1
|
Crawford AJ, Forjaz A, Bons J, Bhorkar I, Roy T, Schell D, Queiroga V, Ren K, Kramer D, Huang W, Russo GC, Lee MH, Wu PH, Shih IM, Wang TL, Atkinson MA, Schilling B, Kiemen AL, Wirtz D. Combined assembloid modeling and 3D whole-organ mapping captures the microanatomy and function of the human fallopian tube. SCIENCE ADVANCES 2024; 10:eadp6285. [PMID: 39331707 PMCID: PMC11430475 DOI: 10.1126/sciadv.adp6285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/22/2024] [Indexed: 09/29/2024]
Abstract
The fallopian tubes play key roles in processes from pregnancy to ovarian cancer where three-dimensional (3D) cellular and extracellular interactions are important to their pathophysiology. Here, we develop a 3D multicompartment assembloid model of the fallopian tube that molecularly, functionally, and architecturally resembles the organ. Global label-free proteomics, innovative assays capturing physiological functions of the fallopian tube (i.e., oocyte transport), and whole-organ single-cell resolution mapping are used to validate these assembloids through a multifaceted platform with direct comparisons to fallopian tube tissue. These techniques converge at a unique combination of assembloid parameters with the highest similarity to the reference fallopian tube. This work establishes (i) an optimized model of the human fallopian tubes for in vitro studies of their pathophysiology and (ii) an iterative platform for customized 3D in vitro models of human organs that are molecularly, functionally, and microanatomically accurate by combining tunable assembloid and tissue mapping methods.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - André Forjaz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joanna Bons
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Isha Bhorkar
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Triya Roy
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - David Schell
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Vasco Queiroga
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kehan Ren
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Donald Kramer
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biotechnology, Johns Hopkins Advanced Academic Programs, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Wilson Huang
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Gabriella C Russo
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Meng-Horng Lee
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Hsun Wu
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tian-Li Wang
- Department of Gynecology and Obstetrics, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mark A Atkinson
- Departments of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
- Departments of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL 32610, USA
| | | | - Ashley L Kiemen
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Functional Anatomy and Evolution, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Denis Wirtz
- Johns Hopkins Institute for Nanobiotechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Di Vincenzo S, Di Sano C, D'Anna C, Ferraro M, Malizia V, Bruno A, Cristaldi M, Cipollina C, Lazzara V, Pinto P, La Grutta S, Pace E. Tyndallized bacteria prime bronchial epithelial cells to mount an effective innate immune response against infections. Hum Cell 2024; 37:1080-1090. [PMID: 38814518 PMCID: PMC11194193 DOI: 10.1007/s13577-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-βl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-βl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Caterina Di Sano
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Claudia D'Anna
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Velia Malizia
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Andreina Bruno
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy.
| | | | - Chiara Cipollina
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
- Rimed Foundation, 90100, Palermo, Italy
- NBFC, National Biodiversity Future Center, 90100, Palermo, Italy
| | - Valentina Lazzara
- Dipartimento di Scienze Economiche, Aziendali E Statistiche-Università Degli Studi Di Palermo, 90100, Palermo, Italy
| | - Paola Pinto
- Dipartimento di Sanità Pubblica, Medicina Sperimentale e Forense-Università di Pavia, 27100, Pavia, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa, 90100, Palermo, Italy
| |
Collapse
|
3
|
Russo GC, Crawford AJ, Clark D, Cui J, Carney R, Karl MN, Su B, Starich B, Lih TS, Kamat P, Zhang Q, Nair PR, Wu PH, Lee MH, Leong HS, Zhang H, Rebecca VW, Wirtz D. E-cadherin interacts with EGFR resulting in hyper-activation of ERK in multiple models of breast cancer. Oncogene 2024; 43:1445-1462. [PMID: 38509231 DOI: 10.1038/s41388-024-03007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
The loss of intercellular adhesion molecule E-cadherin is a hallmark of the epithelial-mesenchymal transition (EMT), during which tumor cells transition into an invasive phenotype. Accordingly, E-cadherin has long been considered a tumor suppressor gene; however, E-cadherin expression is paradoxically correlated with breast cancer survival rates. Using novel multi-compartment organoids and multiple in vivo models, we show that E-cadherin promotes a hyper-proliferative phenotype in breast cancer cells via interaction with the transmembrane receptor EGFR. The E-cad and EGFR interaction results in activation of the MEK/ERK signaling pathway, leading to a significant increase in proliferation via activation of transcription factors, including c-Fos. Pharmacological inhibition of MEK activity in E-cadherin positive breast cancer significantly decreases both tumor growth and macro-metastasis in vivo. This work provides evidence for a novel role of E-cadherin in breast tumor progression and identifies a new target to treat hyper-proliferative E-cadherin-positive breast tumors, thus providing the foundation to utilize E-cadherin as a biomarker for specific therapeutic success.
Collapse
Affiliation(s)
- Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ashleigh J Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - David Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Julie Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Ryan Carney
- Department of Biophysics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Michelle N Karl
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Boyang Su
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Bartholomew Starich
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Tung-Shing Lih
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Pratik Kamat
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Qiming Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Praful R Nair
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA
| | - Hon S Leong
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins University School of Public Health, Baltimore, MD, 21231, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400 N Charles St, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Crawford AJ, Gomez-Cruz C, Russo GC, Huang W, Bhorkar I, Roy T, Muñoz-Barrutia A, Wirtz D, Garcia-Gonzalez D. Tumor proliferation and invasion are intrinsically coupled and unraveled through tunable spheroid and physics-based models. Acta Biomater 2024; 175:170-185. [PMID: 38160858 DOI: 10.1016/j.actbio.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Proliferation and invasion are two key drivers of tumor growth that are traditionally considered independent multicellular processes. However, these processes are intrinsically coupled through a maximum carrying capacity, i.e., the maximum spatial cell concentration supported by the tumor volume, total cell count, nutrient access, and mechanical properties of the tissue stroma. We explored this coupling of proliferation and invasion through in vitro and in silico methods where we modulated the mechanical properties of the tumor and the surrounding extracellular matrix. E-cadherin expression and stromal collagen concentration were manipulated in a tunable breast cancer spheroid to determine the overall impacts of these tumor variables on net tumor proliferation and continuum invasion. We integrated these results into a mixed-constitutive formulation to computationally delineate the influences of cellular and extracellular adhesion, stiffness, and mechanical properties of the extracellular matrix on net proliferation and continuum invasion. This framework integrates biological in vitro data into concise computational models of invasion and proliferation to provide more detailed physical insights into the coupling of these key tumor processes and tumor growth. STATEMENT OF SIGNIFICANCE: Tumor growth involves expansion into the collagen-rich stroma through intrinsic coupling of proliferation and invasion within the tumor continuum. These processes are regulated by a maximum carrying capacity that is determined by the total cell count, tumor volume, nutrient access, and mechanical properties of the surrounding stroma. The influences of biomechanical parameters (i.e., stiffness, cell elongation, net proliferation rate and cell-ECM friction) on tumor proliferation or invasion cannot be unraveled using experimental methods alone. By pairing a tunable spheroid system with computational modeling, we delineated the interdependencies of each system parameter on tumor proliferation and continuum invasion, and established a concise computational framework for studying tumor mechanobiology.
Collapse
Affiliation(s)
- Ashleigh J Crawford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Clara Gomez-Cruz
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain
| | - Gabriella C Russo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Wilson Huang
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Isha Bhorkar
- Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Triya Roy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA
| | - Arrate Muñoz-Barrutia
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Departamento de Bioingenieria, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain; Area de Ingenieria Biomedica, Instituto de Investigacion Sanitaria Gregorio Maranon, Calle del Doctor Esquerdo 46, Madrid' ES 28007, Spain
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, MD 21218, USA; Johns Hopkins Physical Sciences-Oncology Center and Institute for NanoBioTechnology, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, 3400N Charles St, Baltimore, Maryland 21218, USA; Departments of Pathology and Oncology and Sydney Kimmel Comprehensive Cancer Center, The Johns Hopkins School of Medicine, 1800 Orleans St, Baltimore, MD 21215, USA.
| | - Daniel Garcia-Gonzalez
- Department of Continuum Mechanics and Structural Analysis, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid, Spain.
| |
Collapse
|
5
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. E-cadherin adhesion dynamics as revealed by an accelerated force ramp are dependent upon the presence of α-catenin. Biochem Biophys Res Commun 2023; 682:308-315. [PMID: 37837751 PMCID: PMC10615569 DOI: 10.1016/j.bbrc.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA; Bioengineering, George Mason University, Fairfax, VA, 22030, USA
| | - Jolene I Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA, 23529, USA.
| |
Collapse
|
6
|
Bush J, Cabe JI, Conway D, Maruthamuthu V. α-Catenin Dependent E-cadherin Adhesion Dynamics as Revealed by an Accelerated Force Ramp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550975. [PMID: 37645773 PMCID: PMC10461907 DOI: 10.1101/2023.07.28.550975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Tissue remodeling and shape changes often rely on force-induced cell rearrangements occurring via cell-cell contact dynamics. Epithelial cell-cell contact shape changes are particularly dependent upon E-cadherin adhesion dynamics which are directly influenced by cell-generated and external forces. While both the mobility of E-cadherin adhesions and their adhesion strength have been reported before, it is not clear how these two aspects of E-cadherin adhesion dynamics are related. Here, using magnetic pulling cytometry, we applied an accelerated force ramp on the E-cadherin adhesion between an E-cadherin-coated magnetic microbead and an epithelial cell to ascertain this relationship. Our approach enables the determination of the adhesion strength and force-dependent mobility of individual adhesions, which revealed a direct correlation between these key characteristics. Since α-catenin has previously been reported to play a role in both E-cadherin mobility and adhesion strength when studied independently, we also probed epithelial cells in which α-catenin has been knocked out. We found that, in the absence of α-catenin, E-cadherin adhesions not only had lower adhesion strength, as expected, but were also more mobile. We observed that α-catenin was required for the recovery of strained cell-cell contacts and propose that the adhesion strength and force-dependent mobility of E-cadherin adhesions act in tandem to regulate cell-cell contact homeostasis. Our approach introduces a method which relates the force-dependent adhesion mobility to adhesion strength and highlights the morphological role played by α-catenin in E-cadherin adhesion dynamics.
Collapse
Affiliation(s)
- Joshua Bush
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
- Bioengineering, George Mason University, Fairfax, VA 22030
| | - Jolene I. Cabe
- Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Daniel Conway
- Biomedical Engineering, The Ohio State University, Columbus, OH 43210 USA
| | - Venkat Maruthamuthu
- Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, VA 23529 USA
| |
Collapse
|
7
|
Sivasankar S, Xie B. Engineering the Interactions of Classical Cadherin Cell-Cell Adhesion Proteins. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:343-349. [PMID: 37459190 PMCID: PMC10361579 DOI: 10.4049/jimmunol.2300098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/30/2023] [Indexed: 07/20/2023]
Abstract
Classical cadherins are calcium-dependent cell-cell adhesion proteins that play key roles in the formation and maintenance of tissues. Deficiencies in cadherin adhesion are hallmarks of numerous cancers. In this article, we review recent biophysical studies on the regulation of cadherin structure and adhesion. We begin by reviewing distinct cadherin binding conformations, their biophysical properties, and their response to mechanical stimuli. We then describe biophysical guidelines for engineering Abs that can regulate adhesion by either stabilizing or destabilizing cadherin interactions. Finally, we review molecular mechanisms by which cytoplasmic proteins regulate the conformation of cadherin extracellular regions from the inside out.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Biophysics Graduate Group, University of California, Davis, CA 95616
| | - Bin Xie
- Biophysics Graduate Group, University of California, Davis, CA 95616
| |
Collapse
|
8
|
Ibata N, Terentjev EM. Nucleation of cadherin clusters on cell-cell interfaces. Sci Rep 2022; 12:18485. [PMID: 36323859 PMCID: PMC9630535 DOI: 10.1038/s41598-022-23220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory. This predicts the density required for nucleation, the characteristic length scale of the process, and the number density of clusters. The analytical predictions of the model are in good agreement with experimental observations of cadherin clustering in epithelial tissues.
Collapse
Affiliation(s)
- Neil Ibata
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Eugene M. Terentjev
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
9
|
Saraswat M, Garapati K, Kim J, Budhraja R, Pandey A. Proteomic alterations in extracellular vesicles induced by oncogenic PIK3CA mutations. Proteomics 2022; 22:e2200077. [PMID: 35689797 DOI: 10.1002/pmic.202200077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022]
Abstract
PIK3CA is one of the most frequently mutated genes in human cancers, with the two most prevalent activating mutations being E545K and H1047R. Although the altered intracellular signaling pathways in these cells have been described, the effect of these mutations on their extracellular vesicles (EVs) has not yet been reported. To study altered cellular physiology and intercellular communication through proteomic analysis of EVs, MCF10A cells and their isogenic mutant versions (PIK3CA E545K and H1047R) were cultured and their EVs enriched by differential ultracentrifugation. Proteins were extracted, digested with trypsin and the peptides labeled with tandem mass tag (TMT) reagents and analyzed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Four thousand six hundred and fifty-five peptides were identified from 579 proteins of which 522 proteins have been previously described in EVs. Relative quantitation revealed altered levels of EV proteins including several cell adhesion molecules. Mesothelin, E-cadherin, and epithelial cell adhesion molecule were elevated in both mutant cell-derived EVs. Markers of tumor invasion and progression like galectin-3 and transforming growth factor beta induced protein were increased in both mutants. Overall, activating mutations in PIK3CA result in altered EV composition with characteristic changes associated with these hotspot mutations.
Collapse
Affiliation(s)
- Mayank Saraswat
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Kishore Garapati
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Institute of Bioinformatics, International Technology Park, Bangalore, Karnataka, India.,Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Jinyong Kim
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Differential Impacts on Tensional Homeostasis of Gastric Cancer Cells Due to Distinct Domain Variants of E-Cadherin. Cancers (Basel) 2022; 14:cancers14112690. [PMID: 35681670 PMCID: PMC9179447 DOI: 10.3390/cancers14112690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
In epithelia, breakdown of tensional homeostasis is closely associated with E-cadherin dysfunction and disruption of tissue function and integrity. In this study, we investigated the effect of E-cadherin mutations affecting distinct protein domains on tensional homeostasis of gastric cancer cells. We used micropattern traction microscopy to measure temporal fluctuations of cellular traction forces in AGS cells transfected with the wild-type E-cadherin or with variants affecting the extracellular, the juxtamembrane, and the intracellular domains of the protein. We focused on the dynamic aspect of tensional homeostasis, namely the ability of cells to maintain a consistent level of tension, with low temporal variability around a set point. Cells were cultured on hydrogels micropatterned with different extracellular matrix (ECM) proteins to test whether the ECM adhesion impacts cell behavior. A combination of Fibronectin and Vitronectin was used as a substrate that promotes the adhesive ability of E-cadherin dysfunctional cells, whereas Collagen VI was used to test an unfavorable ECM condition. Our results showed that mutations affecting distinct E-cadherin domains influenced differently cell tensional homeostasis, and pinpointed the juxtamembrane and intracellular regions of E-cadherin as the key players in this process. Furthermore, Fibronectin and Vitronectin might modulate cancer cell behavior towards tensional homeostasis.
Collapse
|
11
|
Yuksel H, Ocalan M, Yilmaz O. E-Cadherin: An Important Functional Molecule at Respiratory Barrier Between Defence and Dysfunction. Front Physiol 2021; 12:720227. [PMID: 34671272 PMCID: PMC8521047 DOI: 10.3389/fphys.2021.720227] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022] Open
Abstract
While breathing, many microorganisms, harmful environmental particles, allergens, and environmental pollutants enter the human airways. The human respiratory tract is lined with epithelial cells that act as a functional barrier to these harmful factors and provide homeostasis between external and internal environment. Intercellular epithelial junctional proteins play a role in the formation of the barrier. E-cadherin is a calcium-dependent adhesion molecule and one of the most important molecules involved in intercellular epithelial barier formation. E-cadherin is not only physical barrier element but also regulates cell proliferation, differentiation and the immune response to environmental noxious agents through various transcription factors. In this study, we aimed to review the role of E-cadherin in the formation of airway epithelial barier, its status as a result of exposure to various environmental triggers, and respiratory diseases associated with its dysfunction. Moreover, the situations in which its abnormal activation can be noxious would be discussed.
Collapse
Affiliation(s)
- Hasan Yuksel
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Merve Ocalan
- Department of Pediatric Allergy and Immunology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Ozge Yilmaz
- Department of Pediatric Allergy and Pulmonology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| |
Collapse
|
12
|
Falo-Sanjuan J, Bray SJ. Membrane architecture and adherens junctions contribute to strong Notch pathway activation. Development 2021; 148:272068. [PMID: 34486648 PMCID: PMC8543148 DOI: 10.1242/dev.199831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 11/23/2022]
Abstract
The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signalling. By measuring Notch-dependent transcription in live embryos, we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences of α-Catenin depletion. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity. Summary: Measuring Notch-dependent transcription in live embryos reveals that features associated with lateral membranes are required for initiation of Notch signalling. Perturbing membrane growth or adherens junctions prevents normal activation.
Collapse
Affiliation(s)
- Julia Falo-Sanjuan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J Bray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
13
|
Arora N, Hazra JP, Rakshit S. Anisotropy in mechanical unfolding of protein upon partner-assisted pulling and handle-assisted pulling. Commun Biol 2021; 4:925. [PMID: 34326473 PMCID: PMC8322310 DOI: 10.1038/s42003-021-02445-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Proteins as force-sensors respond to mechanical cues and regulate signaling in physiology. Proteins commonly connect the source and response points of mechanical cues in two conformations, independent proteins in end-to-end geometry and protein complexes in handshake geometry. The force-responsive property of independent proteins in end-to-end geometry is studied extensively using single-molecule force spectroscopy (SMFS). The physiological significance of the complex conformations in force-sensing is often disregarded as mere surge protectors. However, with the potential of force-steering, protein complexes possess a distinct mechano-responsive property over individual force-sensors. To decipher, we choose a force-sensing protein, cadherin-23, from tip-link complex and perform SMFS using end-to-end geometry and handshake complex geometry. We measure higher force-resilience of cadherin-23 with preferential shorter extensions in handshake mode of pulling over the direct mode. The handshake geometry drives the force-response of cadherin-23 through different potential-energy landscapes than direct pulling. Analysis of the dynamic network structure of cadherin-23 under tension indicates narrow force-distributions among residues in cadherin-23 in direct pulling, resulting in low force-dissipation paths and low resilience to force. Overall, the distinct and superior mechanical responses of cadherin-23 in handshake geometry than single protein geometry highlight a probable evolutionary drive of protein-protein complexes as force-conveyors over independent ones.
Collapse
Affiliation(s)
- Nisha Arora
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India
| | - Jagadish Prasad Hazra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| | - Sabyasachi Rakshit
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
- Centre for Protein Science Design and Engineering, Indian Institute of Science Education and Research Mohali, Mohali, Punjab, India.
| |
Collapse
|
14
|
Koirala R, Priest AV, Yen CF, Cheah JS, Pannekoek WJ, Gloerich M, Yamada S, Sivasankar S. Inside-out regulation of E-cadherin conformation and adhesion. Proc Natl Acad Sci U S A 2021; 118:e2104090118. [PMID: 34301871 PMCID: PMC8325368 DOI: 10.1073/pnas.2104090118] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cadherin cell-cell adhesion proteins play key roles in tissue morphogenesis and wound healing. Cadherin ectodomains bind in two conformations, X-dimers and strand-swap dimers, with different adhesive properties. However, the mechanisms by which cells regulate ectodomain conformation are unknown. Cadherin intracellular regions associate with several actin-binding proteins including vinculin, which are believed to tune cell-cell adhesion by remodeling the actin cytoskeleton. Here, we show at the single-molecule level, that vinculin association with the cadherin cytoplasmic region allosterically converts weak X-dimers into strong strand-swap dimers and that this process is mediated by myosin II-dependent changes in cytoskeletal tension. We also show that in epithelial cells, ∼70% of apical cadherins exist as strand-swap dimers while the remaining form X-dimers, providing two cadherin pools with different adhesive properties. Our results demonstrate the inside-out regulation of cadherin conformation and establish a mechanistic role for vinculin in this process.
Collapse
Affiliation(s)
- Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Chi-Fu Yen
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Joleen S Cheah
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Willem-Jan Pannekoek
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Martijn Gloerich
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616;
| |
Collapse
|
15
|
Terzoli S, Tiana G. Molecular Recognition between Cadherins Studied by a Coarse-Grained Model Interacting with a Coevolutionary Potential. J Phys Chem B 2020; 124:4079-4088. [PMID: 32336092 PMCID: PMC8007105 DOI: 10.1021/acs.jpcb.0c01671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Studying the conformations
involved in the dimerization of cadherins
is highly relevant to understand the development of tissues and its
failure, which is associated with tumors and metastases. Experimental
techniques, like X-ray crystallography, can usually report only the
most stable conformations, missing minority states that could nonetheless
be important for the recognition mechanism. Computer simulations could
be a valid complement to the experimental approach. However, standard
all-atom protein models in explicit solvent are computationally too
demanding to search thoroughly the conformational space of multiple
chains composed of several hundreds of amino acids. To reach this
goal, we resorted to a coarse-grained model in implicit solvent. The
standard problem with this kind of model is to find a realistic potential
to describe its interactions. We used coevolutionary information from
cadherin alignments, corrected by a statistical potential, to build
an interaction potential, which is agnostic about the experimental
conformations of the protein. Using this model, we explored the conformational
space of multichain systems and validated the results comparing with
experimental data. We identified dimeric conformations that are sequence
specific and that can be useful to rationalize the mechanism of recognition
between cadherins.
Collapse
Affiliation(s)
- Sara Terzoli
- Department of Physics and Center for Complexity and Biosystems, Universitá degli Studi di Milano and INFN, via Celoria 16, Milano 20133, Italy
| | - Guido Tiana
- Department of Physics and Center for Complexity and Biosystems, Universitá degli Studi di Milano and INFN, via Celoria 16, Milano 20133, Italy
| |
Collapse
|
16
|
Shin S, Kim Y, Lee JK, Lee KA. Frequency and Clinical Characteristics of Unselected Korean Gastric Cancer Patients with a Germline CDH1 V832M Mutation. J Cancer 2020; 11:208-212. [PMID: 31892987 PMCID: PMC6930413 DOI: 10.7150/jca.36513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Germline mutations in CDH1 are associated with hereditary and early onset- diffuse gastric cancer. However, the frequency of CDH1 germline mutation in unselected gastric cancer cases is not well established. Aim: The aim of this study was to investigate the frequency and clinical characteristics of germline CDH1 V832M mutation carriers in unselected Korean gastric cancer cases. Methods: Direct sequencing was performed to determine the presence of CDH1 V832M in 305 unselected Korean gastric cancer patients. Lauren's histologic type, family history of gastric cancer, and age of cancer diagnosis were compared between V832M carriers and non-carriers. Results: In the study population, seven gastric cancer patients (7/305, 2.29%) were found to have the CDH1 V832M mutation. The CDH1 V832M mutation carrier state was not significantly associated with phenotypes including Lauren's histologic type, family history of gastric cancer, age of cancer diagnosis, and other cancer history in a patient. Conclusion: This study demonstrates that the germline CDH1 V832M mutation is common in sporadic, late onset, and intestinal type gastric cancer as well as familial, early onset, and diffuse type gastric cancer. Our finding suggests that guidelines for managing CDH1 mutation carriers should be refined through additional data on penetration according to CDH1 mutation type in sporadic cases.
Collapse
Affiliation(s)
- Saeam Shin
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoonjung Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Kyung Lee
- Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul, Korea.,KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Kyung-A Lee
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Priest AV, Koirala R, Sivasankar S. Single-molecule studies of classical and desmosomal cadherin adhesion. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019; 12:43-50. [PMID: 31742239 DOI: 10.1016/j.cobme.2019.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Classical cadherin and desmosomal cadherin cell-cell adhesion proteins play essential roles in tissue morphogenesis and in maintaining tissue integrity. Deficiencies in cadherin adhesion are hallmarks of diseases like cancers, skin diseases and cardiomyopathies. Structural studies and single molecule biophysical measurements have revealed critical similarities and surprising differences between these key adhesion proteins. This review summarizes our current understanding of the biophysics of classical and desmosomal cadherin adhesion and the molecular basis for their cross-talk. We focus on recent single molecule measurements, highlight key insights into the adhesion of cadherin extracellular regions and their relation to associated diseases, and identify major open questions in this exciting area of research.
Collapse
Affiliation(s)
- Andrew Vae Priest
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Ramesh Koirala
- Department of Biomedical Engineering, University of California, Davis, CA 95616.,Department of Physics and Astronomy, Iowa State University, Ames, IA 50011
| | - Sanjeevi Sivasankar
- Department of Biomedical Engineering, University of California, Davis, CA 95616
| |
Collapse
|
18
|
Ye C, Huang C, Zou M, Hu Y, Luo L, Wei Y, Wan X, Zhao H, Li W, Cai S, Dong H. The role of secreted Hsp90α in HDM-induced asthmatic airway epithelial barrier dysfunction. BMC Pulm Med 2019; 19:218. [PMID: 31747880 PMCID: PMC6868813 DOI: 10.1186/s12890-019-0938-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 09/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The dysfunction of airway epithelial barrier is closely related to the pathogenesis of asthma. Secreted Hsp90α participates in inflammation and Hsp90 inhibitor protects endothelial dysfunction. In the current study, we aimed to explore the role of secreted Hsp90α in asthmatic airway epithelial barrier function. METHODS Male BALB/c mice were sensitized and challenged with HDM to generate asthma model. The 16HBE and Hsp90α-knockdown cells were cultured and treated according to the experiment requirements. Transepithelial Electric Resistance (TEER) and permeability of epithelial layer in vitro, distribution and expression of junction proteins both in vivo and in vitro were used to evaluate the epithelial barrier function. Western Blot was used to evaluate the expression of junction proteins and phosphorylated AKT in cells and lung tissues while ELISA were used to evaluate the Hsp90α expression and cytokines release in the lung homogenate. RESULTS HDM resulted in a dysfunction of airway epithelial barrier both in vivo and in vitro, paralleled with the increased expression and release of Hsp90α. All of which were rescued in Hsp90α-knockdown cells or co-administration of 1G6-D7. Furthermore, either 1G6-D7 or PI3K inhibitor LY294002 suppressed the significant phosphorylation of AKT, which caused by secreted and recombinant Hsp90α, resulting in the restoration of epithelial barrier function. CONCLUSIONS Secreted Hsp90α medicates HDM-induced asthmatic airway epithelial barrier dysfunction via PI3K/AKT pathway, indicating that anti-secreted Hsp90α therapy might be a potential treatment to asthma in future.
Collapse
Affiliation(s)
- Cuiping Ye
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Chaowen Huang
- Department of Respiratory Medicine, Jiangmen Central Hospital, Jiangmen, Guangdong, 529030, People's Republic of China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yahui Hu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lishan Luo
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yilan Wei
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xuan Wan
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Haijin Zhao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Wei Li
- Department of Dermatology and the Norris Comprehensive Cancer Centre, University of Southern California Keck, Medical Centre, Los Angeles, CA, 90033, USA
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nan Fang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
19
|
Kannan N, Tang VW. Myosin-1c promotes E-cadherin tension and force-dependent recruitment of α-actinin to the epithelial cell junction. J Cell Sci 2018; 131:jcs.211334. [PMID: 29748378 DOI: 10.1242/jcs.211334] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Actomyosin II contractility in epithelial cell plays an essential role in tension-dependent adhesion strengthening. One key unsettling question is how cellular contraction transmits force to the nascent cell-cell adhesion when there is no stable attachment between the nascent adhesion complex and actin filament. Here, we show that myosin-1c is localized to the lateral membrane of polarized epithelial cells and facilitates the coupling between actin and cell-cell adhesion. Knockdown of myosin-1c compromised the integrity of the lateral membrane, reduced the generation of tension at E-cadherin, decreased the strength of cell-cell cohesion in an epithelial cell monolayer and prevented force-dependent recruitment of junctional α-actinin. Application of exogenous force to cell-cell adhesions in a myosin-1c-knockdown cell monolayer fully rescued the localization defect of α-actinin, indicating that junction mechanoregulation remains intact in myosin-1c-depleted cells. Our study identifies a role of myosin-1c in force transmission at the lateral cell-cell interface and underscores a non-junctional contribution to tension-dependent junction regulation.
Collapse
Affiliation(s)
- Nivetha Kannan
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| | - Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801 USA
| |
Collapse
|
20
|
Uechi H, Kuranaga E. Mechanisms of collective cell movement lacking a leading or free front edge in vivo. Cell Mol Life Sci 2017; 74:2709-2722. [PMID: 28243700 PMCID: PMC11107506 DOI: 10.1007/s00018-017-2489-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/15/2022]
Abstract
Collective cell movement is one of the strategies for achieving the complex shapes of tissues and organs. In this process, multiple cells within a group held together by cell-cell adhesion acquire mobility and move together in the same direction. In some well-studied models of collective cell movement, the mobility depends strongly on traction generated at the leading edge by cells located at the front. However, recent advances in live-imaging techniques have led to the discovery of other types of collective cell movement lacking a leading edge or even a free edge at the front, in a diverse array of morphological events, including tubule elongation, epithelial sheet extension, and tissue rotation. We herein review some of the developmental events that are organized by collective cell movement and attempt to elucidate the underlying cellular and molecular mechanisms, which include membrane protrusions, guidance cues, cell intercalation, and planer cell polarity, or chirality pathways.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, RIKEN Center for Developmental Biology, Kobe, 650-0047, Japan.
- Laboratory of Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, 980-8578, Japan.
| |
Collapse
|
21
|
Singh DR, Ahmed F, Sarabipour S, Hristova K. Intracellular Domain Contacts Contribute to Ecadherin Constitutive Dimerization in the Plasma Membrane. J Mol Biol 2017; 429:2231-2245. [PMID: 28549925 DOI: 10.1016/j.jmb.2017.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 01/29/2023]
Abstract
Epithelial cadherin (Ecadherin) is responsible for the intercellular cohesion of epithelial tissues. It forms lateral clusters within adherens cell-cell junctions, but its association state outside these clusters is unknown. Here, we use a quantitative Forster resonance energy transfer (FRET) approach to show that Ecadherin forms constitutive dimers and that these dimers exist independently of the actin cytoskeleton or cytoplasmic proteins. The dimers are stabilized by intermolecular contacts that occur along the entire length of Ecadherin, with the intracellular domains having a surprisingly strong favorable contribution. We further show that Ecadherin mutations and calcium depletion induce structural alterations that propagate from the N terminus all the way to the C terminus, without destabilizing the dimeric state. These findings provide context for the interpretation of Ecadherin adhesion experiments. They also suggest that early events of adherens junction assembly involve interactions between from preformed Ecadherin dimers.
Collapse
Affiliation(s)
- Deo R Singh
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Fozia Ahmed
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Sarvenaz Sarabipour
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA
| | - Kalina Hristova
- Department of Materials Science and Engineering and Institute of NanoBioTechnology, Johns Hopkins University, 3400 Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
22
|
Boxio R, Wartelle J, Nawrocki-Raby B, Lagrange B, Malleret L, Hirche T, Taggart C, Pacheco Y, Devouassoux G, Bentaher A. Neutrophil elastase cleaves epithelial cadherin in acutely injured lung epithelium. Respir Res 2016; 17:129. [PMID: 27751187 PMCID: PMC5067913 DOI: 10.1186/s12931-016-0449-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/10/2016] [Indexed: 01/05/2023] Open
Abstract
Background In acutely injured lungs, massively recruited polymorphonuclear neutrophils (PMNs) secrete abnormally neutrophil elastase (NE). Active NE creates a localized proteolytic environment where various host molecules are degraded leading to impairment of tissue homeostasis. Among the hallmarks of neutrophil-rich pathologies is a disrupted epithelium characterized by the loss of cell-cell adhesion and integrity. Epithelial-cadherin (E-cad) represents one of the most important intercellular junction proteins. E-cad exhibits various functions including its role in maintenance of tissue integrity. While much interest has focused on the expression and role of E-cad in different physio- and physiopathological states, proteolytic degradation of this structural molecule and ensuing potential consequences on host lung tissue injury are not completely understood. Methods NE capacity to cleave E-cad was determined in cell-free and lung epithelial cell culture systems. The impact of such cleavage on epithelial monolayer integrity was then investigated. Using mice deficient in NE in a clinically relevant experimental model of acute pneumonia, we examined whether degraded E-cad is associated with lung inflammation and injury and whether NE contributes to E-cad cleavage. Finally, we checked for the presence of both degraded E-cad and NE in bronchoalveolar lavage samples obtained from patients with exacerbated COPD, a clinical manifestation characterised by a neutrophilic inflammatory response. Results We show that NE is capable of degrading E-cad in vitro and in cultured cells. NE-mediated degradation of E-cad was accompanied with loss of epithelial monolayer integrity. Our in vivo findings provide evidence that NE contributes to E-cad cleavage that is concomitant with lung inflammation and injury. Importantly, we observed that the presence of degraded E-cad coincided with the detection of NE in diseased human lungs. Conclusions Active NE has the capacity to cleave E-cad and interfere with its cell-cell adhesion function. These data suggest a mechanism by which unchecked NE participates potentially to the pathogenesis of neutrophil-rich lung inflammatory and tissue-destructive diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0449-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rachel Boxio
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Julien Wartelle
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | | | - Brice Lagrange
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Laurette Malleret
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Timothee Hirche
- Department of Pulmonary Medicine, German Clinic for Diagnostics (DKD), Wiesbaden, Germany
| | - Clifford Taggart
- Centre for Infection and Immunity, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Yves Pacheco
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.,CHU Croix-Rousse, Lyon, France
| | - Abderrazzaq Bentaher
- Inflammation and Immunity of the Respiratory Epithelium Group, Faculté de Médecine Lyon Sud, EA 7426, UCBL 1, Inserm U-1111, Pierre Benite - Lyon Sud, France.
| |
Collapse
|
23
|
Loza AJ, Koride S, Schimizzi GV, Li B, Sun SX, Longmore GD. Cell density and actomyosin contractility control the organization of migrating collectives within an epithelium. Mol Biol Cell 2016; 27:3459-3470. [PMID: 27605707 PMCID: PMC5221580 DOI: 10.1091/mbc.e16-05-0329] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/31/2016] [Indexed: 12/31/2022] Open
Abstract
The mechanisms underlying collective migration are important for understanding development, wound healing, and tumor invasion. Here we focus on cell density to determine its role in collective migration. Our findings show that increasing cell density, as might be seen in cancer, transforms groups from broad collectives to small, narrow streams. Conversely, diminishing cell density, as might occur at a wound front, leads to large, broad collectives with a distinct leader-follower structure. Simulations identify force-sensitive contractility as a mediator of how density affects collectives, and guided by this prediction, we find that the baseline state of contractility can enhance or reduce organization. Finally, we test predictions from these data in an in vivo epithelium by using genetic manipulations to drive collective motion between predicted migratory phases. This work demonstrates how commonly altered cellular properties can prime groups of cells to adopt migration patterns that may be harnessed in health or exploited in disease.
Collapse
Affiliation(s)
- Andrew J Loza
- ICCE Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.,Department of Biochemistry and Biophysics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.,Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Sarita Koride
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Gregory V Schimizzi
- ICCE Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.,Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| | - Bo Li
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218
| | - Gregory D Longmore
- ICCE Institute, Washington University in St. Louis School of Medicine, St. Louis, MO 63110 .,Department of Cell Biology and Physiology, Washington University in St. Louis School of Medicine, St. Louis, MO 63110.,Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218.,Division of Oncology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO 63110
| |
Collapse
|
24
|
Winklbauer R. Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 2016; 128:3687-93. [PMID: 26471994 DOI: 10.1242/jcs.174623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
25
|
Mestre T, Figueiredo J, Ribeiro AS, Paredes J, Seruca R, Sanches JM. Quantification of topological features in cell meshes to explore E-cadherin dysfunction. Sci Rep 2016; 6:25101. [PMID: 27151223 PMCID: PMC4858654 DOI: 10.1038/srep25101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/08/2016] [Indexed: 01/23/2023] Open
Abstract
In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer.
Collapse
Affiliation(s)
- Tânia Mestre
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
| | - Joana Figueiredo
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Ana Sofia Ribeiro
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal
| | - Joana Paredes
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - Raquel Seruca
- Instituto de Investigação e Inovação em Saúde (i3S), Porto, Portugal.,Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), Porto, Portugal.,Department of Pathology and Oncology, Medical Faculty of the University of Porto, Porto, Portugal
| | - João Miguel Sanches
- Institute for Systems and Robotics, Instituto Superior Técnico, Lisboa, Portugal
| |
Collapse
|
26
|
|
27
|
Rakshit S, Sivasankar S. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 2014; 16:2211-23. [PMID: 24419646 DOI: 10.1039/c3cp53963f] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.
Collapse
Affiliation(s)
- Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
28
|
Bajpai S, Feng Y, Wirtz D, Longmore GD. β-Catenin serves as a clutch between low and high intercellular E-cadherin bond strengths. Biophys J 2014; 105:2289-300. [PMID: 24268141 DOI: 10.1016/j.bpj.2013.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/18/2013] [Accepted: 09/23/2013] [Indexed: 12/27/2022] Open
Abstract
A wide range of invasive pathological outcomes originate from the loss of epithelial phenotype and involve either loss of function or downregulation of transmembrane adhesive receptor complexes, including Ecadherin (Ecad) and binding partners β-catenin and α-catenin at adherens junctions. Cellular pathways regulating wild-type β-catenin level, or direct mutations in β-catenin that affect the turnover of the protein have been shown to contribute to cancer development, through induction of uncontrolled proliferation of transformed tumor cells, particularly in colon cancer. Using single-molecule force spectroscopy, we show that depletion of β-catenin or the prominent cancer-related S45 deletion mutation in β-catenin present in human colon cancers both weaken tumor intercellular Ecad/Ecad bond strength and diminishes the capacity of specific extracellular matrix proteins-including collagen I, collagen IV, and laminin V-to modulate intercellular Ecad/Ecad bond strength through α-catenin and the kinase activity of glycogen synthase kinase 3 (GSK-3β). Thus, in addition to regulating tumor cell proliferation, cancer-related mutations in β-catenin can influence tumor progression by weakening the adhesion of tumor cells to one another through reduced individual Ecad/Ecad bond strength and cellular adhesion to specific components of the extracellular matrix and the basement membrane.
Collapse
Affiliation(s)
- Saumendra Bajpai
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland; Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, Maryland
| | | | | | | |
Collapse
|
29
|
Barry AK, Tabdili H, Muhamed I, Wu J, Shashikanth N, Gomez GA, Yap AS, Gottardi CJ, de Rooij J, Wang N, Leckband DE. α-catenin cytomechanics--role in cadherin-dependent adhesion and mechanotransduction. J Cell Sci 2014; 127:1779-91. [PMID: 24522187 DOI: 10.1242/jcs.139014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The findings presented here demonstrate the role of α-catenin in cadherin-based adhesion and mechanotransduction in different mechanical contexts. Bead-twisting measurements in conjunction with imaging, and the use of different cell lines and α-catenin mutants reveal that the acute local mechanical manipulation of cadherin bonds triggers vinculin and actin recruitment to cadherin adhesions in an actin- and α-catenin-dependent manner. The modest effect of α-catenin on the two-dimensional binding affinities of cell surface cadherins further suggests that force-activated adhesion strengthening is due to enhanced cadherin-cytoskeletal interactions rather than to α-catenin-dependent affinity modulation. Complementary investigations of cadherin-based rigidity sensing also suggest that, although α-catenin alters traction force generation, it is not the sole regulator of cell contractility on compliant cadherin-coated substrata.
Collapse
Affiliation(s)
- Adrienne K Barry
- Department of Biochemistry, University of Illinois, Urbana, IL 61801-3709, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Padmashali R, You H, Karnik N, Lei P, Andreadis ST. Adherens junction formation inhibits lentivirus entry and gene transfer. PLoS One 2013; 8:e79265. [PMID: 24236116 PMCID: PMC3827380 DOI: 10.1371/journal.pone.0079265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/27/2013] [Indexed: 01/04/2023] Open
Abstract
Although cellular signaling pathways that affect lentivirus infection have been investigated, the role of cell-cell interactions in lentiviral gene delivery remains elusive. In the course of our studies we observed that lentiviral gene transfer was a strong function of the position of epithelial cells within colonies. While peripheral cells were transduced efficiently, cells in the center of colonies were resistant to gene transfer. In addition, gene delivery was enhanced significantly under culture conditions that disrupted adherens junctions (AJ) but decreased upon AJ formation. In agreement, gene knockdown and gain-of-function approaches showed that α-catenin, a key component of the AJ complex prevented lentivirus gene transfer. Using a doxycycline regulatable system we showed that expression of dominant negative E-cadherin enhanced gene transfer in a dose-dependent manner. In addition, dissolution of AJ by doxycycline increased entry of lentiviral particles into the cell cytoplasm in a dose-dependent manner. Taken together our results demonstrate that AJ formation renders cells non-permissive to lentiviral gene transfer and may facilitate development of simple means to enhance gene delivery or combat virus infection.
Collapse
Affiliation(s)
- Roshan Padmashali
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
| | - Hui You
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
| | - Nikhila Karnik
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Amherst, New York, United States of America
- Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
31
|
Sivasankar S. Tuning the kinetics of cadherin adhesion. J Invest Dermatol 2013; 133:2318-2323. [PMID: 23812234 PMCID: PMC3773255 DOI: 10.1038/jid.2013.229] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/19/2013] [Accepted: 04/24/2013] [Indexed: 12/17/2022]
Abstract
Cadherins are Ca(2+)-dependent cell-cell adhesion proteins that maintain the structural integrity of the epidermis; their principle function is to resist mechanical force. This review summarizes the biophysical mechanisms by which classical cadherins tune adhesion and withstand mechanical stress. We first relate the structure of classical cadherins to their equilibrium binding properties. We then review the role of mechanical perturbations in tuning the kinetics of cadherin adhesion. In particular, we highlight recent studies that show that cadherins form three types of adhesive bonds: catch bonds, which become longer lived and lock in the presence of tensile force; slip bonds, which become shorter lived when pulled; and ideal bonds, which are insensitive to tugging.
Collapse
Affiliation(s)
- Sanjeevi Sivasankar
- Department of Physics and Astronomy, Iowa State University, Ames, Iowa, USA; Ames Laboratory, United States Department of Energy, Ames, Iowa, USA.
| |
Collapse
|
32
|
Dufour S, Mège RM, Thiery JP. α-catenin, vinculin, and F-actin in strengthening E-cadherin cell-cell adhesions and mechanosensing. Cell Adh Migr 2013; 7:345-50. [PMID: 23739176 PMCID: PMC3739810 DOI: 10.4161/cam.25139] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Classical cadherins play a crucial role in establishing intercellular adhesion, regulating cortical tension, and maintaining mechanical coupling between cells. The mechanosensitive regulation of intercellular adhesion strengthening depends on the recruitment of adhesion complexes at adhesion sites and their anchoring to the actin cytoskeleton. Thus, the molecular mechanisms coupling cadherin-associated complexes to the actin cytoskeleton are actively being studied, with a particular focus on α-catenin and vinculin. We have recently addressed the role of these proteins by analyzing the consequences of their depletion and the expression of α-catenin mutants in the formation and strengthening of cadherin-mediated adhesions. We have used the dual pipette assay to measure the forces required to separate cell doublets formed in suspension. In this commentary, we briefly summarize the current knowledge on the role of α-catenin and vinculin in cadherin-actin cytoskeletal interactions. These data shed light on the tension-dependent contribution of α-catenin and vinculin in a mechanoresponsive complex that promotes the connection between cadherin and the actin cytoskeleton and their requirement in the development of adhesion strengthening.
Collapse
|
33
|
Ganesan S, Comstock AT, Sajjan US. Barrier function of airway tract epithelium. Tissue Barriers 2013; 1:e24997. [PMID: 24665407 PMCID: PMC3783221 DOI: 10.4161/tisb.24997] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/20/2022] Open
Abstract
Airway epithelium contributes significantly to the barrier function of airway tract. Mucociliary escalator, intercellular apical junctional complexes which regulate paracellular permeability and antimicrobial peptides secreted by the airway epithelial cells are the three primary components of barrier function of airway tract. These three components act cooperatively to clear inhaled pathogens, allergens and particulate matter without inducing inflammation and maintain tissue homeostasis. Therefore impairment of one or more of these essential components of barrier function may increase susceptibility to infection and promote exaggerated and prolonged innate immune responses to environmental factors including allergens and pathogens resulting in chronic inflammation. Here we review the regulation of components of barrier function with respect to chronic airways diseases.
Collapse
Affiliation(s)
- Shyamala Ganesan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Adam T Comstock
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| | - Uma S Sajjan
- Department of Pediatrics and Communicable Diseases; University of Michigan; Ann Arbor, MI USA
| |
Collapse
|
34
|
Kim DH, Wirtz D. Predicting how cells spread and migrate: focal adhesion size does matter. Cell Adh Migr 2013; 7:293-6. [PMID: 23628962 DOI: 10.4161/cam.24804] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Efficient cell migration is central to the normal development of tissues and organs and is involved in a wide range of human diseases, including cancer metastasis, immune responses, and cardiovascular disorders. Mesenchymal migration is modulated by focal-adhesion proteins, which organize into large integrin-rich protein complexes at the basal surface of adherent cells. Whether the extent of clustering of focal-adhesion proteins is actually required for effective migration is unclear. We recently demonstrated that the depletion of major focal-adhesion proteins, as well as modulation of matrix compliance, actin assembly, mitochondrial activity, and DNA recombination, all converged into highly predictable, inter-related, biphasic changes in focal adhesion size and cell migration. Herein, we further discuss the role of focal adhesions in controlling cell spreading and test their potential role in cell migration.
Collapse
Affiliation(s)
- Dong-Hwee Kim
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
35
|
Abstract
Specimens of the anterior lens capsule with an attached monolayer of lens epithelial cells (LECs) were obtained from patients (n=52) undergoing cataract surgery. Specimens were divided into three groups based on the type of cataract: nuclear cataract, cortical cataract and posterior subcapsular cataract (PSC). Clear lenses (n=11) obtained from donor eyes were used as controls. Expression was studied by immunofluorescence, real-time PCR and Western blot. Statistical analysis was done using the student's t-test. Immunofluorescence results showed punctate localization of Cx43 at the cell boundaries in controls, nuclear cataract and PSC groups. In the cortical cataract group, cytoplasmic pools of Cx43 without any localization at the cell boundaries were observed. Real-time PCR results showed significant up-regulation of Cx43 in nuclear and cortical cataract groups. Western blot results revealed significant increase in protein levels of Cx43 and significant decrease of ZO-1 in all three cataract groups. Protein levels of alpha-catenin were decreased significantly in nuclear and cortical cataract group. There was no significant change in expression of beta-catenin in the cataractous groups. Our findings suggest that ZO-1 and alpha-catenin are important for gap junctions containing Cx43 in the LECs. Alterations in cell junction proteins may play a role during formation of different types of cataract.
Collapse
|
36
|
Mazahery AR, Suzuki K, Nagafuchi A, Miyajima M, Nakagata N, Orvis GD, Behringer RR, Yamada G. Functional analysis of ectodermal β-catenin during external genitalia formation. Congenit Anom (Kyoto) 2013; 53:34-41. [PMID: 23480356 DOI: 10.1111/cga.12001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/10/2012] [Indexed: 02/03/2023]
Abstract
β-catenin is a molecule belonging to the armadillo family of proteins that is a crucial core-component of cellular adherens junctions, and a component of the canonical Wnt-signaling pathway. We attempted to analyze the functional significance of ectodermal-derived β-catenin during the development of the mouse genital tubercle, a mammalian anlage of the external genitalia. For this purpose, the conditional loss of function mouse mutant Wnt7a-Cre;β-cat(f/f) was utilized. Loss of ectodermal β-catenin leads to the formation of urethral cleft during preputial uprising. Although expression of E-cadherin was retained in the genital tubercle ectoderm of mutants, probably through plakoglobin compensatory expression, expression of other crucial adherens junction components such as α-catenin and F-actin in the cell-cell border were distinctly reduced. We also showed that β-catenin is necessary for the expression of its transcriptional downstream target Lef-1 which was localized in the basal layer of the preputial ectoderm, excluding the midventral region at E15.5. Such specialized region was observed to possess cytoplasmic β-catenin expression at this stage. Coincidentally, mitotically active cells were also found in the basal layer of the preputial ectoderm excluding the midventral region. In mutant genital tubercle, cell proliferation in the preputial ectoderm was decreased. Taken together, we suggest that ectodermal β-catenin is necessary not only to maintain adherens junction integrity, but also to regulate cell proliferation possibly through Lef-1 functions. Thus, β-catenin is shown to perform dual functions, initially as an adhesion molecule and later on as a possible transcription factor.
Collapse
Affiliation(s)
- Ahmad Reza Mazahery
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Distinct kinetic and molecular requirements govern CD44 binding to hyaluronan versus fibrin(ogen). Biophys J 2013; 103:415-423. [PMID: 22947857 DOI: 10.1016/j.bpj.2012.06.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 12/28/2022] Open
Abstract
CD44 is a multifunctional glycoprotein that binds to hyaluronan and fibrin(ogen). Alternative splicing is responsible for the generation of numerous different isoforms, the smallest of which is CD44s. Insertion of variant exons into the extracellular membrane proximal region generates the variant isoforms (CD44v). Here, we used force spectroscopy to delineate the biophysical and molecular requirements of CD44-HA and CD44-fibrin(ogen) interactions at the single-molecule level. CD44v-HA and CD44s-HA single bonds exhibit similar kinetic and micromechanical properties because the HA-binding motif on CD44 is common to all of the isoforms. Although this is the primary binding site, O- and N-linked glycans and sulfation also contribute to the tensile strength of the CD44-HA bond. The CD44s-fibrin pair has a lower unstressed dissociation rate and a higher tensile strength than CD44s-fibrinogen but is weaker than the CD44-HA bond. In contrast to CD44-HA binding, the molecular interaction between CD44 and fibrin(ogen) is predominantly mediated by the chondroitin sulfate and dermatan sulfate on CD44. Blocking sulfation on CD44s modestly decreases the tensile strength of CD44s-fibrin(ogen) binding, which is in stark contrast to CD44v-fibrin interaction. Collectively, the results obtained by force spectroscopy in conjunction with biochemical interventions enable us to delineate the biophysical parameters and molecular constituents of CD44 binding to hyaluronan and fibrin(ogen).
Collapse
|
38
|
Vogelaar IP, Figueiredo J, van Rooij IALM, Simões-Correia J, van der Post RS, Melo S, Seruca R, Carels CEL, Ligtenberg MJL, Hoogerbrugge N. Identification of germline mutations in the cancer predisposing gene CDH1 in patients with orofacial clefts. Hum Mol Genet 2012. [PMID: 23197654 DOI: 10.1093/hmg/dds497] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Orofacial clefts (OFC) are among the most common birth defects worldwide. The etiology of non-syndromic OFC is still largely unknown. During embryonic development, the cell adhesion molecule E-cadherin, encoded by CDH1, is highly expressed in the median edge epithelium of the palate. Furthermore, in multiple families with CDH1 mutations, OFC cases are observed. To determine whether CDH1 is a causative gene for non-syndromic OFC and to assess whether CDH1 mutation screening in non-syndromic OFC patients enables identification of families at risk of cancer, direct sequencing of the full coding sequence of CDH1 was performed in a cohort of 81 children with non-syndromic OFC. Eleven children had heterozygous CDH1 sequence variants, 5 cases with 4 distinct missense mutations and 8 cases with 4 intronic variants. Using a combination of in silico predictions and in vitro functional assays, three missense mutations in four non-syndromic OFC patients were predicted to be damaging to E-cadherin protein function. The intronic variants including one tested in an in vitro assay appeared to be benign, showing no influence on splicing. Functionally relevant heterozygous CDH1 missense mutations were found in 4 out of 81 (5%) patients with non-syndromic OFC. This finding opens a new pathway to reveal the molecular basis of non-syndromic OFC. Cancer risk among carriers of these mutations needs to be defined.
Collapse
Affiliation(s)
- Ingrid P Vogelaar
- Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
The importance of E-cadherin binding partners to evaluate the pathogenicity of E-cadherin missense mutations associated to HDGC. Eur J Hum Genet 2012; 21:301-9. [PMID: 22850631 DOI: 10.1038/ejhg.2012.159] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In hereditary diffuse gastric cancer (HDGC), CDH1 germline gene alterations are causative events in 30% of the cases. In 20% of HDGC families, CDH1 germline mutations are of the missense type and the mutation carriers constitute a problem in terms of genetic counseling and surveillance. To access the pathogenic relevance of missense mutations, we have previously developed an in vitro method to functionally characterize them. Pathogenic E-cadherin missense mutants fail to aggregate and become more invasive, in comparison with cells expressing the wild-type (WT) protein. Herein, our aim was to develop a complementary method to unravel the pathogenic significance of E-cadherin missense mutations. We used cells stably expressing WT E-cadherin and seven HDGC-associated mutations (five intracellular and two extracellular) and studied by proximity ligation assays (PLA) how these mutants bind to fundamental regulators of E-cadherin function and trafficking. We focused our attention on the interaction with: p120, β-catenin, PIPKIγ and Hakai. We showed that cytoplasmic E-cadherin mutations affect the interaction of one or more binding partners, compromising the E-cadherin stability at the plasma membrane and likely affecting the adhesion complex competence. In the present work, we demonstrated that the study of the interplay between E-cadherin and its binding partners, using PLA, is an easy, rapid, quantitative and highly reproducible technique that can be applied in routine labs to verify the pathogenicity of E-cadherin missense mutants for HDGC diagnosis, especially those located in the intracellular domain of the protein.
Collapse
|
40
|
Lee MH, Wu PH, Staunton JR, Ros R, Longmore GD, Wirtz D. Mismatch in mechanical and adhesive properties induces pulsating cancer cell migration in epithelial monolayer. Biophys J 2012; 102:2731-41. [PMID: 22735523 DOI: 10.1016/j.bpj.2012.05.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 05/01/2012] [Accepted: 05/07/2012] [Indexed: 01/13/2023] Open
Abstract
The mechanical and adhesive properties of cancer cells significantly change during tumor progression. Here we assess the functional consequences of mismatched stiffness and adhesive properties between neighboring normal cells on cancer cell migration in an epithelial-like cell monolayer. Using an in vitro coculture system and live-cell imaging, we find that the speed of single, mechanically soft breast carcinoma cells is dramatically enhanced by surrounding stiff nontransformed cells compared with single cells or a monolayer of carcinoma cells. Soft tumor cells undergo a mode of pulsating migration that is distinct from conventional mesenchymal and amoeboid migration, whereby long-lived episodes of slow, random migration are interlaced with short-lived episodes of extremely fast, directed migration, whereas the surrounding stiff cells show little net migration. This bursty migration is induced by the intermittent, myosin II-mediated deformation of the soft nucleus of the cancer cell, which is induced by the transient crowding of the stiff nuclei of the surrounding nontransformed cells, whose movements depend directly on the cadherin-mediated mismatched adhesion between normal and cancer cells as well as α-catenin-based intercellular adhesion of the normal cells. These results suggest that a mechanical and adhesive mismatch between transformed and nontransformed cells in a cell monolayer can trigger enhanced pulsating migration. These results shed light on the role of stiff epithelial cells that neighbor individual cancer cells in early steps of cancer dissemination.
Collapse
Affiliation(s)
- Meng-Horng Lee
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
41
|
Simões-Correia J, Figueiredo J, Lopes R, Stricher F, Oliveira C, Serrano L, Seruca R. E-cadherin destabilization accounts for the pathogenicity of missense mutations in hereditary diffuse gastric cancer. PLoS One 2012; 7:e33783. [PMID: 22470475 PMCID: PMC3309996 DOI: 10.1371/journal.pone.0033783] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/17/2012] [Indexed: 12/18/2022] Open
Abstract
E-cadherin is critical for the maintenance of tissue architecture due to its role in cell-cell adhesion. E-cadherin mutations are the genetic cause of Hereditary Diffuse Gastric Cancer (HDGC) and missense mutations represent a clinical burden, due to the uncertainty of their pathogenic role. In vitro and in vivo, most mutations lead to loss-of-function, although the causal factor is unknown for the majority. We hypothesized that destabilization could account for the pathogenicity of E-cadherin missense mutations in HDGC, and tested our hypothesis using in silico and in vitro tools. FoldX algorithm was used to calculate the impact of each mutation in E-cadherin native-state stability, and the analysis was complemented with evolutionary conservation, by SIFT. Interestingly, HDGC patients harbouring germline E-cadherin destabilizing mutants present a younger age at diagnosis or death, suggesting that the loss of native-state stability of E-cadherin accounts for the disease phenotype. To elucidate the biological relevance of E-cadherin destabilization in HDGC, we investigated a group of newly identified HDGC-associated mutations (E185V, S232C and L583R), of which L583R is predicted to be destabilizing. We show that this mutation is not functional in vitro, exhibits shorter half-life and is unable to mature, due to premature proteasome-dependent degradation, a phenotype reverted by stabilization with the artificial mutation L583I (structurally tolerated). Herein we report E-cadherin structural models suitable to predict the impact of the majority of cancer-associated missense mutations and we show that E-cadherin destabilization leads to loss-of-function in vitro and increased pathogenicity in vivo.
Collapse
Affiliation(s)
- Joana Simões-Correia
- IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
42
|
Barone V, Heisenberg CP. Cell adhesion in embryo morphogenesis. Curr Opin Cell Biol 2012; 24:148-53. [DOI: 10.1016/j.ceb.2011.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/08/2011] [Accepted: 11/16/2011] [Indexed: 01/11/2023]
|
43
|
Langer MD, Guo H, Shashikanth N, Pierce JM, Leckband DE. N-Glycosylation Alters Cadherin-Mediated Intercellular Binding Kinetics. J Cell Sci 2012; 125:2478-85. [DOI: 10.1242/jcs.101147] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
These results present direct evidence that the N-glycosylation state of neural cadherin impacts the intrinsic kinetics of cadherin-mediated intercellular binding. Micropipette manipulation measurements quantified the effect of N-glycosylation mutations intercellular binding dynamics. The wild type protein exhibits a two-stage binding process in which a fast, initial binding step is followed by a short lag and second, slower transition to the final binding stage. Mutations that ablate N-glycosylation at three sites on the extracellular domains 2 and 3 (EC2-3) of neural cadherin alter this kinetic fingerprint. Glycosylation does not affect the affinities between the adhesive N-terminal domains, but instead modulates additional cadherin interactions, which govern the dynamics of intercellular binding. These results, together with prior findings that these hypo-glycosylation mutations increase the prevalence of cis dimers on cell membranes, suggest a binding mechanism in which initial adhesion is followed by additional cadherin interactions, which enhance binding but are modulated by N-glycosylation. Given that oncogene expression drives specific changes in N-glycosylation, these results provide insight into possible mechanisms altering cadherin function during tumor progression.
Collapse
|
44
|
Hale CM, Chen WC, Khatau SB, Daniels BR, Lee JSH, Wirtz D. SMRT analysis of MTOC and nuclear positioning reveals the role of EB1 and LIC1 in single-cell polarization. J Cell Sci 2011; 124:4267-85. [PMID: 22193958 DOI: 10.1242/jcs.091231] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In several migratory cells, the microtubule-organizing center (MTOC) is repositioned between the leading edge and nucleus, creating a polarized morphology. Although our understanding of polarization has progressed as a result of various scratch-wound and cell migration studies, variations in culture conditions required for such assays have prevented a unified understanding of the intricacies of MTOC and nucleus positioning that result in cell polarization. Here, we employ a new SMRT (for sparse, monolayer, round, triangular) analysis that uses a universal coordinate system based on cell centroid to examine the pathways regulating MTOC and nuclear positions in cells plated in a variety of conditions. We find that MTOC and nucleus positioning are crucially and independently affected by cell shape and confluence; MTOC off-centering correlates with the polarization of single cells; acto-myosin contractility and microtubule dynamics are required for single-cell polarization; and end binding protein 1 and light intermediate chain 1, but not Par3 and light intermediate chain 2, are required for single-cell polarization and directional cell motility. Using various cellular geometries and conditions, we implement a systematic and reproducible approach to identify regulators of MTOC and nucleus positioning that depend on extracellular guidance cues.
Collapse
Affiliation(s)
- Christopher M Hale
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | | | |
Collapse
|
45
|
Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011; 11:512-22. [PMID: 21701513 PMCID: PMC3262453 DOI: 10.1038/nrc3080] [Citation(s) in RCA: 872] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis is a complex, multistep process responsible for >90% of cancer-related deaths. In addition to genetic and external environmental factors, the physical interactions of cancer cells with their microenvironment, as well as their modulation by mechanical forces, are key determinants of the metastatic process. We reconstruct the metastatic process and describe the importance of key physical and mechanical processes at each step of the cascade. The emerging insight into these physical interactions may help to solve some long-standing questions in disease progression and may lead to new approaches to developing cancer diagnostics and therapies.
Collapse
Affiliation(s)
- Denis Wirtz
- The authors are at the Departments of Materials Science and Engineering, Chemical and Biomolecular Engineering and Oncology, the Institute for Nanobiotechnology, Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA. ; ;
| | - Konstantinos Konstantopoulos
- The authors are at the Departments of Materials Science and Engineering, Chemical and Biomolecular Engineering and Oncology, the Institute for Nanobiotechnology, Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA. ; ;
| | - Peter C. Searson
- The authors are at the Departments of Materials Science and Engineering, Chemical and Biomolecular Engineering and Oncology, the Institute for Nanobiotechnology, Johns Hopkins Center of Cancer Nanotechnology Excellence, Johns Hopkins Physical Sciences in Oncology Center, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, USA. ; ;
| |
Collapse
|
46
|
Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 2011; 13:753-61. [PMID: 21685890 PMCID: PMC3130149 DOI: 10.1038/ncb2260] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 04/13/2011] [Indexed: 02/08/2023]
Abstract
Canonical Wnt-signalling has been implicated in mouse and human embryonic stem cell (ESC) maintenance, however its requirement is controversial. β-catenin is the key component in this highly conserved Wnt pathway, acting as a transcriptional transactivator. Yet, β-catenin has additional roles at the plasma membrane regulating cell-cell adhesion, complicating the analyses of cells/tissues lacking β-catenin. We report here the generation of a β-catenin deficient mouse ESC (mESC) line and show that self-renewal is maintained in absence of β-catenin. Cell-adhesion is partially rescued by plakoglobin up-regulation, but fails to be maintained during differentiation. When differentiated as aggregates, wild-type mESCs form descendents of all three germ layers, while mesendodermal germ layer formation and neuronal differentiation are defective in β-catenin deficient mESCs. A Tcf/Lef-signalling defective β-catenin variant, which re-establishes cadherin-mediated cell-adhesion, rescues definitive endoderm and neuroepithelial formation, suggesting that β-catenin cell-adhesion function is more important than its signalling function for these processes.
Collapse
Affiliation(s)
- Natalia Lyashenko
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
47
|
Raman PS, Alves CS, Wirtz D, Konstantopoulos K. Single-molecule binding of CD44 to fibrin versus P-selectin predicts their distinct shear-dependent interactions in cancer. J Cell Sci 2011; 124:1903-10. [PMID: 21558419 DOI: 10.1242/jcs.079814] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
P-selectin and fibrin(ogen) have pivotal roles in the hematogenous dissemination of tumor cells. CD44 variant isoforms, CD44v, have been identified as the major functional P-selectin ligands and fibrin receptors on metastatic colon carcinoma cells. The molecular recognition of CD44v by fibrin mediates firm adhesion at low shear, whereas CD44v-P-selectin binding supports transient rolling interactions at elevated shear stresses and low site densities of P-selectin. We used single-molecule force spectroscopy to provide a molecular interpretation for these two distinct adhesion events. The CD44v-P-selectin bond has a longer unstressed equilibrium lifetime, a lower reactive compliance and a higher tensile strength relative to the CD44v-fibrin bond. These intrinsic differences confer the ability to the CD44v-P-selectin pair to mediate binding at higher shear stresses. Increasing the duration of receptor-ligand contact (2-200 milliseconds) did not affect the micromechanical properties of the CD44v-P-selectin bond, but it increased the tensile strength and the depth of the free energy barrier of the CD44v-fibrin bond and decreased its reactive compliance. This bond strengthening at longer interaction times might explain why CD44v binding to immobilized fibrin occurs at low shear. Single-molecule characterization of receptor-ligand binding can predict the shear-dependent adhesive interactions between cells and substrates observed both in vitro and in vivo.
Collapse
Affiliation(s)
- Phrabha S Raman
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | |
Collapse
|
48
|
Epithelial cell polarity and tumorigenesis: new perspectives for cancer detection and treatment. Acta Pharmacol Sin 2011; 32:552-64. [PMID: 21499288 DOI: 10.1038/aps.2011.20] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Loss of cell-cell adhesion and cell polarity is commonly observed in tumors of epithelial origin and correlates with their invasion into adjacent tissues and formation of metastases. Growing evidence indicates that loss of cell polarity and cell-cell adhesion may also be important in early stage of cancer. In first part of this review, we delineate the current understanding of the mechanisms that establish and maintain the polarity of epithelial tissues and discuss the involvement of cell polarity and apical junctional complex components in tumor pathogenesis. In the second part we address the clinical significance of cell polarity and junctional complex components in cancer diagnosis and prognosis. Finally, we explore their potential use as therapeutic targets in the treatment of cancer.
Collapse
|
49
|
|
50
|
E-cadherin: gatekeeper of airway mucosa and allergic sensitization. Trends Immunol 2011; 32:248-55. [PMID: 21493142 DOI: 10.1016/j.it.2011.03.004] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/04/2011] [Accepted: 03/08/2011] [Indexed: 12/25/2022]
Abstract
The airway epithelium plays a role in immune regulation during environmental challenge, which is intertwined with its barrier function and capacity to limit submucosal access of environmental factors. In asthma, mucosal barrier function is often compromised, with disrupted expression of the adhesion molecule E-cadherin. Recent progress suggests that E-cadherin contributes to the structural and immunological function of airway epithelium, through the regulation of epithelial junctions, proliferation, differentiation, and production of growth factors and proinflammatory mediators that can modulate the immune response. Here, we discuss this novel role for E-cadherin in mediating the crucial immunological decision between maintenance of tolerance versus induction of innate and adaptive immunity.
Collapse
|