1
|
Nguyen VH. Genomic investigations of diverse corbiculate bee gut-associated Gilliamella reveal conserved pathways for energy metabolism, with diverse and variable energy sources. Access Microbiol 2024; 6:000793.v3. [PMID: 39148688 PMCID: PMC11325843 DOI: 10.1099/acmi.0.000793.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024] Open
Abstract
Gilliamella is a genus of bacteria commonly found as symbionts of corbiculate bees. Research into energy metabolism by this genus has predominantly been done through in vivo and in vitro experiments focused on the type species Gilliamella apicola. This study examined 95 publicly available genomes representing at least 18 Gilliamella species isolated predominantly from the hindgut of corbiculate bees. Energy metabolism pathways were found to be highly conserved across not only the Gilliamella but also other members of the family Orbaceae. Evidence suggests Gilliamella are capable of fermentation of both fumarate and pyruvate. Fermentation of the former produces succinate. Fermentation of the latter can produce acetate, ethanol, formate, and both isoforms of lactate for all Gilliamella and acetoin for some G. apicola strains. According to genomic evidence examined, all Gilliamella are only capable of respiration under microoxic conditions, while higher oxygen conditions likely inhibits respiration. Evidence suggests that the glycolysis and pentose phosphate pathways are essential mechanisms for the metabolism of energy sources, with the TCA cycle playing little to no role in energy metabolism for all Gilliamella species. Uptake of energy sources, i.e. sugars and derivatives, likely relies predominantly on the phosphoenol-pyruvate-dependent phosphotransferase system. Differences in the utilized energy sources may confer fitness advantages associated with specific host species.
Collapse
Affiliation(s)
- Viet Hung Nguyen
- Project Genomes To Functional, Ecological, and Evolutionary Characterizations (Project G2FEEC), Ho Chi Minh City, Vietnam
| |
Collapse
|
2
|
Chavez D, Amarquaye GN, Mejia-Santana A, Dyotima, Ryan K, Zeng L, Landeta C. Warfarin analogs target disulfide bond-forming enzymes and suggest a residue important for quinone and coumarin binding. J Biol Chem 2024; 300:107383. [PMID: 38762182 PMCID: PMC11208910 DOI: 10.1016/j.jbc.2024.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/20/2024] Open
Abstract
Disulfide bond formation has a central role in protein folding of both eukaryotes and prokaryotes. In bacteria, disulfide bonds are catalyzed by DsbA and DsbB/VKOR enzymes. First, DsbA, a periplasmic disulfide oxidoreductase, introduces disulfide bonds into substrate proteins. Then, the membrane enzyme, either DsbB or VKOR, regenerate DsbA's activity by the formation of de novo disulfide bonds which reduce quinone. We have previously performed a high-throughput chemical screen and identified a family of warfarin analogs that target either bacterial DsbB or VKOR. In this work, we expressed functional human VKORc1 in Escherichia coli and performed a structure-activity-relationship analysis to study drug selectivity between bacterial and mammalian enzymes. We found that human VKORc1 can function in E. coli by removing two positive residues, allowing the search for novel anticoagulants using bacteria. We also found one warfarin analog capable of inhibiting both bacterial DsbB and VKOR and a second one antagonized only the mammalian enzymes when expressed in E. coli. The difference in the warfarin structure suggests that substituents at positions three and six in the coumarin ring can provide selectivity between the bacterial and mammalian enzymes. Finally, we identified the two amino acid residues responsible for drug binding. One of these is also essential for de novo disulfide bond formation in both DsbB and VKOR enzymes. Our studies highlight a conserved role of this residue in de novo disulfide-generating enzymes and enable the design of novel anticoagulants or antibacterials using coumarin as a scaffold.
Collapse
Affiliation(s)
- Dariana Chavez
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | | | - Dyotima
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Kayley Ryan
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Lifan Zeng
- Department of Biochemistry and Molecular Biology, Indiana University Chemical Genomics Core Facility, School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|
3
|
Hogan AM, Motnenko A, Rahman ASMZ, Cardona ST. Cell envelope structural and functional contributions to antibiotic resistance in Burkholderia cenocepacia. J Bacteriol 2024; 206:e0044123. [PMID: 38501654 PMCID: PMC11025338 DOI: 10.1128/jb.00441-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
Antibiotic activity is limited by the physical construction of the Gram-negative cell envelope. Species of the Burkholderia cepacia complex (Bcc) are known as intrinsically multidrug-resistant opportunistic pathogens with low permeability cell envelopes. Here, we re-examined a previously performed chemical-genetic screen of barcoded transposon mutants in B. cenocepacia K56-2, focusing on cell envelope structural and functional processes. We identified structures mechanistically important for resistance to singular and multiple antibiotic classes. For example, susceptibility to novobiocin, avibactam, and the LpxC inhibitor, PF-04753299, was linked to the BpeAB-OprB efflux pump, suggesting these drugs are substrates for this pump in B. cenocepacia. Defects in peptidoglycan precursor synthesis specifically increased susceptibility to cycloserine and revealed a new putative amino acid racemase, while defects in divisome accessory proteins increased susceptibility to multiple β-lactams. Additionally, disruption of the periplasmic disulfide bond formation system caused pleiotropic defects on outer membrane integrity and β-lactamase activity. Our findings highlight the layering of resistance mechanisms in the structure and function of the cell envelope. Consequently, we point out processes that can be targeted for developing antibiotic potentiators.IMPORTANCEThe Gram-negative cell envelope is a double-layered physical barrier that protects cells from extracellular stressors, such as antibiotics. The Burkholderia cell envelope is known to contain additional modifications that reduce permeability. We investigated Burkholderia cell envelope factors contributing to antibiotic resistance from a genome-wide view by re-examining data from a transposon mutant library exposed to an antibiotic panel. We identified susceptible phenotypes for defects in structures and functions in the outer membrane, periplasm, and cytoplasm. Overall, we show that resistance linked to the cell envelope is multifaceted and provides new targets for the development of antibiotic potentiators.
Collapse
Affiliation(s)
- Andrew M. Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Silvia T. Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
4
|
Dyotima, Abulaila S, Mendoza J, Landeta C. Development of a sensor for disulfide bond formation in diverse bacteria. J Bacteriol 2024; 206:e0043323. [PMID: 38493438 PMCID: PMC11025322 DOI: 10.1128/jb.00433-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
In bacteria, disulfide bonds contribute to the folding and stability of proteins important for processes in the cellular envelope. In Escherichia coli, disulfide bond formation is catalyzed by DsbA and DsbB enzymes. DsbA is a periplasmic protein that catalyzes disulfide bond formation in substrate proteins, while DsbB is an inner membrane protein that transfers electrons from DsbA to quinones, thereby regenerating the DsbA active state. Actinobacteria including mycobacteria use an alternative enzyme named VKOR, which performs the same function as DsbB. Disulfide bond formation enzymes, DsbA and DsbB/VKOR, represent novel drug targets because their inhibition could simultaneously affect the folding of several cell envelope proteins including virulence factors, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. We have previously developed a cell-based and target-based assay to identify molecules that inhibit the DsbB and VKOR in pathogenic bacteria, using E. coli cells expressing a periplasmic β-Galactosidase sensor (β-Galdbs), which is only active when disulfide bond formation is inhibited. Here, we report the construction of plasmids that allows fine-tuning of the expression of the β-Galdbs sensor and can be mobilized into other gram-negative organisms. As an example, when expressed in Pseudomonas aeruginosa UCBPP-PA14, which harbors two DsbB homologs, β-Galdbs behaves similarly as in E. coli, and the biosensor responds to the inhibition of the two DsbB proteins. Thus, these β-Galdbs reporter plasmids provide a basis to identify novel inhibitors of DsbA and DsbB/VKOR in multidrug-resistant gram-negative pathogens and to further study oxidative protein folding in diverse gram-negative bacteria. IMPORTANCE Disulfide bonds contribute to the folding and stability of proteins in the bacterial cell envelope. Disulfide bond-forming enzymes represent new drug targets against multidrug-resistant bacteria because inactivation of this process would simultaneously affect several proteins in the cell envelope, including virulence factors, toxins, proteins involved in outer membrane biogenesis, cell division, and antibiotic resistance. Identifying the enzymes involved in disulfide bond formation in gram-negative pathogens as well as their inhibitors can contribute to the much-needed antibacterial innovation. In this work, we developed sensors of disulfide bond formation for gram-negative bacteria. These tools will enable the study of disulfide bond formation and the identification of inhibitors for this crucial process in diverse gram-negative pathogens.
Collapse
Affiliation(s)
- Dyotima
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sally Abulaila
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Jocelyne Mendoza
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
5
|
Soro SD, Lattard V, Kodjo A, Benoît E, Chatron N. Structural investigation of vitamin K epoxide reductase domain-containing protein in Leptospira species: a potential target for the development of new leptospirosis treatments as an alternative to antibiotics. J Biomol Struct Dyn 2024:1-13. [PMID: 38197604 DOI: 10.1080/07391102.2024.2302925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/30/2023] [Indexed: 01/11/2024]
Abstract
Leptospirosis is a worldwide zoonosis caused by the motile bacterium Leptospira. This disease can cause hemorrhagic symptoms, multi-visceral and renal failures, resulting in one million cases and approximately 60,000 deaths each year. The motility of Leptospira is highly involved in its virulence and is ensured by the presence of two flagella in the periplasm. Several proteins that require the formation of disulfide bridges are essential for flagellar function. In Leptospira, these redox reactions are catalysed by the vitamin K epoxide reductase domain-containing protein (VKORdcp). The aim of the present work was to study the conservation of VKORdcp among Leptospira species and its interactions with putative substrates and inhibitor. Our results evidenced the presence of ten amino acids specific to either pathogenic or saprophytic species. Furthermore, structural studies revealed a higher affinity of the enzyme for vitamin K1 quinone, compared to ubiquinone. Finally, characterisation of the binding of a potential inhibitor revealed the involvement of some VKORdcp amino acids that have not been present in the human enzyme, in particular the polar residue D114. Our study thus paves the way for the future development of Leptospira VKORdcp inhibitors, capable of blocking bacterial motility. Such molecules could therefore offer a promising therapeutic alternative to antibiotics, especially in the event of the emergence of antibiotic-resistant strains.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Virginie Lattard
- USC 1233-RS2GP, VetAgro Sup, INRAE, Université de Lyon, Marcy L'Etoile, France
| | - Angeli Kodjo
- USC 1233-RS2GP, VetAgro Sup, INRAE, Université de Lyon, Marcy L'Etoile, France
| | - Etienne Benoît
- USC 1233-RS2GP, VetAgro Sup, INRAE, Université de Lyon, Marcy L'Etoile, France
| | - Nolan Chatron
- USC 1233-RS2GP, VetAgro Sup, INRAE, Université de Lyon, Marcy L'Etoile, France
| |
Collapse
|
6
|
Kadeřábková N, Furniss RCD, Maslova E, Eisaiankhongi L, Bernal P, Filloux A, Landeta C, Gonzalez D, McCarthy RR, Mavridou DA. Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551661. [PMID: 37577508 PMCID: PMC10418187 DOI: 10.1101/2023.08.02.551661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to β-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - R. Christopher D. Furniss
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Lara Eisaiankhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, 41012, Spain
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, 78712, Texas, USA
| |
Collapse
|
7
|
Wimalasiri VW, Jurczak KA, Wieliniec MK, Nilaweera TD, Nakamoto RK, Cafiso DS. A disulfide chaperone knockout facilitates spin labeling and pulse EPR spectroscopy of outer membrane transporters. Protein Sci 2023; 32:e4704. [PMID: 37312651 PMCID: PMC10288552 DOI: 10.1002/pro.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Pulse EPR measurements provide information on distances and distance distributions in proteins but require the incorporation of pairs of spin labels that are usually attached to engineered cysteine residues. In previous work, we demonstrated that efficient in vivo labeling of the Escherichia coli outer membrane vitamin B12 transporter, BtuB, could only be achieved using strains defective in the periplasmic disulfide bond formation (Dsb) system. Here, we extend these in vivo measurements to FecA, the E. coli ferric citrate transporter. As seen for BtuB, pairs of cysteines cannot be labeled when the protein is present in a standard expression strain. However, incorporating plasmids that permit an arabinose induced expression of FecA into a strain defective in the thiol disulfide oxidoreductase, DsbA, enables efficient spin-labeling and pulse EPR of FecA in cells. A comparison of the measurements made on FecA in cells with measurements made in reconstituted phospholipid bilayers suggests that the cellular environment alters the behavior of the extracellular loops of FecA. In addition to these in situ EPR measurements, the use of a DsbA minus strain for the expression of BtuB improves the EPR signals and pulse EPR data obtained in vitro from BtuB that is labeled, purified, and reconstituted into phospholipid bilayers. The in vitro data also indicate the presence of intermolecular BtuB-BtuB interactions, which had not previously been observed in a reconstituted bilayer system. This result suggests that in vitro EPR measurements on other outer membrane proteins would benefit from protein expression in a DsbA minus strain.
Collapse
Affiliation(s)
- Viranga W. Wimalasiri
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kinga A. Jurczak
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Monika K. Wieliniec
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Thushani D. Nilaweera
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Present address:
Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMarylandUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David S. Cafiso
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Kadeřábková N, Mahmood AJS, Furniss RCD, Mavridou DAI. Making a chink in their armor: Current and next-generation antimicrobial strategies against the bacterial cell envelope. Adv Microb Physiol 2023; 83:221-307. [PMID: 37507160 PMCID: PMC10517717 DOI: 10.1016/bs.ampbs.2023.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Gram-negative bacteria are uniquely equipped to defeat antibiotics. Their outermost layer, the cell envelope, is a natural permeability barrier that contains an array of resistance proteins capable of neutralizing most existing antimicrobials. As a result, its presence creates a major obstacle for the treatment of resistant infections and for the development of new antibiotics. Despite this seemingly impenetrable armor, in-depth understanding of the cell envelope, including structural, functional and systems biology insights, has promoted efforts to target it that can ultimately lead to the generation of new antibacterial therapies. In this article, we broadly overview the biology of the cell envelope and highlight attempts and successes in generating inhibitors that impair its function or biogenesis. We argue that the very structure that has hampered antibiotic discovery for decades has untapped potential for the design of novel next-generation therapeutics against bacterial pathogens.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Ayesha J S Mahmood
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - R Christopher D Furniss
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States; John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
9
|
Haq AU, Majeed MI, Nawaz H, Rashid N, Javed MR, Raza A, Shakeel M, Zahra ST, Meraj L, Perveen A, Murtaza S, Khaliq S. Surface-enhanced Raman spectroscopy for monitoring antibacterial activity of imidazole derivative (1-benzyl-3-(sec‑butyl)-1H-imidazole-3-ium bromide) against Bacillus subtilis and Escherichia coli. Photodiagnosis Photodyn Ther 2023; 42:103533. [DOI: 10.1016/j.pdpdt.2023.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/17/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023]
|
10
|
Wang G, Qin J, Verderosa AD, Hor L, Santos-Martin C, Paxman JJ, Martin JL, Totsika M, Heras B. A Buried Water Network Modulates the Activity of the Escherichia coli Disulphide Catalyst DsbA. Antioxidants (Basel) 2023; 12:antiox12020380. [PMID: 36829940 PMCID: PMC9952396 DOI: 10.3390/antiox12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
The formation of disulphide bonds is an essential step in the folding of many proteins that enter the secretory pathway; therefore, it is not surprising that eukaryotic and prokaryotic organisms have dedicated enzymatic systems to catalyse this process. In bacteria, one such enzyme is disulphide bond-forming protein A (DsbA), a thioredoxin-like thiol oxidase that catalyses the oxidative folding of proteins required for virulence and fitness. A large body of work on DsbA proteins, particularly Escherichia coli DsbA (EcDsbA), has demonstrated the key role that the Cys30-XX-Cys33 catalytic motif and its unique redox properties play in the thiol oxidase activity of this enzyme. Using mutational and functional analyses, here we identify that a set of charged residues, which form an acidic groove on the non-catalytic face of the enzyme, further modulate the activity of EcDsbA. Our high-resolution structures indicate that these residues form a water-mediated proton wire that can transfer protons from the bulk solvent to the active site. Our results support the view that proton shuffling may facilitate the stabilisation of the buried Cys33 thiolate formed during the redox reaction and promote the correct direction of the EcDsbA-substrate thiol-disulphide exchange. Comparison with other proteins of the same class and proteins of the thioredoxin-superfamily in general suggest that a proton relay system appears to be a conserved catalytic feature among this widespread superfamily of proteins. Furthermore, this study also indicates that the acidic groove of DsbA could be a promising allosteric site to develop novel DsbA inhibitors as antibacterial therapeutics.
Collapse
Affiliation(s)
- Geqing Wang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| | - Jilong Qin
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lilian Hor
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Carlos Santos-Martin
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jason J. Paxman
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD 4111, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Begoña Heras
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Correspondence: (G.W.); (B.H.)
| |
Collapse
|
11
|
Li W. Distinct enzymatic strategies for de novo generation of disulfide bonds in membranes. Crit Rev Biochem Mol Biol 2023; 58:36-49. [PMID: 37098102 PMCID: PMC10460286 DOI: 10.1080/10409238.2023.2201404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
Disulfide bond formation is a catalyzed reaction essential for the folding and stability of proteins in the secretory pathway. In prokaryotes, disulfide bonds are generated by DsbB or VKOR homologs that couple the oxidation of a cysteine pair to quinone reduction. Vertebrate VKOR and VKOR-like enzymes have gained the epoxide reductase activity to support blood coagulation. The core structures of DsbB and VKOR variants share the architecture of a four-transmembrane-helix bundle that supports the coupled redox reaction and a flexible region containing another cysteine pair for electron transfer. Despite considerable similarities, recent high-resolution crystal structures of DsbB and VKOR variants reveal significant differences. DsbB activates the cysteine thiolate by a catalytic triad of polar residues, a reminiscent of classical cysteine/serine proteases. In contrast, bacterial VKOR homologs create a hydrophobic pocket to activate the cysteine thiolate. Vertebrate VKOR and VKOR-like maintain this hydrophobic pocket and further evolved two strong hydrogen bonds to stabilize the reaction intermediates and increase the quinone redox potential. These hydrogen bonds are critical to overcome the higher energy barrier required for epoxide reduction. The electron transfer process of DsbB and VKOR variants uses slow and fast pathways, but their relative contribution may be different in prokaryotic and eukaryotic cells. The quinone is a tightly bound cofactor in DsbB and bacterial VKOR homologs, whereas vertebrate VKOR variants use transient substrate binding to trigger the electron transfer in the slow pathway. Overall, the catalytic mechanisms of DsbB and VKOR variants have fundamental differences.
Collapse
Affiliation(s)
- Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Whitehouse RL, Alwan WS, Ilyichova OV, Taylor AJ, Chandrashekaran IR, Mohanty B, Doak BC, Scanlon MJ. Fragment screening libraries for the identification of protein hot spots and their minimal binding pharmacophores. RSC Med Chem 2023; 14:135-143. [PMID: 36760747 PMCID: PMC9890547 DOI: 10.1039/d2md00253a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Fragment-based drug design relies heavily on structural information for the elaboration and optimisation of hits. The ability to identify neighbouring binding hot spots, energetically favourable interactions and conserved binding motifs in protein structures through X-ray crystallography can inform the evolution of fragments into lead-like compounds through structure-based design. The composition of fragment libraries can be designed and curated to fit this purpose and herein, we describe and compare screening libraries containing compounds comprising between 2 and 18 heavy atoms. We evaluate the properties of the compounds in these libraries and assess their ability to probe protein surfaces for binding hot spots.
Collapse
Affiliation(s)
- Rebecca L Whitehouse
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Wesam S Alwan
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Olga V Ilyichova
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Australian Synchrotron, ANSTO Clayton VIC 3168 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Ashley J Taylor
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Indu R Chandrashekaran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Biswaranjan Mohanty
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Bradley C Doak
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| | - Martin J Scanlon
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- ARC Training Centre for Fragment Based Design, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
- Monash Fragment Platform, Monash Institute of Pharmaceutical Sciences, Monash University Parkville VIC 3052 Australia
| |
Collapse
|
13
|
Liu S, Shen G, Li W. Structural and cellular basis of vitamin K antagonism. J Thromb Haemost 2022; 20:1971-1983. [PMID: 35748323 DOI: 10.1111/jth.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Vitamin K antagonists (VKAs), such as warfarin, are oral anticoagulants widely used to treat and prevent thromboembolic diseases. Therapeutic use of these drugs requires frequent monitoring and dose adjustments, whereas overdose often causes severe bleeding. Addressing these drawbacks requires mechanistic understandings at cellular and structural levels. As the target of VKAs, vitamin K epoxide reductase (VKOR) generates the active, hydroquinone form of vitamin K, which in turn drives the γ-carboxylation of several coagulation factors required for their activity. Crystal structures revealed that VKAs inhibit VKOR via mimicking its catalytic process. At the active site, two strong hydrogen bonds that facilitate the catalysis also afford the binding specificity for VKAs. Binding of VKAs induces a global change from open to closed conformation. Similar conformational change is induced by substrate binding to promote an electron transfer process that reduces the VKOR active site. In the cellular environment, reducing partner proteins or small reducing molecules may afford electrons to maintain the VKOR activity. The catalysis and VKA inhibition require VKOR in different cellular redox states, explaining the complex kinetics behavior of VKAs. Recent studies also revealed the mechanisms underlying warfarin resistance, warfarin dose variation, and antidoting by vitamin K. These mechanistic understandings may lead to improved anticoagulation strategies targeting the vitamin K cycle.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guomin Shen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Henan International Joint Laboratory of Thrombosis and Hemostasis, School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Shen G, Li C, Cao Q, Megta AK, Li S, Gao M, Liu H, Shen Y, Chen Y, Yu H, Li S, Li W. Structural features determining the vitamin K epoxide reduction activity in the VKOR family of membrane oxidoreductases. FEBS J 2022; 289:4564-4579. [PMID: 35113495 PMCID: PMC9346089 DOI: 10.1111/febs.16386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/03/2022] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Vitamin K epoxide reductases (VKORs) are a large family of integral membrane enzymes found from bacteria to humans. Human VKOR, specific target of warfarin, has both the epoxide and quinone reductase activity to maintain the vitamin K cycle. Bacterial VKOR homologs, however, are insensitive to warfarin inhibition and are quinone reductases incapable of epoxide reduction. What affords the epoxide reductase activity in human VKOR remains unknown. Here, we show that a representative bacterial VKOR homolog can be converted to an epoxide reductase that is also inhibitable by warfarin. To generate this new activity, we first substituted several regions surrounding the active site of bacterial VKOR by those from human VKOR based on comparison of their crystal structures. Subsequent systematic substitutions narrowed down to merely eight residues, with the addition of a membrane anchor domain, that are responsible for the epoxide reductase activity. Substitutions corresponding to N80 and Y139 in human VKOR provide strong hydrogen bonding interactions to facilitate the epoxide reduction. The rest of six substitutions increase the size and change the shape of the substrate-binding pocket, and the membrane anchor domain stabilizes this pocket while allowing certain flexibility for optimal binding of the epoxide substrate. Overall, our study reveals the structural features of the epoxide reductase activity carried out by a subset of VKOR family in the membrane environment.
Collapse
Affiliation(s)
- Guomin Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Chaokun Li
- Sino‐UK Joint Laboratory for Brain Function and Injury School of Basic Medical Science Xinxiang Medical University China
| | - Qing Cao
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Abhin Kumar Megta
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| | - Shuang Li
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| | - Meng Gao
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Hongli Liu
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Yan Shen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Yixiang Chen
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Haichuan Yu
- School of Medical Laboratory Xinxiang Medical University China
| | - Sanqiang Li
- Henan International Joint Laboratory of Thrombosis and Hemostasis School of Basic Medical Science Henan University of Science and Technology Luoyang China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics Washington University in St. Louis School of Medicine MO USA
| |
Collapse
|
15
|
Sharma D, Singh M, Kaur P, Das U. Structural analysis of LpqY, a substrate-binding protein from the SugABC transporter of Mycobacterium tuberculosis, provides insights into its trehalose specificity. ACTA CRYSTALLOGRAPHICA SECTION D STRUCTURAL BIOLOGY 2022; 78:835-845. [DOI: 10.1107/s2059798322005290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
The LpqY-SugABC transporter of Mycobacterium tuberculosis (Mtb) salvages residual trehalose across the cell membrane, which is otherwise lost during the formation of cell-wall glycoconjugates in the periplasm. LpqY, a substrate-binding protein from the SugABC transporter, acts as the primary receptor for the recognition of trehalose, leading to its transport across the cell membrane. Since trehalose is crucial for the survival and virulence of Mtb, trehalose receptors should serve as important targets for novel drug design against tuberculosis. In order to comprehend the detailed architecture and substrate specificity, the first crystal structures of both apo and trehalose-bound forms of M. tuberculosis LpqY (Mtb-LpqY) are presented here at 2.2 and 1.9 Å resolution, respectively. The structure exhibits an N-lobe and C-lobe and is predominantly composed of a globular α/β domain connected by a flexible hinge region concealing a deep binding cleft. Although the trehalose-bound form of Mtb-LpqY revealed an open ligand-bound conformation, the glucose moieties of trehalose are seen to be strongly held in place by direct and water-mediated hydrogen bonds within the binding cavity, producing a K
d of 6.58 ± 1.21 µM. These interactions produce a distinct effect on the stereoselectivity for the α-1,1-glycosidic linkage of trehalose. Consistent with the crystal structure, molecular-dynamics simulations further validated Asp43, Asp97 and Asn151 as key residues responsible for strong and stable interactions throughout a 1 µs time frame, thus capturing trehalose in the binding cavity. Collectively, the results provide detailed insights into how the structure and dynamics of Mtb-LpqY enable it to specifically bind trehalose in a relaxed conformation state.
Collapse
|
16
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
17
|
Comparative Genomic Analyses of the Genus Nesterenkonia Unravels the Genomic Adaptation to Polar Extreme Environments. Microorganisms 2022; 10:microorganisms10020233. [PMID: 35208688 PMCID: PMC8875376 DOI: 10.3390/microorganisms10020233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 02/06/2023] Open
Abstract
The members of the Nesterenkonia genus have been isolated from various habitats, like saline soil, salt lake, sponge-associated and the human gut, some of which are even located in polar areas. To identify their stress resistance mechanisms and draw a genomic profile across this genus, we isolated four Nesterenkonia strains from the lakes in the Tibetan Plateau, referred to as the third pole, and compared them with all other 30 high-quality Nesterenkonia genomes that are deposited in NCBI. The Heaps’ law model estimated that the pan-genome of this genus is open and the number of core, shell, cloud, and singleton genes were 993 (6.61%), 2782 (18.52%), 4117 (27.40%), and 7132 (47.47%), respectively. Phylogenomic and ANI/AAI analysis indicated that all genomes can be divided into three main clades, named NES-1, NES-2, and NES-3. The strains isolated from lakes in the Tibetan Plateau were clustered with four strains from different sources in the Antarctic and formed a subclade within NES-2, described as NES-AT. Genome features of this subclade, including GC (guanine + cytosine) content, tRNA number, carbon/nitrogen atoms per residue side chain (C/N-ARSC), and amino acid composition, in NES-AT individuals were significantly different from other strains, indicating genomic adaptation to cold, nutrient-limited, osmotic, and ultraviolet conditions in polar areas. Functional analysis revealed the enrichment of specific genes involved in bacteriorhodopsin synthesis, biofilm formation, and more diverse nutrient substance metabolism genes in the NES-AT clade, suggesting potential adaptation strategies for energy metabolism in polar environments. This study provides a comprehensive profile of the genomic features of the Nesterenkonia genus and reveals the possible mechanism for the survival of Nesterenkonia isolates in polar areas.
Collapse
|
18
|
Furniss RCD, Kaderabkova N, Barker D, Bernal P, Maslova E, Antwi AA, McNeil HE, Pugh HL, Dortet L, Blair JM, Larrouy-Maumus GJ, McCarthy RR, Gonzalez D, Mavridou DA. Breaking antimicrobial resistance by disrupting extracytoplasmic protein folding. eLife 2022; 11:57974. [PMID: 35025730 PMCID: PMC8863373 DOI: 10.7554/elife.57974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 01/11/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance in Gram-negative bacteria is one of the greatest threats to global health. New antibacterial strategies are urgently needed, and the development of antibiotic adjuvants that either neutralize resistance proteins or compromise the integrity of the cell envelope is of ever-growing interest. Most available adjuvants are only effective against specific resistance proteins. Here, we demonstrate that disruption of cell envelope protein homeostasis simultaneously compromises several classes of resistance determinants. In particular, we find that impairing DsbA-mediated disulfide bond formation incapacitates diverse β-lactamases and destabilizes mobile colistin resistance enzymes. Furthermore, we show that chemical inhibition of DsbA sensitizes multidrug-resistant clinical isolates to existing antibiotics and that the absence of DsbA, in combination with antibiotic treatment, substantially increases the survival of Galleria mellonella larvae infected with multidrug-resistant Pseudomonas aeruginosa. This work lays the foundation for the development of novel antibiotic adjuvants that function as broad-acting resistance breakers. Antibiotics, like penicillin, are the foundation of modern medicine, but bacteria are evolving to resist their effects. Some of the most harmful pathogens belong to a group called the 'Gram-negative bacteria', which have an outer layer – called the cell envelope – that acts as a drug barrier. This envelope contains antibiotic resistance proteins that can deactivate or repel antibiotics or even pump them out of the cell once they get in. One way to tackle antibiotic resistance could be to stop these proteins from working. Proteins are long chains of building blocks called amino acids that fold into specific shapes. In order for a protein to perform its role correctly, it must fold in the right way. In bacteria, a protein called DsbA helps other proteins fold correctly by holding them in place and inserting links called disulfide bonds. It was unclear whether DsbA plays a role in the folding of antibiotic resistance proteins, but if it did, it might open up new ways to treat antibiotic resistant infections. To find out more, Furniss, Kaderabkova et al. collected the genes that code for several antibiotic resistance proteins and put them into Escherichia coli bacteria, which made the bacteria resistant to antibiotics. Furniss, Kaderabkova et al. then stopped the modified E. coli from making DsbA, which led to the antibiotic resistance proteins becoming unstable and breaking down because they could not fold correctly. Further experiments showed that blocking DsbA with a chemical inhibitor in other pathogenic species of Gram-negative bacteria made these bacteria more sensitive to antibiotics that they would normally resist. To demonstrate that using this approach could work to stop infections by these bacteria, Furniss, Kaderabkova et al. used Gram-negative bacteria that produced antibiotic resistance proteins but could not make DsbA to infect insect larvae. The larvae were then treated with antibiotics, which increased their survival rate, indicating that blocking DsbA may be a good approach to tackling antibiotic resistant bacteria. According to the World Health Organization, developing new treatments against Gram-negative bacteria is of critical importance, but the discovery of new drugs has ground to a halt. One way around this is to develop ways to make existing drugs work better. Making drugs that block DsbA could offer a way to treat resistant infections using existing antibiotics in the future.
Collapse
Affiliation(s)
| | - Nikol Kaderabkova
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| | - Declan Barker
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Patricia Bernal
- Department of Microbiology, Universidad de Sevilla, Seville, Spain
| | - Evgenia Maslova
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Amanda Aa Antwi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Helen E McNeil
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Hannah L Pugh
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Laurent Dortet
- Department of Bacteriology-Hygiene, Paris-Sud University, Paris, France
| | - Jessica Ma Blair
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | | | - Ronan R McCarthy
- Department of Life Sciences, Brunel University London, London, United Kingdom
| | - Diego Gonzalez
- Department of Biology, University of Neuchatel, Neuchatel, Switzerland
| | - Despoina Ai Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, United States
| |
Collapse
|
19
|
Expression, purification and characterization of the suppressor of copper sensitivity (Scs) B membrane protein from Proteus mirabilis. Protein Expr Purif 2022; 193:106047. [PMID: 35026386 DOI: 10.1016/j.pep.2022.106047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/14/2021] [Accepted: 01/09/2022] [Indexed: 11/20/2022]
Abstract
Suppressor of copper sensitivity (Scs) proteins play a role in the bacterial response to copper stress in many Gram-negative bacteria, including in the human pathogen Proteus mirabilis. Recently, the ScsC protein from P. mirabilis (PmScsC) was characterized as a trimeric protein with isomerase activity that contributes to the ability of the bacterium to swarm in the presence of copper. The CXXC motif catalytic cysteines of PmScsC are maintained in their active reduced state by the action of its membrane-bound partner protein, the Proteus mirabilis ScsB (PmScsB). Thus, PmScsC and PmScsB form a redox relay in vivo. The predicted domain arrangement of PmScsB comprises a central transmembrane β-domain and two soluble, periplasmic domains, the N-terminal α-domain and C-terminal γ-domain. Here, we provide a procedure for the recombinant expression and purification of the full-length PmScsB protein. Using Lemo21(DE3) cells we expressed PmScsB and, after extraction and purification, we were able to achieve a yield of 3 mg of purified protein per 8L of bacterial culture. Furthermore, using two orthogonal methods - AMS labelling of free thiols and a scrambled RNase activity assay - PmScsB is shown to catalyze the reduction of PmScsC. Our results demonstrate that the PmScsC and PmScsB redox relay can be reconstituted in vitro using recombinant full-length PmScsB membrane protein. This finding provides a promising starting point for the in vitro biochemical and structural characterization of the P. mirabilis ScsC and ScsB interaction.
Collapse
|
20
|
Jeong H, Kim Y, Lee HS. OsnR is an autoregulatory negative transcription factor controlling redox-dependent stress responses in Corynebacterium glutamicum. Microb Cell Fact 2021; 20:203. [PMID: 34663317 PMCID: PMC8524982 DOI: 10.1186/s12934-021-01693-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023] Open
Abstract
Background Corynebacterium glutamicum is used in the industrial production of amino acids and nucleotides. During the course of fermentation, C. glutamicum cells face various stresses and employ multiple regulatory genes to cope with the oxidative stress. The osnR gene plays a negative regulatory role in redox-dependent oxidative-stress responses, but the underlying mechanism is not known yet. Results Overexpression of the osnR gene in C. glutamicum affected the expression of genes involved in the mycothiol metabolism. ChIP-seq analysis revealed that OsnR binds to the promoter region of multiple genes, including osnR and cg0026, which seems to function in the membrane-associated redox metabolism. Studies on the role of the osnR gene involving in vitro assays employing purified OsnR proteins and in vivo physiological analyses have identified that OsnR inhibits the transcription of its own gene. Further, oxidant diamide stimulates OsnR-binding to the promoter region of the osnR gene. The genes affected by the overexpression of osnR have been found to be under the control of σH. In the osnR-overexpressing strain, the transcription of sigH is significantly decreased and the stimulation of sigH transcription by external stress is lost, suggesting that osnR and sigH form an intimate regulatory network. Conclusions Our study suggests that OsnR not only functions as a transcriptional repressor of its own gene and of those involved in redox-dependent stress responses but also participates in the global transcriptional regulation by controlling the transcription of other master regulators, such as sigH. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01693-1.
Collapse
Affiliation(s)
- Haeri Jeong
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea
| | - Younhee Kim
- Department of Korean Medicine, Semyung University, Jecheon, Chungbuk, Republic of Korea
| | - Heung-Shick Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong, Republic of Korea.
| |
Collapse
|
21
|
Analysis of six tonB gene homologs in Bacteroides fragilis revealed that tonB3 is essential for survival in experimental intestinal colonization and intra-abdominal infection. Infect Immun 2021; 90:e0046921. [PMID: 34662212 DOI: 10.1128/iai.00469-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp) and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB's role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B12, Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space - in contrast to an oxidative environment in aerobes - it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions.
Collapse
|
22
|
Santos-Martin C, Wang G, Subedi P, Hor L, Totsika M, Paxman JJ, Heras B. Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Comput Struct Biotechnol J 2021; 19:4725-4737. [PMID: 34504665 PMCID: PMC8405906 DOI: 10.1016/j.csbj.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/12/2021] [Accepted: 08/12/2021] [Indexed: 01/02/2023] Open
Abstract
The disulfide bond (DSB) forming system and in particular DsbA, is a key bacterial oxidative folding catalyst. Due to its role in promoting the correct assembly of a wide range of virulence factors required at different stages of the infection process, DsbA is a master virulence rheostat, making it an attractive target for the development of new virulence blockers. Although DSB systems have been extensively studied across different bacterial species, to date, little is known about how DsbA oxidoreductases are able to recognize and interact with such a wide range of substrates. This review summarizes the current knowledge on the DsbA enzymes, with special attention on their interaction with the partner oxidase DsbB and substrates associated with bacterial virulence. The structurally and functionally diverse set of bacterial proteins that rely on DsbA-mediated disulfide bond formation are summarized. Local sequence and secondary structure elements of these substrates are analyzed to identify common elements recognized by DsbA enzymes. This not only provides information on protein folding systems in bacteria but also offers tools for identifying new DsbA substrates and informs current efforts aimed at developing DsbA targeted anti-microbials.
Collapse
Affiliation(s)
- Carlos Santos-Martin
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Geqing Wang
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Lilian Hor
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Jason John Paxman
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute of Molecular Science, La Trobe University, Melbourne, Australia
| |
Collapse
|
23
|
Identification of a Thiol-Disulfide Oxidoreductase (SdbA) Catalyzing Disulfide Bond Formation in the Superantigen SpeA in Streptococcus pyogenes. J Bacteriol 2021; 203:e0015321. [PMID: 34152832 DOI: 10.1128/jb.00153-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mechanisms of disulfide bond formation in the human pathogen Streptococcus pyogenes are currently unknown. To date, no disulfide bond-forming thiol-disulfide oxidoreductase (TDOR) has been described and at least one disulfide bonded protein is known in S. pyogenes. This protein is the superantigen SpeA, which contains 3 cysteine residues (Cys 87, Cys90, and Cys98) and has a disulfide bond formed between Cys87 and Cys98. In this study, candidate TDORs were identified from the genome sequence of S. pyogenes MGAS8232. Using mutational and biochemical approaches, one of the candidate proteins, SpyM18_2037 (named here SdbA), was shown to be the catalyst that introduces the disulfide bond in SpeA. SpeA in the culture supernatant remained reduced when sdbA was inactivated and restored to the oxidized state when a functional copy of sdbA was returned to the sdbA-knockout mutant. SdbA has a typical C46XXC49 active site motif commonly found in TDORs. Site-directed mutagenesis experiments showed that the cysteines in the CXXC motif were required for the disulfide bond in SpeA to form. Interactions between SdbA and SpeA were examined using cysteine variant proteins. The results showed that SdbAC49A formed a mixed disulfide with SpeAC87A, suggesting that the N-terminal Cys46 of SdbA and the C-terminal Cys98 of SpeA participated in the initial reaction. SpeA oxidized by SdbA displayed biological activities suggesting that SpeA was properly folded following oxidation by SdbA. In conclusion, formation of the disulfide bond in SpeA is catalyzed by SdbA and the findings represent the first report of disulfide bond formation in S. pyogenes. IMPORTANCE Here, we reported the first example of disulfide bond formation in Streptococcus pyogenes. The results showed that a thiol-disulfide oxidoreductase, named SdbA, is responsible for introducing the disulfide bond in the superantigen SpeA. The cysteine residues in the CXXC motif of SdbA are needed for catalyzing the disulfide bond in SpeA. The disulfide bond in SpeA and neighboring amino acids form a disulfide loop that is conserved among many superantigens, including those from Staphylococcus aureus. SpeA and staphylococcal enterotoxins lacking the disulfide bond are biologically inactive. Thus, the discovery of the enzyme that catalyzes the disulfide bond in SpeA is important for understanding the biochemistry of SpeA production and presents a target for mitigating the virulence of S. pyogenes.
Collapse
|
24
|
Slater SL, Mavridou DAI. Harnessing the potential of bacterial oxidative folding to aid protein production. Mol Microbiol 2021; 116:16-28. [PMID: 33576091 DOI: 10.1111/mmi.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Indexed: 11/30/2022]
Abstract
Protein folding is central to both biological function and recombinant protein production. In bacterial expression systems, which are easy to use and offer high protein yields, production of the protein of interest in its native fold can be hampered by the limitations of endogenous posttranslational modification systems. Disulfide bond formation, entailing the covalent linkage of proximal cysteine amino acids, is a fundamental posttranslational modification reaction that often underpins protein stability, especially in extracytoplasmic environments. When these bonds are not formed correctly, the yield and activity of the resultant protein are dramatically decreased. Although the mechanism of oxidative protein folding is well understood, unwanted or incorrect disulfide bond formation often presents a stumbling block for the expression of cysteine-containing proteins in bacteria. It is therefore important to consider the biochemistry of prokaryotic disulfide bond formation systems in the context of protein production, in order to take advantage of the full potential of such pathways in biotechnology applications. Here, we provide a critical overview of the use of bacterial oxidative folding in protein production so far, and propose a practical decision-making workflow for exploiting disulfide bond formation for the expression of any given protein of interest.
Collapse
Affiliation(s)
- Sabrina L Slater
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Despoina A I Mavridou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
25
|
Jaswal K, Shrivastava M, Chaba R. Revisiting long-chain fatty acid metabolism in Escherichia coli: integration with stress responses. Curr Genet 2021; 67:573-582. [PMID: 33740112 DOI: 10.1007/s00294-021-01178-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/29/2022]
Abstract
Long-chain fatty acids (LCFAs) are a tremendous source of metabolic energy, an essential component of membranes, and important effector molecules that regulate a myriad of cellular processes. As an energy-rich nutrient source, the role of LCFAs in promoting bacterial survival and infectivity is well appreciated. LCFA degradation generates a large number of reduced cofactors that may confer redox stress; therefore, it is imperative to understand how bacteria deal with this paradoxical situation. Although the LCFA utilization pathway has been studied in great detail, especially in Escherichia coli, where the earliest studies date back to the 1960s, the interconnection of LCFA degradation with bacterial stress responses remained largely unexplored. Recent work in E. coli shows that LCFA degradation induces oxidative stress and also impedes oxidative protein folding. Importantly, both issues arise due to the insufficiency of ubiquinone, a lipid-soluble electron carrier in the electron transport chain. However, to maintain redox homeostasis, bacteria induce sophisticated cellular responses. Here, we review these findings in light of our current knowledge of the LCFA metabolic pathway, metabolism-induced oxidative stress, the process of oxidative protein folding, and stress combat mechanisms. We discuss probable mechanisms for the activation of defense players during LCFA metabolism and the likely feedback imparted by them. We suggest that besides defending against intrinsic stresses, LCFA-mediated upregulation of stress response pathways primes bacteria to adapt to harsh external environments. Collectively, the interplay between LCFA metabolism and stress responses is likely an important factor that underlies the success of LCFA-utilizing bacteria in the host.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India.
| |
Collapse
|
26
|
DuPai CD, Davies BW, Wilke CO. A systematic analysis of the beta hairpin motif in the Protein Data Bank. Protein Sci 2021; 30:613-623. [PMID: 33389765 DOI: 10.1002/pro.4020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
The beta hairpin motif is a ubiquitous protein structural motif that can be found in molecules across the tree of life. This motif, which is also popular in synthetically designed proteins and peptides, is known for its stability and adaptability to broad functions. Here, we systematically probe all 49,000 unique beta hairpin substructures contained within the Protein Data Bank (PDB) to uncover key characteristics correlated with stable beta hairpin structure, including amino acid biases and enriched interstrand contacts. We find that position specific amino acid preferences, while seen throughout the beta hairpin structure, are most evident within the turn region, where they depend on subtle turn dynamics associated with turn length and secondary structure. We also establish a set of broad design principles, such as the inclusion of aspartic acid residues at a specific position and the careful consideration of desired secondary structure when selecting residues for the turn region, that can be applied to the generation of libraries encoding proteins or peptides containing beta hairpin structures.
Collapse
Affiliation(s)
- Cory D DuPai
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA.,Center for Systems and Synthetic Biology, John Ring LaMontagne Center for Infectious Diseases, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Claus O Wilke
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Vezina B, Petit GA, Martin JL, Halili MA. Prediction of Burkholderia pseudomallei DsbA substrates identifies potential virulence factors and vaccine targets. PLoS One 2020; 15:e0241306. [PMID: 33216758 PMCID: PMC7678975 DOI: 10.1371/journal.pone.0241306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/12/2020] [Indexed: 11/19/2022] Open
Abstract
Identification of bacterial virulence factors is critical for understanding disease pathogenesis, drug discovery and vaccine development. In this study we used two approaches to predict virulence factors of Burkholderia pseudomallei, the Gram-negative bacterium that causes melioidosis. B. pseudomallei is naturally antibiotic resistant and there are no clinically available melioidosis vaccines. To identify B. pseudomallei protein targets for drug discovery and vaccine development, we chose to search for substrates of the B. pseudomallei periplasmic disulfide bond forming protein A (DsbA). DsbA introduces disulfide bonds into extra-cytoplasmic proteins and is essential for virulence in many Gram-negative organism, including B. pseudomallei. The first approach to identify B. pseudomallei DsbA virulence factor substrates was a large-scale genomic analysis of 511 unique B. pseudomallei disease-associated strains. This yielded 4,496 core gene products, of which we hypothesise 263 are DsbA substrates. Manual curation and database screening of the 263 mature proteins yielded 81 associated with disease pathogenesis or virulence. These were screened for structural homologues to predict potential B-cell epitopes. In the second approach, we searched the B. pseudomallei genome for homologues of the more than 90 known DsbA substrates in other bacteria. Using this approach, we identified 15 putative B. pseudomallei DsbA virulence factor substrates, with two of these previously identified in the genomic approach, bringing the total number of putative DsbA virulence factor substrates to 94. The two putative B. pseudomallei virulence factors identified by both methods are homologues of PenI family β-lactamase and a molecular chaperone. These two proteins could serve as high priority targets for future B. pseudomallei virulence factor characterization.
Collapse
Affiliation(s)
- Ben Vezina
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Guillaume A. Petit
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jennifer L. Martin
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
- Vice-Chancellor’s Unit, University of Wollongong, Wollongong, New South Wales, Australia
| | - Maria A. Halili
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
28
|
Jaswal K, Shrivastava M, Roy D, Agrawal S, Chaba R. Metabolism of long-chain fatty acids affects disulfide bond formation in Escherichia coli and activates envelope stress response pathways as a combat strategy. PLoS Genet 2020; 16:e1009081. [PMID: 33079953 PMCID: PMC7598926 DOI: 10.1371/journal.pgen.1009081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/30/2020] [Accepted: 08/25/2020] [Indexed: 12/28/2022] Open
Abstract
The envelope of gram-negative bacteria serves as the first line of defense against environmental insults. Therefore, its integrity is continuously monitored and maintained by several envelope stress response (ESR) systems. Due to its oxidizing environment, the envelope represents an important site for disulfide bond formation. In Escherichia coli, the periplasmic oxidoreductase, DsbA introduces disulfide bonds in substrate proteins and transfers electrons to the inner membrane oxidoreductase, DsbB. Under aerobic conditions, the reduced form of DsbB is re-oxidized by ubiquinone, an electron carrier in the electron transport chain (ETC). Given the critical role of ubiquinone in transferring electrons derived from the oxidation of reduced cofactors, we were intrigued whether metabolic conditions that generate a large number of reduced cofactors render ubiquinone unavailable for disulfide bond formation. To test this, here we investigated the influence of metabolism of long-chain fatty acid (LCFA), an energy-rich carbon source, on the redox state of the envelope. We show that LCFA degradation increases electron flow in the ETC. Further, whereas cells metabolizing LCFAs exhibit characteristics of insufficient disulfide bond formation, these hallmarks are averted in cells exogenously provided with ubiquinone. Importantly, the ESR pathways, Cpx and σE, are activated by envelope signals generated during LCFA metabolism. Our results argue that Cpx is the primary ESR that senses and maintains envelope redox homeostasis. Amongst the two ESRs, Cpx is induced to a greater extent by LCFAs and senses redox-dependent signal. Further, ubiquinone accumulation during LCFA metabolism is prevented in cells lacking Cpx response, suggesting that Cpx activation helps maintain redox homeostasis by increasing the oxidizing power for disulfide bond formation. Taken together, our results demonstrate an intricate relationship between cellular metabolism and disulfide bond formation dictated by ETC and ESR, and provide the basis for examining whether similar mechanisms control envelope redox status in other gram-negative bacteria.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Shashank Agrawal
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab, India
| |
Collapse
|
29
|
Pandeya A, Ojo I, Alegun O, Wei Y. Periplasmic Targets for the Development of Effective Antimicrobials against Gram-Negative Bacteria. ACS Infect Dis 2020; 6:2337-2354. [PMID: 32786281 PMCID: PMC8187054 DOI: 10.1021/acsinfecdis.0c00384] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibiotic resistance has emerged as a serious threat to global public health in recent years. Lack of novel antimicrobials, especially new classes of compounds, further aggravates the situation. For Gram-negative bacteria, their double layered cell envelope and an array of efflux pumps act as formidable barriers for antimicrobials to penetrate. While cytoplasmic targets are hard to reach, proteins in the periplasm are clearly more accessible, as the drug only needs to breach the outer membrane. In this review, we summarized recent efforts on the validation and testing of periplasmic proteins as potential antimicrobial targets and the development of related inhibitors that either inhibit the growth of a bacterial pathogen or reduce its virulence during interaction with host cells. We conclude that the periplasm contains a promising pool of novel antimicrobial targets that should be scrutinized more closely for the development of effective treatment against multidrug-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Ankit Pandeya
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Isoiza Ojo
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Olaniyi Alegun
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Yinan Wei
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
30
|
Collet JF, Cho SH, Iorga BI, Goemans CV. How the assembly and protection of the bacterial cell envelope depend on cysteine residues. J Biol Chem 2020; 295:11984-11994. [PMID: 32487747 PMCID: PMC7443483 DOI: 10.1074/jbc.rev120.011201] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/02/2020] [Indexed: 12/15/2022] Open
Abstract
The cell envelope of Gram-negative bacteria is a multilayered structure essential for bacterial viability; the peptidoglycan cell wall provides shape and osmotic protection to the cell, and the outer membrane serves as a permeability barrier against noxious compounds in the external environment. Assembling the envelope properly and maintaining its integrity are matters of life and death for bacteria. Our understanding of the mechanisms of envelope assembly and maintenance has increased tremendously over the past two decades. Here, we review the major achievements made during this time, giving central stage to the amino acid cysteine, one of the least abundant amino acid residues in proteins, whose unique chemical and physical properties often critically support biological processes. First, we review how cysteines contribute to envelope homeostasis by forming stabilizing disulfides in crucial bacterial assembly factors (LptD, BamA, and FtsN) and stress sensors (RcsF and NlpE). Second, we highlight the emerging role of enzymes that use cysteine residues to catalyze reactions that are necessary for proper envelope assembly, and we also explain how these enzymes are protected from oxidative inactivation. Finally, we suggest future areas of investigation, including a discussion of how cysteine residues could contribute to envelope homeostasis by functioning as redox switches. By highlighting the redox pathways that are active in the envelope of Escherichia coli, we provide a timely overview of the assembly of a cellular compartment that is the hallmark of Gram-negative bacteria.
Collapse
Affiliation(s)
| | - Seung-Hyun Cho
- de Duve Institute, UCLouvain, Brussels, Belgium; WELBIO, Brussels, Belgium
| | - Bogdan I Iorga
- de Duve Institute, UCLouvain, Brussels, Belgium; Université Paris-Saclay, CNRS UPR 2301, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | | |
Collapse
|
31
|
Brown AO, Singh KV, Cruz MR, Kaval KG, Francisco LE, Murray BE, Garsin DA. Cardiac Microlesions Form During Severe Bacteremic Enterococcus faecalis Infection. J Infect Dis 2020; 223:508-516. [PMID: 32597945 DOI: 10.1093/infdis/jiaa371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Enterococcus faecalis is a significant cause of hospital-acquired bacteremia. Herein, the discovery is reported that cardiac microlesions form during severe bacteremic E. faecalis infection in mice. The cardiac microlesions were identical in appearance to those formed by Streptococcus pneumoniae during invasive pneumococcal disease. However, E. faecalis does not encode the virulence determinants implicated in pneumococcal microlesion formation. Rather, disulfide bond forming protein A (DsbA) was found to be required for E. faecalis virulence in a Caenorhabditis elegans model and was necessary for efficient cardiac microlesion formation. Furthermore, E. faecalis promoted cardiomyocyte apoptotic and necroptotic cell death at sites of microlesion formation. Additionally, loss of DsbA caused an increase in proinflammatory cytokines, unlike the wild-type strain, which suppressed the immune response. In conclusion, we establish that E. faecalis is capable of forming cardiac microlesions and identify features of both the bacterium and the host response that are mechanistically involved.
Collapse
Affiliation(s)
- Armand O Brown
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Melissa R Cruz
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Karan Gautam Kaval
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Liezl E Francisco
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Barbara E Murray
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Li S, Liu S, Yang Y, Li W. Characterization of Warfarin Inhibition Kinetics Requires Stabilization of Intramembrane Vitamin K Epoxide Reductases. J Mol Biol 2020; 432:5197-5208. [PMID: 32445640 DOI: 10.1016/j.jmb.2020.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/24/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023]
Abstract
Intramembrane enzymes are often difficult for biochemical characterization. Human vitamin K epoxide reductase (VKOR) is the target of warfarin. However, this intramembrane enzyme becomes insensitive to warfarin inhibition in vitro, preventing the characterization of inhibition kinetics for decades. Here we employ structural biology methods to identify stable VKOR and VKOR-like proteins and purify them to near homogeneity. We find that the key to maintain their warfarin sensitivity is to stabilize their native protein conformation in vitro. Reduced glutathione drastically increases the warfarin sensitivity of a VKOR-like protein from Takifugu rubripes, presumably through maintaining a disulfide-bonded conformation. Effective inhibition of human VKOR-like requires also the use of LMNG, a mild detergent developed for crystallography to increase membrane protein stability. Human VKOR needs to be preserved in ER-enriched microsomes to exhibit warfarin sensitivity, whereas human VKOR purified in LMNG is stable only with pre-bound warfarin. Under these optimal conditions, warfarin inhibits with tight-binding kinetics. Overall, our studies show that structural biology methods are ideal for stabilizing intramembrane enzymes. Optimizing toward their inhibitor-binding conformation enables the characterization of enzyme kinetics in difficult cases.
Collapse
Affiliation(s)
- Shuang Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yihu Yang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
33
|
Bushweller JH. Protein Disulfide Exchange by the Intramembrane Enzymes DsbB, DsbD, and CcdA. J Mol Biol 2020; 432:5091-5103. [PMID: 32305461 DOI: 10.1016/j.jmb.2020.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
The formation of disulfide bonds in proteins is an essential process in both prokaryotes and eukaryotes. In gram-negative bacteria including Escherichia coli, the proteins DsbA and DsbB mediate the formation of disulfide bonds in the periplasm. DsbA acts as the periplasmic oxidant of periplasmic substrate proteins. DsbA is reoxidized by transfer of reducing equivalents to the 4 TM helix membrane protein DsbB, which transfers reducing equivalents to ubiquinone or menaquinone. Multiple structural studies of DsbB have provided detailed structural information on intermediates in the process of DsbB catalyzed oxidation of DsbA. These structures and the insights gained are described. In proteins with more than one pair of Cys residues, there is the potential for formation of non-native disulfide bonds, making it necessary for the cell to have a mechanism for the isomerization of such non-native disulfide bonds. In E. coli, this is mediated by the proteins DsbC and DsbD. DsbC reduces mis-formed disulfide bonds. The eight-TM-helix protein DsbD reduces DsbC and is itself reduced by cytoplasmic thioredoxin. DsbD also contributes reducing equivalents for the reduction of cytochrome c to facilitate heme attachment. The DsbD functional homolog CcdA is a six-TM-helix membrane protein that provides reducing equivalents for the reduction of cytochrome c. A recent structure determination of CcdA has provided critical insights into how reducing equivalents are transferred across the membrane that likely also provides understanding how this is achieved by DsbD as well. This structure and the insights gained are described.
Collapse
Affiliation(s)
- John H Bushweller
- Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
34
|
A Disulfide Oxidoreductase (CHU_1165) Is Essential for Cellulose Degradation by Affecting Outer Membrane Proteins in Cytophaga hutchinsonii. Appl Environ Microbiol 2020; 86:AEM.02789-19. [PMID: 32033954 DOI: 10.1128/aem.02789-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/19/2020] [Indexed: 11/20/2022] Open
Abstract
Cytophaga hutchinsonii cells can bind to the surface of insoluble cellulose and degrade it by utilizing a novel cell contact-dependent mechanism, in which the outer membrane proteins may play important roles. In this study, the deletion of a gene locus, chu_1165, which encodes a hypothetical protein with 32% identity with TlpB, a disulfide oxidoreductase in Flavobacterium psychrophilum, caused a complete cellulolytic defect in C. hutchinsonii Further study showed that cells of the Δ1165 strain could not bind to cellulose, and the levels of many outer membrane proteins that can bind to cellulose were significantly decreased. The N-terminal region of CHU_1165 is anchored to the cytoplasmic membrane with five predicted transmembrane helices, and the C-terminal region is predicted to stretch to the periplasm and has a similar thioredoxin (Trx) fold containing a Cys-X-X-Cys motif that is conserved in disulfide oxidoreductases. Recombinant CHU_1165His containing the Cys-X-X-Cys motif was able to reduce the disulfide bonds of insulin in vitro Site-directed mutation showed that the cysteines in the Cys-X-X-Cys motif and at residues 106 and 108 were indispensable for the function of CHU_1165. Western blotting showed that CHU_1165 was in an oxidized state in vivo, suggesting that it may act as an oxidase to catalyze disulfide bond formation. However, many of the decreased outer membrane proteins that were essential for cellulose degradation contained no or one cysteine, and mutation of the cysteine in these proteins did not affect cellulose degradation, indicating that CHU_1165 may have an indirect or pleiotropic effect on the function of these outer membrane proteins.IMPORTANCE Cytophaga hutchinsonii can rapidly digest cellulose in a contact-dependent manner, in which the outer membrane proteins may play important roles. In this study, a hypothetical protein, CHU_1165, characterized as a disulfide oxidoreductase, is essential for cellulose degradation by affecting the cellulose binding ability of many outer membrane proteins in C. hutchinsonii Disulfide oxidoreductases are involved in disulfide bond formation. However, our studies show that many of the decreased outer membrane proteins that were essential for cellulose degradation contained no or one cysteine, and mutation of cysteine did not affect their function, indicating that CHU_1165 did not facilitate the formation of a disulfide bond in these proteins. It may have an indirect or pleiotropic effect on the function of these outer membrane proteins. Our study provides an orientation for exploring the proteins that assist in the appropriate conformation of many outer membrane proteins essential for cellulose degradation, which is important for exploring the novel mechanism of cellulose degradation in C. hutchinsonii.
Collapse
|
35
|
Banaś AM, Bocian-Ostrzycka KM, Plichta M, Dunin-Horkawicz S, Ludwiczak J, Płaczkiewicz J, Jagusztyn-Krynicka EK. C8J_1298, a bifunctional thiol oxidoreductase of Campylobacter jejuni, affects Dsb (disulfide bond) network functioning. PLoS One 2020; 15:e0230366. [PMID: 32203539 PMCID: PMC7089426 DOI: 10.1371/journal.pone.0230366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Posttranslational generation of disulfide bonds catalyzed by bacterial Dsb (disulfide bond) enzymes is essential for the oxidative folding of many proteins. Although we now have a good understanding of the Escherichia coli disulfide bond formation system, there are significant gaps in our knowledge concerning the Dsb systems of other bacteria, including Campylobacter jejuni, a food-borne, zoonotic pathogen. We attempted to gain a more complete understanding of the process by thorough analysis of C8J_1298 functioning in vitro and in vivo. C8J_1298 is a homodimeric thiol-oxidoreductase present in wild type (wt) cells, in both reduced and oxidized forms. The protein was previously described as a homolog of DsbC, and thus potentially should be active in rearrangement of disulfides. Indeed, biochemical studies with purified protein revealed that C8J_1298 shares many properties with EcDsbC. However, its activity in vivo is dependent on the genetic background, namely, the set of other Dsb proteins present in the periplasm that determine the redox conditions. In wt C. jejuni cells, C8J_1298 potentially works as a DsbG involved in the control of the cysteine sulfenylation level and protecting single cysteine residues from oxidation to sulfenic acid. A strain lacking only C8J_1298 is indistinguishable from the wild type strain by several assays recognized as the criteria to determine isomerization or oxidative Dsb pathways. Remarkably, in C. jejuni strain lacking DsbA1, the protein involved in generation of disulfides, C8J_1298 acts as an oxidase, similar to the homodimeric oxidoreductase of Helicobater pylori, HP0231. In E. coli, C8J_1298 acts as a bifunctional protein, also resembling HP0231. These findings are strongly supported by phylogenetic data. We also showed that CjDsbD (C8J_0565) is a C8J_1298 redox partner.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | | - Maciej Plichta
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Jan Ludwiczak
- Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Warsaw, Poland
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Jagoda Płaczkiewicz
- Department of Virology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
36
|
Jurischka S, Bida A, Dohmen-Olma D, Kleine B, Potzkei J, Binder S, Schaumann G, Bakkes PJ, Freudl R. A secretion biosensor for monitoring Sec-dependent protein export in Corynebacterium glutamicum. Microb Cell Fact 2020; 19:11. [PMID: 31964372 PMCID: PMC6975037 DOI: 10.1186/s12934-019-1273-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the industrial workhorse Corynebacterium glutamicum has gained increasing interest as a host organism for the secretory production of heterologous proteins. Generally, the yield of a target protein in the culture supernatant depends on a multitude of interdependent biological and bioprocess parameters which have to be optimized. So far, the monitoring of such optimization processes depends on the availability of a direct assay for the respective target protein that can be handled also in high throughput approaches. Since simple assays, such as standard enzymatic activity assays, are not always at hand, the availability of a general protein secretion biosensor is highly desirable. RESULTS High level secretion of proteins via the Sec protein export pathway leads to secretion stress, a phenomenon that is thought to be caused by the accumulation of incompletely or misfolded proteins at the membrane-cell envelope interface. We have analyzed the transcriptional responses of C. glutamicum to the secretory production of two different heterologous proteins and found that, in both cases, the expression of the gene encoding a homologue of the extracytosolic HtrA protease was highly upregulated. Based on this finding, a C. glutamicum Sec secretion biosensor strain was constructed in which the htrA gene on the chromosome was replaced by the eyfp gene. The fluorescence of the resulting reporter strain responded to the secretion of different heterologous proteins (cutinase from Fusarium solani pisi and alkaline phosphatase PhoA from Escherichia coli) in a dose-dependent manner. In addition, three differently efficient signal peptides for the secretory production of the cutinase could be differentiated by the biosensor signal. Furthermore, we have shown that an efficient signal peptide can be separated from a poor signal peptide by using the biosensor signal of the respective cells in fluorescence activated cell sorting experiments. CONCLUSIONS We have succeeded in the construction of a C. glutamicum biosensor strain that allows for the monitoring of Sec-dependent secretion of heterologous proteins in a dose-dependent manner, independent of a direct assay for the desired target protein.
Collapse
Affiliation(s)
- Sarah Jurischka
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany
| | - Astrid Bida
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Doris Dohmen-Olma
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Britta Kleine
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Janko Potzkei
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Stephan Binder
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Georg Schaumann
- SenseUp GmbH, c/o Campus Forschungszentrum, Wilhelm-Johnen-Strasse, 52428, Jülich, Germany
| | - Patrick J Bakkes
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Roland Freudl
- Institut für Bio- und Geowissenschaften 1, IBG1: Biotechnologie, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
- Bioeconomy Science Center (BioSC), 52425, Jülich, Germany.
| |
Collapse
|
37
|
Complex Oxidation of Apocytochromes c during Bacterial Cytochrome c Maturation. Appl Environ Microbiol 2019; 85:AEM.01989-19. [PMID: 31585997 DOI: 10.1128/aem.01989-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 12/22/2022] Open
Abstract
c-Type cytochromes (cyts c) are proteins that contain covalently bound heme and that thus require posttranslational modification for activity, a process carried out by the cytochrome c (cyt c) maturation system (referred to as the Ccm system) in many Gram-negative bacteria. It has been established that during cyt c maturation (CCM), two cysteine thiols of the heme binding motif (CXXCH) within apocytochromes c (apocyts c) are first oxidized largely by DsbA to form a disulfide bond, which is later reduced through a thio-reductive pathway involving DsbD. However, the physiological impacts of DsbA proteins on CCM in fact vary significantly among bacteria. In this work, we used the cyt c-rich Gram-negative bacterium Shewanella oneidensis as the research model to clarify the roles of DsbA proteins in CCM. We show that in terms of the oxidation of apocyts c, DsbA proteins are an important but not critical factor, and, strikingly, oxygen is not either. By exploiting the DsbD-independent pathway, we identify DsbA1, DsbA2, and DsbA3 as oxidants contributing to the oxidation of apocyts c and reductants, such as cysteine, to be an effective antagonist against DsbA-independent oxidation. We further show that DsbB proteins are partially responsible for the reoxidization of reduced DsbA proteins. Overall, our results indicate that the DsbA-DsbB redox pair has a limited role in CCM, challenging the established notion that it is the main oxidant for apocyts c IMPORTANCE DsbA is a powerful oxidase that functions in the bacterial periplasm to introduce disulfide bonds in many proteins, including apocytochromes c It has been well established that although DsbA is not essential, it plays a primary role in cytochrome c maturation, based on studies in bacteria hosting several cyts c Here, with cyt c-rich S. oneidensis as a research model, we show that this is not always the case. Moreover, we demonstrate that DsbB is also not essential for cytochrome c maturation. These results underscore the need to identify oxidants other than DsbA/DsbB that are crucial in the oxidation of apocyts c in bacteria.
Collapse
|
38
|
Wüllner D, Haupt A, Prochnow P, Leontiev R, Slusarenko AJ, Bandow JE. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Proteomics 2019; 19:e1900064. [PMID: 31622046 DOI: 10.1002/pmic.201900064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 09/16/2019] [Indexed: 12/22/2022]
Abstract
Allicin, a broad-spectrum antimicrobial agent from garlic, disrupts thiol and redox homeostasis, proteostasis, and cell membrane integrity. Since medicine demands antimicrobials with so far unexploited mechanisms, allicin is a promising lead structure. While progress is being made in unraveling its mode of action, little is known on bacterial adaptation strategies. Some isolates of Pseudomonas aeruginosa and Escherichia coli withstand exposure to high allicin concentrations due to as yet unknown mechanisms. To elucidate resistance and sensitivity-conferring cellular processes, the acute proteomic responses of a resistant P. aeruginosa strain and the sensitive species Bacillus subtilis are compared to the published proteomic response of E. coli to allicin treatment. The cellular defense strategies share functional features: proteins involved in translation and maintenance of protein quality, redox homeostasis, and cell envelope modification are upregulated. In both Gram-negative species, protein synthesis of the majority of proteins is downregulated while the Gram-positive B. subtilis responded by upregulation of multiple regulons. A comparison of the B. subtilis proteomic response to a library of responses to antibiotic treatment reveals 30 proteins specifically upregulated by allicin. Upregulated oxidative stress proteins are shared with nitrofurantoin and diamide. Microscopy-based assays further indicate that in B. subtilis cell wall integrity is impaired.
Collapse
Affiliation(s)
- Dominik Wüllner
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Annika Haupt
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Pascal Prochnow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Roman Leontiev
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany.,Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, 66041, Saarbrücken, Germany
| | - Alan J Slusarenko
- Department of Plant Physiology (Bio III), RWTH Aachen University, 52056, Aachen, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44780, Bochum, Germany
| |
Collapse
|
39
|
Coyne MJ, Béchon N, Matano LM, McEneany VL, Chatzidaki-Livanis M, Comstock LE. A family of anti-Bacteroidales peptide toxins wide-spread in the human gut microbiota. Nat Commun 2019; 10:3460. [PMID: 31371723 PMCID: PMC6671954 DOI: 10.1038/s41467-019-11494-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/17/2019] [Indexed: 12/15/2022] Open
Abstract
Bacteria often produce antimicrobial toxins to compete in microbial communities. Here we identify a family of broad-spectrum peptide toxins, named bacteroidetocins, produced by Bacteroidetes species. We study this toxin family using phenotypic, mutational, bioinformatic, and human metagenomic analyses. Bacteroidetocins are related to class IIa bacteriocins of Gram-positive bacteria and kill members of the Bacteroidetes phylum, including Bacteroides, Parabacteroides, and Prevotella gut species, as well as pathogenic Prevotella species. The bacteroidetocin biosynthesis genes are found in horizontally acquired mobile elements, which likely allow dissemination within the gut microbiota and may explain their wide distribution in human populations. Bacteroidetocins may have potential applications in microbiome engineering and as therapeutics for polymicrobial diseases such as bacterial vaginosis and periodontal disease.
Collapse
Affiliation(s)
- Michael J Coyne
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Nathalie Béchon
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Institut Pasteur, Genetics of Biofilms Unit, 75015 Paris, cedex 15, 25-28 rue du Docteur Roux, France
- Ecole Doctorale Bio Sorbonne Paris Cité (BioSPC), Paris Diderot University, 75013, Cellule Pasteur, Paris, cedex, France
| | - Leigh M Matano
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Valentina Laclare McEneany
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Maria Chatzidaki-Livanis
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biological Sciences, University of Ohio, Athens, OH, 45701, USA
| | - Laurie E Comstock
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Abstract
The formation of disulfide bonds is critical to the folding of many extracytoplasmic proteins in all domains of life. With the discovery in the early 1990s that disulfide bond formation is catalyzed by enzymes, the field of oxidative folding of proteins was born. Escherichia coli played a central role as a model organism for the elucidation of the disulfide bond-forming machinery. Since then, many of the enzymatic players and their mechanisms of forming, breaking, and shuffling disulfide bonds have become understood in greater detail. This article summarizes the discoveries of the past 3 decades, focusing on disulfide bond formation in the periplasm of the model prokaryotic host E. coli.
Collapse
|
41
|
Brown AO, Graham CE, Cruz MR, Singh KV, Murray BE, Lorenz MC, Garsin DA. Antifungal Activity of the Enterococcus faecalis Peptide EntV Requires Protease Cleavage and Disulfide Bond Formation. mBio 2019; 10:e01334-19. [PMID: 31266876 PMCID: PMC6606811 DOI: 10.1128/mbio.01334-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 02/04/2023] Open
Abstract
Enterococcus faecalis, a Gram-positive bacterium, and Candida albicans, a polymorphic fungus, are common constituents of the microbiome as well as increasingly problematic causes of infections. Interestingly, we previously showed that these two species antagonize each other's virulence and that E. faecalis inhibition of C. albicans was specifically mediated by EntV. EntV is a bacteriocin encoded by the entV (ef1097) locus that reduces C. albicans virulence and biofilm formation by inhibiting hyphal morphogenesis. In this report, we studied the posttranslational modifications necessary for EntV antifungal activity. First, we show that the E. faecalis secreted enzyme gelatinase (GelE) is responsible for cleaving EntV into its 68-amino-acid, active form and that this process does not require the serine protease SprE. Furthermore, we demonstrate that a disulfide bond that forms within EntV is necessary for antifungal activity. Abrogating this bond by chemical treatment or genetic modification rendered EntV inactive against C. albicans Moreover, we identified the likely catalyst of this disulfide bond, a previously uncharacterized thioredoxin within the E. faecalis genome called DsbA. Loss of DsbA, or disruption of its redox-active cysteines, resulted in loss of EntV antifungal activity. Finally, we show that disulfide bond formation is not a prerequisite for cleavage; EntV cleavage proceeded normally in the absence of DsbA. In conclusion, we present a model in which following secretion, EntV undergoes disulfide bond formation by DsbA and cleavage by GelE in order to generate a peptide capable of inhibiting C. albicansIMPORTANCEEnterococcus faecalis and Candida albicans are among the most important and problematic pathobionts, organisms that normally are harmless commensals but can cause dangerous infections in immunocompromised hosts. In fact, both organisms are listed by the Centers for Disease Control and Prevention as serious global public health threats stemming from the increased prevalence of antimicrobial resistance. The rise in antifungal resistance is of particular concern considering the small arsenal of currently available therapeutics. EntV is a peptide with antifungal properties, and it, or a similar compound, could be developed into a therapeutic alternative, either alone or in combination with existing agents. However, to do so requires understanding what properties of EntV are necessary for its antifungal activity. In this work, we studied the posttranslational processing of EntV and what modifications are necessary for inhibition of C. albicans in order to fill this gap in knowledge.
Collapse
Affiliation(s)
- Armand O Brown
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Carrie E Graham
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Melissa R Cruz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Kavindra V Singh
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Barbara E Murray
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
- Division of Infectious Diseases, Department of Internal Medicine, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Michael C Lorenz
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Danielle A Garsin
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, Houston, Texas, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
42
|
Banaś AM, Bocian-Ostrzycka KM, Jagusztyn-Krynicka EK. Engineering of the Dsb (disulfide bond) proteins - contribution towards understanding their mechanism of action and their applications in biotechnology and medicine. Crit Rev Microbiol 2019; 45:433-450. [PMID: 31190593 DOI: 10.1080/1040841x.2019.1622509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The Dsb protein family in prokaryotes catalyzes the generation of disulfide bonds between thiol groups of cysteine residues in nascent proteins, ensuring their proper three-dimensional structure; these bonds are crucial for protein stability and function. The first Dsb protein, Escherichia coli DsbA, was described in 1991. Since then, many details of the bond-formation process have been described through microbiological, biochemical, biophysical and bioinformatics strategies. Research with the model microorganism E. coli and many other bacterial species revealed an enormous diversity of bond-formation mechanisms. Research using Dsb protein engineering has significantly helped to reveal details of the disulfide bond formation. The first part of this review presents the research that led to understanding the mechanism of action of DsbA proteins, which directly transfer their own disulfide into target proteins. The second part concentrates on the mechanism of electron transport through the cell cytoplasmic membrane. Third and lastly, the review discusses the contribution of this research towards new antibacterial agents.
Collapse
Affiliation(s)
- Anna Marta Banaś
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | - Katarzyna Marta Bocian-Ostrzycka
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw , Miecznikowa 1 , Warsaw , Poland
| | | |
Collapse
|
43
|
Landeta C, McPartland L, Tran NQ, Meehan BM, Zhang Y, Tanweer Z, Wakabayashi S, Rock J, Kim T, Balasubramanian D, Audette R, Toosky M, Pinkham J, Rubin EJ, Lory S, Pier G, Boyd D, Beckwith J. Inhibition of Pseudomonas aeruginosa and Mycobacterium tuberculosis disulfide bond forming enzymes. Mol Microbiol 2019; 111:918-937. [PMID: 30556355 DOI: 10.1111/mmi.14185] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
In bacteria, disulfide bonds confer stability on many proteins exported to the cell envelope or beyond, including bacterial virulence factors. Thus, proteins involved in disulfide bond formation represent good targets for the development of inhibitors that can act as antibiotics or anti-virulence agents, resulting in the simultaneous inactivation of several types of virulence factors. Here, we present evidence that the disulfide bond forming enzymes, DsbB and VKOR, are required for Pseudomonas aeruginosa pathogenicity and Mycobacterium tuberculosis survival respectively. We also report the results of a HTS of 216,767 compounds tested against P. aeruginosa DsbB1 and M. tuberculosis VKOR using Escherichia coli cells. Since both P. aeruginosa DsbB1 and M. tuberculosis VKOR complement an E. coli dsbB knockout, we screened simultaneously for inhibitors of each complemented E. coli strain expressing a disulfide-bond sensitive β-galactosidase reported previously. The properties of several inhibitors obtained from these screens suggest they are a starting point for chemical modifications with potential for future antibacterial development.
Collapse
Affiliation(s)
- Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Laura McPartland
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Ngoc Q Tran
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Brian M Meehan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Yifan Zhang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Zaidi Tanweer
- Division of Infectious Diseases. Department of Medicine. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shoko Wakabayashi
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Jeremy Rock
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Taehyun Kim
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | | | - Rebecca Audette
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Melody Toosky
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Jessica Pinkham
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Eric J Rubin
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Gerald Pier
- Division of Infectious Diseases. Department of Medicine. Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Sutoh S, Uemura Y, Yamaguchi Y, Kiyotou A, Sugihara R, Nagayasu M, Kurokawa M, Ito K, Tsunekawa N, Nemoto M, Inagaki K, Tamura T. Redox-tuning of oxidizing disulfide oxidoreductase generates a potent disulfide isomerase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1867:194-201. [DOI: 10.1016/j.bbapap.2018.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 11/16/2022]
|
45
|
Christensen S, McMahon RM, Martin JL, Huston WM. Life inside and out: making and breaking protein disulfide bonds in Chlamydia. Crit Rev Microbiol 2019; 45:33-50. [PMID: 30663449 DOI: 10.1080/1040841x.2018.1538933] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Disulphide bonds are widely used among all domains of life to provide structural stability to proteins and to regulate enzyme activity. Chlamydia spp. are obligate intracellular bacteria that are especially dependent on the formation and degradation of protein disulphide bonds. Members of the genus Chlamydia have a unique biphasic developmental cycle alternating between two distinct cell types; the extracellular infectious elementary body (EB) and the intracellular replicating reticulate body. The proteins in the envelope of the EB are heavily cross-linked with disulphides and this is known to be critical for this infectious phase. In this review, we provide a comprehensive summary of what is known about the redox state of chlamydial envelope proteins throughout the developmental cycle. We focus especially on the factors responsible for degradation and formation of disulphide bonds in Chlamydia and how this system compares with redox regulation in other organisms. Focussing on the unique biology of Chlamydia enables us to provide important insights into how specialized suites of disulphide bond (Dsb) proteins cater for specific bacterial environments and lifecycles.
Collapse
Affiliation(s)
- Signe Christensen
- a Division of Chemistry and Structural Biology , Institute for Molecular Bioscience, University of Queensland , St. Lucia , QLD , Australia.,b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Róisín M McMahon
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Jennifer L Martin
- b Griffith Institute for Drug Discovery, Griffith University , Nathan , QLD , Australia
| | - Wilhelmina M Huston
- c School of Life Sciences , University of Technology Sydney , Ultimo , NSW , Australia
| |
Collapse
|
46
|
Totsika M, Vagenas D, Paxman JJ, Wang G, Dhouib R, Sharma P, Martin JL, Scanlon MJ, Heras B. Inhibition of Diverse DsbA Enzymes in Multi-DsbA Encoding Pathogens. Antioxid Redox Signal 2018; 29:653-666. [PMID: 29237285 PMCID: PMC6067686 DOI: 10.1089/ars.2017.7104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AIMS DsbA catalyzes disulfide bond formation in secreted and outer membrane proteins in bacteria. In pathogens, DsbA is a major facilitator of virulence constituting a target for antivirulence antimicrobial development. However, many pathogens encode multiple and diverse DsbA enzymes for virulence factor folding during infection. The aim of this study was to determine whether our recently identified inhibitors of Escherichia coli K-12 DsbA can inhibit the diverse DsbA enzymes found in two important human pathogens and attenuate their virulence. RESULTS DsbA inhibitors from two chemical classes (phenylthiophene and phenoxyphenyl derivatives) inhibited the virulence of uropathogenic E. coli and Salmonella enterica serovar Typhimurium, encoding two and three diverse DsbA homologues, respectively. Inhibitors blocked the virulence of dsbA null mutants complemented with structurally diverse DsbL and SrgA, suggesting that they were not selective for prototypical DsbA. Structural characterization of DsbA-inhibitor complexes showed that compounds from each class bind in a similar region of the hydrophobic groove adjacent to the Cys30-Pro31-His32-Cys33 (CPHC) active site. Modeling of DsbL- and SrgA-inhibitor interactions showed that these accessory enzymes could accommodate the inhibitors in their different hydrophobic grooves, supporting our in vivo findings. Further, we identified highly conserved residues surrounding the active site for 20 diverse bacterial DsbA enzymes, which could be exploited in developing inhibitors with a broad spectrum of activity. Innovation and Conclusion: We have developed tools to analyze the specificity of DsbA inhibitors in bacterial pathogens encoding multiple DsbA enzymes. This work demonstrates that DsbA inhibitors can be developed to target diverse homologues found in bacteria. Antioxid. Redox Signal. 29, 653-666.
Collapse
Affiliation(s)
- Makrina Totsika
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Dimitrios Vagenas
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Jason J Paxman
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| | - Geqing Wang
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| | - Rabeb Dhouib
- 1 Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology , Queensland, Australia
| | - Pooja Sharma
- 3 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Australia
| | - Jennifer L Martin
- 4 Institute for Molecular Bioscience, University of Queensland , Queensland, Australia
| | - Martin J Scanlon
- 3 Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University , Parkville, Australia
| | - Begoña Heras
- 2 Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University , Bundoora, Australia
| |
Collapse
|
47
|
Kessi J, Hörtensteiner S. Inhibition of bacteriochlorophyll biosynthesis in the purple phototrophic bacteria Rhodospirillumrubrum and Rhodobacter capsulatus grown in the presence of a toxic concentration of selenite. BMC Microbiol 2018; 18:81. [PMID: 30064359 PMCID: PMC6069883 DOI: 10.1186/s12866-018-1209-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 06/27/2018] [Indexed: 11/21/2022] Open
Abstract
Background In many works, the chemical composition of bacterially-produced elemental selenium nanoparticles (Se0-nanoparticles) was investigated using electron dispersive X-ray analysis. The results suggest that these particles should be associated with organic compounds. However, a complete analysis of their chemical composition is still missing. Aiming at identifying organic compounds associated with the Se0-nanoparticles produced by the purple phototrophic bacteria Rhodospirillum rubrum and Rhodobacter capsulatus (α group of the proteobacteria), we used MALDI-TOF spectrometry.Results This technic revealed that numerous signals obtained from particles produced by both species of bacteria were from metabolites of the photosynthetic system. Furthermore, not only bacteriochlorophyll a, bacteriopheophytin a, and bacteriopheophorbide a, which are known to accumulate in stationary phase cultures of these bacteria grown phototrophically in the absence of selenite, were identified. The particles were also associated with intermediary metabolites of the bacteriochlorophyll a biosynthesis pathway such as protoporphyrin IX, protoporphyrin IX monomethyl ester, bacteriochlorophyllide a and, most likely, Mg-protoporphyrin IX-monomethyl ester, as well as with oxidation products of the substrates of protochlorophyllide reductase and chlorin reductase.Conclusion Accumulation of intermediary metabolites of the bacteriochlorophyll biosynthesis pathway in these purple phototrophic bacteria was attributed to inhibition of oxygen-sensitive enzymes involved in this pathway. Consistent with this interpretation it has been reported that these bacteria reduce selenite intracellularly, that they contain high levels of glutathione and that the reduction of selenite with glutathione is a very fast reaction accompanied by the production of reactive oxygen species. As many enzymes involved in the biosynthesis of bacteriochlorophyll contain [Fe-S] clusters in their active site, which are known to be degraded in the presence of reactive oxygen species as well as in the presence of molecular oxygen, we concluded that the substrates of these enzymes accumulate in cells during selenite reduction.Association of metabolites of bacteriochlorophyll biosynthesis and degradation with the Se0-nanoparticles produced by Rhodospirillum rubrum and Rhodobacter capsulatus is proposed to result from coating of the nanoparticles with the intracytoplasmic membrane of these bacteria, where the photochemical apparatus is concentrated.
Collapse
Affiliation(s)
- Janine Kessi
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008 Switzerland
- Kirschenweg 10, Würenlingen, 5303 Switzerland
| | - Stefan Hörtensteiner
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, Zurich, 8008 Switzerland
| |
Collapse
|
48
|
Lacombe J, Ferron M. VKORC1L1, An Enzyme Mediating the Effect of Vitamin K in Liver and Extrahepatic Tissues. Nutrients 2018; 10:nu10080970. [PMID: 30050002 PMCID: PMC6116193 DOI: 10.3390/nu10080970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/24/2018] [Indexed: 12/25/2022] Open
Abstract
Vitamin K is an essential nutrient involved in the regulation of blood clotting and tissue mineralization. Vitamin K oxidoreductase (VKORC1) converts vitamin K epoxide into reduced vitamin K, which acts as the co-factor for the γ-carboxylation of several proteins, including coagulation factors produced by the liver. VKORC1 is also the pharmacological target of warfarin, a widely used anticoagulant. Vertebrates possess a VKORC1 paralog, VKORC1-like 1 (VKORC1L1), but until very recently, the importance of VKORC1L1 for protein γ-carboxylation and hemostasis in vivo was not clear. Here, we first review the current knowledge on the structure, function and expression pattern of VKORC1L1, including recent data establishing that, in the absence of VKORC1, VKORC1L1 can support vitamin K-dependent carboxylation in the liver during the pre- and perinatal periods in vivo. We then provide original data showing that the partial redundancy between VKORC1 and VKORC1L1 also exists in bone around birth. Recent studies indicate that, in vitro and in cell culture models, VKORC1L1 is less sensitive to warfarin than VKORC1. Genetic evidence is presented here, which supports the notion that VKORC1L1 is not the warfarin-resistant vitamin K quinone reductase present in the liver. In summary, although the exact physiological function of VKORC1L1 remains elusive, the latest findings clearly established that this enzyme is a vitamin K oxidoreductase, which can support γ-carboxylation in vivo.
Collapse
Affiliation(s)
- Julie Lacombe
- Integrative and Molecular Physiology research unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
| | - Mathieu Ferron
- Integrative and Molecular Physiology research unit, Institut de Recherches Cliniques de Montréal, Montréal, QC H2W 1R7, Canada.
- Department of Medicine and Molecular Biology Programs of the Faculty of Medicine, Université de Montréal, QC H3C 3J7, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC H4A 3J1, Canada.
| |
Collapse
|
49
|
Identification of the Thioredoxin Partner of Vitamin K Epoxide Reductase in Mycobacterial Disulfide Bond Formation. J Bacteriol 2018; 200:JB.00137-18. [PMID: 29784887 DOI: 10.1128/jb.00137-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/18/2018] [Indexed: 12/30/2022] Open
Abstract
Disulfide bonds influence the stability and activity of many proteins. In Escherichia coli, the DsbA and DsbB enzymes promote disulfide bond formation. Other bacteria, including the Actinobacteria, use instead of DsbB the enzyme vitamin K epoxide reductase (VKOR), whose gene is found either fused to or in the same operon as a dsbA-like gene. Mycobacterium tuberculosis and other Gram-positive actinobacteria secrete many proteins with even numbers of cysteines to the cell envelope. These organisms have predicted oxidoreductases and VKOR orthologs. These findings indicate that such bacteria likely form disulfide bonds in the cell envelope. The M. tuberculosisvkor gene complements an E. colidsbB deletion strain, restoring the oxidation of E. coli DsbA. While we have suggested that the dsbA gene linked to the vkor gene may express VKOR's partner in mycobacteria, others have suggested that two other extracytoplasmic oxidoreductases (DsbE or DsbF) may be catalysts of protein disulfide bond formation. However, there is no direct evidence for interactions of VKOR with either DsbA, DsbE, or DsbF. To identify the actual substrate of VKOR, we identified two additional predicted extracytoplasmic DsbA-like proteins using bioinformatics analysis of the M. tuberculosis genome. Using the five potential DsbAs, we attempted to reconstitute disulfide bond pathways in E. coli and in Mycobacterium smegmatis, a close relative of M. tuberculosis Our results show that only M. tuberculosis DsbA is oxidized by VKOR. Comparison of the properties of dsbA- and vkor-null mutants in M. smegmatis shows parallels to the properties of dsb mutations in E. coliIMPORTANCE Disulfide bond formation has a great impact on bacterial pathogenicity. Thus, disulfide-bond-forming proteins represent new targets for the development of antibacterials, since the inhibition of disulfide bond formation would result in the simultaneous loss of the activity of several classes of virulence factors. Here, we identified five candidate proteins encoded by the M. tuberculosis genome as possible substrates of the M. tuberculosis VKOR protein involved in disulfide bond formation. We then reconstituted the mycobacterial disulfide bond formation pathway in E. coli and showed that of the five candidates, only M. tuberculosis DsbA is efficiently oxidized by VKOR in E. coli We also present evidence for the involvement of VKOR in DsbA oxidation in M. smegmatis.
Collapse
|
50
|
Singh SK, Tiendrebeogo RW, Chourasia BK, Kana IH, Singh S, Theisen M. Lactococcus lactis provides an efficient platform for production of disulfide-rich recombinant proteins from Plasmodium falciparum. Microb Cell Fact 2018; 17:55. [PMID: 29618355 PMCID: PMC5885415 DOI: 10.1186/s12934-018-0902-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The production of recombinant proteins with proper conformation, appropriate post-translational modifications in an easily scalable and cost-effective system is challenging. Lactococcus lactis has recently been identified as an efficient Gram positive cell factory for the production of recombinant protein. We and others have used this expression host for the production of selected malaria vaccine candidates. The safety of this production system has been confirmed in multiple clinical trials. Here we have explored L. lactis cell factories for the production of 31 representative Plasmodium falciparum antigens with varying sizes (ranging from 9 to 90 kDa) and varying degree of predicted structural complexities including eleven antigens with multiple predicted structural disulfide bonds, those which are considered difficult-to-produce proteins. RESULTS Of the 31 recombinant constructs attempted in the L. lactis expression system, the initial expression efficiency was 55% with 17 out of 31 recombinant gene constructs producing high levels of secreted recombinant protein. The majority of the constructs which failed to produce a recombinant protein were found to consist of multiple intra-molecular disulfide-bonds. We found that these disulfide-rich constructs could be produced in high yields when genetically fused to an intrinsically disorder protein domain (GLURP-R0). By exploiting the distinct biophysical and structural properties of the intrinsically disordered protein region we developed a simple heat-based strategy for fast purification of the disulfide-rich protein domains in yields ranging from 1 to 40 mg/l. CONCLUSIONS A novel procedure for the production and purification of disulfide-rich recombinant proteins in L. lactis is described.
Collapse
Affiliation(s)
- Susheel K Singh
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Régis Wendpayangde Tiendrebeogo
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Bishwanath Kumar Chourasia
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Ikhlaq Hussain Kana
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark.,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Subhash Singh
- Indian Institute of Integrative Medicine, Jammu, India
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Artillerivej 5, 2300, Copenhagen S, Denmark. .,Centre for Medical Parasitology at Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark. .,Department of Infectious Diseases, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|