1
|
Zhao Q, Zhang R, Qiao C, Miao Y, Yuan Y, Zheng H. Ubiquitination network in the type I IFN-induced antiviral signaling pathway. Eur J Immunol 2023; 53:e2350384. [PMID: 37194705 DOI: 10.1002/eji.202350384] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/22/2023] [Revised: 04/14/2023] [Accepted: 05/16/2023] [Indexed: 05/18/2023]
Abstract
Type I IFN (IFN-I) is the body's first line of defense against pathogen infection. IFN-I can induce cellular antiviral responses and therefore plays a key role in driving antiviral innate and adaptive immunity. Canonical IFN-I signaling activates the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway, which induces the expression of IFN-stimulated genes and eventually establishes a complex antiviral state in the cells. Ubiquitin is a ubiquitous cellular molecule for protein modifications, and the ubiquitination modifications of protein have been recognized as one of the key modifications that regulate protein levels and/or signaling activation. Despite great advances in understanding the ubiquitination regulation of many signaling pathways, the mechanisms by which protein ubiquitination regulates IFN-I-induced antiviral signaling have not been explored until very recently. This review details the current understanding of the regulatory network of ubiquitination that critically controls the IFN-I-induced antiviral signaling pathway from three main levels, including IFN-I receptors, IFN-I-induced cascade signals, and effector IFN-stimulated genes.
Collapse
Affiliation(s)
- Qian Zhao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Renxia Zhang
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Caixia Qiao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Ying Miao
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Yukang Yuan
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Hui Zheng
- International Institute of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
2
|
Michki NS, Ndeh R, Helmin KA, Singer BD, McGrath-Morrow SA. DNA methyltransferase inhibition induces dynamic gene expression changes in lung CD4 + T cells of neonatal mice with E. coli pneumonia. Sci Rep 2023; 13:4283. [PMID: 36922640 PMCID: PMC10017701 DOI: 10.1038/s41598-023-31285-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/20/2022] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial pulmonary infections are a major cause of morbidity and mortality in neonates, with less severity in older children. Previous studies demonstrated that the DNA of CD4+ T cells in the mouse lung, whose primary responsibility is to coordinate the immune response to foreign pathogens, is differentially methylated in neonates compared with juveniles. Nevertheless, the effect of this differential DNA methylation on CD4+ T cell gene expression and response to infection remains unclear. Here we treated E. coli-infected neonatal (4-day-old) and juvenile (13-day-old) mice with decitabine (DAC), a DNA methyltransferase inhibitor with broad-spectrum DNA demethylating activity, and performed simultaneous genome-wide DNA methylation and transcriptional profiling on lung CD4+ T cells. We show that juvenile and neonatal mice experienced differential demethylation in response to DAC treatment, with larger methylation differences observed in neonates. By cross-filtering differentially expressed genes between juveniles and neonates with those sites that were demethylated in neonates, we find that interferon-responsive genes such as Ifit1 are the most down-regulated methylation-sensitive genes in neonatal mice. DAC treatment shifted neonatal lung CD4+ T cells toward a gene expression program similar to that of juveniles. Following lung infection with E. coli, lung CD4+ T cells in neonatal mice exhibit epigenetic repression of important host defense pathways, which are activated by inhibition of DNA methyltransferase activity to resemble a more mature profile.
Collapse
Affiliation(s)
- Nigel S Michki
- Children's Hospital of Philadelphia Division of Pulmonary and Sleep Medicine, Philadelphia, PA, 19104, USA.
- Children's Hospital of Philadelphia Division of Cardiology, Philadelphia, PA, 19104, USA.
| | - Roland Ndeh
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, 60611, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine Chicago, Chicago, IL, 60611, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sharon A McGrath-Morrow
- Children's Hospital of Philadelphia Division of Pulmonary and Sleep Medicine, Philadelphia, PA, 19104, USA
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins University, Baltimore, MD, 21287, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
3
|
Prangley E, Korennykh A. 2-5A-Mediated decay (2-5AMD): from antiviral defense to control of host RNA. Crit Rev Biochem Mol Biol 2022; 57:477-491. [PMID: 36939319 PMCID: PMC10576847 DOI: 10.1080/10409238.2023.2181308] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2022] [Revised: 10/18/2022] [Accepted: 02/13/2023] [Indexed: 03/21/2023]
Abstract
Mammalian cells are exquisitely sensitive to the presence of double-stranded RNA (dsRNA), a molecule that they interpret as a signal of viral presence requiring immediate attention. Upon sensing dsRNA cells activate the innate immune response, which involves transcriptional mechanisms driving inflammation and secretion of interferons (IFNs) and interferon-stimulated genes (ISGs), as well as synthesis of RNA-like signaling molecules comprised of three or more 2'-5'-linked adenylates (2-5As). 2-5As were discovered some forty years ago and described as IFN-induced inhibitors of protein synthesis. The efforts of many laboratories, aimed at elucidating the molecular mechanism and function of these mysterious RNA-like signaling oligonucleotides, revealed that 2-5A is a specific ligand for the kinase-family endonuclease RNase L. RNase L decays single-stranded RNA (ssRNA) from viruses and mRNAs (as well as other RNAs) from hosts in a process we proposed to call 2-5A-mediated decay (2-5AMD). During recent years it has become increasingly recognized that 2-5AMD is more than a blunt tool of viral RNA destruction, but a pathway deeply integrated into sensing and regulation of endogenous RNAs. Here we present an overview of recently emerged roles of 2-5AMD in host RNA regulation.
Collapse
Affiliation(s)
- Eliza Prangley
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Laghouaouta H, Fraile L, Suárez-Mesa R, Ros-Freixedes R, Estany J, Pena RN. A genome-wide screen for resilient responses in growing pigs. Genet Sel Evol 2022; 54:50. [PMID: 35787790 PMCID: PMC9251948 DOI: 10.1186/s12711-022-00739-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022] Open
Abstract
Background There is a growing interest to decipher the genetic background of resilience and its possible improvement through selective breeding. The objective of the present study was to provide new insights into the genetic make-up of resilience in growing pigs by identifying genomic regions and candidate genes associated with resilience indicators. Commercial Duroc pigs were challenged with an attenuated Aujeszky vaccine at 12 weeks of age. Two resilience indicators were used: deviation from the expected body weight at 16 weeks of age given the growth curve of non-vaccinated pigs (∆BW) and the increase in acute-phase protein haptoglobin at four days post-vaccination (∆HP). Genome-wide association analyses were carried out on 445 pigs, using genotypes at 41,165 single nucleotide polymorphisms (SNPs) and single-marker and Bayesian multiple-marker regression approaches. Results Genomic regions on pig chromosomes 2, 8, 9, 11 (∆BW) and 8, 9, 13 (∆HP) were found to be associated with the resilience indicators and explained high proportions of their genetic variance. The genomic regions that were associated explained 27 and 5% of the genetic variance of ∆BW and ∆HP, respectively. These genomic regions harbour promising candidate genes that are involved in pathways related to immune response, response to stress, or signal transduction (CD6, PTGDR2, IKZF1, RNASEL and MYD88), and growth (GRB10 and LCORL). Conclusions Our study identified novel genomic regions that are associated with two resilience indicators (∆BW and ∆HP) in pigs. These associated genomic regions harbour potential candidate genes involved in immune response and growth pathways, which emphasise the strong relationship between resilience and immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00739-1.
Collapse
Affiliation(s)
- Houda Laghouaouta
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Lorenzo Fraile
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Rafael Suárez-Mesa
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Roger Ros-Freixedes
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Joan Estany
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain
| | - Ramona Natacha Pena
- Department of Animal Science, University of Lleida-Agrotecnio-CERCA Center, 25198, Lleida, Catalonia, Spain.
| |
Collapse
|
5
|
Tang J, Dong B, Liu M, Liu S, Niu X, Gaughan C, Asthana A, Zhou H, Xu Z, Zhang G, Silverman RH, Huang H. Identification of Small Molecule Inhibitors of RNase L by Fragment-Based Drug Discovery. J Med Chem 2022; 65:1445-1457. [PMID: 34841869 PMCID: PMC10620946 DOI: 10.1021/acs.jmedchem.1c01156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022]
Abstract
The pseudokinase-endoribonuclease RNase L plays important roles in antiviral innate immunity and is also implicated in many other cellular activities. The inhibition of RNase L showed therapeutic potential for Aicardi-Goutières syndrome (AGS). Thus, RNase L is a promising drug target. In this study, using an enzyme assay and NMR screening, we discovered 13 inhibitory fragments against RNase L. Cocrystal structures of RNase L separately complexed with two different fragments were determined in which both fragments bound to the ATP-binding pocket of the pseudokinase domain. Myricetin, vitexin, and hyperoside, three natural products sharing similar scaffolds with the fragment AC40357, demonstrated a potent inhibitory activity in vitro. In addition, myricetin has a promising cellular inhibitory activity. A cocrystal structure of RNase L with myricetin provided a structural basis for inhibitor design by allosterically modulating the ribonuclease activity. Our findings demonstrate that fragment screening can lead to the discovery of natural product inhibitors of RNase L.
Collapse
Affiliation(s)
- Jinle Tang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Beihua Dong
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ming Liu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Shuyan Liu
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Christina Gaughan
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Abhishek Asthana
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Zhengshuang Xu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Southern University of Science and Technology, Shenzhen 518112, China
| | - Robert H. Silverman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| |
Collapse
|
6
|
Abstract
Early cancer diagnosis is a crucial element to improved treatment options and survival. Great research efforts have been made in the search for better performing cancer diagnostic biomarkers. However, the quest continues as novel biomarkers with high accuracy for an early diagnosis remain an unmet clinical need. Nucleases, which are enzymes capable of cleaving nucleic acids, have been long considered as potential cancer biomarkers. The implications of nucleases are key for biological functions, their presence in different cellular counterparts and catalytic activity led the enthusiasm towards investigating the role of nucleases as promising cancer biomarkers. However, the most essential feature of these proteins, which is their enzymatic activity, has not been fully exploited. This review discusses nucleases interrogated as cancer biomarkers, providing a glimpse of their physiological roles. Moreover, it highlights the potential of harnessing the enzymatic activity of cancer-associated nucleases as a novel diagnostic biomarker using nucleic acid probes as substrates.
Collapse
Affiliation(s)
- Alien Balian
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Frank J Hernandez
- Department of Physics, Chemistry and Biology, Linköping University, 58185, Linköping, Sweden.
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.
| |
Collapse
|
7
|
Shinkai H, Takahagi Y, Matsumoto T, Toki D, Takenouchi T, Kitani H, Sukegawa S, Suzuki K, Uenishi H. A specific promoter-type in ribonuclease L gene is associated with phagocytic activity in pigs. J Vet Med Sci 2021; 83:1407-1415. [PMID: 34321379 PMCID: PMC8498842 DOI: 10.1292/jvms.21-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022] Open
Abstract
We have previously generated Large White pigs with high immune competence using a selection strategy based on phagocytic activity (PA), capacity of alternative complement pathway, and
antibody response after vaccination against swine erysipelas. In this study, to identify the genetic changes caused by the immune selection pressure, we compared gene expression and
polymorphisms in the promoter region between pigs subjected to the immune selection (immune-selected pigs) and those that were not (non-selected pigs). After lipid A stimulation, using a
microarray analysis, 37 genes related to immune function and transcription factor activity showed a greater than three-fold difference in expression between macrophages derived from
immune-selected and non-selected pigs. We further performed a polymorphic analysis of the promoter region of the differentially expressed genes, and elucidated the predominant promoter-types
in the immune-selected and non-selected pigs, respectively, in the genes encoding ribonuclease L (RNASEL), sterile α motif and histidine-aspartate domain containing
deoxynucleoside triphosphate triphosphohydrolase 1, signal transducer and activator of transcription 3, and tripartite motif containing 21. Analysis of the association between these promoter
genotypes and the immune phenotypes revealed that the immune-selected promoter-type in RNASEL was associated with increased PA and was inherited recessively. Considering
that RNASEL has been reported to be involved in antimicrobial immune response of mice, it may be possible to enhance the PA of macrophages and improve disease resistance in
pig populations using RNASEL promoter-type as a DNA marker for selection.
Collapse
Affiliation(s)
- Hiroki Shinkai
- Clinical Biochemistry Unit, Division of Pathology and Pathophysiology, National Institute of Animal Health, National Agriculture and Food Research Organization (NARO).,Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | | | - Toshimi Matsumoto
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | - Daisuke Toki
- Japan Association for Techno-innovation in Agriculture, Forestry and Fisheries (JATAFF)
| | - Takato Takenouchi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | - Hiroshi Kitani
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| | | | - Keiichi Suzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Agricultural Science, Tohoku University
| | - Hirohide Uenishi
- Animal Bioregulation Unit, Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO)
| |
Collapse
|
8
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Sunitinib inhibits RNase L by destabilizing its active dimer conformation. Biochem J 2021; 477:3387-3399. [PMID: 32830849 DOI: 10.1042/bcj20200260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023]
Abstract
The pseudokinase (PK) RNase L is a functional ribonuclease and plays important roles in human innate immunity. The ribonuclease activity of RNase L can be regulated by the kinase inhibitor sunitinib. The combined use of oncolytic virus and sunitinib has been shown to exert synergistic effects in anticancer therapy. In this study, we aimed to uncover the mechanism of action through which sunitinib inhibits RNase L. We solved the crystal structures of RNase L in complex with sunitinib and its analogs toceranib and SU11652. Our results showed that sunitinib bound to the ATP-binding pocket of RNase L. Unexpectedly, the αA helix linking the ankyrin repeat-domain and the PK domain affected the binding mode of sunitinib and resulted in an unusual flipped orientation relative to other structures in PDB. Molecular dynamics simulations and dynamic light scattering results support that the binding of sunitinib in the PK domain destabilized the dimer conformation of RNase L and allosterically inhibited its ribonuclease activity. Our study suggested that dimer destabilization could be an effective strategy for the discovery of RNase L inhibitors and that targeting the ATP-binding pocket in the PK domain of RNase L was an efficient approach for modulating its ribonuclease activity.
Collapse
|
10
|
Su Z, Frost EL, Lammert CR, Przanowska RK, Lukens JR, Dutta A. tRNA-derived fragments and microRNAs in the maternal-fetal interface of a mouse maternal-immune-activation autism model. RNA Biol 2020; 17:1183-1195. [PMID: 31983265 DOI: 10.1080/15476286.2020.1721047] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
tRNA-derived small fragments (tRFs) and tRNA halves have emerging functions in different biological pathways, such as regulating gene expression, protein translation, retrotransposon activity, transgenerational epigenetic changes and response to environmental stress. However, small RNAs like tRFs and microRNAs in the maternal-fetal interface during gestation have not been studied extensively. Here we investigated the small RNA composition of mouse placenta/decidua, which represents the interface where the mother communicates with the foetus, to determine whether there are specific differences in tRFs and microRNAs during fetal development and in response to maternal immune activation (MIA). Global tRF expression pattern, just like microRNAs, can distinguish tissue types among placenta/decidua, fetal brain and fetal liver. In particular, 5' tRNA halves from tRNAGly, tRNAGlu, tRNAVal and tRNALys are abundantly expressed in the normal mouse placenta/decidua. Moreover, tRF and microRNA levels in the maternal-fetal interface change dynamically over the course of embryonic development. To see if stress alters non-coding RNA expression at the maternal-fetal interface, we treated pregnant mice with a viral infection mimetic, which has been shown to promote autism-related phenotypes in the offspring. Acute changes in the levels of specific tRFs and microRNAs were observed 3-6 h after MIA and are suppressed thereafter. A group of 5' tRNA halves is down-regulated by MIA, whereas a group of 18-nucleotide tRF-3a is up-regulated. In conclusion, tRFs show tissue-specificity, developmental changes and acute response to environmental stress, opening the possibility of them having a role in the fetal response to MIA.
Collapse
Affiliation(s)
- Zhangli Su
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Elizabeth L Frost
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Catherine R Lammert
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Roza K Przanowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - John R Lukens
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia , Charlottesville, VA, USA
| | - Anindya Dutta
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia , Charlottesville, VA, USA
| |
Collapse
|
11
|
Pu Q, Lin P, Wang Z, Gao P, Qin S, Cui L, Wu M. Interaction among inflammasome, autophagy and non-coding RNAs: new horizons for drug. PRECISION CLINICAL MEDICINE 2019; 2:166-182. [PMID: 31598387 PMCID: PMC6770284 DOI: 10.1093/pcmedi/pbz019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and inflammasomes are shown to interact in various situations including
infectious disease, cancer, diabetes and neurodegeneration. Since multiple layers of
molecular regulators contribute to the interplay between autophagy and inflammasome
activation, the detail of such interplay remains largely unknown. Non-coding RNAs
(ncRNAs), which have been implicated in regulating an expanding list of cellular processes
including immune defense against pathogens and inflammatory response in cancer and
metabolic diseases, may join in the crosstalk between inflammasomes and autophagy in
physiological or disease conditions. In this review, we summarize the latest research on
the interlink among ncRNAs, inflammasomes and autophagy and discuss the emerging role of
these three in multiple signaling transduction pathways involved in clinical conditions.
By analyzing these intriguing interconnections, we hope to unveil the mechanism
inter-regulating these multiple processes and ultimately discover potential drug targets
for some refractory diseases.
Collapse
Affiliation(s)
- Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Zhihan Wang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Pan Gao
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shugang Qin
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Luqing Cui
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58203, USA
| |
Collapse
|
12
|
Kim SC. RNase-L Deficiency-Associated Intractable Indeterminate Colitis in Children. Inflamm Bowel Dis 2019; 25:e106-e107. [PMID: 31077295 DOI: 10.1093/ibd/izz096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/09/2022]
Affiliation(s)
- Soon Chul Kim
- Department of Pediatrics, Chonbuk National University Medical School and Hospital, Research Institute of Clinical Medicine of Chonbuk National University - Biomedical research Institute of Chonbuk National University Hospital, Jeonju, South Korea
| |
Collapse
|
13
|
Gregory DJ, Kramnik I, Kobzik L. Protection of macrophages from intracellular pathogens by miR-182-5p mimic-a gene expression meta-analysis approach. FEBS J 2017; 285:244-260. [PMID: 29197182 DOI: 10.1111/febs.14348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/06/2017] [Revised: 09/29/2017] [Accepted: 11/28/2017] [Indexed: 12/25/2022]
Abstract
The goals of this study were to (a) define which host genes are of particular importance during the interactions between macrophages and intracellular pathogens, and (b) use this knowledge to gain fresh, experimental understanding of how macrophage activities may be manipulated during host defense. We designed an in silico method for meta-analysis of microarray gene expression data, and used this to combine data from 16 different studies of cells in the monocyte-macrophage lineage infected with seven different pathogens. Three thousand four hundred ninety-eight genes were identified, which we call the macrophage intracellular pathogen response (macIPR) gene set. As expected, the macIPR gene set showed a strong bias toward genes previously associated with the immune response. Predicted target sites for miR-182-5p (miR-182) were strongly over-represented among macIPR genes, indicating an unexpected role for miR-182-regulatable genes during intracellular pathogenesis. We therefore transfected primary human alveolar macrophage-like monocyte-derived macrophages from multiple different donors with synthetic miR-182, and found that miR-182 overexpression (a) increases proinflammatory gene induction during infection with Francisella tularensis live vaccine strain (LVS), (b) primes macrophages for increased autophagy, and (c) enhances macrophage control of both gram negative F. tularensisLVS and gram positive Bacillus anthracisANR-1 spores. These data therefore suggest a new application for miR-182 in promoting resistance to intracellular pathogens.
Collapse
Affiliation(s)
- David J Gregory
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, National Emerging Infectious Diseases Laboratories, Boston University School of Medicine, MA, USA
| | - Lester Kobzik
- Molecular and Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
14
|
Donovan J, Rath S, Kolet-Mandrikov D, Korennykh A. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery. RNA (NEW YORK, N.Y.) 2017; 23:1660-1671. [PMID: 28808124 PMCID: PMC5648034 DOI: 10.1261/rna.062000.117] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 05/07/2017] [Accepted: 08/06/2017] [Indexed: 05/20/2023]
Abstract
Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest.
Collapse
Affiliation(s)
- Jesse Donovan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Sneha Rath
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - David Kolet-Mandrikov
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexei Korennykh
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
15
|
Myllykoski M, Kursula P. Structural aspects of nucleotide ligand binding by a bacterial 2H phosphoesterase. PLoS One 2017; 12:e0170355. [PMID: 28141848 PMCID: PMC5283653 DOI: 10.1371/journal.pone.0170355] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2016] [Accepted: 01/03/2017] [Indexed: 01/19/2023] Open
Abstract
The 2H phosphoesterase family contains enzymes with two His-X-Ser/Thr motifs in the active site. 2H enzymes are found in all kingdoms of life, sharing little sequence identity despite the conserved overall fold and active site. For many 2H enzymes, the physiological function is unknown. Here, we studied the structure of the 2H family member LigT from Escherichia coli both in the apo form and complexed with different active-site ligands, including ATP, 2′-AMP, 3′-AMP, phosphate, and NADP+. Comparisons to the well-characterized vertebrate myelin enzyme 2′,3′-cyclic nucleotide 3′-phosphodiesterase (CNPase) highlight specific features of the catalytic cycle and substrate recognition in both enzymes. The role played by the helix α7, unique to CNPases within the 2H family, is apparently taken over by Arg130 in the bacterial enzyme. Other residues and loops lining the active site groove are likely to be important for RNA substrate binding. We visualized conformational changes related to ligand binding, as well as the position of the nucleophilic water molecule. We also present a low-resolution model of E. coli LigT bound to tRNA in solution, and provide a model for RNA binding by LigT, involving flexible loops lining the active site cavity. Taken together, our results both aid in understanding the common features of 2H family enzymes and help highlight the distinct features in the 2H family members, which must result in different reaction mechanisms. Unique aspects in different 2H family members can be observed in ligand recognition and binding, and in the coordination of the nucleophilic water molecule and the reactive phosphate moiety.
Collapse
Affiliation(s)
- Matti Myllykoski
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Petri Kursula
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
16
|
Gusho E, Baskar D, Banerjee S. New advances in our understanding of the "unique" RNase L in host pathogen interaction and immune signaling. Cytokine 2016; 133:153847. [PMID: 27595182 PMCID: PMC7128181 DOI: 10.1016/j.cyto.2016.08.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/05/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Ever since the discovery of the existence of an interferon (IFN)-regulated ribonuclease, significant advances have been made in understanding the mechanism and associated regulatory effects of its action. What had been studied initially as a "unique" endoribonuclease is currently known as ribonuclease L (RNase L where "L" stands for latent). Some of the key developments include discovery of the RNase L signaling pathway, its structural characterization, and its molecular cloning. RNase L has been implicated in antiviral and antibacterial defense, as well as in hereditary prostate cancer. RNase L is activated by 2'-5' linked oligoadenylates (2-5A), which are synthesized by the oligoadenylate synthetases (OASs), a family of IFN-regulated pathogen recognition receptors that sense double-stranded RNAs. Activated RNase L cleaves single stranded RNAs, including viral RNAs and cellular RNAs. The catalytic activity of RNase L has been found to lead into the activation of several cellular signaling pathways, including those involved in autophagy, apoptosis, IFN-β production, NLRP3 inflammasome activation leading to IL-1β secretion, inhibition of cell migration, and cell adhesion. In this review, we will highlight the newest advances in our understanding of the catalytic role of RNase L in the context of different cellular pathways and extend the scope of these findings to discussion of potential therapeutic targets for antimicrobial drug development.
Collapse
Affiliation(s)
- Elona Gusho
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA
| | - Danika Baskar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA; Pediatrics Division Office, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA(1)
| | - Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue Cleveland, OH 44195, USA.
| |
Collapse
|
17
|
Abstract
Type I interferons (IFNs) are pleiotropic cytokines well recognized for their role in the induction of a potent antiviral gene program essential for host defense against viruses. They also modulate innate and adaptive immune responses. However, the role of type I IFNs in host defense against bacterial infections is enigmatic. Depending on the bacterium, they exert seemingly opposite and capricious functions. In this review, we summarize the effect of type I IFNs on specific bacterial infections and highlight the effector mechanisms regulated by type I IFNs in an attempt to elucidate new avenues to understanding their role.
Collapse
Affiliation(s)
- Gayle M Boxx
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
18
|
Banerjee S. RNase L and the NLRP3-inflammasome: An old merchant in a new trade. Cytokine Growth Factor Rev 2016; 29:63-70. [PMID: 26987611 DOI: 10.1016/j.cytogfr.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/01/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The type I/III interferon (IFN)-inducible 2'-5'- oligoadenylate synthetase (OAS)/endoribonuclease L (RNase L) is a classical innate immune pathway that has been implicated in antiviral and antibacterial defense and also in hereditary prostate cancer. The OAS/RNase L pathway is activated when OAS senses double-stranded RNA and catalyzes the synthesis of 2'-5' linked oligodenylates (2-5A) from ATP. 2-5A then binds and activates RNase L, resulting cleavage of single-stranded RNAs. RNase L cleavage products are capable of activating RIG-like receptors such as RIG-I and MDA5 that leads to IFN-β expression during viral infection. Our recent findings suggest that beside the RLR pathway, RNase L cleavage products can also activate the NLRP3-inflammasome pathway, which requires DHX33 (DExD/H-box helicase) and the mitochondrial adaptor protein MAVS. Here we discuss this newly identified role of OAS-RNase L pathway in regulation of inflammasome signaling as an alternative antimicrobial mechanism that has potential as a target for development of new broad-spectrum antimicrobial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
The Roles of RNase-L in Antimicrobial Immunity and the Cytoskeleton-Associated Innate Response. Int J Mol Sci 2016; 17:ijms17010074. [PMID: 26760998 PMCID: PMC4730318 DOI: 10.3390/ijms17010074] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2′-5′-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNβ expression and IL-1β activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.
Collapse
|
20
|
Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome. Proc Natl Acad Sci U S A 2015; 112:15916-21. [PMID: 26668391 DOI: 10.1073/pnas.1513034112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
Double-stranded RNA (dsRNA) activates the innate immune system of mammalian cells and triggers intracellular RNA decay by the pseudokinase and endoribonuclease RNase L. RNase L protects from pathogens and regulates cell growth and differentiation by destabilizing largely unknown mammalian RNA targets. We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and nontargets. We show that this RNase L-dependent decay selectively affects transcripts regulated by microRNA (miR)-17/miR-29/miR-200 and other miRs that function as suppressors of mammalian cell adhesion and proliferation. RNase L mimics the effects of these miRs and acts as a suppressor of proliferation and adhesion in mammalian cells. Our data suggest that RNase L-dependent decay serves to establish an antiproliferative state via destabilization of the miR-regulated transcriptome.
Collapse
|
21
|
Brennan-Laun SE, Ezelle HJ, Li XL, Hassel BA. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J Interferon Cytokine Res 2015; 34:275-88. [PMID: 24697205 DOI: 10.1089/jir.2013.0147] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023] Open
Abstract
RNase-L is a mediator of type 1 interferon-induced antiviral activity that has diverse and critical cellular roles, including the regulation of cell proliferation, differentiation, senescence and apoptosis, tumorigenesis, and the control of the innate immune response. Although RNase-L was originally shown to mediate the endonucleolytic cleavage of both viral and ribosomal RNAs in response to infection, more recent evidence indicates that RNase-L also functions in the regulation of cellular mRNAs as an important mechanism by which it exerts its diverse biological functions. Despite this growing body of work, many questions remain regarding the roles of mRNAs as RNase-L substrates. This review will survey known and putative mRNA substrates of RNase-L, propose mechanisms by which it may selectively cleave these transcripts, and postulate future clinical applications.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- 1 Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine , Baltimore, Maryland
| | | | | | | |
Collapse
|
22
|
Structural mechanism of sensing long dsRNA via a noncatalytic domain in human oligoadenylate synthetase 3. Proc Natl Acad Sci U S A 2015; 112:3949-54. [PMID: 25775560 DOI: 10.1073/pnas.1419409112] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023] Open
Abstract
The mammalian innate immune system uses several sensors of double-stranded RNA (dsRNA) to develop the interferon response. Among these sensors are dsRNA-activated oligoadenylate synthetases (OAS), which produce signaling 2',5'-linked RNA molecules (2-5A) that activate regulated RNA decay in mammalian tissues. Different receptors from the OAS family contain one, two, or three copies of the 2-5A synthetase domain, which in several instances evolved into pseudoenzymes. The structures of the pseudoenzymatic domains and their roles in sensing dsRNA are unknown. Here we present the crystal structure of the first catalytically inactive domain of human OAS3 (hOAS3.DI) in complex with a 19-bp dsRNA, determined at 2.0-Å resolution. The conformation of hOAS3.DI is different from the apo- and the dsRNA-bound states of the catalytically active homolog, OAS1, reported previously. The unique conformation of hOAS3.DI disables 2-5A synthesis by placing the active site residues nonproductively, but favors the binding of dsRNA. Biochemical data show that hOAS3.DI is essential for activation of hOAS3 and serves as a dsRNA-binding module, whereas the C-terminal domain DIII carries out catalysis. The location of the dsRNA-binding domain (DI) and the catalytic domain (DIII) at the opposite protein termini makes hOAS3 selective for long dsRNA. This mechanism relies on the catalytic inactivity of domain DI, revealing a surprising role of pseudoenzyme evolution in dsRNA surveillance.
Collapse
|
23
|
Abstract
The actin cytoskeleton and its network of associated proteins constitute a physical barrier that viruses must circumvent to gain entry into cells for productive infection. The mechanisms by which the physical signals of infection are sensed by the host to activate an innate immune response are not well understood. The antiviral endoribonuclease RNase L is ubiquitously expressed in a latent form and activated upon binding 2-5A, a unique oligoadenylate produced during viral infections. We provide evidence that RNase L in its inactive form interacts with the actin-binding protein Filamin A to modulate the actin cytoskeleton and inhibit virus entry. Cells lacking either RNase L or Filamin A displayed increased virus entry which was exacerbated in cells lacking both proteins. RNase L deletion mutants that reduced Filamin A interaction displayed a compromised ability to restrict virus entry, supporting the idea of an important role for the RNase L-Filamin A complex in barrier function. Remarkably, both the wild type and a catalytically inactive RNase L mutant were competent to reduce virus entry when transfected into RNase L-deficient cells, indicating that this novel function of RNase L is independent of its enzymatic activity. Virus infection and RNase L activation disrupt its association with Filamin A and release RNase L to mediate its canonical nuclease-dependent antiviral activities. The dual functions of RNase L as a constitutive component of the actin cytoskeleton and as an induced mediator of antiviral signaling and effector functions provide insights into its mechanisms of antiviral activity and opportunities for the development of novel antiviral agents. Cells constantly face and sample pathogens on their outer surface. The actin cytoskeleton and interacting proteins associate with the cell membrane and constitute a barrier to infection. Disruption of the actin cytoskeleton allows viruses to enter the cell and induces innate immune responses to clear infections. The molecular mechanisms that link virus-induced physical perturbations to host defense pathways remain unclear. Our studies identified a novel interaction between the antiviral endoribonuclease RNase L and the actin-binding protein Filamin A that enhances host defense by preventing viral entry into naive cells. This role for RNase L is independent of its enzymatic function. Virus infection alters actin dynamics, disrupts the RNase L-Filamin A complex, and releases RNase L to mediate antiviral signaling and effector functions via its established nucleolytic activities. These dual roles for RNase L provide an efficient strategy to protect cells from infection and rapidly respond upon pathogen exposure.
Collapse
|
24
|
Brennan-Laun SE, Li XL, Ezelle HJ, Venkataraman T, Blackshear PJ, Wilson GM, Hassel BA. RNase L attenuates mitogen-stimulated gene expression via transcriptional and post-transcriptional mechanisms to limit the proliferative response. J Biol Chem 2014; 289:33629-43. [PMID: 25301952 DOI: 10.1074/jbc.m114.589556] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022] Open
Abstract
The cellular response to mitogens is tightly regulated via transcriptional and post-transcriptional mechanisms to rapidly induce genes that promote proliferation and efficiently attenuate their expression to prevent malignant growth. RNase L is an endoribonuclease that mediates diverse antiproliferative activities, and tristetraprolin (TTP) is a mitogen-induced RNA-binding protein that directs the decay of proliferation-stimulatory mRNAs. In light of their roles as endogenous proliferative constraints, we examined the mechanisms and functional interactions of RNase L and TTP to attenuate a mitogenic response. Mitogen stimulation of RNase L-deficient cells significantly increased TTP transcription and the induction of other mitogen-induced mRNAs. This regulation corresponded with elevated expression of serum-response factor (SRF), a master regulator of mitogen-induced transcription. RNase L destabilized the SRF transcript and formed a complex with SRF mRNA in cells providing a mechanism by which RNase L down-regulates SRF-induced genes. TTP and RNase L proteins interacted in cells suggesting that RNase L is directed to cleave TTP-bound RNAs as a mechanism of substrate specificity. Consistent with their concerted function in RNA turnover, the absence of either RNase L or TTP stabilized SRF mRNA, and a subset of established TTP targets was also regulated by RNase L. RNase L deficiency enhanced mitogen-induced proliferation demonstrating its functional role in limiting the mitogenic response. Our findings support a model of feedback regulation in which RNase L and TTP target SRF mRNA and SRF-induced transcripts. Accordingly, meta-analysis revealed an enrichment of RNase L and TTP targets among SRF-regulated genes suggesting that the RNase L/TTP axis represents a viable target to inhibit SRF-driven proliferation in neoplastic diseases.
Collapse
Affiliation(s)
- Sarah E Brennan-Laun
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and
| | - Xiao-Ling Li
- the Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Heather J Ezelle
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| | | | - Perry J Blackshear
- the Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Gerald M Wilson
- From the Marlene and Stewart Greenebaum Cancer Center, Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Bret A Hassel
- From the Marlene and Stewart Greenebaum Cancer Center, Departments of Microbiology and Immunology and the Research Services, Baltimore Veterans Affairs Medical Center, Baltimore, Maryland 21201, and
| |
Collapse
|
25
|
Curcumin, a natural antioxidant, acts as a noncompetitive inhibitor of human RNase L in presence of its cofactor 2-5A in vitro. BIOMED RESEARCH INTERNATIONAL 2014; 2014:817024. [PMID: 25254215 PMCID: PMC4165196 DOI: 10.1155/2014/817024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 02/05/2014] [Revised: 06/08/2014] [Accepted: 06/10/2014] [Indexed: 01/09/2023]
Abstract
Ribonuclease L (RNase L) is an antiviral endoribonuclease of the innate immune system, which is induced and activated by viral infections, interferons, and double stranded RNA (dsRNA) in mammalian cells. Although, RNase L is generally protective against viral infections, abnormal RNase L expression and activity have been associated with a number of diseases. Here, we show that curcumin, a natural plant-derived anti-inflammatory active principle, inhibits RNase L activity; hence, it may be exploited for therapeutic interventions in case of pathological situations associated with excess activation of RNase L.
Collapse
|
26
|
Tam JCH, Jacques DA. Intracellular immunity: finding the enemy within--how cells recognize and respond to intracellular pathogens. J Leukoc Biol 2014; 96:233-44. [PMID: 24899588 PMCID: PMC4192899 DOI: 10.1189/jlb.4ri0214-090r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/12/2014] [Revised: 05/06/2014] [Accepted: 05/10/2014] [Indexed: 12/24/2022] Open
Abstract
Historically, once a cell became infected, it was considered to be beyond all help. By this stage, the invading pathogen had breached the innate defenses and was beyond the reach of the humoral arm of the adaptive immune response. The pathogen could still be removed by cell-mediated immunity (e.g., by NK cells or cytotoxic T lymphocytes), but these mechanisms necessitated the destruction of the infected cell. However, in recent years, it has become increasingly clear that many cells possess sensor and effector mechanisms for dealing with intracellular pathogens. Most of these mechanisms are not restricted to professional immune cells nor do they all necessitate the destruction of the host. In this review, we examine the strategies that cells use to detect and destroy pathogens once the cell membrane has been penetrated.
Collapse
Affiliation(s)
- Jerry C H Tam
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - David A Jacques
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
27
|
Queiroz RML, Charneau S, Bastos IMD, Santana JM, Sousa MV, Roepstorff P, Ricart CAO. Cell surface proteome analysis of human-hosted Trypanosoma cruzi life stages. J Proteome Res 2014; 13:3530-41. [PMID: 24978697 DOI: 10.1021/pr401120y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023]
Abstract
Chagas' disease is a neglected infectious illness, caused by the protozoan Trypanosoma cruzi. It remains a challenging health issue in Latin America, where it is endemic, and so far there is no immunoprophylatic vaccine or satisfactory chemotherapic treatment for its chronic stage. The present work addressed the analysis of the plasma membrane (PM) subproteome from T. cruzi human-hosted life stages, trypomastigote and axenic amastigote, by two complementary PM protein enrichment techniques followed by identification using an LC-MS/MS approach. The results revealed an extensive repertoire of proteins in the PM subproteomes, including enzymes that might be suitable candidates for drug intervention. The comparison of the cell surface proteome among the life forms revealed some potentially stage-specific enzymes, although the majority was shared by both stages. Bioinformatic analysis showed that the vast majority of the identified proteins are membrane-derived and/or possess predicted transmembrane domains. They are mainly involved in host cell infection, protein adhesion, cell signaling, and the modulation of mammalian host immune response. Several virulence factors and proteins potentially capable of acting at a number of metabolic pathways of the host and also to regulate cell differentiation of the parasite itself were also found.
Collapse
Affiliation(s)
- Rayner M L Queiroz
- Department of Cell Biology, Institute of Biology, University of Brasilia , Brasília, Brazil
| | | | | | | | | | | | | |
Collapse
|
28
|
Gupta A, Rath PC. Expression of mRNA and protein-protein interaction of the antiviral endoribonuclease RNase L in mouse spleen. Int J Biol Macromol 2014; 69:307-18. [PMID: 24780566 DOI: 10.1016/j.ijbiomac.2014.04.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
The interferon-inducible, 2',5'-oligoadenylate (2-5A)-dependent endoribonuclease, RNase L is a unique antiviral RNA-degrading enzyme involved in RNA-metabolism, translational regulation, stress-response besides its anticancer/tumor-suppressor and antibacterial functions. RNase L represents complex cellular RNA-regulations in mammalian cells but diverse functions of RNase L are not completely explained by its 2-5A-regulated endoribonuclease activity. We hypothesized that RNase L has housekeeping function(s) through interaction with cellular proteins. We investigated RNase L mRNA expression in mouse tissues by RT-PCR and its protein-protein interaction in spleen by GST-pulldown and immunoprecipitation assays followed by proteomic analysis. RNase L mRNA is constitutively and differentially expressed in nine different mouse tissues, its level is maximum in immunological tissues (spleen, thymus and lungs), moderate in reproductive tissues (testis and prostate) and low in metabolic tissues (kidney, brain, liver and heart). Cellular proteins from mouse spleen [fibronectin precursor, β-actin, troponin I, myosin heavy chain 9 (non-muscle), growth-arrest specific protein 11, clathrin light chain B, a putative uncharacterized protein (Ricken cDNA 8030451F13) isoform (CRA_d) and alanyl tRNA synthetase] were identified as cellular RNase L-interacting proteins. Thus our results suggest for more general cellular functions of RNase L through protein-protein interactions in the spleen for immune response in mammals.
Collapse
Affiliation(s)
- Ankush Gupta
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
29
|
Enteropathogenic Escherichia coli inhibits type I interferon- and RNase L-mediated host defense to disrupt intestinal epithelial cell barrier function. Infect Immun 2014; 82:2802-14. [PMID: 24733098 DOI: 10.1128/iai.00105-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/18/2022] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) primarily infects children in developing countries and causes diarrhea that can be deadly. EPEC pathogenesis occurs through type III secretion system (T3SS)-mediated injection of effectors into intestinal epithelial cells (IECs); these effectors alter actin dynamics, modulate the immune response, and disrupt tight junction (TJ) integrity. The resulting compromised barrier function and increased gastrointestinal (GI) permeability may be responsible for the clinical symptoms of infection. Type I interferon (IFN) mediates anti-inflammatory activities and serves essential functions in intestinal immunity and homeostasis; however, its role in the immune response to enteric pathogens, such as EPEC, and its impact on IEC barrier function have not been examined. Here, we report that IFN-β is induced following EPEC infection and regulates IEC TJ proteins to maintain barrier function. The EPEC T3SS effector NleD counteracts this protective activity by inhibiting IFN-β induction and enhancing tumor necrosis factor alpha to promote barrier disruption. The endoribonuclease RNase L is a key mediator of IFN induction and action that promotes TJ protein expression and IEC barrier integrity. EPEC infection inhibits RNase L in a T3SS-dependent manner, providing a mechanism by which EPEC evades IFN-induced antibacterial activities. This work identifies novel roles for IFN-β and RNase L in IEC barrier functions that are targeted by EPEC effectors to escape host defense mechanisms and promote virulence. The IFN-RNase L axis thus represents a potential therapeutic target for enteric infections and GI diseases involving compromised barrier function.
Collapse
|
30
|
Defects in TLR3 expression and RNase L activation lead to decreased MnSOD expression and insulin resistance in muscle cells of obese people. Cell Death Dis 2014; 5:e1136. [PMID: 24651439 PMCID: PMC3973244 DOI: 10.1038/cddis.2014.104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/06/2013] [Revised: 02/12/2014] [Accepted: 02/13/2014] [Indexed: 12/14/2022]
Abstract
Obesity is associated with chronic low-grade inflammation and oxidative stress that blunt insulin response in its target tissues, leading to insulin resistance (IR). IR is a characteristic feature of type 2 diabetes. Skeletal muscle is responsible for 75% of total insulin-dependent glucose uptake; consequently, skeletal muscle IR is considered to be the primary defect of systemic IR development. Interestingly, some obese people stay insulin-sensitive and metabolically healthy. With the aim of understanding this difference and identifying the mechanisms responsible for insulin sensitivity maintenance/IR development during obesity, we explored the role of the latent endoribonuclease (RNase L) in skeletal muscle cells. RNase L is a regulator of innate immunity, of double-stranded RNA sensors and of toll-like receptor (TLR) 4 signaling. It is regulated during inflammation by interferons and its activity is dependent on its binding to 2-5A, an oligoadenylate synthesized by oligoadenylate synthetases (OAS). Increased expression of RNase L or downregulation of its inhibitor (RLI) improved insulin response in mouse myogenic C2C12 cells and in primary human myotubes from normal-weight subjects treated with palmitate, a saturated free fatty acid (FFA) known to induce inflammation and oxidative stress via TLR4 activation. While RNase L and RLI levels remained unchanged, OAS level was decreased in primary myotubes from insulin-resistant obese subjects (OB-IR) compared with myotubes from insulin-sensitive obese subjects (OB-IS). TLR3 and mitochondrial manganese superoxide dismutase (MnSOD) were also underexpressed in OB-IR myotubes. Activation of RNase L by 2-5A transfection allowed to restore insulin response, OAS, MnSOD and TLR3 expression in OB-IR myotubes. Due to low expression of OAS, OB-IR myotubes present a defect in RNase L activation and TLR3 regulation. Consequently, MnSOD level is low and insulin sensitivity is reduced. These results support that RNase L activity limits FFA/obesity-induced impairment of insulin response in muscle cells via TLR3 and MnSOD expression.
Collapse
|
31
|
Maláč K, Barvík I. Recognition of 2',5'-linked oligoadenylates by human ribonuclease L: molecular dynamics study. J Mol Model 2014; 20:2123. [PMID: 24633766 DOI: 10.1007/s00894-014-2123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/10/2013] [Accepted: 12/19/2013] [Indexed: 11/29/2022]
Abstract
The capability of current MD simulations to be used as a tool in rational design of agonists of medically interesting enzyme RNase L was tested. Dimerization and enzymatic activity of RNase L is stimulated by 2',5'-linked oligoadenylates (pA₂₅A₂₅A; 2-5A). First, it was necessary to ensure that a complex of monomeric human RNase L and 25A was stable in MD simulations. It turned out that Glu131 had to be protonated. The non-protonated Glu131 caused dissociation of 2-5A from RNase L. Because of the atypical 2'-5' internucleotide linkages and a specific spatial arrangement of the 25A trimer, when a single molecule carries all possible conformers of the glycosidic torsion angle, several versions of the AMBER force field were tested. One that best maintained functionally important interactions of 25A and RNase L was selected for subsequent MD simulations. Furthermore, we wonder whether powerful GPUs are able to produce MD trajectories long enough to convincingly demonstrate effects of subtle perturbations of interactions between 25A and RNase L. Detrimental impacts of various point mutations of RNase L (R155A, F126A, W60A, K89A) on 2-5A binding were observed on a time scale of 200 ns. Finally, 2-5A analogues with a bridged 3'--O,4'--C-alkylene linkage (B) introduced into the adenosine units (A) were used to assess ability of MD simulations to distinguish on the time scale of hundreds of nanoseconds between agonists of RNase L (pA₂₅A₂₅B, pB₂₅A₂₅A, pB₂₅A₂₅B) and inactive analogs (pA₂₅B₂₅A, pA₂₅B₂₅B, pB₂₅B₂₅A, pB₂₅B₂₅B). Agonists were potently bound to RNase L during 200 ns MD runs. For inactive 2-5A analogs, by contrast, significant disruptions of their interactions with RNase L already within 100 ns MD runs were found.
Collapse
Affiliation(s)
- Kamil Maláč
- Faculty of Mathematics and Physics, Institute of Physics, Charles University, Ke Karlovu 5, Prague, 2, 121 16, Czech Republic
| | | |
Collapse
|
32
|
Cooper DA, Jha BK, Silverman RH, Hesselberth JR, Barton DJ. Ribonuclease L and metal-ion-independent endoribonuclease cleavage sites in host and viral RNAs. Nucleic Acids Res 2014; 42:5202-16. [PMID: 24500209 PMCID: PMC4005677 DOI: 10.1093/nar/gku118] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022] Open
Abstract
Ribonuclease L (RNase L) is a metal-ion–independent endoribonuclease associated with antiviral and antibacterial defense, cancer and lifespan. Despite the biological significance of RNase L, the RNAs cleaved by this enzyme are poorly defined. In this study, we used deep sequencing methods to reveal the frequency and location of RNase L cleavage sites within host and viral RNAs. To make cDNA libraries, we exploited the 2′, 3′-cyclic phosphate at the end of RNA fragments produced by RNase L and other metal-ion–independent endoribonucleases. We optimized and validated 2′, 3′-cyclic phosphate cDNA synthesis and Illumina sequencing methods using viral RNAs cleaved with purified RNase L, viral RNAs cleaved with purified RNase A and RNA from uninfected and poliovirus-infected HeLa cells. Using these methods, we identified (i) discrete regions of hepatitis C virus and poliovirus RNA genomes that were profoundly susceptible to RNase L and other single-strand specific endoribonucleases, (ii) RNase L-dependent and RNase L-independent cleavage sites within ribosomal RNAs (rRNAs) and (iii) 2′, 3′-cyclic phosphates at the ends of 5S rRNA and U6 snRNA. Monitoring the frequency and location of metal-ion–independent endoribonuclease cleavage sites within host and viral RNAs reveals, in part, how these enzymes contribute to health and disease.
Collapse
Affiliation(s)
- Daphne A Cooper
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA, Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic, Cleveland, OH 44195, USA, Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA and Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | |
Collapse
|
33
|
Goto S, Ozaki Y, Suzumori N, Yasukochi A, Kawakubo T, Furuno T, Nakanishi M, Yamamoto K, Sugiura-Ogasawara M. Role of cathepsin E in decidual macrophage of patients with recurrent miscarriage. Mol Hum Reprod 2014; 20:454-62. [PMID: 24464956 DOI: 10.1093/molehr/gau008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
In a previous study, we reported that the cathepsin-cystatin system caused endometrial dysfunction in early pregnancy. Here, we investigated the existence and contribution of cathepsin E in early pregnancy in patients with recurrent miscarriage (RM). The effect of cathepsin deficiency on fertility and female reproductive organs were also analyzed in CatE(-/-) mice. Human studies were conducted in a hospital setting, with informed consent. Cervical mucus was collected from RM patients in early pregnancy (4-6 gestational weeks, n = 21), and the pregnancy outcome was compared prospectively. The cathepsin E expression in decidua of RM patients (n = 49) and normal pregnant women undergoing elective surgical abortion (n = 24) was measured using SDS-PAGE, and western blot analysis. Decidual macrophages were isolated from RM patients (n = 6) and stimulated by lipopolysaccharide (LPS) and interferon gamma (IFN-γ). Results from the mouse model showed that CatE(-/-) mice were fertile, but the litter number was significantly smaller. The uterus of CatE(-/-) mice showed granulation tissue. In human samples, protease activity of cathepsin E measured with Fluorescence-Quenching Substrate (KYS-1) in cervical mucus of patients who developed miscarriage was markedly decreased compared with patients without RM. The expression of cathepsin E in decidua, semi-quantified by SDS-PAGE, western blot analysis was significantly lower in RM patients compared with patients without RM. By double staining immunofluorescence, the staining of cathepsin E was observed in CD14 or CD68 positive cells in all deciduas. Upon stimulation with LPS and IFN-γ, the expression of cathepsin E in cell lysate of decidual macrophages was markedly reduced in RM patients compared with controls. The results suggested that decreased activity of cathepsin E produced by decidual macrophages might be responsible for the induction of miscarriages in some RM patients.
Collapse
Affiliation(s)
- Shinobu Goto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho, Nagoya, Aichi 467-8601, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yi X, Zeng C, Liu H, Chen X, Zhang P, Yun BS, Jin G, Zhou A. Lack of RNase L attenuates macrophage functions. PLoS One 2013; 8:e81269. [PMID: 24324683 PMCID: PMC3852499 DOI: 10.1371/journal.pone.0081269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2013] [Accepted: 10/10/2013] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Macrophages are one of the major cell types in innate immunity against microbial infection. It is believed that the expression of proinflammatory genes such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, and cyclooxygenase-2 (Cox-2) by macrophages is also crucial for activation of both innate and adaptive immunities. RNase L is an interferon (IFN) inducible enzyme which is highly expressed in macrophages. It has been demonstrated that RNase L regulates the expression of certain inflammatory genes. However, its role in macrophage function is largely unknown. METHODOLOGY Bone marrow-derived macrophages (BMMs) were generated from RNase L(+/+)and (-/-) mice. The migration of BMMs was analyzed by using Transwell migration assays. Endocytosis and phagocytosis of macrophages were assessed by using fluorescein isothiocyanate (FITC)-Dextran 40,000 and FITC-E. coli bacteria, respectively. The expression of inflammatory genes was determined by Western Blot and ELISA. The promoter activity of Cox-2 was measured by luciferase reporter assays. CONCLUSIONS/FINDINGS Lack of RNase L significantly decreased the migration of BMMs induced by M-CSF, but at a less extent by GM-CSF and chemokine C-C motif ligand-2 (CCL2). Interestingly, RNase L deficient BMMs showed a significant reduction of endocytic activity to FITC-Dextran 40,000, but no any obvious effect on their phagocytic activity to FITC-bacteria under the same condition. RNase L impacts the expression of certain genes related to cell migration and inflammation such as transforming growth factor (TGF)-β, IL-1β, IL-10, CCL2 and Cox-2. Furthermore, the functional analysis of the Cox-2 promoter revealed that RNase L regulated the expression of Cox-2 in macrophages at its transcriptional level. Taken together, our findings provide direct evidence showing that RNase L contributes to innate immunity through regulating macrophage functions.
Collapse
Affiliation(s)
- Xin Yi
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Chun Zeng
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Hongli Liu
- Central Laboratory, the Eighth Hospital of Xi'an, Xi'an, China
| | - Xiaoli Chen
- Department of Pathology, the Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | - Ping Zhang
- Department of Pathology, Wanjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Boo Seok Yun
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
| | - Ge Jin
- Department of Biological Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, Ohio, United States of America
| | - Aimin Zhou
- Clinical Chemistry Program, Department of Chemistry, Cleveland State University, Cleveland, Ohio, United States of America
- Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, Ohio, United States of America
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| |
Collapse
|
35
|
Lamont EA, Xu WW, Sreevatsan S. Host-Mycobacterium avium subsp. paratuberculosis interactome reveals a novel iron assimilation mechanism linked to nitric oxide stress during early infection. BMC Genomics 2013; 14:694. [PMID: 24112552 PMCID: PMC3832399 DOI: 10.1186/1471-2164-14-694] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2013] [Accepted: 10/02/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The initial interaction between host cell and pathogen sets the stage for the ensuing infection and ultimately determine the course of disease. However, there is limited knowledge of the transcripts utilized by host and pathogen and how they may impact one another during this critical step. The purpose of this study was to create a host-Mycobacterium avium subsp. paratuberculosis (MAP) interactome for early infection in an epithelium-macrophage co-culture system using RNA-seq. RESULTS Establishment of the host-MAP interactome revealed a novel iron assimilation system for carboxymycobactin. Iron assimilation is linked to nitric oxide synthase-2 production by the host and subsequent nitric oxide buildup. Iron limitation as well as nitric oxide is a prompt for MAP to enter into an iron sequestration program. This new iron sequestration program provides an explanation for mycobactin independence in some MAP strains grown in vitro as well as during infection within the host cell. Utilization of such a pathway is likely to aid MAP establishment and long-term survival within the host. CONCLUSIONS The host-MAP interactome identified a number of metabolic, DNA repair and virulence genes worthy for consideration as novel drug targets as well as future pathogenesis studies. Reported interactome data may also be utilized to conduct focused, hypothesis-driven research. Co-culture of uninfected bovine epithelial cells (MAC-T) and primary bovine macrophages creates a tolerant genotype as demonstrated by downregulation of inflammatory pathways. This co-culture system may serve as a model to investigate other bovine enteric pathogens.
Collapse
Affiliation(s)
- Elise A Lamont
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
| | - Wayne W Xu
- Minnesota Supercomputing Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, 1971 Commonwealth Avenue, Saint Paul, MN 55108, USA
- Department of Veterinary Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
36
|
Abstract
BACKGROUND The endoribonuclease RNase-L is a type-I interferon (IFN)-regulated component of the innate immune response that functions in antiviral, antibacterial, and antiproliferative activities. RNase-L produces RNA agonists of RIG-I-like receptors, sensors of cytosolic pathogen-associated RNAs that induce cytokines including IFN-β. IFN-β and RIG-I-like receptors signaling mediate protective responses against experimental colitis and colitis-associated cancer and contribute to gastrointestinal homeostasis. Therefore, we investigated a role for RNase-L in murine colitis and colitis-associated cancer and its association with RIG-I-like receptors signaling in response to bacterial RNA. METHODS Colitis was induced in wild type-deficient and RNase-L-deficient mice (RNase-L⁻/⁻) by administration of dextran sulfate sodium (DSS). Colitis-associated cancer was induced by DSS and azoxymethane (AOM). Histological analysis and immunohistochemistry were performed on colon tissue to analyze immune cell infiltration and tissue damage after induction of colitis. Expression of cytokines was measured by quantitative real-time-PCR and ELISA. RESULTS DSS-treated RNase-L⁻/⁻ mice exhibited a significantly higher clinical score, delayed leukocyte infiltration, reduced expression of IFN-β, tumor necrosis factor α, interleukin-1β, and interleukin-18 at early times post-DSS exposure, and increased mortality as compared with wild-type mice. DSS/AOM-treated RNase-L⁻/⁻ mice displayed an increased tumor burden. Bacterial RNA triggered IFN-β production in an RNase-L-dependent manner and provided a potential mechanism by which RNase-L contributes to the gastrointestinal immune response to microbiota and protects against experimental colitis and colitis-associated cancer. CONCLUSIONS RNase-L promotes the innate immune response to intestinal damage and ameliorates murine colitis and colitis-associated cancer. The RNase-L-dependent production of IFN-β stimulated by bacterial RNA may be a mechanism to protect against gastrointestinal inflammatory disease.
Collapse
|
37
|
Zarogoulidis P, Kioumis I, Papanas N, Manika K, Kontakiotis T, Papagianis A, Zarogoulidis K. The effect of combination IFN-alpha-2a with usual antituberculosis chemotherapy in non-responding tuberculosis and diabetes mellitus: a case report and review of the literature. J Chemother 2012; 24:173-7. [PMID: 22759763 DOI: 10.1179/1973947812y.0000000005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/31/2022]
Abstract
A limited number of publications indicate that certain interferons (IFNs) may have a role in difficult-to-treat tuberculosis. We present a 48-year-old male diabetic patient who was referred to our department with the presumptive diagnosis of multidrug resistant tuberculosis. During the previous 8 months, he had been treated initially with a four-drug regimen (rifampicin, isoniazid, pyrazinamide, and ethambutol), which was later modified by the addition of streptomycin and ciprofloxacin, but his clinical condition had not improved and his sputum smear microscopy had remained positive to acid-fast bacilli. Cultured Mycobacterium tuberculosis from his sputum was sensitive to rifampicin and isoniazid. We administered IFN-alpha-2a at a low dose of 3 million IU intramuscularly weekly, in combination with isoniazid, rifampicin, ethambutol, and pyrazinamide. Two months after initiation of this therapy, sputum smears became negative, and a dramatic improvement in the patient's clinical and radiological findings occurred. During a 4-year follow-up, all consecutive sputum cultures remain negative. This case provides additional confirmation that certain IFNs could, potentially, be useful as therapeutic adjuncts for selected cases of non-responding tuberculosis and, therefore, merit further consideration.
Collapse
Affiliation(s)
- Paul Zarogoulidis
- Pulmonary Department, G. Papanikolaou General Hospital, Aristotle University of Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
38
|
Lee TY, Ezelle HJ, Venkataraman T, Lapidus RG, Scheibner KA, Hassel BA. Regulation of human RNase-L by the miR-29 family reveals a novel oncogenic role in chronic myelogenous leukemia. J Interferon Cytokine Res 2012; 33:34-42. [PMID: 23113544 DOI: 10.1089/jir.2012.0062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
The endoribonuclease RNase-L is the terminal component of an interferon-regulated RNA decay pathway known as the 2'-5'-oligoadenylate (2-5A) system, whose established functions include antimicrobial and tumor suppressive activities. RNase-L activity requires binding of the small molecule 2-5A, leading to RNase-L dimerization and cleavage of single-stranded RNA. RNase-L expression is controlled post-transcriptionally by its 3'-untranslated region (3' UTR), which exerts a strong negative effect on RNase-L levels. MicroRNAs (miRNAs) are a class of small noncoding RNAs that repress expression of target genes by binding to regions of complementarity often in the 3' UTR. The miR-29 family acts as a tumor suppressor in several cancers, including acute and chronic myelogenous leukemia (CML), and has many oncogenic targets. We report that the miR-29 family represses RNase-L protein expression across several cell types. Using a luciferase reporter, we showed that miR-29 acts via 4 target sites within the RNASEL 3' UTR. Mutation of all sites is required for abrogation of miR-29 repression. In light of the reported tumor suppressive role of miR-29 in K562 CML cells and miR-29 repression of RNase-L in these cells, we generated K562 cells with stable RNase-L knockdown and demonstrated that loss of RNase-L inhibits proliferation in vitro as well as tumor growth in a xenograft model. Our findings identify a previously unknown miRNA regulator of RNase-L expression and support a novel oncogenic role for RNase-L in CML and potentially other hematopoietic malignancies.
Collapse
Affiliation(s)
- Teresa Y Lee
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
39
|
The association of elevated 2',5'-oligoadenylate-dependent RNase L with lung cancer correlated with deficient enzymatic activity and decreased capacity of RNase L dimerization. Lung Cancer 2012; 78:30-8. [PMID: 22925698 DOI: 10.1016/j.lungcan.2012.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/04/2012] [Revised: 07/09/2012] [Accepted: 07/30/2012] [Indexed: 01/22/2023]
Abstract
RNase L mediates critical cellular functions including antiviral, proapoptotic, antiproliferative and tumor suppressive activities. In this study, the expression and function of RNase L in lung cancer cells were examined. Interestingly we have found that the expression of RNase L in lung cancer cells was 3- and 9-fold higher in its mRNA and protein levels, but a significant decrease of its enzymatic activity when compared to that in corresponding normal lung cells. Further investigation revealed that 2-5A-induced dimerization of the RNase L protein, a necessary prerequisite for activation of RNase L, was inhibited, as a result of that RLI, a specific inhibitor of RNase L, was remarkably up-regulated in the cancer cells. Our findings provide new insight into how cancer cells escape normal growth-regulating mechanisms to form a tumor and the information may be useful for the design of novel strategies for treating lung cancer through regulating RNase L activity.
Collapse
|
40
|
Abstract
Autophagy is a programmed homeostatic response to diverse types of cellular stress that disposes of long-lived proteins, organelles, and invading microbes within double-membraned structures called autophagosomes. The 2',5'-oligoadenylate/RNase L system is a virus-activated host RNase pathway that disposes of or processes viral and cellular single-stranded RNAs. Here we report that activation of RNase L during viral infections induces autophagy. Accordingly, infections with encephalomyocarditis virus or vesicular stomatitis virus led to higher levels of autophagy in wild-type mouse embryonic fibroblasts (MEF) than in RNase L-null MEF. Similarly, direct activation of RNase L with a 2',5'-oligoadenylate resulted in p62(SQSTM1) degradation, LC3BI/LC3BII conversion, and appearance of autophagosomes. To determine the effect of RNase L-mediated autophagy on viral replication, we compared viral yields in wild-type and RNase L-null MEF in the absence or presence of either chemical inhibitors of autophagy (bafilomycin A1 or 3-methyladenine) or small interfering RNA (siRNA) against ATG5 or beclin-1. At a low multiplicity of infection, induction of autophagy by RNase L during the initial cycle of virus growth contributed to the suppression of virus replication. However, in subsequent rounds of infection, autophagy promoted viral replication, reducing the antiviral effect of RNase L. Our results indicate a novel function of RNase L as an inducer of autophagy that affects viral yields.
Collapse
|
41
|
Gupta A, Rath PC. Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L. J Biosci 2012; 37:103-13. [PMID: 22357208 DOI: 10.1007/s12038-011-9180-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/26/2022]
Abstract
The interferon (IFN)-inducible, 2',5'-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein-protein interactions.
Collapse
Affiliation(s)
- Ankush Gupta
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | |
Collapse
|
42
|
Abstract
Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells - a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world.
Collapse
Affiliation(s)
- John D MacMicking
- Section of Microbial Pathogenesis, Boyer Centre for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
43
|
Ezelle HJ, Hassel BA. Pathologic effects of RNase-L dysregulation in immunity and proliferative control. Front Biosci (Schol Ed) 2012; 4:767-86. [PMID: 22202089 DOI: 10.2741/s298] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
The endoribonuclease RNase-L is the terminal component of an RNA cleavage pathway that mediates antiviral, antiproliferative and immunomodulatory activities. Inactivation or dysregulation of RNase-L is associated with a compromised immune response and increased risk of cancer, accordingly its activity is tightly controlled and requires an allosteric activator, 2',5'-linked oligoadenylates, for enzymatic activity. The biological activities of RNase-L are a result of direct and indirect effects of RNA cleavage and microarray analyses have revealed that RNase-L impacts the gene expression program at multiple levels. The identification of RNase-L-regulated RNAs has provided insights into potential mechanisms by which it exerts antiproliferative, proapoptotic, senescence-inducing and innate immune activities. RNase-L protein interactors have been identified that serve regulatory functions and are implicated as alternate mechanisms of its biologic functions. Thus, while the molecular details are understood for only a subset of RNase-L activities, its regulation by small molecules and critical roles in host defense and as a candidate tumor suppressor make it a promising therapeutic target.
Collapse
Affiliation(s)
- Heather J Ezelle
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
44
|
Chakrabarti A, Jha BK, Silverman RH. New insights into the role of RNase L in innate immunity. J Interferon Cytokine Res 2010; 31:49-57. [PMID: 21190483 DOI: 10.1089/jir.2010.0120] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
The interferon (IFN)-inducible 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway blocks infections by some types of viruses through cleavage of viral and cellular single-stranded RNA. Viruses induce type I IFNs that initiate signaling to the OAS genes. OAS proteins are pathogen recognition receptors for the viral pathogen-associated molecular pattern, double-stranded RNA. Double-stranded RNA activates OAS to produce p(x)5'A(2'p5'A)(n); x = 1-3; n > 2 (2-5A) from ATP. Upon binding 2-5A, RNase L is converted from an inactive monomer to a potently active dimeric endoribonuclease for single-stranded RNA. RNase L contains, from N- to C-terminus, a series of 9 ankyrin repeats, a linker, several protein kinase-like motifs, and a ribonuclease domain homologous to Ire1 (involved in the unfolded protein response). In the past few years, it has become increasingly apparent that RNase L and OAS contribute to innate immunity in many ways. For example, small RNA cleavage products produced by RNase L during viral infections can signal to the retinoic acid-inducible-I like receptors to amplify and perpetuate signaling to the IFN-β gene. In addition, RNase L is now implicated in protecting the central nervous system against viral-induced demyelination. A role in tumor suppression was inferred by mapping of the RNase L gene to the hereditary prostate cancer 1 (HPC1) gene, which in turn led to discovery of the xenotropic murine leukemia-related virus. A broader role in innate immunity is suggested by involvement of RNase L in cytokine induction and endosomal pathways that suppress bacterial infections. These newly described findings about RNase L could eventually provide the basis for developing broad-spectrum antimicrobial drugs.
Collapse
Affiliation(s)
- Arindam Chakrabarti
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
45
|
Li XL, Ezelle HJ, Hsi TY, Hassel BA. A central role for RNA in the induction and biological activities of type 1 interferons. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:58-78. [PMID: 21956969 DOI: 10.1002/wrna.32] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/11/2022]
Abstract
In mammals the type 1 interferon (IFN) system functions as the primary innate antiviral defense and more broadly as a stress response and regulator of diverse homeostatic mechanisms. RNA plays a central role in the induction of IFN and in its biologic activities. Cellular toll-like receptors (TLR), RIG-I-like receptors (RLR), and nucleotide organization domain-like receptors (NLR) sense pathogen- and danger-associated RNAs as nonself based on structural features and subcellular location that distinguish them from ubiquitous host RNAs. Detection of nonself RNAs activates signaling pathways to induce IFN transcription and secretion. In turn, IFN binds cell surface receptors to initiate signaling that results in the induction of IFN-stimulated genes (ISGs) that mediate its biologic activities. RNA also plays a critical role in this effector phase of the IFN system, serving as an activator of enzyme activity for protein kinase RNA-dependent (PKR) and oligoadenylate synthetase (OAS), and as a substrate for 2('), 5(') -linked oligoadenylate dependant-endoribonuclease (RNase-L). In contrast to the transcriptional response induced by RNA receptors, these key ISGs mediate their activities primarily through post transcriptional mechanisms to regulate the translation and stability of host and microbial RNAs. Together RNA-sensing and RNA-effector molecules comprise a network of coordinately regulated proteins with integrated feedback and feed-forward loops that tightly regulate the cellular response to RNA. This stringent regulation is essential to prevent deleterious effects of uncontrolled IFN expression and effector activation. In light of this extensive crosstalk, targeting key mediators of the cellular response to RNA represents a viable strategy for therapeutic modulation of immune function and treatment of diseases in which this response is dysregulated (e.g., cancer).
Collapse
Affiliation(s)
- Xiao-Ling Li
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
46
|
Domingo-Gil E, González JM, Esteban M. Identification of cellular genes induced in human cells after activation of the OAS/RNaseL pathway by vaccinia virus recombinants expressing these antiviral enzymes. J Interferon Cytokine Res 2010; 30:171-88. [PMID: 20038200 DOI: 10.1089/jir.2009.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
Abstract
Interferon (IFN) type I induces the expression of antiviral proteins such as 2',5'-oligoadenylate synthetases (OAS). The enzyme OAS is activated by dsRNA to produce 5'-phosphorylated, 2-5-linked oligoadenylates (2-5A) that activate RNaseL which, in turn, triggers RNA breakdown, leading to multiple biological functions. Although RNaseL is required for IFN antiviral function, there are many aspects of the molecular mechanisms that remain obscure. Here, we have used microarray analyses from human HeLa cells infected with vaccinia virus (VACV) recombinants expressing OAS-RNaseL enzymes (referred as 2-5A system) with the aim to identify host genes that are up- or down-regulated in the course of infection by the activation of this antiviral pathway. We found that activation of the 2-5A system from VACV recombinants produces a remarkable stimulation of transcription for genes that regulate many cellular processes, like those that promote cell growth arrest, GADD45B and KCTD11, apoptosis as CUL2, PDCD6, and TNFAIP8L2, IFN-stimulated genes as IFI6, and related to tumor suppression as PLA2G2A. The 2-5A system activation produces down-regulation of transcription of some genes that promote cell growth as RUNX2 and ESR2 and of genes in charge to maintain mitochondria homeostasis as MIPEP and COX5A. These results reveal new genes induced in response to the activation of the 2-5A system with roles in apoptosis, translational control, cell growth arrest, and tumor suppression.
Collapse
Affiliation(s)
- Elena Domingo-Gil
- Department of Cellular and Molecular Biology, Centro Nacional de Biotecnología, CSIC, Ciudad Universitaria Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
47
|
Zheng X, Wang W. High–level expression of housefly cecropin A in Escherichia coli using a fusion protein. ASIAN PAC J TROP MED 2010. [DOI: 10.1016/s1995-7645(10)60102-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/17/2022] Open
|
48
|
Mohapatra SK, Cole LE, Evans C, Sobral BW, Bassaganya-Riera J, Hontecillas R, Vogel SN, Crasta OR. Modulation of hepatic PPAR expression during Ft LVS LPS-induced protection from Francisella tularensis LVS infection. BMC Infect Dis 2010; 10:10. [PMID: 20082697 PMCID: PMC2826305 DOI: 10.1186/1471-2334-10-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/10/2009] [Accepted: 01/18/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND It has been shown previously that administration of Francisella tularensis (Ft) Live Vaccine Strain (LVS) lipopolysaccharide (LPS) protects mice against subsequent challenge with Ft LVS and blunts the pro-inflammatory cytokine response. METHODS To further investigate the molecular mechanisms that underlie Ft LVS LPS-mediated protection, we profiled global hepatic gene expression following Ft LVS LPS or saline pre-treatment and subsequent Ft LVS challenge using Affymetrix arrays. RESULTS A large number of genes (> 3,000) were differentially expressed at 48 hours post-infection. The degree of modulation of inflammatory genes by infection was clearly attenuated by pre-treatment with Ft LVS LPS in the surviving mice. However, Ft LVS LPS alone had a subtle effect on the gene expression profile of the uninfected mice. By employing gene set enrichment analysis, we discovered significant up-regulation of the fatty acid metabolism pathway, which is regulated by peroxisome proliferator activated receptors (PPARs). CONCLUSIONS We hypothesize that the LPS-induced blunting of pro-inflammatory response in mouse is, in part, mediated by PPARs (alpha and gamma).
Collapse
Affiliation(s)
- Saroj K Mohapatra
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Leah E Cole
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Clive Evans
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Bruno W Sobral
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Josep Bassaganya-Riera
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Raquel Hontecillas
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Stefanie N Vogel
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Oswald R Crasta
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
49
|
Dugan JW, Albor A, David L, Fowlkes J, Blackledge MT, Martin TM, Planck SR, Rosenzweig HL, Rosenbaum JT, Davey MP. Nucleotide oligomerization domain-2 interacts with 2'-5'-oligoadenylate synthetase type 2 and enhances RNase-L function in THP-1 cells. Mol Immunol 2009; 47:560-6. [PMID: 19853919 DOI: 10.1016/j.molimm.2009.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2009] [Accepted: 09/09/2009] [Indexed: 11/30/2022]
Abstract
Nucleotide-binding and oligomerization domain-2 (NOD2) is an intracellular protein involved in innate immunity and linked to chronic inflammatory diseases in humans. Further characterization of the full spectrum of proteins capable of binding to NOD2 may provide new insights into its normal functioning as well as the mechanisms by which mutated forms cause disease. Using a proteomics approach to study human THP-1 cells, we have identified 2'-5'-oligoadenylate synthetase type 2 (OAS2), a dsRNA binding protein involved in the pathway that activates RNase-L, as a new binding partner for NOD2. The interaction was confirmed using over-expression of OAS2 and NOD2 in HEK cells. Further confirmation was obtained by detecting NOD2 in immunoprecipitates of endogenous OAS2 in THP-1 cells. Finally, over-expression of NOD2 in THP-1 cells led to enhanced RNase-L activity in cells treated with poly(I:C), a mimic of double-stranded RNA virus infection. These data indicate connectivity in pathways involved in innate immunity to bacteria and viruses and suggest a regulatory role whereby NOD2 enhances the function of RNase-L.
Collapse
Affiliation(s)
- Jae W Dugan
- Department of Veterans Affairs Medical Center, Portland, OR 97239-2999, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Panchal RG, Ulrich RL, Bradfute SB, Lane D, Ruthel G, Kenny TA, Iversen PL, Anderson AO, Gussio R, Raschke WC, Bavari S. Reduced expression of CD45 protein-tyrosine phosphatase provides protection against anthrax pathogenesis. J Biol Chem 2009; 284:12874-85. [PMID: 19269962 DOI: 10.1074/jbc.m809633200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022] Open
Abstract
The modulation of cellular processes by small molecule inhibitors, gene inactivation, or targeted knockdown strategies combined with phenotypic screens are powerful approaches to delineate complex cellular pathways and to identify key players involved in disease pathogenesis. Using chemical genetic screening, we tested a library of known phosphatase inhibitors and identified several compounds that protected Bacillus anthracis infected macrophages from cell death. The most potent compound was assayed against a panel of sixteen different phosphatases of which CD45 was found to be most sensitive to inhibition. Testing of a known CD45 inhibitor and antisense phosphorodiamidate morpholino oligomers targeting CD45 also protected B. anthracis-infected macrophages from cell death. However, reduced CD45 expression did not protect anthrax lethal toxin (LT) treated macrophages, suggesting that the pathogen and independently added LT may signal through distinct pathways. Subsequent, in vivo studies with both gene-targeted knockdown of CD45 and genetically engineered mice expressing reduced levels of CD45 resulted in protection of mice after infection with the virulent Ames B. anthracis. Intermediate levels of CD45 expression were critical for the protection, as mice expressing normal levels of CD45 or disrupted CD45 phosphatase activity or no CD45 all succumbed to this pathogen. Mechanism-based studies suggest that the protection provided by reduced CD45 levels results from regulated immune cell homeostasis that may diminish the impact of apoptosis during the infection. To date, this is the first report demonstrating that reduced levels of host phosphatase CD45 modulate anthrax pathogenesis.
Collapse
Affiliation(s)
- Rekha G Panchal
- United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|