1
|
Lee DH, Yoon SB, Jo YJ, Mo JW, Kwon J, Lee SI, Kwon J, Kim JS. Comparative analysis of superovulated versus uterine-embryo synchronized recipients for embryo transfer in cynomolgus monkeys ( Macaca fascicularis). Front Vet Sci 2024; 11:1452631. [PMID: 39346953 PMCID: PMC11427438 DOI: 10.3389/fvets.2024.1452631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Assisted reproductive technologies (ARTs), such as intracytoplasmic sperm injection and embryo transfer, are essential for generating genetically edited monkeys. Despite their importance, ARTs face challenges in recipient selection in terms of time and the number of animals required. The potential of superovulated monkeys, commonly used as oocyte donors, to serve as surrogate mothers, remains underexplored. The study aimed to compare the efficacy of superovulated and uterine-embryo synchronized recipients of embryo transfer in cynomolgus monkeys (Macaca fascicularis). Methods This study involved 23 cynomolgus monkeys divided into two groups-12 superovulated recipients and 11 synchronized recipients. The evaluation criteria included measuring endometrial thickness on the day of embryo transfer and calculating pregnancy and implantation rates to compare outcomes between groups. Results The study found no statistically significant differences in endometrial thickness (superovulated: 4.48 ± 1.36 mm, synchronized: 5.15 ± 1.58 mm), pregnancy rates (superovulated: 30.8%, synchronized: 41.7%), and implantation rates (superovulated: 14.3%, synchronized: 21.9%) between the groups (p > 0.05). Conclusion The observations indicate that superovulated recipients are as effective as synchronized recipients for embryo transfer in cynomolgus monkeys. This suggests that superovulated recipients can serve as viable options, offering an efficient and practical approach to facilitate the generation of gene-edited models in this species.
Collapse
Affiliation(s)
- Dong-Ho Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Yu-Jin Jo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jun Won Mo
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jeongwoo Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Sang Il Lee
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Jungkee Kwon
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
2
|
Yao YG, Lu L, Ni RJ, Bi R, Chen C, Chen JQ, Fuchs E, Gorbatyuk M, Lei H, Li H, Liu C, Lv LB, Tsukiyama-Kohara K, Kohara M, Perez-Cruz C, Rainer G, Shan BC, Shen F, Tang AZ, Wang J, Xia W, Xia X, Xu L, Yu D, Zhang F, Zheng P, Zheng YT, Zhou J, Zhou JN. Study of tree shrew biology and models: A booming and prosperous field for biomedical research. Zool Res 2024; 45:877-909. [PMID: 39004865 PMCID: PMC11298672 DOI: 10.24272/j.issn.2095-8137.2024.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The tree shrew ( Tupaia belangeri) has long been proposed as a suitable alternative to non-human primates (NHPs) in biomedical and laboratory research due to its close evolutionary relationship with primates. In recent years, significant advances have facilitated tree shrew studies, including the determination of the tree shrew genome, genetic manipulation using spermatogonial stem cells, viral vector-mediated gene delivery, and mapping of the tree shrew brain atlas. However, the limited availability of tree shrews globally remains a substantial challenge in the field. Additionally, determining the key questions best answered using tree shrews constitutes another difficulty. Tree shrew models have historically been used to study hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, myopia, and psychosocial stress-induced depression, with more recent studies focusing on developing animal models for infectious and neurodegenerative diseases. Despite these efforts, the impact of tree shrew models has not yet matched that of rodent or NHP models in biomedical research. This review summarizes the prominent advancements in tree shrew research and reflects on the key biological questions addressed using this model. We emphasize that intensive dedication and robust international collaboration are essential for achieving breakthroughs in tree shrew studies. The use of tree shrews as a unique resource is expected to gain considerable attention with the application of advanced techniques and the development of viable animal models, meeting the increasing demands of life science and biomedical research.
Collapse
Affiliation(s)
- Yong-Gang Yao
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China. E-mail:
| | - Li Lu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Rong-Jun Ni
- Mental Health Center and Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, Sichuan 610044, China
| | - Rui Bi
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ceshi Chen
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jia-Qi Chen
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Eberhard Fuchs
- German Primate Center, Leibniz Institute of Primate Research, Göttingen 37077, Germany
| | - Marina Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hao Lei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei 430071, China
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongli Li
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Chunyu Liu
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Long-Bao Lv
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima-city, Kagoshima 890-8580, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | | | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Bao-Ci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Shen
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - An-Zhou Tang
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Jing Wang
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 211166, China
| | - Wei Xia
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530000, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi 530000, China
| | - Xueshan Xia
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ling Xu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Dandan Yu
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Feng Zhang
- Soong Ching Ling Institute of Maternity and Child Health, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ping Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Tang Zheng
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), and National Resource Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650107, China
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jumin Zhou
- Key Laboratory of Genetic Evolution and Animal Models, Yunnan Key Laboratory of Animal Models and Human Disease Mechanisms, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Jiang-Ning Zhou
- CAS Key Laboratory of Brain Function and Diseases, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- Institute of Brain Science, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China
| |
Collapse
|
3
|
Zhai R, Tong G, Li Z, Song W, Hu Y, Xu S, Wei Q, Zhang X, Li Y, Liao B, Yuan C, Fan Y, Song G, Ouyang Y, Zhang W, Tang Y, Jin M, Zhang Y, Li H, Yang Z, Lin GN, Stein DJ, Xiong ZQ, Wang Z. Rhesus monkeys exhibiting spontaneous ritualistic behaviors resembling obsessive-compulsive disorder. Natl Sci Rev 2023; 10:nwad312. [PMID: 38152386 PMCID: PMC10751879 DOI: 10.1093/nsr/nwad312] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating psychiatric disorder that affects ∼2%-3% of the population globally. Studying spontaneous OCD-like behaviors in non-human primates may improve our understanding of the disorder. In large rhesus monkey colonies, we found 10 monkeys spontaneously exhibiting persistent sequential motor behaviors (SMBs) in individual-specific sequences that were repetitive, time-consuming and stable over prolonged periods. Genetic analysis revealed severely damaging mutations in genes associated with OCD risk in humans. Brain imaging showed that monkeys with SMBs had larger gray matter (GM) volumes in the left caudate nucleus and lower fractional anisotropy of the corpus callosum. The GM volume of the left caudate nucleus correlated positively with the daily duration of SMBs. Notably, exposure to a stressor (human presence) significantly increased SMBs. In addition, fluoxetine, a serotonergic medication commonly used for OCD, decreased SMBs in these monkeys. These findings provide a novel foundation for developing better understanding and treatment of OCD.
Collapse
Affiliation(s)
- Rongwei Zhai
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Geya Tong
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Zheqin Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yang Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Sha Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Qiqi Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Xiaocheng Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yi Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Bingbing Liao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Chenyu Yuan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinqing Fan
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Ge Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yinyin Ouyang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Wenxuan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yaqiu Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Minghui Jin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Yuxian Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - He Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi Yang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| | - Dan J Stein
- Translational Neuropsychiatry Unit (TNU), Department of Clinical Medicine, Aarhus University, Aarhus 8200, Denmark
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201602, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China
| |
Collapse
|
4
|
Li J, Zhu Q, Cao J, Liu Y, Lu Y, Sun Y, Li Q, Huang Y, Shang S, Bian X, Li C, Zhang L, Wang Y, Nie Y, Fu J, Li W, Mazid MA, Jiang Y, Jia W, Wang X, Sun Y, Esteban MA, Sun Q, Zhou F, Liu Z. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023; 30:362-377.e7. [PMID: 37028403 DOI: 10.1016/j.stem.2023.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Human stem cell-derived blastoids display similar morphology and cell lineages to normal blastocysts. However, the ability to investigate their developmental potential is limited. Here, we construct cynomolgus monkey blastoids resembling blastocysts in morphology and transcriptomics using naive ESCs. These blastoids develop to embryonic disk with the structures of yolk sac, chorionic cavity, amnion cavity, primitive streak, and connecting stalk along the rostral-caudal axis through prolonged in vitro culture (IVC). Primordial germ cells, gastrulating cells, visceral endoderm/yolk sac endoderm, three germ layers, and hemato-endothelial progenitors in IVC cynomolgus monkey blastoids were observed by single-cell transcriptomics or immunostaining. Moreover, transferring cynomolgus monkey blastoids to surrogates achieves pregnancies, as indicated by progesterone levels and presence of early gestation sacs. Our results reveal the capacity of in vitro gastrulation and in vivo early pregnancy of cynomolgus monkey blastoids, providing a useful system to dissect primate embryonic development without the same ethical concerns and access challenges in human embryo study.
Collapse
Affiliation(s)
- Jie Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shenshen Shang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Liansheng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jiqiang Fu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
5
|
Li X, Santos R, Bernal JE, Li DD, Hargaden M, Khan NK. Biology and postnatal development of organ systems of cynomolgus monkeys (Macaca fascicularis). J Med Primatol 2023; 52:64-78. [PMID: 36300896 PMCID: PMC10092073 DOI: 10.1111/jmp.12622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/29/2022] [Accepted: 08/13/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND The cynomolgus macaque has become the most used non-human primate species in nonclinical safety assessment during the past decades. METHODS This review summarizes the biological data and organ system development milestones of the cynomolgus macaque available in the literature. RESULTS The cynomolgus macaque is born precocious relative to humans in some organ systems (e.g., nervous, skeletal, respiratory, and gastrointestinal). Organ systems develop, refine, and expand at different rates after birth. In general, the respiratory, gastrointestinal, renal, and hematopoietic systems mature at approximately 3 years of age. The female reproductive, cardiovascular and hepatobiliary systems mature at approximately 4 years of age. The central nervous, skeletal, immune, male reproductive, and endocrine systems complete their development at approximately 5 to 9 years of age. CONCLUSIONS The cynomolgus macaque has no meaningful developmental differences in critical organ systems between 2 and 3 years of age for use in nonclinical safety assessment.
Collapse
Affiliation(s)
- Xiantang Li
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Rosemary Santos
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Jan E. Bernal
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Dingzhou D. Li
- Early Clinical DevelopmentPfizer, IncGrotonConnecticutUSA
| | - Maureen Hargaden
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| | - Nasir K. Khan
- Drug Safety Research & Development and Comparative MedicinePfizer, IncGrotonConnecticutUSA
| |
Collapse
|
6
|
Bellofiore N, McKenna J, Ellery S, Temple-Smith P. The Spiny Mouse—A Menstruating Rodent to Build a Bridge From Bench to Bedside. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3:784578. [PMID: 36303981 PMCID: PMC9580678 DOI: 10.3389/frph.2021.784578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Menstruation, the cyclical breakdown of the uterine lining, is arguably one of evolution's most mysterious reproductive strategies. The complexity and rarity of menstruation within the animal kingdom is undoubtedly a leading contributor to our current lack of understanding about menstrual function and disorders. In particular, the molecular and environmental mechanisms that drive menstrual and fertility dysregulation remain ambiguous, owing to the restricted opportunities to study menstruation and model menstrual disorders in species outside the primates. The recent discovery of naturally occurring menstruation in the Egyptian spiny mouse (Acomys cahirinus) offers a new laboratory model with significant benefits for prospective research in women's health. This review summarises current knowledge of spiny mouse menstruation, with an emphasis on spiral artery formation, inflammation and endocrinology. We offer a new perspective on cycle variation in menstrual bleeding between individual animals, and propose that this is indicative of fertility success. We discuss how we can harness our knowledge of the unique physiology of the spiny mouse to better understand vascular remodelling and its implications for successful implantation, placentation, and foetal development. Our research suggests that the spiny mouse has the potential as a translational research model to bridge the gap between bench to bedside and provide improved reproductive health outcomes for women.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Nadia Bellofiore
| | - Jarrod McKenna
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Stacey Ellery
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Peter Temple-Smith
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
7
|
Hu Y, Huang K, Zeng Q, Feng Y, Ke Q, An Q, Qin LJ, Cui Y, Guo Y, Zhao D, Peng Y, Tian D, Xia K, Chen Y, Ni B, Wang J, Zhu X, Wei L, Liu Y, Xiang P, Liu JY, Xue Z, Fan G. Single-cell analysis of nonhuman primate preimplantation development in comparison to humans and mice. Dev Dyn 2021; 250:974-985. [PMID: 33449399 DOI: 10.1002/dvdy.295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Genetic programs underlying preimplantation development and early lineage segregation are highly conserved across mammals. It has been suggested that nonhuman primates would be better model organisms for human embryogenesis, but a limited number of studies have investigated the monkey preimplantation development. In this study, we collect single cells from cynomolgus monkey preimplantation embryos for transcriptome profiling and compare with single-cell RNA-seq data derived from human and mouse embryos. RESULTS By weighted gene-coexpression network analysis, we found that cynomolgus gene networks have greater conservation with human embryos including a greater number of conserved hub genes than that of mouse embryos. Consistently, we found that early ICM/TE lineage-segregating genes in monkeys exhibit greater similarity with human when compared to mouse, so are the genes in signaling pathways such as LRP1 and TCF7 involving in WNT pathway. Last, we tested the role of one conserved pre-EGA hub gene, SIN3A, using a morpholino knockdown of maternal RNA transcripts in monkey embryos followed by single-cell RNA-seq. We found that SIN3A knockdown disrupts the gene-silencing program during the embryonic genome activation transition and results in developmental delay of cynomolgus embryos. CONCLUSION Taken together, our study provided new insight into evolutionarily conserved and divergent transcriptome dynamics during mammalian preimplantation development.
Collapse
Affiliation(s)
- Youjin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China.,Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Kevin Huang
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Qiao Zeng
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yun Feng
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Qiong Ke
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Lian-Ju Qin
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - YuGui Cui
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Ying Guo
- The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| | - Dicheng Zhao
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yu Peng
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Di Tian
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Kun Xia
- State Key Laboratory of Medical Genetics, Xiangya School of Medicine, Central South University, Changsha, China
| | - Yong Chen
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Bin Ni
- Key Laboratory of Genetics and Birth Health of Hunan Province, Changsha, China
| | - Jinmei Wang
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Xianmin Zhu
- Shanghai East Hospital, School of Life Sciences & Technology, Tongji University, Shanghai, China
| | - Lai Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun-Ye-Sat University, Guangzhou, China
| | - Peng Xiang
- Key Laboratory of Stem Cell Engineering Ministry of Education, Zhongshan College of Medicine, Sun-Ye-Sat University, Guangzhou, China
| | - Jia-Yin Liu
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhigang Xue
- Reproductive Medicine Center, Tongji Hospital, Department of Regenerative Medicine, Tongji University School of Medicine, Shanghai, China
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Genome editing of CCR5 by CRISPR-Cas9 in Mauritian cynomolgus macaque embryos. Sci Rep 2020; 10:18457. [PMID: 33116147 PMCID: PMC7595107 DOI: 10.1038/s41598-020-75295-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The discovery that CCR5 serves as an R5-HIV-1 co-receptor, coupled with findings of protection from HIV infection in individuals lacking CCR5, led to the exploration of novel therapeutic strategies for HIV infection based on genome editing of CCR5. Advancing translation of CCR5-mutant-based cellular therapies for HIV requires development of novel physiologically relevant animal models. Mauritian cynomolgus macaques (MCMs), with high degree of MHC allele sharing, are valuable models for HIV-1 research and stem cell therapies. To facilitate the generation of a CCR5-mutant MHC-defined MCM model, we explored editing the CCR5 gene in MCM embryos via CRISPR-Cas9. We refined ovarian stimulation and in vitro fertilization (IVF) methods established for Chinese cynomolgus macaques to generate in vitro MCM embryos. Time-lapse embryo imaging was performed to assess the timing of MCM embryonic developmental events in control and CRISPR-Cas9 microinjected embryos. Using a dual-guide gene targeting approach, biallelic deletions in the CCR5 gene were introduced into ~ 23–37% of MCM embryos. In addition, single blastomere PCR analysis revealed mosaicism in CCR5 editing within the same embryo. Successful development of IVF and CCR5 editing protocols in MCM embryos lays a foundation for the creation of CCR5-mutant MCMs to assess novel stem cell-based HIV therapeutics.
Collapse
|
9
|
Huang Z, Li Y, Jiang Q, Wang Y, Ma K, Li Q. Generation of cynomolgus monkey fetuses with intracytoplasmic sperm injection based on the MII-stage oocytes acquired by personalized superovulation protocol. J Vet Sci 2020; 21:e48. [PMID: 32476321 PMCID: PMC7263921 DOI: 10.4142/jvs.2020.21.e48] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/05/2023] Open
Abstract
Background Mature oocytes at the metaphase II status (MII-stage oocytes) played an important role in assisted reproductive technology in non-human primates. Objectives In order to improve the proportion of MII-stage oocytes retrieval, three different superovulation protocols were performed on 24 female cynomolgus monkeys. Methods All the monkeys received once-daily injection of follicle-stimulating hormone (25 international unit [IU]) on day 3 of the menstruation, 3-day intervals, twice daily for 8–12 days until the time of human chorionic gonadotropin (1,500 IU) injection, on the 14–17th day of menstruation collecting oocytes. The difference between protocol I and protocol II was that 0.1 mg the gonadotropin-releasing hormone agonist was injected on day 1 of the menstruation, while the difference between personalized superovulation protocol and protocol II was that oocytes could be collected on the 14–17th day of menstrual cycle according to the length of each monkey. Results The total number of oocytes harvested using the personalized superovulation protocol was much higher than that using protocol I (p < 0.05), and the proportion of MII-stage oocytes was significantly greater than that from either superovulation protocol I or II (p < 0.001 and p < 0.01 respectively), while the proportion of immature oocytes at the germinal vesicle was less than that from superovulation protocol I (p < 0.05). Conclusions The personalized superovulation protocol could increase the rate of MII-stage oocytes acquired, and successfully develop into embryos after intracytoplasmic sperm injection, and eventually generated fetus.
Collapse
Affiliation(s)
- Zhangqiong Huang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Qinfang Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Yixuan Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Kaili Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China.
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.,Medical Primate Research Center & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Diseases, Kunming 650118, China.
| |
Collapse
|
10
|
Liu Z, Cai Y, Wang Y, Nie Y, Zhang C, Xu Y, Zhang X, Lu Y, Wang Z, Poo M, Sun Q. Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. Cell 2018; 172:881-887.e7. [PMID: 29395327 DOI: 10.1016/j.cell.2018.01.020] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 01/23/2023]
Abstract
Generation of genetically uniform non-human primates may help to establish animal models for primate biology and biomedical research. In this study, we have successfully cloned cynomolgus monkeys (Macaca fascicularis) by somatic cell nuclear transfer (SCNT). We found that injection of H3K9me3 demethylase Kdm4d mRNA and treatment with histone deacetylase inhibitor trichostatin A at one-cell stage following SCNT greatly improved blastocyst development and pregnancy rate of transplanted SCNT embryos in surrogate monkeys. For SCNT using fetal monkey fibroblasts, 6 pregnancies were confirmed in 21 surrogates and yielded 2 healthy babies. For SCNT using adult monkey cumulus cells, 22 pregnancies were confirmed in 42 surrogates and yielded 2 babies that were short-lived. In both cases, genetic analyses confirmed that the nuclear DNA and mitochondria DNA of the monkey offspring originated from the nucleus donor cell and the oocyte donor monkey, respectively. Thus, cloning macaque monkeys by SCNT is feasible using fetal fibroblasts.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yijun Cai
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaotong Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Zhanyang Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Muming Poo
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
11
|
Zuo E, Cai YJ, Li K, Wei Y, Wang BA, Sun Y, Liu Z, Liu J, Hu X, Wei W, Huo X, Shi L, Tang C, Liang D, Wang Y, Nie YH, Zhang CC, Yao X, Wang X, Zhou C, Ying W, Wang Q, Chen RC, Shen Q, Xu GL, Li J, Sun Q, Xiong ZQ, Yang H. One-step generation of complete gene knockout mice and monkeys by CRISPR/Cas9-mediated gene editing with multiple sgRNAs. Cell Res 2017; 27:933-945. [PMID: 28585534 PMCID: PMC5518993 DOI: 10.1038/cr.2017.81] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022] Open
Abstract
The CRISPR/Cas9 system is an efficient gene-editing method, but the majority of gene-edited animals showed mosaicism, with editing occurring only in a portion of cells. Here we show that single gene or multiple genes can be completely knocked out in mouse and monkey embryos by zygotic injection of Cas9 mRNA and multiple adjacent single-guide RNAs (spaced 10-200 bp apart) that target only a single key exon of each gene. Phenotypic analysis of F0 mice following targeted deletion of eight genes on the Y chromosome individually demonstrated the robustness of this approach in generating knockout mice. Importantly, this approach delivers complete gene knockout at high efficiencies (100% on Arntl and 91% on Prrt2) in monkey embryos. Finally, we could generate a complete Prrt2 knockout monkey in a single step, demonstrating the usefulness of this approach in rapidly establishing gene-edited monkey models.
Collapse
Affiliation(s)
- Erwei Zuo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Jun Cai
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Kui Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai University, Shanghai 200444, China
| | - Bang-An Wang
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yidi Sun
- Key Lab of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiwei Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530004, China
| | - Xiaona Huo
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Cheng Tang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Liang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Hong Nie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changyang Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ren-Chao Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhi-Qi Xiong
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Yao X, Wang X, Hu X, Liu Z, Liu J, Zhou H, Shen X, Wei Y, Huang Z, Ying W, Wang Y, Nie YH, Zhang CC, Li S, Cheng L, Wang Q, Wu Y, Huang P, Sun Q, Shi L, Yang H. Homology-mediated end joining-based targeted integration using CRISPR/Cas9. Cell Res 2017; 27:801-814. [PMID: 28524166 PMCID: PMC5518881 DOI: 10.1038/cr.2017.76] [Citation(s) in RCA: 216] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/30/2017] [Accepted: 04/06/2017] [Indexed: 12/16/2022] Open
Abstract
Targeted integration of transgenes can be achieved by strategies based on homologous recombination (HR), microhomology-mediated end joining (MMEJ) or non-homologous end joining (NHEJ). The more generally used HR is inefficient for achieving gene integration in animal embryos and tissues, because it occurs only during cell division, although MMEJ and NHEJ can elevate the efficiency in some systems. Here we devise a homology-mediated end joining (HMEJ)-based strategy, using CRISPR/Cas9-mediated cleavage of both transgene donor vector that contains guide RNA target sites and ∼800 bp of homology arms, and the targeted genome. We found no significant improvement of the targeting efficiency by the HMEJ-based method in either mouse embryonic stem cells or the neuroblastoma cell line, N2a, compared to the HR-based method. However, the HMEJ-based method yielded a higher knock-in efficiency in HEK293T cells, primary astrocytes and neurons. More importantly, this approach achieved transgene integration in mouse and monkey embryos, as well as in hepatocytes and neurons in vivo, with an efficiency much greater than HR-, NHEJ- and MMEJ-based strategies. Thus, the HMEJ-based strategy may be useful for a variety of applications, including gene editing to generate animal models and for targeted gene therapies.
Collapse
Affiliation(s)
- Xuan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinde Hu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zhen Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Junlai Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haibo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaowen Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai University, Shanghai 200444, China
| | - Zijian Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqin Ying
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Hong Nie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sanlan Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Leping Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Pengyu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qiang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Linyu Shi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui Yang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Ma Y, Li J, Wang G, Ke Q, Qiu S, Gao L, Wan H, Zhou Y, Xiang AP, Huang Q, Feng G, Zhou Q, Yang S. Efficient production of cynomolgus monkeys with a toolbox of enhanced assisted reproductive technologies. Sci Rep 2016; 6:25888. [PMID: 27173128 PMCID: PMC4865753 DOI: 10.1038/srep25888] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
The efficiency of assisted reproductive technologies (ARTs) in nonhuman primates is low due to no screening criterions for selecting sperm, oocyte, and embryo as well as its surrogate mothers. Here we analyzed 15 pairs of pregnant and non-pregnant cynomolgus monkeys, each pair of which received embryos from one batch of fertilized oocytes, and found ratio of endometrial to myometrial thicknesses in abdominal ultrasonic transverse section of uterus is a reliable indicator for selection of recipients for embryo transfer. We performed 305 ovarian stimulations in 128 female cynomolgus monkeys and found that ovarian stimulation can be performed in a whole year and repeated up to six times in the same monkey without deteriorating fertilization potential of eggs until a poor response to stimulation happened. Fertilization can be efficiently achieved with both conventional and piezo-driven intracytoplasmic sperm injection procedures. In semen collection, semen quality is higher with the penile robe electrical stimulus method compared with the rectal probe method. Moreover, caesarean section is an effective strategy for increasing baby survival rates of multiple pregnancies. These findings provide a practical guidance for the efficient use of ARTs, facilitating their use in genetic engineering of macaque monkeys for basic and translational neuroscience research.
Collapse
Affiliation(s)
- Yunhan Ma
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China.,Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
| | - Jiayu Li
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Ge Wang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Qiong Ke
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Sien Qiu
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liang Gao
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China.,Blooming-spring biotechnology development Co., Ltd., of Guangdong, Guangzhou 510940, P. R. China
| | - Haifeng Wan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Yang Zhou
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Qunshan Huang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Shihua Yang
- College of Veterinary Medicine, Guangdong Provincial Key Laboratory of Prevention and Control for Severe Clinical Animal Diseases, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
14
|
Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 2016; 530:98-102. [PMID: 26808898 DOI: 10.1038/nature16533] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 12/14/2015] [Indexed: 11/08/2022]
Abstract
Methyl-CpG binding protein 2 (MeCP2) has crucial roles in transcriptional regulation and microRNA processing. Mutations in the MECP2 gene are found in 90% of patients with Rett syndrome, a severe developmental disorder with autistic phenotypes. Duplications of MECP2-containing genomic segments cause the MECP2 duplication syndrome, which shares core symptoms with autism spectrum disorders. Although Mecp2-null mice recapitulate most developmental and behavioural defects seen in patients with Rett syndrome, it has been difficult to identify autism-like behaviours in the mouse model of MeCP2 overexpression. Here we report that lentivirus-based transgenic cynomolgus monkeys (Macaca fascicularis) expressing human MeCP2 in the brain exhibit autism-like behaviours and show germline transmission of the transgene. Expression of the MECP2 transgene was confirmed by western blotting and immunostaining of brain tissues of transgenic monkeys. Genomic integration sites of the transgenes were characterized by a deep-sequencing-based method. As compared to wild-type monkeys, MECP2 transgenic monkeys exhibited a higher frequency of repetitive circular locomotion and increased stress responses, as measured by the threat-related anxiety and defensive test. The transgenic monkeys showed less interaction with wild-type monkeys within the same group, and also a reduced interaction time when paired with other transgenic monkeys in social interaction tests. The cognitive functions of the transgenic monkeys were largely normal in the Wisconsin general test apparatus, although some showed signs of stereotypic cognitive behaviours. Notably, we succeeded in generating five F1 offspring of MECP2 transgenic monkeys by intracytoplasmic sperm injection with sperm from one F0 transgenic monkey, showing germline transmission and Mendelian segregation of several MECP2 transgenes in the F1 progeny. Moreover, F1 transgenic monkeys also showed reduced social interactions when tested in pairs, as compared to wild-type monkeys of similar age. Together, these results indicate the feasibility and reliability of using genetically engineered non-human primates to study brain disorders.
Collapse
|
15
|
Liu Z, Nie YH, Zhang CC, Cai YJ, Wang Y, Lu HP, Li YZ, Cheng C, Qiu ZL, Sun Q. Generation of macaques with sperm derived from juvenile monkey testicular xenografts. Cell Res 2015; 26:139-42. [PMID: 26369429 DOI: 10.1038/cr.2015.112] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Zhen Liu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Hong Nie
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chen-Chen Zhang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yi-Jun Cai
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan Wang
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hui-Ping Lu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yu-Zhuo Li
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Cheng
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Zi-Long Qiu
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
16
|
Chan AWS. Progress and prospects for genetic modification of nonhuman primate models in biomedical research. ILAR J 2014; 54:211-23. [PMID: 24174443 DOI: 10.1093/ilar/ilt035] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest of modeling human diseases using genetically modified (transgenic) nonhuman primates (NHPs) is a direct result of NHPs (rhesus macaque, etc.) close relation to humans. NHPs share similar developmental paths with humans in their anatomy, physiology, genetics, and neural functions; and in their cognition, emotion, and social behavior. The NHP model within biomedical research has played an important role in the development of vaccines, assisted reproductive technologies, and new therapies for many diseases. Biomedical research has not been the primary role of NHPs. They have mainly been used for safety evaluation and pharmacokinetics studies, rather than determining therapeutic efficacy. The development of the first transgenic rhesus macaque (2001) revolutionized the role of NHP models in biomedicine. Development of the transgenic NHP model of Huntington's disease (2008), with distinctive clinical features, further suggested the uniqueness of the model system; and the potential role of the NHP model for human genetic disorders. Modeling human genetic diseases using NHPs will continue to thrive because of the latest advances in molecular, genetic, and embryo technologies. NHPs rising role in biomedical research, specifically pre-clinical studies, is foreseeable. The path toward the development of transgenic NHPs and the prospect of transgenic NHPs in their new role in future biomedicine needs to be reviewed. This article will focus on the advancement of transgenic NHPs in the past decade, including transgenic technologies and disease modeling. It will outline new technologies that may have significant impact in future NHP modeling and will conclude with a discussion of the future prospects of the transgenic NHP model.
Collapse
|
17
|
Generation of a monkey with MECP2 mutations by TALEN-based gene targeting. Neurosci Bull 2014; 30:381-6. [PMID: 24838303 DOI: 10.1007/s12264-014-1434-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 03/20/2014] [Indexed: 01/23/2023] Open
Abstract
Gene editing in model organisms has provided critical insights into brain development and diseases. Here, we report the generation of a cynomolgus monkey (Macaca fascicularis) carrying MECP2 mutations using transcription activator-like effector nucleases (TALENs)-mediated gene targeting. After injecting TALENs mRNA into monkey zygotes achieved by in vitro fertilization and embryo transplantation into surrogate monkeys, we obtained one male newborn monkey with an MECP2 deletion caused by frameshifting mutation in various tissues. The monkey carrying the MECP2 mutation failed to survive after birth, due to either the toxicity of TALENs or the critical requirement of MECP2 for neural development. The level of MeCP2 protein was essentially depleted in the monkey's brain. This study demonstrates the feasibility of introducing genetic mutations in non-human primates by site-specific gene-editing methods.
Collapse
|
18
|
Niu Y, Shen B, Cui Y, Chen Y, Wang J, Wang L, Kang Y, Zhao X, Si W, Li W, Xiang AP, Zhou J, Guo X, Bi Y, Si C, Hu B, Dong G, Wang H, Zhou Z, Li T, Tan T, Pu X, Wang F, Ji S, Zhou Q, Huang X, Ji W, Sha J. Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos. Cell 2014; 156:836-43. [PMID: 24486104 DOI: 10.1016/j.cell.2014.01.027] [Citation(s) in RCA: 754] [Impact Index Per Article: 75.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 12/26/2022]
Abstract
Monkeys serve as important model species for studying human diseases and developing therapeutic strategies, yet the application of monkeys in biomedical researches has been significantly hindered by the difficulties in producing animals genetically modified at the desired target sites. Here, we first applied the CRISPR/Cas9 system, a versatile tool for editing the genes of different organisms, to target monkey genomes. By coinjection of Cas9 mRNA and sgRNAs into one-cell-stage embryos, we successfully achieve precise gene targeting in cynomolgus monkeys. We also show that this system enables simultaneous disruption of two target genes (Ppar-γ and Rag1) in one step, and no off-target mutagenesis was detected by comprehensive analysis. Thus, coinjection of one-cell-stage embryos with Cas9 mRNA and sgRNAs is an efficient and reliable approach for gene-modified cynomolgus monkey generation.
Collapse
Affiliation(s)
- Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Bin Shen
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Jianying Wang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Lei Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Yu Kang
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Xiaoyang Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Wei Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiankui Zhou
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Ye Bi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Chenyang Si
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Bian Hu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China
| | - Guoying Dong
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Hong Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Zuomin Zhou
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Tianqing Li
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Tao Tan
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Xiuqiong Pu
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Fang Wang
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Shaohui Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China
| | - Qi Zhou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xingxu Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center of Nanjing University, National Resource Center for Mutant Mice, Nanjing 210061, China.
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China; Kunming Biomed International and National Engineering Research Center of Biomedicine and Animal Science, Kunming 650500, China.
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
19
|
Yang H, Liu Z, Ma Y, Zhong C, Yin Q, Zhou C, Shi L, Cai Y, Zhao H, Wang H, Tang F, Wang Y, Zhang C, Liu XY, Lai D, Jin Y, Sun Q, Li J. Generation of haploid embryonic stem cells from Macaca fascicularis monkey parthenotes. Cell Res 2013; 23:1187-200. [PMID: 23856644 PMCID: PMC3790242 DOI: 10.1038/cr.2013.93] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/22/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
Recent success in the derivation of haploid embryonic stem cells (haESCs) from mouse via parthenogenesis and androgenesis has enabled genetic screening in mammalian cells and generation of gene-modified animals. However, whether haESCs can be derived from primates remains unknown. Here, we report the derivation of haESCs from parthenogenetic blastocysts of Macaca fascicularis monkeys. These cells, termed as PG-haESCs, are pluripotent and can differentiate to cells of three embryonic germ layers in vitro or in vivo. Interestingly, the haploidy of one monkey PG-haESC line (MPH1) is more stable compared with that of the other one (MPH2), as shown by the existence of haploid cells for more than 140 days without fluorescence-activated cell sorting (FACS) enrichment of haploid cells. Importantly, transgenic monkey PG-haESC lines can be generated by lentivirus- and piggyBac transposon-mediated gene transfer. Moreover, genetic screening is feasible in monkey PG-haESCs. Our results demonstrate that PG-haESCs can be generated from monkeys, providing an ideal tool for genetic analyses in primates.
Collapse
Affiliation(s)
- Hui Yang
- Group of Epigenetic Reprogramming, State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nakama K, Akune A, Kawate N, Takahashi M, Inaba T, Sameshima H, Tamada H. Delay of ovulation due to diets containing levonorgestrel in cynomolgus monkeys (Macaca fascicularis). J Vet Med Sci 2012; 74:1453-60. [PMID: 22785380 DOI: 10.1292/jvms.12-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was undertaken to develop a simple and practical method to control the time of ovulation in cynomolgus monkeys. Diets containing a synthetic gestagen, levonorgestrel (LNG) were given daily to normally cycling female monkeys for 2 weeks, and plasma concentrations of estradiol-17β and progesterone were determined by EIA in order to estimate the time of ovulation. Doses of LNG (0, 3.2, 8, 20, 50, or 125 μg) were given from Day 2 (Day 0 =the first day of menstruation) through Day 15. The numbers of days from the last administration of LNG to the estimated ovulation in the groups treated with LNG at 20 μg and above were significantly greater than those in the controls, and the values in the group treated with LNG at 50 μg were within a narrow range. In a second experiment, LNG was administered at 50 μg in different phases of the menstrual cycle (Days 9-22, 16-29, and 23-36), and the results indicated that ovulation occurred more than 12 days after the last administration in all monkeys, and the number of days from the last administration of LNG to the estimated ovulation in the group treated on Days 16-29 (luteal phase) was significantly greater than that in the group treated on Days 23-36. These results indicate that daily provision of a diet containing 50 μg LNG could be applicable for delaying ovulation, and suggest that the total level of (exogenous and endogenous) progestins is critical for determining the length of ovulation delay in cynomolgus monkeys.
Collapse
Affiliation(s)
- Kazuhiro Nakama
- Drug Safety Research Laboratories, Shin Nippon Biomedical Laboratories, Ltd, Kagoshima, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen Y, Niu Y, Ji W. Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genomics 2012; 39:247-51. [PMID: 22749011 DOI: 10.1016/j.jgg.2012.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/29/2012] [Accepted: 04/30/2012] [Indexed: 11/25/2022]
Abstract
Nonhuman primates (NHPs) provide powerful experimental models to study human development, cognitive functions and disturbances as well as complex behavior, because of their genetic and physiological similarities to humans. Therefore, NHPs are appropriate models for the study of human diseases, such as neurodegenerative diseases including Parkinson's, Alzheimer's and Huntington's diseases, which occur as a result of genetic mutations. However, such diseases afflicting humans do not occur naturally in NHPs. So transgenic NHPs need to be established to understand the etiology of disease pathology and pathogenesis. Compared to rodent genetic models, the generation of transgenic NHPs for human diseases is inefficient, and only a transgenic monkey model for Huntington's disease has been reported. This review focuses on potential approaches and contributing factors for generating transgenic NHPs to study human diseases.
Collapse
Affiliation(s)
- Yongchang Chen
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | | | | |
Collapse
|
22
|
CHEN YONGCHANG, NIU YUYU, YANG SHIHUA, HE XIECHAO, JI SHAOHUI, SI WEI, TANG XIANGHUI, XIE YUNHUA, WANG HONG, LU YONGQING, ZHOU QI, JI WEIZHI. The Available Time Window for Embryo Transfer in the Rhesus Monkey (Macaca mulatta). Am J Primatol 2012; 74:165-73. [DOI: 10.1002/ajp.21017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - QI ZHOU
- State Key Laboratory of Reproductive Biology; Institute of Zoology; Chinese Academy of Sciences; Beijing; China
| | | |
Collapse
|
23
|
Transgenic rhesus monkeys produced by gene transfer into early-cleavage-stage embryos using a simian immunodeficiency virus-based vector. Proc Natl Acad Sci U S A 2010; 107:17663-7. [PMID: 20870965 DOI: 10.1073/pnas.1006563107] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The development of transgenic technologies in monkeys is important for creating valuable animal models of human physiology so that the etiology of diseases can be studied and potential therapies for their amelioration may be developed. However, the efficiency of producing transgenic primate animals is presently very low, and there are few reports of success. We have developed an improved methodology for the production of transgenic rhesus monkeys, making use of a simian immunodeficiency virus (SIV)-based vector that encodes EGFP and a protocol for infection of early-cleavage-stage embryos. We show that infection does not alter embryo development. Moreover, the timing of infection, either before or during embryonic genome activation, has no observable effect on the level and stability of transgene expression. Of 70 embryos injected with concentrated virus at the one- to two-cell stage or the four- to eight-cell stage and showing fluorescence, 30 were transferred to surrogate mothers. One transgenic fetus was obtained from a fraternal triple pregnancy. Four infant monkeys were produced from four singleton pregnancies, of which two expressed EGFP throughout the whole body. These results demonstrate the usefulness of SIV-based lentiviral vectors for the generation of transgenic monkeys and improve the efficiency of transgenic technology in nonhuman primates.
Collapse
|