates a translational force on the particles and allows separation of the particles from a suspension. A more recently developed magnetic actuation method is to exert torque on magnetic particles by a rotating magnetic field. Rotational actuation can be achieved with a field that is uniform in space and it allows for a precise control of torque, orientation, and angular velocity of magnetic particles in lab-on-chip devices. A wide range of studies have been performed with rotating MPs, demonstrating fluid mixing, concentration determination of biological molecules in solution, and characterization of structure and function of biomolecules at the single-molecule level. In this paper we give a comprehensive review of the historical development of MP rotation studies, including configurations for field generation, physical model descriptions, and biological applications. We conclude by sketching the scientific and technological developments that can be expected in the future in the field of rotating magnetic particles for lab-on-chip applications.
Collapse
Affiliation(s)
- C P Moerland
- Department of Applied Physics, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | |
Collapse
|
12
|
Gupta SK, Li Y, Guo M. Anisotropic mechanics and dynamics of a living mammalian cytoplasm. SOFT MATTER 2019; 15:190-199. [PMID: 30488938 DOI: 10.1039/c8sm01708e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During physiological processes, cells can undergo morphological changes that can result in a significant redistribution of the cytoskeleton causing anisotropic behavior. Evidence of anisotropy in cells under mechanical stimuli exists; however, the role of cytoskeletal restructuring resulting from changes in cell shape in mechanical anisotropy and its effects remain unclear. In the present study, we examine the role of cell morphology in inducing anisotropy in both intracellular mechanics and dynamics. We change the aspect ratio of cells by confining the cell width and measuring the mechanical properties of the cytoplasm using optical tweezers in both the longitudinal and transverse directions to quantify the degree of mechanical anisotropy. These active microrheology measurements are then combined with intracellular movement to calculate the intracellular force spectrum using force spectrum microscopy (FSM), from which the degree of anisotropy in dynamics and force can be quantified. We find that unrestricted cells with aspect ratio (AR) ∼1 are isotropic; however, when cells break symmetry, they exhibit significant anisotropy in cytoplasmic mechanics and dynamics.
Collapse
Affiliation(s)
- Satish Kumar Gupta
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
13
|
Biomechanical interplay between anisotropic re-organization of cells and the surrounding matrix underlies transition to invasive cancer spread. Sci Rep 2018; 8:14210. [PMID: 30242256 PMCID: PMC6155084 DOI: 10.1038/s41598-018-32010-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023] Open
Abstract
The root cause of cancer mortality and morbidity is the metastatic spread of the primary tumor, but underlying mechanisms remain elusive. Here we investigate biomechanical interactions that may accompany invasive spread of melanoma cells. We find that metastatic cells can exert considerable traction forces and modify local collagen organization within a 3D matrix. When this re-organization is mimicked using a nano-fabricated model of aligned extracellular matrix fibers, metastatic cells, including less invasive melanoma cells, were in turn induced to align, elongate and migrate, guided by the local ridge orientations. Strikingly, we found that this aligned migration of melanoma cells was accompanied by long-range regulation of cytoskeletal remodeling that show anisotropic stiffening in the direction of fiber orientation suggestive of a positive feedback between ECM fiber alignment and forces exerted by cancer cells. Taken together, our findings suggest that the invasive spread of cancer cells can be defined by complex interplay with the surrounding matrix, during which they both modify the matrix and use the matrix alignment as a persistent migration cue, leading to more extensive and rapid invasive spread.
Collapse
|
14
|
Chen YQ, Lan HY, Wu YC, Yang WH, Chiou A, Yang MH. Epithelial-mesenchymal transition softens head and neck cancer cells to facilitate migration in 3D environments. J Cell Mol Med 2018; 22:3837-3846. [PMID: 29726584 PMCID: PMC6050483 DOI: 10.1111/jcmm.13656] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 03/28/2018] [Indexed: 02/04/2023] Open
Abstract
The biological impact and signalling of epithelial‐mesenchymal transition (EMT) during cancer metastasis has been established. However, the changes in biophysical properties of cancer cells undergoing EMT remain elusive. Here, we measured, via video particle tracking microrheology, the intracellular stiffness of head and neck cancer cell lines with distinct EMT phenotypes. We also examined cells migration and invasiveness in different extracellular matrix architectures and EMT‐related signalling in these cell lines. Our results show that when cells were cultivated in three‐dimensional (3D) environments, the differences in cell morphology, migration speed, invasion capability and intracellular stiffness were more pronounced among different head and neck cancer cell lines with distinct EMT phenotypes than those cultivated in traditional plastic dishes and/or seated on top of a thick layer of collagen. An inverse correlation between intracellular stiffness and invasiveness in 3D culture was revealed. Knock‐down of the EMT regulator Twist1 or Snail or inhibition of Rac1 which is a downstream GTPase of Twist1 increased intracellular stiffness. These results indicate that the EMT regulators, Twist1 and Snail and the mediated signals play a critical role in reducing intracellular stiffness and enhancing cell migration in EMT to promote cancer cells invasion.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Yi Lan
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Chang Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wen-Hao Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Biophotonics and Molecular Imaging Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Cancer Progression Center of Excellence, National Yang-Ming University, Taipei, Taiwan.,Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Mak M, Anderson S, McDonough MC, Spill F, Kim JE, Boussommier-Calleja A, Zaman MH, Kamm RD. Integrated Analysis of Intracellular Dynamics of MenaINV Cancer Cells in a 3D Matrix. Biophys J 2017; 112:1874-1884. [PMID: 28494958 DOI: 10.1016/j.bpj.2017.03.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/20/2017] [Accepted: 03/27/2017] [Indexed: 01/17/2023] Open
Abstract
The intracellular environment is composed of a filamentous network that exhibits dynamic turnover of cytoskeletal components and internal force generation from molecular motors. Particle tracking microrheology enables a means to probe the internal mechanics and dynamics. Here, we develop an analytical model to capture the basic features of the active intracellular mechanical environment, including both thermal and motor-driven effects, and show consistency with a diverse range of experimental microrheology data. We further perform microrheology experiments, integrated with Brownian dynamics simulations of the active cytoskeleton, on metastatic breast cancer cells embedded in a three-dimensional collagen matrix with and without the presence of epidermal growth factor to probe the intracellular mechanical response in a physiologically mimicking scenario. Our results demonstrate that EGF stimulation can alter intracellular stiffness and power output from molecular motor-driven fluctuations in cells overexpressing an invasive isoform of the actin-associated protein Mena.
Collapse
Affiliation(s)
- Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| | | | - Meghan C McDonough
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Fabian Spill
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jessica E Kim
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | | | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Howard Hughes Medical Institute, Boston University, Boston, Massachusetts.
| | - Roger D Kamm
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
16
|
Abstract
Living cells and tissues experience physical forces and chemical stimuli in a human body. The process of converting mechanical forces into biochemical activities and gene expression is mechanochemical transduction or mechanotransduction. Significant advances have been made in understanding mechanotransduction at cellular and molecular levels over the last two decades. However, major challenges remain in elucidating how a living cell integrates signals from mechanotransduction with chemical signals to regulate gene expression and to generate coherent biological responses in living tissues in physiological conditions and diseases.
Collapse
Affiliation(s)
- Ning Wang
- School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China; Department of Mechanical Science and Engineering, College of Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
17
|
Rat Liver Enzyme Release Depends on Blood Flow-Bearing Physical Forces Acting in Endothelium Glycocalyx rather than on Liver Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1360565. [PMID: 28337244 PMCID: PMC5350326 DOI: 10.1155/2017/1360565] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 12/29/2016] [Indexed: 12/03/2022]
Abstract
We have found selective elevation of serum enzyme activities in rats subjected to partial hepatectomy (PH), apparently controlled by hemodynamic flow-bearing physical forces. Here, we assess the involvement of stretch-sensitive calcium channels and calcium mobilization in isolated livers, after chemical modifications of the endothelial glycocalyx and changing perfusion directionality. Inhibiting in vivo protein synthesis, we found that liver enzyme release is influenced by de novo synthesis of endothelial glycocalyx components, and released enzymes are confined into a liver “pool.” Moreover, liver enzyme release depended on extracellular calcium entry possibly mediated by stretch-sensitive calcium channels, and this endothelial-mediated mechanotransduction in liver enzyme release was also evidenced by modifying the glycocalyx carbohydrate components, directionality of perfusing flow rate, and the participation of nitric oxide (NO) and malondialdehyde (MDA), leading to modifications in the intracellular distribution of these enzymes mainly as nuclear enrichment of “mitochondrial” enzymes. In conclusion, the flow-induced shear stress may provide fine-tuned control of released hepatic enzymes through mediation by the endothelium glycocalyx, which provides evidence of a biological role of the enzyme release rather to be merely a biomarker for evaluating hepatotoxicity and liver damage, actually positively influencing progression of liver regeneration in mammals.
Collapse
|
18
|
Mak M, Spill F, Kamm RD, Zaman MH. Single-Cell Migration in Complex Microenvironments: Mechanics and Signaling Dynamics. J Biomech Eng 2016; 138:021004. [PMID: 26639083 DOI: 10.1115/1.4032188] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Indexed: 12/21/2022]
Abstract
Cells are highly dynamic and mechanical automata powered by molecular motors that respond to external cues. Intracellular signaling pathways, either chemical or mechanical, can be activated and spatially coordinated to induce polarized cell states and directional migration. Physiologically, cells navigate through complex microenvironments, typically in three-dimensional (3D) fibrillar networks. In diseases, such as metastatic cancer, they invade across physiological barriers and remodel their local environments through force, matrix degradation, synthesis, and reorganization. Important external factors such as dimensionality, confinement, topographical cues, stiffness, and flow impact the behavior of migrating cells and can each regulate motility. Here, we review recent progress in our understanding of single-cell migration in complex microenvironments.
Collapse
|
19
|
Bonakdar N, Gerum R, Kuhn M, Spörrer M, Lippert A, Schneider W, Aifantis KE, Fabry B. Mechanical plasticity of cells. NATURE MATERIALS 2016; 15:1090-4. [PMID: 27376682 DOI: 10.1038/nmat4689] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 06/01/2016] [Indexed: 05/06/2023]
Abstract
Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response. Moreover, the plastic deformation is a constant fraction of the total cell deformation and originates from bond ruptures within the cytoskeleton. A simple extension of the prevailing viscoelastic power-law response theory with a plastic element correctly predicts the cell behaviour under cyclic loading. Our findings show that plastic energy dissipation during cell deformation is tightly linked to elastic cytoskeletal stresses, which suggests the existence of an adaptive mechanism that protects the cell against mechanical damage.
Collapse
Affiliation(s)
- Navid Bonakdar
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
- Max-Planck Institute for the Science of Light, 91058 Erlangen, Germany
| | - Richard Gerum
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Michael Kuhn
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Marina Spörrer
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anna Lippert
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Werner Schneider
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Katerina E Aifantis
- Department of Civil Engineering and Engineering Mechanics, University of Arizona, Tucson, Arizona 85721, USA
| | - Ben Fabry
- Department of Physics, University of Erlangen-Nuremberg, 91054 Erlangen, Germany
| |
Collapse
|
20
|
Bio- chemical and physical characterizations of mesenchymal stromal cells along the time course of directed differentiation. Sci Rep 2016; 6:31547. [PMID: 27526936 PMCID: PMC4985743 DOI: 10.1038/srep31547] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 07/18/2016] [Indexed: 12/21/2022] Open
Abstract
Cellular biophysical properties are novel biomarkers of cell phenotypes which may reflect the status of differentiating stem cells. Accurate characterizations of cellular biophysical properties, in conjunction with the corresponding biochemical properties could help to distinguish stem cells from primary cells, cancer cells, and differentiated cells. However, the correlated evolution of these properties in the course of directed stem cells differentiation has not been well characterized. In this study, we applied video particle tracking microrheology (VPTM) to measure intracellular viscoelasticity of differentiating human mesenchymal stromal/stem cells (hMSCs). Our results showed that osteogenesis not only increased both elastic and viscous moduli, but also converted the intracellular viscoelasticity of differentiating hMSCs from viscous-like to elastic-like. In contrast, adipogenesis decreased both elastic and viscous moduli while hMSCs remained viscous-like during the differentiation. In conjunction with bio- chemical and physical parameters, such as gene expression profiles, cell morphology, and cytoskeleton arrangement, we demonstrated that VPTM is a unique approach to quantify, with high data throughput, the maturation level of differentiating hMSCs and to anticipate their fate decisions. This approach is well suited for time-lapsed study of the mechanobiology of differentiating stem cells especially in three dimensional physico-chemical biomimetic environments including porous scaffolds.
Collapse
|
21
|
Gómez-González M, Del Álamo JC. Two-point particle tracking microrheology of nematic complex fluids. SOFT MATTER 2016; 12:5758-79. [PMID: 27270816 PMCID: PMC6234986 DOI: 10.1039/c6sm00769d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Many biological and technological complex fluids exhibit tight microstructural alignment that confers them nematic mechanical properties. Among these we count liquid crystals and biopolymer networks, which are often available in microscopic amounts. However, current microrheological methods cannot measure the directional viscoelastic coefficients that appear in the constitutive relation of nematic complex fluids. This article presents directional two-point particle-tracking microrheology (D2PTM) - a novel microrheology technique to determine these coefficients. We establish the theoretical foundation for D2PTM by analyzing the motion of a probing microscopic particle embedded in a nematic complex fluid, and the mutual hydrodynamic interactions between pairs of distant particles. From this analysis, we generalize the formulation of two-point particle tracking microrheology for nematic complex fluids, and demonstrate that the new formulation provides sufficient information to fully characterize the anisotropic viscoelastic coefficients of such materials. We test D2PTM by simulating the Brownian motion of particles in nematic viscoelastic fluids with prescribed directional frequency-dependent shear moduli, showing that D2PTM accurately recovers the prescribed shear moduli. Furthermore, we experimentally validate D2PTM by applying it to a lyotropic nematic liquid crystal, and demonstrate that this new microrheology method provides results in agreement with dynamic light scattering measurements. Lastly, we illustrate the experimental application of the new technique to characterize nematic F-actin solutions. These experiments constitute the first microrheological measurement of the directional viscoelastic coefficients of an anisotropic soft material.
Collapse
Affiliation(s)
- Manuel Gómez-González
- Mechanical & Aerospace Engineering Department, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA.
| | - Juan C Del Álamo
- Mechanical & Aerospace Engineering Department, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0411, USA. and Institute for Engineering in Medicine, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0435, USA
| |
Collapse
|
22
|
Pedrigi RM, Poulsen CB, Mehta VV, Ramsing Holm N, Pareek N, Post AL, Kilic ID, Banya WAS, Dall'Ara G, Mattesini A, Bjørklund MM, Andersen NP, Grøndal AK, Petretto E, Foin N, Davies JE, Di Mario C, Fog Bentzon J, Erik Bøtker H, Falk E, Krams R, de Silva R. Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in D374Y-PCSK9 Hypercholesterolemic Minipigs. Circulation 2015; 132:1003-12. [PMID: 26179404 DOI: 10.1161/circulationaha.115.016270] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/06/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma. METHODS AND RESULTS D374Y-PCSK9 hypercholesterolemic minipigs (n=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately poststent, 19 weeks, and 34 weeks, and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially collected histological sections and coregistered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis, and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ≈3-fold higher downstream of the SMS than both upstream of the SMS and in the control artery (P<0.001). Advanced plaques were also primarily observed downstream of the SMS, in locations initially exposed to both low (P<0.002) and multidirectional (P<0.002) shear stress. Thin cap fibroatheroma regions demonstrated significantly lower shear stress that persisted over the duration of the study in comparison with other plaque types (P<0.005). CONCLUSIONS These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of thin cap fibroatheroma.
Collapse
Affiliation(s)
- Ryan M Pedrigi
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Christian Bo Poulsen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Vikram V Mehta
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels Ramsing Holm
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nilesh Pareek
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anouk L Post
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ismail Dogu Kilic
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Winston A S Banya
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Gianni Dall'Ara
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Alessio Mattesini
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Martin M Bjørklund
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Niels P Andersen
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Anna K Grøndal
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Enrico Petretto
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Nicolas Foin
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Justin E Davies
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Carlo Di Mario
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Jacob Fog Bentzon
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Hans Erik Bøtker
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Erling Falk
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Rob Krams
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.)
| | - Ranil de Silva
- From Department of Bioengineering, Imperial College London, United Kingdom (R.M.P., V.V.M., A.L.P., R.K.); Institute of Clinical Medicine, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., E.F.); Department of Cardiology, Aarhus University Hospital, Denmark (C.B.P., N.R.H., M.M.B., N.P.A., A.K.G., J.F.B., H.E.B., E.F.); NIHR Cardiovascular Biomedical Research Unit, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (I.D.K., W.A.S.B., G.D.'A., A.M., C.D.M., R.d.S.); Graduate Medical School, Duke-National University of Singapore, Singapore (E.P.); National Heart Centre, NHRIS, Singapore (N.F.); National Heart and Lung Institute, Imperial College London, United Kingdom (C.D.M., R.d.S.); and Institute of Cardiovascular Medicine and Science, Royal Brompton and Harefield NHS Foundation Trust, London, United Kingdom (C.D.M., R.d.S.).
| |
Collapse
|
23
|
Stem cells rejuvenate radiation-impaired vasculogenesis in murine distraction osteogenesis. Plast Reconstr Surg 2015; 135:799-806. [PMID: 25415276 DOI: 10.1097/prs.0000000000001024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Radiotherapy is known to be detrimental to bone and soft-tissue repair. Bone marrow stromal cells have been shown to enhance bone regeneration during distraction osteogenesis following radiation therapy. The authors posit that transplanted bone marrow stromal cells will significantly augment the mandibular vascularity devastated by radiation therapy. METHODS Nineteen male Lewis rats were split randomly into three groups: distraction osteogenesis only (n = 5), radiation therapy plus distraction osteogenesis (n = 7), and radiation therapy plus distraction osteogenesis with intraoperative placement of 2 million bone marrow stromal cells (n = 7). A mandibular osteotomy was performed, and an external fixator device was installed. From postoperative days 4 through 12, rats underwent a gradual 5.1-mm distraction followed by a 28-day consolidation period. On postoperative day 40, Microfil was perfused into the vasculature and imaging commenced. Vascular radiomorphometric values were calculated for regions of interest. An analysis of variance with post hoc Tukey or Games-Howell tests was used, dependent on data homogeneity. RESULTS Stereologic analysis indicated significant remediation in vasculature in the bone marrow stromal cell group compared with the radiation therapy/distraction osteogenesis group. Each of five metrics idicated significant improvements from radiation therapy/distraction osteogenesis to the bone marrow stromal cell group, with no difference between the bone marrow stromal cell group and the distraction osteogenesis group. CONCLUSIONS Bone marrow stromal cells used together with distraction osteogenesis can rejuvenate radiation-impaired vasculogenesis in the mandible, reversing radiation therapy-induced isotropy and creating a robust vascular network. Bone marrow stromal cells may offer clinicians an alternative reconstructive modality that could improve the lifestyle of patients with hypovascular bone.
Collapse
|
24
|
Teng D, Pannell JS, Rennert RC, Li J, Li YS, Wong VW, Chien S, Khalessi AA. Endothelial Trauma From Mechanical Thrombectomy in Acute Stroke. Stroke 2015; 46:1099-106. [PMID: 25712942 DOI: 10.1161/strokeaha.114.007494] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dayu Teng
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Jeffrey Scott Pannell
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Robert C. Rennert
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Jieying Li
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Yi-Shuan Li
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Victor W. Wong
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Shu Chien
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Alexander A. Khalessi
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| |
Collapse
|
25
|
Yu HW, Chen YQ, Huang CM, Liu CY, Chiou A, Wang YK, Tang MJ, Kuo JC. β-PIX controls intracellular viscoelasticity to regulate lung cancer cell migration. J Cell Mol Med 2015; 19:934-47. [PMID: 25683605 PMCID: PMC4420597 DOI: 10.1111/jcmm.12441] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 08/22/2014] [Indexed: 01/08/2023] Open
Abstract
Cancer metastasis occurs via a progress involving abnormal cell migration. Cell migration, a dynamic physical process, is controlled by the cytoskeletal system, which includes the dynamics of actin organization and cellular adhesive organelles, focal adhesions (FAs). However, it is not known whether the organization of actin cytoskeletal system has a regulatory role in the physiologically relevant aspects of cancer metastasis. In the present studies, it was found that lung adenocarcinoma cells isolated from the secondary lung cancer of the lymph nodes, H1299 cells, show specific dynamics in terms of the actin cytoskeleton and FAs. This results in a higher level of mobility and this is regulated by an immature FA component, β-PIX (PAK-interacting exchange factor-β). In H1299 cells, β-PIX's activity was found not to be down-regulated by sequestration onto stress fibres, as the cells did not bundle actin filaments into stress fibres. Thus, β-PIX mainly remained localized at FAs, which allowed maturation of nascent adhesions into focal complexes; this resulted in actin polymerization, increased actin network integrity, changes in the intracellular microrheology at the peripheral of the cell, and cell polarity, which in turn regulated cell migration. Perturbation of β-PIX caused an inhibition of cell migration, including migration velocity, accumulated distance and directional persistence. Our results demonstrate the importance of β-PIX to the regulation of high mobility of lung adenocarcinoma cell line H1299 and that this occurs via regulation of FA dynamics, changes in actin cytoskeleton organization and cell polarity.
Collapse
Affiliation(s)
- Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Mak M, Kamm RD, Zaman MH. Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments. PLoS Comput Biol 2014; 10:e1003959. [PMID: 25412385 PMCID: PMC4238946 DOI: 10.1371/journal.pcbi.1003959] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/01/2014] [Indexed: 01/01/2023] Open
Abstract
Dimensionality is a fundamental component that can have profound implications on the characteristics of physical systems. In cell biology, however, the majority of studies on cell physical properties, from rheology to force generation to migration, have been performed on 2D substrates, and it is not clear how a more realistic 3D environment influences cell properties. Here, we develop an integrated approach and demonstrate the combination of mitochondria-tracking microrheology, microfluidics, and Brownian dynamics simulations to explore the impact of dimensionality on intracellular mechanics and on the effects of intracellular disruption. Additionally, we consider both passive thermal and active motor-driven processes within the cell and demonstrate through modeling how active internal fluctuations are modulated via dimensionality. Our results demonstrate that metastatic breast cancer cells (MDA-MB-231) exhibit more solid-like internal motions in 3D compared to 2D, and actin network disruption via Cytochalasin D has a more pronounced effect on internal cell fluctuations in 2D. Our computational results and modeling show that motor-induced active stress fluctuations are enhanced in 2D, leading to increased local intracellular particle fluctuations and apparent fluid-like behavior. Biomechanical properties at the cellular and subcellular levels are important in providing proper biological functions, from cell migratory capabilities to intracellular transport. Deregulation in these properties can lead to disease states such as cancer metastasis. We develop and demonstrate an integrated experimental and computational approach to study intracellular mechanics. We demonstrate that a key environmental factor, dimensionality, plays a significant role in modulating intracellular mechanical behavior. This is important as typical cell biology and mechanics experiments are performed on 2D substrates, which do not capture the physiological features of 3D matrices and may not induce physiologically accurate cell properties. We further develop an effective temperature model to describe how dimensionality changes intracellular particle motion by altering the activity of molecular motors.
Collapse
Affiliation(s)
- Michael Mak
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Roger D. Kamm
- Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail: (RDK); (MHZ)
| | - Muhammad H. Zaman
- Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail: (RDK); (MHZ)
| |
Collapse
|
27
|
Chen YQ, Su PT, Chen YH, Wei MT, Huang CH, Osterday K, del Álamo JC, Syu WJ, Chiou A. The effect of enterohemorrhagic E. coli infection on the cell mechanics of host cells. PLoS One 2014; 9:e112137. [PMID: 25369259 PMCID: PMC4219835 DOI: 10.1371/journal.pone.0112137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/13/2014] [Indexed: 11/18/2022] Open
Abstract
Enterohaemorrhagic E. coli (EHEC) is a type of human pathogenic bacteria. The main virulence characteristics of EHEC include the formation of attaching and effacing lesions (A/E lesions) and the production of one or more Shiga-like toxins, which may induce human uremic complications. When EHEC infects host cells, it releases translocated intimin receptor (Tir) and effector proteins inside the host cells, inducing the rearrangement and accumulation of the F-actin cytoskeleton, a phenotype leading to the formation of pedestals in the apical cell surface, and the growth of stress fibers at the base of the cells. To examine the effect of EHEC infection on cell mechanics, we carried out a series of experiments to examine HeLa cells with and without EHEC infection to quantify the changes in (1) focal adhesion area, visualized by anti-vinculin staining; (2) the distribution and orientation of stress fibers; and (3) the intracellular viscoelasticity, via directional video particle tracking microrheology. Our results indicated that in EHEC-infected HeLa cells, the focal adhesion area increased and the actin stress fibers became thicker and more aligned. The cytoskeletal reorganization induced by EHEC infection mediated a dramatic increase in the cytoplasmic elastic shear modulus of the infected cells, and a transition in the viscoelastic behavior of the cells from viscous-like to elastic-like. These changes in mechanobiological characteristics might modulate the attachments between EHEC and the host cell to withstand exfoliation, and between the host cell and the extracellular matrix, and might also alter epithelial integrity.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Pin-Tzu Su
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Yu-Hsuan Chen
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ming-Tzo Wei
- Bioengineering Program, Lehigh University, Bethlehem, PA, United States of America
| | - Chien-Hsiu Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Kathryn Osterday
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, San Diego, California, United States of America
- Institute of Engineering in Medicine, University of California San Diego, San Diego, California, United States of America
- * E-mail: (JCA); (WJS); (AC)
| | - Wan-Jr Syu
- Institute of Microbiology & Immunology, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| | - Arthur Chiou
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Biophotonics & Molecular Imaging Research Center (BMIRC), National Yang-Ming University, Taipei, Taiwan, Republic of China
- * E-mail: (JCA); (WJS); (AC)
| |
Collapse
|
28
|
Moeendarbary E, Harris AR. Cell mechanics: principles, practices, and prospects. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2014; 6:371-88. [PMID: 25269160 PMCID: PMC4309479 DOI: 10.1002/wsbm.1275] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cells generate and sustain mechanical forces within their environment as part of their normal physiology. They are active materials that can detect mechanical stimulation by the activation of mechanosensitive signaling pathways, and respond to physical cues through cytoskeletal re-organization and force generation. Genetic mutations and pathogens that disrupt the cytoskeletal architecture can result in changes to cell mechanical properties such as elasticity, adhesiveness, and viscosity. On the other hand, perturbations to the mechanical environment can affect cell behavior. These transformations are often a hallmark and symptom of a variety of pathologies. Consequently, there are now a myriad of experimental techniques and theoretical models adapted from soft matter physics and mechanical engineering to characterize cell mechanical properties. Interdisciplinary research combining modern molecular biology with advanced cell mechanical characterization techniques now paves the way for furthering our fundamental understanding of cell mechanics and its role in development, physiology, and disease. We describe a generalized outline for measuring cell mechanical properties including loading protocols, tools, and data interpretation.We summarize recent advances in the field and explain how cell biomechanics research can be adopted by physicists, engineers, biologists, and clinicians alike.
Collapse
Affiliation(s)
- Emad Moeendarbary
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Hughes Hall, University of CambridgeCambridge, UK
| | - Andrew R Harris
- Department of Bioengineering, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|
29
|
Guo M, Ehrlicher AJ, Jensen MH, Renz M, Moore JR, Goldman RD, Lippincott-Schwartz J, Mackintosh FC, Weitz DA. Probing the stochastic, motor-driven properties of the cytoplasm using force spectrum microscopy. Cell 2014; 158:822-832. [PMID: 25126787 PMCID: PMC4183065 DOI: 10.1016/j.cell.2014.06.051] [Citation(s) in RCA: 335] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 04/28/2014] [Accepted: 06/29/2014] [Indexed: 01/17/2023]
Abstract
Molecular motors in cells typically produce highly directed motion; however, the aggregate, incoherent effect of all active processes also creates randomly fluctuating forces, which drive diffusive-like, nonthermal motion. Here, we introduce force-spectrum-microscopy (FSM) to directly quantify random forces within the cytoplasm of cells and thereby probe stochastic motor activity. This technique combines measurements of the random motion of probe particles with independent micromechanical measurements of the cytoplasm to quantify the spectrum of force fluctuations. Using FSM, we show that force fluctuations substantially enhance intracellular movement of small and large components. The fluctuations are three times larger in malignant cells than in their benign counterparts. We further demonstrate that vimentin acts globally to anchor organelles against randomly fluctuating forces in the cytoplasm, with no effect on their magnitude. Thus, FSM has broad applications for understanding the cytoplasm and its intracellular processes in relation to cell physiology in healthy and diseased states.
Collapse
Affiliation(s)
- Ming Guo
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Allen J Ehrlicher
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Mikkel H Jensen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physiology and Biophysics, Boston University, Boston, MA 02118, USA
| | - Malte Renz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, MA 02118, USA
| | - Robert D Goldman
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jennifer Lippincott-Schwartz
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
30
|
Huang IH, Hsiao CT, Wu JC, Shen RF, Liu CY, Wang YK, Chen YC, Huang CM, del Álamo JC, Chang ZF, Tang MJ, Khoo KH, Kuo JC. GEF-H1 controls focal adhesion signaling that regulates mesenchymal stem cell lineage commitment. J Cell Sci 2014; 127:4186-200. [PMID: 25107365 PMCID: PMC4179489 DOI: 10.1242/jcs.150227] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Focal adhesions (FAs) undergo maturation that culminates in size and composition changes that modulate adhesion, cytoskeleton remodeling and differentiation. Although it is well recognized that stimuli for osteogenesis of mesenchymal stem cells (MSCs) drive FA maturation, actin organization and stress fiber polarization, the extent to which FA-mediated signals regulated by the FA protein composition specifies MSC commitment remains largely unknown. Here, we demonstrate that, upon dexamethasone (osteogenic induction) treatment, guanine nucleotide exchange factor H1 (GEF-H1, also known as Rho guanine nucleotide exchange factor 2, encoded by ARHGEF2) is significantly enriched in FAs. Perturbation of GEF-H1 inhibits FA formation, anisotropic stress fiber orientation and MSC osteogenesis in an actomyosin-contractility-independent manner. To determine the role of GEF-H1 in MSC osteogenesis, we explore the GEF-H1-modulated FA proteome that reveals non-muscle myosin-II heavy chain-B (NMIIB, also known as myosin-10, encoded by MYH10) as a target of GEF-H1 in FAs. Inhibition of targeting NMIIB into FAs suppresses FA formation, stress fiber polarization, cell stiffness and osteogenic commitments in MSCs. Our data demonstrate a role for FA signaling in specifying MSC commitment.
Collapse
Affiliation(s)
- I-Husan Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Cheng-Te Hsiao
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jui-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Rong-Fong Shen
- Proteomics and Analytical Biochemistry Unit, Research Resources Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Ching-Yi Liu
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan Department of Physiology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yang-Kao Wang
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan 70101, Taiwan Center for Neurotrauma and Neuroregeneration, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen Chen
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chi-Ming Huang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Juan C del Álamo
- Institute of Engineering in Medicine, University of California at San Diego, La Jolla, CA 92093, USA Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093, USA
| | - Zee-Fen Chang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ming-Jer Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan Department of Physiology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
31
|
Roossien DH, Lamoureux P, Miller KE. Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation. J Cell Sci 2014; 127:3593-602. [PMID: 24951117 DOI: 10.1242/jcs.152611] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their movement through 'stop-and-go' transport, but whether these forces influence the bulk translocation of long microtubules embedded in the cytoskeletal meshwork has not been tested. Here, we use both function-blocking antibodies targeted to the dynein intermediate chain and the pharmacological dynein inhibitor ciliobrevin D to ask whether dynein forces contribute to en bloc cytoskeleton translocation. By tracking docked mitochondria as fiducial markers for bulk cytoskeleton movements, we find that translocation is reduced after dynein disruption. We then directly measure net force generation after dynein disruption and find a dramatic increase in axonal tension. Taken together, these data indicate that dynein generates forces that push the cytoskeletal meshwork forward en masse during axonal elongation.
Collapse
Affiliation(s)
- Douglas H Roossien
- Cell and Molecular Biology Program, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Phillip Lamoureux
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| | - Kyle E Miller
- Department of Zoology, Michigan State University, 288 Farm Ln Room 336, East Lansing, MI 48824, USA
| |
Collapse
|
32
|
Hu B, Dobson J, El Haj AJ. Control of smooth muscle α-actin (SMA) up-regulation in HBMSCs using remote magnetic particle mechano-activation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:45-55. [DOI: 10.1016/j.nano.2013.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 06/21/2013] [Accepted: 06/30/2013] [Indexed: 12/21/2022]
|
33
|
Nadkarni SK. Optical measurement of arterial mechanical properties: from atherosclerotic plaque initiation to rupture. JOURNAL OF BIOMEDICAL OPTICS 2013; 18:121507. [PMID: 24296995 PMCID: PMC4696609 DOI: 10.1117/1.jbo.18.12.121507] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/10/2013] [Indexed: 05/19/2023]
Abstract
During the pathogenesis of coronary atherosclerosis, from lesion initiation to rupture, arterial mechanical properties are altered by a number of cellular, molecular, and hemodynamic processes. There is growing recognition that mechanical factors may actively drive vascular cell signaling and regulate atherosclerosis disease progression. In advanced plaques, the mechanical properties of the atheroma influence stress distributions in the fibrous cap and mediate plaque rupture resulting in acute coronary events. This review paper explores current optical technologies that provide information on the mechanical properties of arterial tissue to advance our understanding of the mechanical factors involved in atherosclerosis development leading to plaque rupture. The optical approaches discussed include optical microrheology and traction force microscopy that probe the mechanical behavior of single cell and extracellular matrix components, and intravascular imaging modalities including laser speckle rheology, optical coherence elastography, and polarization-sensitive optical coherence tomography to measure the mechanical properties of advanced coronary lesions. Given the wealth of information that these techniques can provide, optical imaging modalities are poised to play an increasingly significant role in elucidating the mechanical aspects of coronary atherosclerosis in the future.
Collapse
Affiliation(s)
- Seemantini K. Nadkarni
- Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114
- Address all correspondence to: Seemantini K. Nadkarni, Massachusetts General Hospital, Harvard Medical School, Wellman Center for Photomedicine, Boston, Massachusetts 02114. Tel: (617)-724-1381; Fax: (617)-7264103; E-mail:
| |
Collapse
|
34
|
Zheng W, Jiang B, Wang D, Zhang W, Wang Z, Jiang X. A microfluidic flow-stretch chip for investigating blood vessel biomechanics. LAB ON A CHIP 2012; 12:3441-3450. [PMID: 22820518 DOI: 10.1039/c2lc40173h] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This microfluidic flow-stretch chip integrates fluid shear stress (FSS) and cyclic stretch (CS), two major mechanical stimulations in cardiovascular systems, for cultured cells. The model chip can deliver FSS and CS simultaneously or independently to vascular cells to mimic the haemodynamic microenvironment of blood vessels in vivo. By imposing FSS-only, CS-only, and FSS+CS stimulation on rat mesenchymal stem cells and human umbilical vein endothelial cells, we found the alignment of the cellular stress fibers varied with cell type and the type of stimulation. The flow-stretch chip is a reliable tool for simulating the haemodynamic microenvironment.
Collapse
Affiliation(s)
- Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience & Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | | | | | | | | | | |
Collapse
|
35
|
Asnacios A, Hamant O. The mechanics behind cell polarity. Trends Cell Biol 2012; 22:584-91. [PMID: 22980034 DOI: 10.1016/j.tcb.2012.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 08/10/2012] [Accepted: 08/12/2012] [Indexed: 01/12/2023]
Abstract
The generation of cell polarity is one of the most intriguing symmetry-breaking events in biology. It is involved in almost all physiological and developmental processes and, despite the differences between plant and animal cell structures, cell polarity is generated by a similar core mechanism that comprises the extracellular matrix (ECM), Rho GTPase, the cytoskeleton, and the membranes. Several recent articles show that mechanical factors also contribute to the establishment and robustness of cell polarity, and the different molecular actors of cell polarity are now viewed as integrators of both biochemical and mechanical signals. Although cell polarity remains a complex process, some level of functional convergence between plants and animals is revealed. Following comparative presentation of cell polarity in plants and animals, we will discuss the theoretical background behind the role of mechanics in polarity and the relevant experimental tests, focusing on ECM anchorage, cytoskeleton behavior, and membrane tension.
Collapse
Affiliation(s)
- Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, Unité Mixte de Recherche 7057, Centre National de la Recherche Scientifique (CNRS) and Université Paris-Diderot (Paris 7), CC7056-10, Rue A. Domont et L. Duquet, 75205 Paris Cedex 13, France
| | | |
Collapse
|
36
|
Zheng W, Xie Y, Zhang W, Wang D, Ma W, Wang Z, Jiang X. Fluid flow stress induced contraction and re-spread of mesenchymal stem cells: a microfluidic study. Integr Biol (Camb) 2012; 4:1102-11. [PMID: 22814412 DOI: 10.1039/c2ib20094e] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Mesenchymal stem cells (MSCs), the multipotent progenitor cells, are sensitive to fluid shear stress (FSS). MSCs can migrate through the blood stream by intravasation into the circulatory system to transfer to distant positions through the blood stream. During the transferring process, MSCs may differentiate into cells of corresponding tissues for repair, or remain undifferentiated and initiate ectopic tissue formation, lipid accumulation, or calcification, which are closely related to the pathology of atherosclerosis. However, how the MSCs sense and respond to vascular FSS stimulation and lead to subsequent biological effects remains elusive. In this study, by using an in situ time-lapse microfluidic cell culture and observation system, we found that rat mesenchymal stem cells (rMSCs) presented a contraction and re-spread (CRS) process when they were initially subjected to a physiological FSS (1.3 Pa). Our subsequent studies demonstrated that integrin and cilia played key roles in sensing FSS. Calcium, F-actin, and Rho-kinase were key molecules in the mechanotransduction of the CRS of the rMSCs. Our study revealed the immediate response of the rMSCs to FSS. It will be helpful for the understanding of MSC-related tissue repair and the role of MSCs in the initiation of atherosclerosis.
Collapse
Affiliation(s)
- Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience & Technology, 11 ZhongGuanCun BeiYiTiao, Beijing 100190, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Kim TN, Goodwill PW, Chen Y, Conolly SM, Schaffer CB, Liepmann D, Wang RA. Line-scanning particle image velocimetry: an optical approach for quantifying a wide range of blood flow speeds in live animals. PLoS One 2012; 7:e38590. [PMID: 22761686 PMCID: PMC3383695 DOI: 10.1371/journal.pone.0038590] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/10/2012] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The ability to measure blood velocities is critical for studying vascular development, physiology, and pathology. A key challenge is to quantify a wide range of blood velocities in vessels deep within living specimens with concurrent diffraction-limited resolution imaging of vascular cells. Two-photon laser scanning microscopy (TPLSM) has shown tremendous promise in analyzing blood velocities hundreds of micrometers deep in animals with cellular resolution. However, current analysis of TPLSM-based data is limited to the lower range of blood velocities and is not adequate to study faster velocities in many normal or disease conditions. METHODOLOGY/PRINCIPAL FINDINGS We developed line-scanning particle image velocimetry (LS-PIV), which used TPLSM data to quantify peak blood velocities up to 84 mm/s in live mice harboring brain arteriovenous malformation, a disease characterized by high flow. With this method, we were able to accurately detect the elevated blood velocities and exaggerated pulsatility along the abnormal vascular network in these animals. LS-PIV robustly analyzed noisy data from vessels as deep as 850 µm below the brain surface. In addition to analyzing in vivo data, we validated the accuracy of LS-PIV up to 800 mm/s using simulations with known velocity and noise parameters. CONCLUSIONS/SIGNIFICANCE To our knowledge, these blood velocity measurements are the fastest recorded with TPLSM. Partnered with transgenic mice carrying cell-specific fluorescent reporters, LS-PIV will also enable the direct in vivo correlation of cellular, biochemical, and hemodynamic parameters in high flow vascular development and diseases such as atherogenesis, arteriogenesis, and vascular anomalies.
Collapse
Affiliation(s)
- Tyson N. Kim
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Patrick W. Goodwill
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Yeni Chen
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Steven M. Conolly
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Chris B. Schaffer
- Department of Biomedical Engineering, Cornell University, Ithaca, New York, United States of America
| | - Dorian Liepmann
- Department of Bioengineering, University of California, Berkeley, California, United States of America
| | - Rong A. Wang
- Laboratory for Accelerated Vascular Research, Division of Vascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
38
|
Roles of cell confluency and fluid shear in 3-dimensional intracellular forces in endothelial cells. Proc Natl Acad Sci U S A 2012; 109:11110-5. [PMID: 22665785 DOI: 10.1073/pnas.1207326109] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We use a novel 3D inter-/intracellular force microscopy technique based on 3D traction force microscopy to measure the cell-cell junctional and intracellular tensions in subconfluent and confluent vascular endothelial cell (EC) monolayers under static and shear flow conditions. We found that z-direction cell-cell junctional tensions are higher in confluent EC monolayers than those in subconfluent ECs, which cannot be revealed in the previous 2D methods. Under static conditions, subconfluent cells are under spatially non-uniform tensions, whereas cells in confluent monolayers are under uniform tensions. The shear modulations of EC cytoskeletal remodeling, extracellular matrix (ECM) adhesions, and cell-cell junctions lead to significant changes in intracellular tensions. When a confluent monolayer is subjected to flow shear stresses with a high forward component comparable to that seen in the straight part of the arterial system, the intracellular and junction tensions preferentially increase along the flow direction over time, which may be related to the relocation of adherens junction proteins. The increases in intracellular tensions are shown to be a result of chemo-mechanical responses of the ECs under flow shear rather than a direct result of mechanical loading. In contrast, the intracellular tensions do not show a preferential orientation under oscillatory flow with a very low mean shear. These differences in the directionality and magnitude of intracellular tensions may modulate translation and transcription of ECs under different flow patterns, thus affecting their susceptibility for atherogenesis.
Collapse
|
39
|
Yan C, Mackay ME, Czymmek K, Nagarkar RP, Schneider JP, Pochan DJ. Injectable solid peptide hydrogel as a cell carrier: effects of shear flow on hydrogels and cell payload. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6076-87. [PMID: 22390812 PMCID: PMC4196894 DOI: 10.1021/la2041746] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
β-hairpin peptide-based hydrogels are a class of injectable solid hydrogels that can deliver encapsulated cells or molecular therapies to a target site via syringe or catheter injection as a carrier material. These physical hydrogels can shear-thin and consequently flow as a low-viscosity material under a sufficient shear stress but immediately recover back into a solid upon removal of the stress, allowing them to be injected as preformed gel solids. Hydrogel behavior during flow was studied in a cylindrical capillary geometry that mimicked the actual situation of injection through a syringe needle in order to quantify effects of shear-thin injection delivery on hydrogel flow behavior and encapsulated cell payloads. It was observed that all β-hairpin peptide hydrogels investigated displayed a promising flow profile for injectable cell delivery: a central wide plug flow region where gel material and cell payloads experienced little or no shear rate, and a narrow shear zone close to the capillary wall where gel and cells were subject to shear deformation. The width of the plug flow region was found to be weakly dependent on hydrogel rigidity and flow rate. Live-dead assays were performed on encapsulated MG63 cells 3 h after injection flow and revealed that shear-thin delivery through the capillary had little impact on cell viability and the spatial distribution of encapsulated cell payloads. These observations help us to fundamentally understand how the gels flow during injection through a thin catheter and how they immediately restore mechanically and morphologically relative to preflow, static gels.
Collapse
Affiliation(s)
- Congqi Yan
- Department of Materials Science and Engineering and Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | | | |
Collapse
|
40
|
Probing the cell membrane by magnetic particle actuation and Euler angle tracking. Biophys J 2012; 102:698-708. [PMID: 22325294 DOI: 10.1016/j.bpj.2011.12.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 12/14/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
The mechanical properties of the cell membrane and the subjacent actin cortex are determinants of a variety of processes in immunity and cell division. The lipid bilayer itself and its connection to the actin cortex are anisotropic. An accurate description of the mechanical structure of the cell membrane and the involved dynamics therefore necessitates a measurement technique that can capture the inherent anisotropy of the system. Here, we combine magnetic particle actuation with rotational and translational particle tracking to simultaneously measure the mechanical stiffness of monocytic cells in three rotational and two translational directions. When using particles that bind via integrins to the cell membrane and the subjacent cortex, we measured an isotropic stiffness and a characteristic power-law dependence of the shear modulus on the applied frequency. When using particles functionalized with immunoglobulin G, we measured an anisotropic stiffness with a 10-fold-reduced value in one dimension. We suggest that the observed reduced stiffness in the plane of the cell membrane is caused by a local detachment of the lipid bilayer from the subjacent cytoskeletal cortex. We expect that our technique will enable new insights into the mechanical properties of the cell membrane that will help us to better understand membrane processes such as phagocytosis and blebbing.
Collapse
|
41
|
Abstract
High-throughput ballistic injection nanorheology is a method for the quantitative study of cell mechanics. Cell mechanics are measured by ballistic injection of submicron particles into the cytoplasm of living cells and tracking the spontaneous displacement of the particles at high spatial resolution. The trajectories of the cytoplasm-embedded particles are transformed into mean-squared displacements, which are subsequently transformed into frequency-dependent viscoelastic moduli and time-dependent creep compliance of the cytoplasm. This method allows for the study of a wide range of cellular conditions, including cells inside a 3D matrix, cell subjected to shear flows and biochemical stimuli, and cells in a live animal. Ballistic injection lasts <1 min and is followed by overnight incubation. Multiple particle tracking for one cell lasts <1 min. Forty cells can be examined in <1 h.
Collapse
|
42
|
Zeng Y, Shen Y, Huang XL, Liu XJ, Liu XH. Roles of mechanical force and CXCR1/CXCR2 in shear-stress-induced endothelial cell migration. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2011; 41:13-25. [PMID: 21989491 DOI: 10.1007/s00249-011-0752-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/13/2011] [Indexed: 02/05/2023]
Abstract
We previously demonstrated that CXCR1 and CXCR2 are novel mechanosensors mediating laminar shear-stress-induced endothelial cell (EC) migration (Zeng et al. in Cytokine 53:42-51, 2011). In the present study, an analytical model was proposed to further analyze the underlying mechanisms, assuming the mechanical force (MF) and mechanosensor-mediated biochemical reactions induce cell migration together. Shear stress can regulate both mechanosensor-mediated migration in the flow direction (Ms-M(FD)) and mechanosensor-mediated migration toward a wound (Ms-M(W)). Next, the migration distance, the roles of MF-induced cell migration (MF-M), and the mobilization mechanisms of mechanosensors were analyzed. The results demonstrated that MF-M plays an important role in 15.27 dyn/cm(2) shear-stress-induced EC migration but is far weaker than Ms-M(W) at 5.56 dyn/cm(2). Our findings also indicated that CXCR2 played a primary role, in synergy with CXCR1. The Ms-M(FD) was primarily mediated by the synergistic effect of CXCR1 and CXCR2. In Ms-M(W), when shear stress was beyond a certain threshold, the synergistic effect of CXCR1 and CXCR2 was enhanced, and the effect of CXCR1 was inhibited. Therefore, the retarding of EC migration and wound closure capacity under low shear flow was related to the low magnitude of shear stress, which may contribute to atherogenesis and many other vascular diseases.
Collapse
Affiliation(s)
- Ye Zeng
- Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, No.17 Renmin Nanlu 3 Duan, Chengdu, People's Republic of China
| | | | | | | | | |
Collapse
|
43
|
Endothelial cell micropatterning: methods, effects, and applications. Ann Biomed Eng 2011; 39:2329-45. [PMID: 21761242 DOI: 10.1007/s10439-011-0352-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/02/2011] [Indexed: 01/08/2023]
Abstract
The effects of flow on endothelial cells (ECs) have been widely examined for the ability of fluid shear stress to alter cell morphology and function; however, the effects of EC morphology without flow have only recently been observed. An increase in lithographic techniques in cell culture spurred a corresponding increase in research aiming to confine cell morphology. These studies lead to a better understanding of how morphology and cytoskeletal configuration affect the structure and function of the cells. This review examines EC micropatterning research by exploring both the many alternative methods used to alter EC morphology and the resulting changes in cellular shape and phenotype. Micropatterning induced changes in EC proliferation, apoptosis, cytoskeletal organization, mechanical properties, and cell functionality. Finally, the ways these cellular manipulation techniques have been applied to biomedical engineering research, including angiogenesis, cell migration, and tissue engineering, are discussed.
Collapse
|
44
|
Weinbaum S, Duan Y, Thi MM, You L. An Integrative Review of Mechanotransduction in Endothelial, Epithelial (Renal) and Dendritic Cells (Osteocytes). Cell Mol Bioeng 2011; 4:510-537. [PMID: 23976901 DOI: 10.1007/s12195-011-0179-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In this review we will examine from a biomechanical and ultrastructural viewpoint how the cytoskeletal specialization of three basic cell types, endothelial cells (ECs), epithelial cells (renal tubule) and dendritic cells (osteocytes), enables the mechano-sensing of fluid flow in both their native in vivo environment and in culture, and the downstream signaling that is initiated at the molecular level in response to fluid flow. These cellular responses will be discussed in terms of basic mysteries and paradoxes encountered by each cell type. In ECs fluid shear stress (FSS) is nearly entirely attenuated by the endothelial glycocalyx that covers their apical membrane and yet FSS is communicated to both intracellular and junctional molecular components in activating a wide variety of signaling pathways. The same is true in proximal tubule (PT) cells where a dense brush border of microvilli covers the apical surface and the flow at the apical membrane is negligible. A four decade old unexplained mystery is the ability of PT epithelia to reliably reabsorb 60% of the flow entering the tubule regardless of the glomerular filtration rate. In the cortical collecting duct (CCD) the flow rates are so low that a special sensing apparatus, a primary cilia is needed to detect very small variations in tubular flow. In bone it has been a century old mystery as to how osteocytes embedded in a stiff mineralized tissue are able to sense miniscule whole tissue strains that are far smaller than the cellular level strains required to activate osteocytes in vitro.
Collapse
Affiliation(s)
- Sheldon Weinbaum
- Department of Biomedical Engineering, The City College of the City University of New York, New York, NY 10031, USA
| | | | | | | |
Collapse
|
45
|
Direct detection of cellular adaptation to local cyclic stretching at the single cell level by atomic force microscopy. Biophys J 2011; 100:564-572. [PMID: 21281570 DOI: 10.1016/j.bpj.2010.12.3693] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Revised: 10/29/2010] [Accepted: 12/02/2010] [Indexed: 01/13/2023] Open
Abstract
The cellular response to external mechanical forces has important effects on numerous biological phenomena. The sequences of molecular events that underlie the observed changes in cellular properties have yet to be elucidated in detail. Here we have detected the responses of a cultured cell against locally applied cyclic stretching and compressive forces, after creating an artificial focal adhesion under a glass bead attached to the cantilever of an atomic force microscope. The cell tension initially increased in response to the tensile stress and then decreased within ∼1 min as a result of viscoelastic properties of the cell. This relaxation was followed by a gradual increase in tension extending over several minutes. The slow recovery of tension ceased after several cycles of force application. This tension-recovering activity was inhibited when cells were treated with cytochalasin D, an inhibitor of actin polymerization, or with (-)-blebbistatin, an inhibitor of myosin II ATPase activity, suggesting that the activity was driven by actin-myosin interaction. To our knowledge, this is the first quantitative analysis of cellular mechanical properties during the process of adaptation to locally applied cyclic external force.
Collapse
|
46
|
Grima R, Yaliraki SN, Barahona M. Crowding-induced anisotropic transport modulates reaction kinetics in nanoscale porous media. J Phys Chem B 2010; 114:5380-5. [PMID: 20369856 DOI: 10.1021/jp9025865] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We quantify the emergence of persistent anisotropy in the diffusion of spherical tracer particles through a nanoscale porous medium composed of a uniform distribution of purely symmetric crowding particles. We focus on the interior of a biological cell as an example of such a medium and find that diffusion is highly directional for distances comparable to the size of some organelles. We use a geometrical procedure that avoids the standard orientational averaging to quantify the anisotropy of diffusive paths and show that the point source distributions are predominantly of prolate ellipsoidal shape as a result of local volume exclusion. This geometrical symmetry breaking strongly skews the distribution of kinetic rates of diffusion-limited reactions toward small values, leading to the result that, for short to intermediate times, almost 80% of the rates measured in an ensemble of heterogeneous media are smaller than the expected rate in an ideal homogeneous medium of similar excluded volume fraction. This crowding-induced modulation may have implications for our understanding and measurement of diffusion-controlled intracellular reaction kinetics and for experimental nanotechnology applications, such as nanoparticle-based bioimaging and drug delivery, where diffusion plays an important role.
Collapse
Affiliation(s)
- R Grima
- Institute for Mathematical Sciences, Imperial College London, United Kingdom.
| | | | | |
Collapse
|
47
|
Head DA, Mizuno D. Nonlocal fluctuation correlations in active gels. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:041910. [PMID: 20481756 DOI: 10.1103/physreve.81.041910] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Indexed: 05/29/2023]
Abstract
Many active materials and biological systems are driven far from equilibrium by embedded agents that spontaneously generate forces and distort the surrounding material. Probing and characterizing these athermal fluctuations are essential to understand the properties and behaviors of such systems. Here we present a mathematical procedure to estimate the local action of force-generating agents from the observed fluctuating displacement fields. The active agents are modeled as oriented force dipoles or isotropic compression foci, and the matrix on which they act is assumed to be either a compressible elastic continuum or a coupled network-solvent system. Correlations at a single point and between points separated by an arbitrary distance are obtained, giving a total of three independent fluctuation modes that can be tested with microrheology experiments. Since oriented dipoles and isotropic compression foci give different contributions to these fluctuation modes, ratiometric analysis allows us characterize the force generators. We also predict and experimentally find a high-frequency ballistic regime, arising from individual force-generating events in the form of the slow buildup of stress followed by rapid but finite decay. Finally, we provide a quantitative statistical model to estimate the mean filament tension from these athermal fluctuations, which leads to stiffening of active networks.
Collapse
Affiliation(s)
- D A Head
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan
| | | |
Collapse
|
48
|
|
49
|
Abstract
Binding of platelets to fibrinogen via integrin alphaIIbbeta3 stimulates cytoskeletal reorganization and spreading. These responses depend on tyrosine phosphorylation of multiple proteins by Src family members and Syk. Among Src substrates in platelets is adhesion- and degranulation-promoting adapter protein (ADAP), an adapter with potential binding partners: SLP-76, VASP, and SKAP-HOM. During studies of platelet function under shear flow, we discovered that ADAP(-/-) mouse platelets, unlike ADAP+/+ platelets, formed unstable thrombi in response to carotid artery injury. Moreover, fibrinogen-adherent ADAP(-/-) platelets in shear flow ex vivo showed reduced spreading and smaller zones of contact with the matrix. These abnormalities were not observed under static conditions, and they could not be rescued by stimulating platelets with a PAR4 receptor agonist or by direct alphaIIbbeta3 activation with MnCl2, consistent with a defect in outside-in alphaIIbbeta3 signaling. ADAP+/+ platelets subjected to shear flow assembled F-actin-rich structures that colocalized with SLP-76 and the Rac1 exchange factor, phospho-Vav1. In contrast, platelets deficient in ADAP, but not those deficient in VASP or SKAP-HOM, failed to form these structures. These results establish that ADAP is an essential component of alphaIIbbeta3-mediated platelet mechanotransduction that promotes F-actin assembly and enables platelet spreading and thrombus stabilization under fluid shear stress.
Collapse
|
50
|
Picard C, Donald A. The impact of environmental changes upon the microrheological response of adherent cells. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2009; 30:127-134. [PMID: 19551417 DOI: 10.1140/epje/i2009-10473-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Revised: 05/05/2009] [Accepted: 05/11/2009] [Indexed: 05/28/2023]
Abstract
The mechanical behaviour of adherent cells cultured in vitro is known to be dependent on the mechanical properties of the substrate. We show that this mechanical behaviour is also strongly affected by the cells' environment. We focus here on the impact of temperature and pH. Experiments carried out on individual cells in a tuneable environment reveal that the intra-cellular mechanical behaviour exhibits large and fast changes when the external cell environment is changed. Fast passive microrheometry measurements allow for the precise characterisation of the transient regime observed during a temperature drop. When maintained at a non-physiological temperature, the cells reach a stabilised state distinct from the state observed in physiological conditions. The perturbation can be reversed but exhibits hysteretic behaviour when physiological conditions are restored. The transient regime observed during the recovery process is found to be different from the transient regime observed when leaving physiological conditions. A modified generalized Stokes-Einstein equation taking into account the cell activity through an effective temperature is proposed here to fit the experimental results. Excellent agreement between the model and the measurements is obtained for time lags from 10⁻³ to 1 s considered in this study.
Collapse
Affiliation(s)
- C Picard
- Biological and Soft Systems, Cavendish Laboratory, University of Cambridge, Cambridge CB30HE, UK
| | | |
Collapse
|