1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Ju S, Singh MK, Han S, Ranbhise J, Ha J, Choe W, Yoon KS, Yeo SG, Kim SS, Kang I. Oxidative Stress and Cancer Therapy: Controlling Cancer Cells Using Reactive Oxygen Species. Int J Mol Sci 2024; 25:12387. [PMID: 39596452 PMCID: PMC11595237 DOI: 10.3390/ijms252212387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer is a multifaceted disease influenced by various mechanisms, including the generation of reactive oxygen species (ROS), which have a paradoxical role in both promoting cancer progression and serving as targets for therapeutic interventions. At low concentrations, ROS serve as signaling agents that enhance cancer cell proliferation, migration, and resistance to drugs. However, at elevated levels, ROS induce oxidative stress, causing damage to biomolecules and leading to cell death. Cancer cells have developed mechanisms to manage ROS levels, including activating pathways such as NRF2, NF-κB, and PI3K/Akt. This review explores the relationship between ROS and cancer, focusing on cell death mechanisms like apoptosis, ferroptosis, and autophagy, highlighting the potential therapeutic strategies that exploit ROS to target cancer cells.
Collapse
Affiliation(s)
- Songhyun Ju
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jyotsna Ranbhise
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seung Geun Yeo
- Department of Otorhinolaryngology—Head and Neck Surgery, College of Medicine, Kyung Hee University Medical Center, Kyung Hee University, Seoul 02453, Republic of Korea;
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (S.J.); (M.K.S.); (S.H.); (J.R.); (J.H.); (W.C.); (K.-S.Y.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
3
|
Matsuyama M, Ortega JT, Fedorov Y, Scott-McKean J, Muller-Greven J, Buck M, Adams D, Jastrzebska B, Greenlee W, Matsuyama S. Development of novel cytoprotective small compounds inhibiting mitochondria-dependent cell death. iScience 2023; 26:107916. [PMID: 37841588 PMCID: PMC10568349 DOI: 10.1016/j.isci.2023.107916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/27/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
We identified cytoprotective small molecules (CSMs) by a cell-based high-throughput screening of Bax inhibitors. Through a medicinal chemistry program, M109S was developed, which is orally bioactive and penetrates the blood-brain/retina barriers. M109S protected retinal cells in ocular disease mouse models. M109S directly interacted with Bax and inhibited the conformational change and mitochondrial translocation of Bax. M109S inhibited ABT-737-induced apoptosis both in Bax-only and Bak-only mouse embryonic fibroblasts. M109S also inhibited apoptosis induced by staurosporine, etoposide, and obatoclax. M109S decreased maximal mitochondrial oxygen consumption rate and reactive oxygen species production, whereas it increased glycolysis. These effects on cellular metabolism may contribute to the cytoprotective activity of M109S. M109S is a novel small molecule protecting cells from mitochondria-dependent apoptosis both in vitro and in vivo. M109S has the potential to become a research tool for studying cell death mechanisms and to develop therapeutics targeting mitochondria-dependent cell death pathway.
Collapse
Affiliation(s)
- Mieko Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Joseph T. Ortega
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Yuri Fedorov
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jonah Scott-McKean
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Macromolecular Science and Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeannie Muller-Greven
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Matthias Buck
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Drew Adams
- Department of Genetics and Genome Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Beata Jastrzebska
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | - Shigemi Matsuyama
- Department of Ophthalmology and Visual Science, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology and Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
5
|
Kumar A, Pecquenard F, Baydoun M, Quilbé A, Moralès O, Leroux B, Aoudjehane L, Conti F, Boleslawski E, Delhem N. An Efficient 5-Aminolevulinic Acid Photodynamic Therapy Treatment for Human Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:10426. [PMID: 37445603 DOI: 10.3390/ijms241310426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Photodynamic therapy (PDT) is a two-stage treatment relying on cytotoxicity induced by photoexcitation of a nontoxic dye, called photosensitizer (PS). Using 5-aminolevulinic acid (5-ALA), the pro-drug of PS protoporphyrin IX, we investigated the impact of PDT on hepatocellular carcinoma (HCC). Optimal 5-ALA PDT dose was determined on three HCC cell lines by analyzing cell death after treatment with varying doses. HCC-patient-derived tumor hepatocytes and healthy donor liver myofibroblasts were treated with optimal 5-ALA PDT doses. The proliferation of cancer cells and healthy donor immune cells cultured with 5-ALA-PDT-treated conditioned media was analyzed. Finally, therapy efficacy on humanized SCID mice model of HCC was investigated. 5-ALA PDT induced a dose-dependent decrease in viability, with an up-to-four-fold reduction in viability of patient tumor hepatocytes. The 5-ALA PDT treated conditioned media induced immune cell clonal expansion. 5-ALA PDT has no impact on myofibroblasts in terms of viability, while their activation decreased cancer cell proliferation and reduced the tumor growth rate of the in vivo model. For the first time, 5-ALA PDT has been validated on primary patient tumor hepatocytes and donor healthy liver myofibroblasts. 5-ALA PDT may be an effective anti-HCC therapy, which might induce an anti-tumor immune response.
Collapse
Affiliation(s)
- Abhishek Kumar
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Florian Pecquenard
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Martha Baydoun
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Alexandre Quilbé
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Olivier Moralès
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- Univ. Lille, CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, F-59000 Lille, France
| | - Bertrand Leroux
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| | - Lynda Aoudjehane
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
| | - Filomena Conti
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, F-75013 Paris, France
- INSERM, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, F-75012 Paris, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Department of Medical Liver Transplantation, F-75013 Paris, France
| | - Emmanuel Boleslawski
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
- CHU Lille, Service de Chirurgie Digestive et Transplantations, Université de Lille, F-59037 Lille, France
| | - Nadira Delhem
- Univ. Lille, Inserm, CHU Lille, U1189-ONCO-THAI-Assisted Laser Therapy and Immunotherapy for Oncology, F-59000 Lille, France
| |
Collapse
|
6
|
Xiong C, Ling H, Hao Q, Zhou X. Cuproptosis: p53-regulated metabolic cell death? Cell Death Differ 2023; 30:876-884. [PMID: 36755067 PMCID: PMC10070433 DOI: 10.1038/s41418-023-01125-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 02/10/2023] Open
Abstract
Cuproptosis is a novel type of copper-induced cell death that primarily occurs in cells that utilize oxidative phosphorylation as the main metabolic pathway to produce energy. Copper directly associates with the lipoylated proteins of the tricarboxylic acid cycle, leading to the disulfide-bond-dependent aggregation of these lipoylated proteins, destabilization of the iron-sulfur cluster proteins, and consequent proteotoxic stress. Cancer cells prefer glycolysis (Warburg effect) to oxidative phosphorylation for producing intermediate metabolites and energy, thereby achieving resistance to cuproptosis. Interestingly, the tumor suppressor p53 is a crucial metabolic regulator that inhibits glycolysis and drives a metabolic switch towards oxidative phosphorylation in cancer cells. Additionally, p53 regulates the biogenesis of iron-sulfur clusters and the copper chelator glutathione, which are two critical components of the cuproptotic pathway, suggesting that this tumor suppressor might play a role in cuproptosis. Furthermore, the possible roles of mutant p53 in regulating cuproptosis are discussed. In this essay, we review the recent progress in the understanding of the mechanism underlying cuproptosis, revisit the roles of p53 in metabolic regulation and iron-sulfur cluster and glutathione biosynthesis, and propose several potential mechanisms for wild-type and mutant p53-mediated cuproptosis regulation.
Collapse
Affiliation(s)
- Chen Xiong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong Ling
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China. .,Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
8
|
Broestl L, Warrington NM, Grandison L, Abou-Antoun T, Tung O, Shenoy S, Tallman MM, Rhee G, Yang W, Sponagel J, Yang L, Kfoury-Beaumont N, Hill CM, Qanni SA, Mao DD, Kim AH, Stewart SA, Venere M, Luo J, Rubin JB. Gonadal sex patterns p21-induced cellular senescence in mouse and human glioblastoma. Commun Biol 2022; 5:781. [PMID: 35918603 PMCID: PMC9345919 DOI: 10.1038/s42003-022-03743-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/20/2022] [Indexed: 01/10/2023] Open
Abstract
Males exhibit higher incidence and worse prognosis for the majority of cancers, including glioblastoma (GBM). Disparate survival may be related to sex-biased responses to treatment, including radiation. Using a mouse model of GBM, we show that female cells are more sensitive to radiation, and that senescence represents a major component of the radiation therapeutic response in both sexes. Correlation analyses revealed that the CDK inhibitor p21 and irradiation induced senescence were differentially regulated between male and female cells. Indeed, female cellular senescence was more sensitive to changes in p21 levels, a finding that was observed in wildtype and transformed murine astrocytes, as well as patient-derived GBM cell lines. Using a novel Four Core Genotypes model of GBM, we further show that sex differences in p21-induced senescence are patterned during early development by gonadal sex. These data provide a rationale for the further study of sex differences in radiation response and how senescence might be enhanced for radiation sensitization. The determination that p21 and gonadal sex are required for sex differences in radiation response will serve as a foundation for these future mechanistic studies.
Collapse
Affiliation(s)
- Lauren Broestl
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicole M Warrington
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lucia Grandison
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Tamara Abou-Antoun
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Olivia Tung
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Saraswati Shenoy
- Brown School, Washington University in St. Louis, St. Louis, MO, USA
| | - Miranda M Tallman
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, Columbus, OH, USA
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Gina Rhee
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Yang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jasmin Sponagel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Yang
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Najla Kfoury-Beaumont
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Cameron M Hill
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sulaiman A Qanni
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Diane D Mao
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Sheila A Stewart
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- ICCE Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Venere
- Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, Columbus, OH, USA
| | - Jingqin Luo
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
9
|
Djhsp60 Is Required for Planarian Regeneration and Homeostasis. Biomolecules 2022; 12:biom12060808. [PMID: 35740934 PMCID: PMC9221281 DOI: 10.3390/biom12060808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
HSP60, a well-known mitochondrial chaperone, is essential for mitochondrial homeostasis. HSP60 deficiency causes dysfunction of the mitochondria and is lethal to animal survival. Here, we used freshwater planarian as a model system to investigate and uncover the roles of HSP60 in tissue regeneration and homeostasis. HSP60 protein is present in all types of cells in planarians, but it is relatively rich in stem cells and head neural cells. Knockdown of HSP60 by RNAi causes head regression and the loss of regenerating abilities, which is related to decrease in mitotic cells and inhibition of stem cell-related genes. RNAi-HSP60 disrupts the structure of the mitochondria and inhibits the mitochondrial-related genes, which mainly occur in intestinal tissues. RNAi-HSP60 also damages the integrity of intestinal tissues and downregulates intestine-expressed genes. More interestingly, RNAi-HSP60 upregulates the expression of the cathepsin L-like gene, which may be the reason for head regression and necrotic-like cell death. Taking these points together, we propose a model illustrating the relationship between neoblasts and intestinal cells, and also highlight the essential role of the intestinal system in planarian regeneration and tissue homeostasis.
Collapse
|
10
|
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers (Basel) 2022; 14:cancers14112745. [PMID: 35681725 PMCID: PMC9179324 DOI: 10.3390/cancers14112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cellular senescence and apoptosis were historically thought of as two distinct cell fate pathways. However, many of the proteins involved are integral to both pathways. In particular, the ability of p53 to regulate both senescence and apoptosis meant it was seen as the decisive factor in these decisions, yet questions remain about its ability to select on its own the most appropriate cell fate according to each situation. Therefore, cell fates are no longer considered fixed endpoints but dynamic states that can be shifted given the right combination of activation and/or inhibitions of cofactors. Abstract When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.
Collapse
|
11
|
Raj S, Jaiswal SK, DePamphilis ML. Cell Death and the p53 Enigma During Mammalian Embryonic Development. Stem Cells 2022; 40:227-238. [PMID: 35304609 PMCID: PMC9199838 DOI: 10.1093/stmcls/sxac003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/20/2021] [Indexed: 01/30/2023]
Abstract
Twelve forms of programmed cell death (PCD) have been described in mammalian cells, but which of them occurs during embryonic development and the role played by the p53 transcription factor and tumor suppressor remains enigmatic. Although p53 is not required for mouse embryonic development, some studies conclude that PCD in pluripotent embryonic stem cells from mice (mESCs) or humans (hESCs) is p53-dependent whereas others conclude that it is not. Given the importance of pluripotent stem cells as models of embryonic development and their applications in regenerative medicine, resolving this enigma is essential. This review reconciles contradictory results based on the facts that p53 cannot induce lethality in mice until gastrulation and that experimental conditions could account for differences in results with ESCs. Consequently, activation of the G2-checkpoint in mouse ESCs is p53-independent and generally, if not always, results in noncanonical apoptosis. Once initiated, PCD occurs at equivalent rates and to equivalent extents regardless of the presence or absence of p53. However, depending on experimental conditions, p53 can accelerate initiation of PCD in ESCs and late-stage blastocysts. In contrast, DNA damage following differentiation of ESCs in vitro or formation of embryonic fibroblasts in vivo induces p53-dependent cell cycle arrest and senescence.
Collapse
Affiliation(s)
- Sonam Raj
- National Cancer Institute, Bethesda, MD 20892, USA
| | - Sushil K Jaiswal
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Melvin L DePamphilis
- National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Peek SL, Bosch PJ, Bahl E, Iverson BJ, Parida M, Bais P, Manak JR, Michaelson JJ, Burgess RW, Weiner JA. p53-mediated neurodegeneration in the absence of the nuclear protein Akirin2. iScience 2022; 25:103814. [PMID: 35198879 PMCID: PMC8844820 DOI: 10.1016/j.isci.2022.103814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Abstract
Proper gene regulation is critical for both neuronal development and maintenance as the brain matures. We previously demonstrated that Akirin2, an essential nuclear protein that interacts with transcription factors and chromatin remodeling complexes, is required for the embryonic formation of the cerebral cortex. Here we show that Akirin2 plays a mechanistically distinct role in maintaining healthy neurons during cortical maturation. Restricting Akirin2 loss to excitatory cortical neurons resulted in progressive neurodegeneration via necroptosis and severe cortical atrophy with age. Comparing transcriptomes from Akirin2-null postnatal neurons and cortical progenitors revealed that targets of the tumor suppressor p53, a regulator of both proliferation and cell death encoded by Trp53, were consistently upregulated. Reduction of Trp53 rescued neurodegeneration in Akirin2-null neurons. These data: (1) implicate Akirin2 as a critical neuronal maintenance protein, (2) identify p53 pathways as mediators of Akirin2 functions, and (3) suggest Akirin2 dysfunction may be relevant to neurodegenerative diseases.
Collapse
Affiliation(s)
- Stacey L. Peek
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242, USA
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Peter J. Bosch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Ethan Bahl
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Brianna J. Iverson
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Mrutyunjaya Parida
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Departments of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Center for Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Preeti Bais
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - J. Robert Manak
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Departments of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Roy J. Carver Center for Genomics, University of Iowa, Iowa City, IA 52242, USA
| | - Jacob J. Michaelson
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA 52242, USA
- Department of Communication Sciences and Disorders, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA 52242, USA
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA 52242, USA
| | | | - Joshua A. Weiner
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
13
|
Liang W, He X, Bi J, Hu T, Sun Y. Role of reactive oxygen species in tumors based on the 'seed and soil' theory: A complex interaction (Review). Oncol Rep 2021; 46:208. [PMID: 34328200 PMCID: PMC8329912 DOI: 10.3892/or.2021.8159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor microenvironment (TME) can serve as the 'soil' for the growth and survival of tumor cells and function synergically with tumor cells to mediate tumor progression and therapeutic resistance. Reactive oxygen species (ROS) is somewhat of a double‑edged sword for tumors. Accumulating evidence has reported that regulating ROS levels can serve an anti‑tumor role in the TME, including the promotion of cancer cell apoptosis, inhibition of angiogenesis, preventing immune escape, manipulating tumor metabolic reorganization and improving drug resistance. In the present review, the potential role of ROS in anti‑tumor therapy was summarized, including the possibility of directly or indirectly targeting the TME.
Collapse
Affiliation(s)
- Wei Liang
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Xinying He
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Jianqiang Bi
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Tingting Hu
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| | - Yunchuan Sun
- Department of Radiation Oncology, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Affiliated Hospital of Hebei Medical University, Cangzhou, Hebei 061000, P.R. China
| |
Collapse
|
14
|
Lees A, Sessler T, McDade S. Dying to Survive-The p53 Paradox. Cancers (Basel) 2021; 13:3257. [PMID: 34209840 PMCID: PMC8268032 DOI: 10.3390/cancers13133257] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
The p53 tumour suppressor is best known for its canonical role as "guardian of the genome", activating cell cycle arrest and DNA repair in response to DNA damage which, if irreparable or sustained, triggers activation of cell death. However, despite an enormous amount of work identifying the breadth of the gene regulatory networks activated directly and indirectly in response to p53 activation, how p53 activation results in different cell fates in response to different stress signals in homeostasis and in response to p53 activating anti-cancer treatments remains relatively poorly understood. This is likely due to the complex interaction between cell death mechanisms in which p53 has been activated, their neighbouring stressed or unstressed cells and the local stromal and immune microenvironment in which they reside. In this review, we evaluate our understanding of the burgeoning number of cell death pathways affected by p53 activation and how these may paradoxically suppress cell death to ensure tissue integrity and organismal survival. We also discuss how these functions may be advantageous to tumours that maintain wild-type p53, the understanding of which may provide novel opportunity to enhance treatment efficacy.
Collapse
Affiliation(s)
- Andrea Lees
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| | | | - Simon McDade
- Patrick G Johnston Centre for Cancer Research, Queen’s University, Belfast BT9 7AE, UK;
| |
Collapse
|
15
|
Nie W, Lan T, Yuan X, Luo M, Shen G, Yu J, Wei X. Crystalline silica induces macrophage necrosis and causes subsequent acute pulmonary neutrophilic inflammation. Cell Biol Toxicol 2021; 38:591-609. [PMID: 34170461 DOI: 10.1007/s10565-021-09620-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 05/23/2021] [Indexed: 02/05/2023]
Abstract
Crystalline silica (CS), an airborne particulate, is a major global occupational health hazard. While it is known as an important pathogenic factor in many severe lung diseases, the underlying mechanisms of its toxicity are still unclear. In the present study, we found that intra-tracheal instillation of CS caused rapid emergence of necrotic alveolar macrophages. Cell necrosis was a consequence of the release of cathepsin B in CS-treated macrophages, which caused dysfunction of the mitochondrial membrane. Damage to mitochondria disrupted Na+/K+ ATPase activity in macrophages, leading to intracellular sodium overload and the subsequent cell necrosis. Further studies indicate that CS-induced macrophage necrosis and the subsequent release of mitochondrial DNA could trigger the recruitment of neutrophils in the lung, which was regulated by the TLR9 signaling pathway. In conclusion, our results suggest a novel mechanism whereby CS leads to rapid macrophage necrosis through cathepsin B release, following the leakage of mitochondrial DNA as a key event in the induction of pulmonary neutrophilic inflammation. This study has important implications for the early prevention and treatment of diseases induced by CS.
Collapse
Affiliation(s)
- Wen Nie
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.,Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xia Yuan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Guobo Shen
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Jiayun Yu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
16
|
Baliou S, Goulielmaki M, Ioannou P, Cheimonidi C, Trougakos IP, Nagl M, Kyriakopoulos AM, Zoumpourlis V. Bromamine T (BAT) Exerts Stronger Anti-Cancer Properties than Taurine (Tau). Cancers (Basel) 2021; 13:E182. [PMID: 33430276 PMCID: PMC7825693 DOI: 10.3390/cancers13020182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Taurine (Tau) ameliorates cancer pathogenesis. Researchers have focused on the functional properties of bromamine T (BAT), a stable active bromine molecule. Both N-bromotaurine (TauNHBr) and BAT exert potent anti-inflammatory properties, but the landscape remains obscure concerning the anti-cancer effect of BAT. METHODS We used Crystal Violet, colony formation, flow cytometry and Western blot experiments to evaluate the effect of BAT and Tau on the apoptosis and autophagy of cancer cells. Xenograft experiments were used to determine the in vivo cytotoxicity of either agent. RESULTS We demonstrated that both BAT and Tau inhibited the growth of human colon, breast, cervical and skin cancer cell lines. Among them, BAT exerted the greatest cytotoxic effect on both RKO and MDA-MB-468 cells. In particular, BAT increased the phosphorylation of c-Jun N-terminal kinases (JNK½), p38 mitogen-activated protein kinase (MAPK), and extracellular-signal-regulated kinases (ERK½), thereby inducing mitochondrial apoptosis and autophagy in RKO cells. In contrast, Tau exerted its cytotoxic effect by upregulating JNK½ forms, thus triggering mitochondrial apoptosis in RKO cells. Accordingly, colon cancer growth was impaired in vivo. CONCLUSIONS BAT and Tau exerted their anti-tumor properties through the induction of (i) mitochondrial apoptosis, (ii) the MAPK family, and iii) autophagy, providing novel anti-cancer therapeutic modalities.
Collapse
Affiliation(s)
- Stella Baliou
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Maria Goulielmaki
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| | - Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, 71110 Heraklion, Crete, Greece;
| | - Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; (C.C.); (I.P.T.)
| | - Markus Nagl
- Department of Hygiene, Microbiology and Public Health, Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Anthony M. Kyriakopoulos
- Department of Research and Development, Nasco AD Biotechnology Laboratory, 11 Sachtouri Str, 18536 Piraeus, Greece;
| | - Vassilis Zoumpourlis
- Biomedical Application Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vas. Constantinou Ave., 11635 Athens, Greece; (S.B.); (M.G.)
| |
Collapse
|
17
|
Liu Y, Leslie PL, Zhang Y. Life and Death Decision-Making by p53 and Implications for Cancer Immunotherapy. Trends Cancer 2020; 7:226-239. [PMID: 33199193 DOI: 10.1016/j.trecan.2020.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022]
Abstract
The tumor-suppressor protein p53 is mutated in approximately half of all cancers, whereas the p53 signaling network is perturbed in almost all cancers. In response to different stress stimuli, p53 selectively activates genes to elicit a cell survival or cell death response. How p53 makes the decision between life and death remains a fascinating question and an exciting field of research. Understanding how this decision is made has major implications for improving cancer treatments, particularly in recently evolved immune checkpoint inhibition therapy. We highlight progress and challenges in understanding the mechanisms governing the p53 life and death decision-making process, and discuss how this decision is relevant to immune system regulation. Finally, we discuss how knowledge of the p53 pro-survival and pro-death decision node can be applied to optimize immune checkpoint inhibitor therapy for cancer treatment.
Collapse
Affiliation(s)
- Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA.
| |
Collapse
|
18
|
Norouzi S, Yazdian Robati R, Ghandadi M, Abnous K, Behravan J, Mosaffa F. Comparative proteomics study of proteins involved in induction of higher rates of cell death in mitoxantrone-resistant breast cancer cells MCF-7/MX exposed to TNF-α. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:663-672. [PMID: 32742605 PMCID: PMC7374993 DOI: 10.22038/ijbms.2020.40029.9486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective(s): Resistance to medications is one of the main complications in chemotherapy of cancer. It has been shown that some multidrug resistant cancer cells indicate more sensitivity against cytotoxic effects of TNF-α compared to their parental cells. Our previous findings indicated vulnerability of the mitoxantrone-resistant breast cancer cells MCF-7/MX to cell death induced by TNF-α compared to the parent cells MCF-7. In this study, we performed a comparative proteomics analysis for identification of proteins involved in induction of higher susceptibility of MCF-7/MX cells to cytotoxic effect of TNF-α. Materials and Methods: Intensity of protein spots in 2D gel electrophoresis profiles of MCF-7 and MCF-7/MX cells were compared with Image Master Platinum 6.0 software. Selected differential protein-spots were identified with MALDI-TOF/TOF mass spectrometry and database searching. Pathway analyses of identified proteins were performed using PANTHER, KEGG PATHWAY, Gene MANIA and STRING databases. Western blot was performed for confirmation of the proteomics results. Results: Our results indicated that 48 hr exposure to TNF-α induced 87% death in MCF-7/MX cells compared to 19% death in MCF-7 cells. Forty landmarks per 2D gel electrophoresis were matched by Image Master Software. Six proteins were identified with mass spectrometry. Western blot showed that 14-3-3γ and p53 proteins were expressed higher in MCF-7/MX cells treated with TNF-α compared to MCF-7 cells treated with TNF-α. Conclusion: Our results showed that 14-3-3 γ, prohibitin, peroxiredoxin 2 and P53 proteins which were expressed differentially in MCF-7/MX cells treated with TNF-α may involve in the induction of higher rates of cell death in these cells compared to TNF-α-treated MCF-7 cells.
Collapse
Affiliation(s)
- Saeed Norouzi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Morteza Ghandadi
- Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Otandault A, Abraham JD, Al Amir Dache Z, Khalyfa A, Jariel-Encontre I, Forné T, Prévostel C, Chouaib S, Gozal D, Thierry AR. Hypoxia differently modulates the release of mitochondrial and nuclear DNA. Br J Cancer 2020; 122:715-725. [PMID: 31929518 PMCID: PMC7054557 DOI: 10.1038/s41416-019-0716-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively). METHOD By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions. RESULTS Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation. In cell model, hypoxia induced a great increase in NcfDNA and McfDNA concentrations within the first 24 h. After this period, cfDNA total concentrations remained stable in hypoxia consecutive to a decrease of nuclear DNA release, and noteworthy, to a complete inhibition of daily mitochondrial DNA release. In TC1-engrafted mice submitted to intermittent hypoxia, plasma NcfDNA levels are much higher than in mice bred in normoxia, unlike plasma McfDNA concentration that is not impacted by hypoxia. CONCLUSION This study suggests that hypoxia negatively modulates nuclear and, particularly, mitochondrial DNA releases in long-term hypoxia, and revealed that the underlying mechanisms are differently regulated.
Collapse
Affiliation(s)
- Amaelle Otandault
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Jean-Daniel Abraham
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Zahra Al Amir Dache
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Abdelnaby Khalyfa
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Thierry Forné
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Corinne Prévostel
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France
- Université de Montpellier, Montpellier, 34090, France
- Institut régional du cancer de Montpellier, Montpellier, 34298, France
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif, 94805, France
- TRIPM, Gulf Medical University, Ajman, UAE
| | - David Gozal
- Department of Child Health and Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, 65201, USA
| | - Alain R Thierry
- IRCM, Inserm U1194, Institut de recherche en cancérologie de Montpellier, 208, avenue des Apothicaires, Montpellier, 34298, France.
- Université de Montpellier, Montpellier, 34090, France.
- Institut régional du cancer de Montpellier, Montpellier, 34298, France.
| |
Collapse
|
20
|
Kamil M, Haque E, Mir SS, Irfan S, Hasan A, Sheikh S, Alam S, Ansari KM, Nazir A. Hydroxyl Group Difference between Anthraquinone Derivatives Regulate Different Cell Death Pathways via Nucleo-Cytoplasmic Shuttling of p53. Anticancer Agents Med Chem 2019; 19:184-193. [PMID: 30370860 DOI: 10.2174/1871520618666181029133041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/23/2017] [Accepted: 03/21/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Despite a number of measures having been taken for cancer management, it is still the second leading cause of death worldwide. p53 is the protein principally being targeted for cancer treatment. Targeting p53 localization may be an effective strategy in chemotherapy as it controls major cell death pathways based on its cellular localization. Anthraquinones are bioactive compounds widely being considered as potential anticancer agents but their mechanism of action is yet to be explored. It has been shown that the number and position of hydroxyl groups within the different anthraquinones like Emodin and Chrysophanol reflects the number of intermolecular hydrogen bonds which affect its activity. Emodin contains an additional OH group at C-3, in comparison to Chrysophanol and may differentially regulate different cell death pathways in cancer cell. OBJECTIVE The present study was aimed to investigate the effect of two anthraquinones Emodin and Chrysophanol on induction of different cell death pathways in human lung cancer cells (A549 cell line) and whether single OH group difference between these compounds differentially regulate cell death pathways. METHODS The cytotoxic effect of Emodin and Chrysophanol was determined by the MTT assay. The expression of autophagy and apoptosis marker genes at mRNA and protein level after treatment was checked by the RT-PCR and Western Blot, respectively. For cellular localization of p53 after treatment, we performed immunofluorescence microscopy. RESULTS We observed that both compounds depicted a dose-dependent cytotoxic response in A549 cells which was in concurrence with the markers associated with oxidative stress such as an increase in ROS generation, decrease in MMP and DNA damage. We also observed that both compounds up-regulated the p53 expression where Emodin causes nuclear p53 localization, which leads to down-regulation in mTOR expression and induces autophagy while Chrysophanol inhibits p53 translocation into nucleus, up-regulates mTOR expression and inhibits autophagy. CONCLUSION From this study, it may be concluded that the structural difference of single hydroxyl group may switch the mechanism from one pathway to another which could be useful in the future to improve anticancer treatment and help in the development of new selective therapies.
Collapse
Affiliation(s)
- Mohd Kamil
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| | - Ejazul Haque
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| | - Snober S Mir
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Safia Irfan
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Lucknow, Uttar Pradesh, India
| | - Saba Sheikh
- Department of Biosciences, Faculty of Science, Integral University, Lucknow, Uttar Pradesh, India
| | - Shamshad Alam
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Kausar M Ansari
- Environmental Carcinogenesis Division, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India
| | - Aamir Nazir
- Laboratory of Functional Genomics and Molecular Toxicology, Division of Toxicology, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
21
|
Calreticulin is a Critical Cell Survival Factor in Malignant Neoplasms. PLoS Biol 2019; 17:e3000402. [PMID: 31568485 PMCID: PMC6768457 DOI: 10.1371/journal.pbio.3000402] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Calreticulin (CRT) is a high-capacity Ca2+ protein whose expression is up-regulated during cellular transformation and is associated with disease progression in multiple types of malignancies. At the same time, CRT has been characterized as an important stress-response protein capable of inducing immunogenic cell death (ICD) when translocated to the cell surface. It remains unclear why CRT expression is preserved by malignant cells during the course of transformation despite its immunogenic properties. In this study, we identify a novel, critical function of CRT as a cell survival factor in multiple types of human solid-tissue malignancies. CRT knockdown activates p53, which mediates cell-death response independent of executioner caspase activity and accompanied full-length poly ADP ribose polymerase (PARP) cleavage. Mechanistically, we show that down-regulation of CRT results in mitochondrial Ca2+ overload and induction of mitochondria permeability transition pore (mPTP)-dependent cell death, which can be significantly rescued by the mPTP inhibitor, Cyclosporin A (CsA). The clinical importance of CRT expression was revealed in the analysis of the large cohort of cancer patients (N = 2,058) to demonstrate that high levels of CRT inversely correlates with patient survival. Our study identifies intracellular CRT as an important therapeutic target for tumors whose survival relies on its expression. This study reveals a novel role for the calcium-binding protein calreticulin in the survival of cancer cells; downregulation of calreticulin leads to mitochondrial calcium overload and an induction of non-apoptotic cell death. Calreticulin levels inversely correlate with the survival of patients diagnosed with various types of solid cancers.
Collapse
|
22
|
Blandino G, Valenti F, Sacconi A, Di Agostino S. Wild type- and mutant p53 proteins in mitochondrial dysfunction: emerging insights in cancer disease. Semin Cell Dev Biol 2019; 98:105-117. [PMID: 31112799 DOI: 10.1016/j.semcdb.2019.05.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Deregulated cell metabolism is one of the cancer hallmarks. Mitochondrial DNA mutations and enzyme defects, aberrant tumor suppressor or oncogenic activities cause mitochondrial dysfunction leading to deregulated cellular energetics. The tumor suppressor protein, p53 is a tetrameric transcription factor that in response to diverse genotoxic and non-genotoxic insults activates a plethora of target genes to preserve genome integrity. In the last two decades the discovery of cytoplasmic p53 localization focused intense research on its extra-nuclear functions. The ability of p53 to induce apoptosis acting directly at mitochondria and the related mechanisms of p53 localization and translocation in the cytoplasm have been investigated. A role of cytoplasmic p53 in autophagy, pentose phosphate pathway, fatty acid synthesis and oxidation, and drug response has been proposed. TP53 gene is mutated in more than half of human cancers. In parallel to loss of tumor suppressive functions, mutant p53 proteins often gain new tumorigenic activities (GOF, gain of function). It has been recently shown that mutant p53 proteins mediate metabolic changes thereby promoting cancer development and metastases. Here we review the contribution of either wild-type p53 or mutant p53 proteins to the fine-tuning of mitochondrial metabolism of both normal and cancer cells. Greater knowledge at the mechanistic level might provide insights to develop new cancer therapeutic approaches.
Collapse
Affiliation(s)
- Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| | - Fabio Valenti
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Andrea Sacconi
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy
| | - Silvia Di Agostino
- Oncogenomic and Epigenetic Unit, Department of Diagnostic Research and Technological Innovation, IRCCS Regina Elena National Cancer Institute, Rome, 00144, Italy.
| |
Collapse
|
23
|
Dual Effect of Doxazosin: Anticancer Activity on SH-SY5Y Neuroblastoma Cells and Neuroprotection on an In Vitro Model of Alzheimer's Disease. Neuroscience 2019; 404:314-325. [DOI: 10.1016/j.neuroscience.2019.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
24
|
Nectin-3 is a new biomarker that mediates the upregulation of MMP2 and MMP9 in ovarian cancer cells. Biomed Pharmacother 2019; 110:139-144. [DOI: 10.1016/j.biopha.2018.11.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/03/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022] Open
|
25
|
Pentimalli F, Grelli S, Di Daniele N, Melino G, Amelio I. Cell death pathologies: targeting death pathways and the immune system for cancer therapy. Genes Immun 2018; 20:539-554. [PMID: 30563970 PMCID: PMC6451632 DOI: 10.1038/s41435-018-0052-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/25/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022]
Abstract
Alterations in the molecular mechanisms of cell death are a common feature of cancer. These alterations enable malignant cells to survive intrinsic death signalling leading to accumulation of genetic aberrations and helping them to cope with adverse conditions. Regulated cell death has historically been exclusively associated with classical apoptosis; however, increasing evidence indicates that several alternative mechanisms orchestrate multiple death pathways, such as ferroptosis, entosis, necroptosis and immunogenic cell death, each with distinct underlying molecular mechanisms. Although pharmacological targeting of cell death pathways has been the subject of intensive efforts in recent decades with a dominant focus on targeting apoptosis, the identification of these novel death pathways has opened additional venues for intervention in cancer cells and the immune system. In this mini-review, we cover some recent progress on major recently emerged cell death modalities, emphasizing their potential clinical and therapeutic implications. We also discuss the interplay between cell death and immune response, highlighting the potential of the combination of traditional anticancer therapy and immunocheckpoint blockade. While attempting to stimulate discussion and draw attention to the possible clinical impact of these more recently emerged cell death modalities, we also cover the major progress achieved in translating strategies for manipulation of apoptotic pathways into the clinic, focusing on the attempts to target the anti-apoptotic protein BCL-2 and the tumour suppressor p53.
Collapse
Affiliation(s)
- Francesca Pentimalli
- Centro Ricerche Oncologiche Mercogliano (CROM), Istituto Nazionale Tumori - IRCCS -Fondazione G. Pascale, Naples, Italy
| | - Sandro Grelli
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Nicola Di Daniele
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Gerry Melino
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.,Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK
| | - Ivano Amelio
- Medical Research Council, Toxicology Unit, University of Cambridge, Hodgkin Building, Lancaster Road, P.O. Box 138, Leicester, LE1 9HN, UK.
| |
Collapse
|
26
|
Le DDT, Jung S, Quynh NTN, Sandag Z, Lee BS, Kim S, Lee H, Lee H, Lee MS. Inhibitory role of AMP‑activated protein kinase in necroptosis of HCT116 colon cancer cells with p53 null mutation under nutrient starvation. Int J Oncol 2018; 54:702-712. [PMID: 30431068 DOI: 10.3892/ijo.2018.4634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 11/06/2022] Open
Abstract
Simultaneous induction of other types of programmed cell death, alongside apoptosis, in cancer cells may be considered an attractive strategy for the development of more effective anticancer therapies. The present study aimed to investigate the role of AMP‑activated protein kinase (AMPK) in nutrient/serum starvation‑induced necroptosis, which is a programmed form of necrosis, in the presence or absence of p53. The present study detected higher cell proliferation and lower cell death rates in the HCT116 human colon cancer cell line containing a p53 null mutation (HCT116 p53‑/‑) compared with in HCT116 cells harboring wild‑type p53 (HCT116 p53+/+), as determined using a cell viability assay. Notably, western blot analysis revealed a relatively lower level of necroptosis in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Investigating the mechanism, it was revealed that necroptosis may be induced in HCT116 p53+/+ cells by significantly increasing reactive oxygen species (ROS) and decreasing mitochondrial membrane potential (MMP), whereas little alterations were detected in HCT116 p53‑/‑ cells. Unexpectedly, a much lower level of ATP was detected in HCT116 p53‑/‑ cells compared with in HCT116 p53+/+ cells. Accordingly, AMPK phosphorylation on the Thr172 residue was markedly increased in HCT116 p53‑/‑ cells. Furthermore, western blot analysis and ROS measurements indicated that AMPK inhibition, using dorsomorphin dihydrochloride, accelerated necroptosis by increasing ROS generation in HCT116 p53‑/‑ cells. However, AMPK activation by AICAR did not suppress necroptosis in HCT116 p53+/+ cells. In conclusion, these data strongly suggested that AMPK activation may be enhanced in HCT116 p53‑/‑ cells under serum‑depleted conditions via a drop in cellular ATP levels. In addition, activated AMPK may be at least partially responsible for the inhibition of necroptosis in HCT116 p53‑/‑ cells, but not in HCT116 p53+/+cells.
Collapse
Affiliation(s)
- Dan-Diem Thi Le
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Samil Jung
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Nguyen Thi Ngoc Quynh
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Zolzaya Sandag
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Beom Suk Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Subeen Kim
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyegyeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Hyojeong Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| | - Myeong-Sok Lee
- Department of Biological Science, Sookmyung Women's University, Seoul 04310, Republic of Korea
| |
Collapse
|
27
|
Wang GX, Tu HC, Dong Y, Skanderup AJ, Wang Y, Takeda S, Ganesan YT, Han S, Liu H, Hsieh JJ, Cheng EH. ΔNp63 Inhibits Oxidative Stress-Induced Cell Death, Including Ferroptosis, and Cooperates with the BCL-2 Family to Promote Clonogenic Survival. Cell Rep 2018; 21:2926-2939. [PMID: 29212036 DOI: 10.1016/j.celrep.2017.11.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/08/2017] [Accepted: 11/08/2017] [Indexed: 12/31/2022] Open
Abstract
The BCL-2 family proteins are central regulators of apoptosis. However, cells deficient for BAX and BAK or overexpressing BCL-2 still succumb to oxidative stress upon DNA damage or matrix detachment. Here, we show that ΔNp63α overexpression protects cells from oxidative stress induced by oxidants, DNA damage, anoikis, or ferroptosis-inducing agents. Conversely, ΔNp63α deficiency increases oxidative stress. Mechanistically, ΔNp63α orchestrates redox homeostasis through transcriptional control of glutathione biogenesis, utilization, and regeneration. Analysis of a lung squamous cell carcinoma dataset from The Cancer Genome Atlas (TCGA) reveals that TP63 amplification/overexpression upregulates the glutathione metabolism pathway in primary human tumors. Strikingly, overexpression of ΔNp63α promotes clonogenic survival of p53-/-Bax-/-Bak-/- cells against DNA damage. Furthermore, co-expression of BCL-2 and ΔNp63α confers clonogenic survival against matrix detachment, disrupts the luminal clearance of mammary acini, and promotes cancer metastasis. Our findings highlight the need for a simultaneous blockade of apoptosis and oxidative stress to promote long-term cellular well-being.
Collapse
Affiliation(s)
- Gary X Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Division of Biology & Biomedical Sciences, Washington University, St. Louis, MO 63110, USA
| | - Ho-Chou Tu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yiyu Dong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anders Jacobsen Skanderup
- Genome Institute of Singapore, National University of Singapore, 60 Biopolis St., 138672 Singapore, Singapore
| | - Yufeng Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shugaku Takeda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yogesh Tengarai Ganesan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Song Han
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Han Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James J Hsieh
- Molecular Oncology, Department of Medicine, Siteman Cancer Center, Washington University, St. Louis, MO 63110, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
28
|
Charni-Natan M, Solomon H, Molchadsky A, Jacob-Berger A, Goldfinger N, Rotter V. Various stress stimuli rewire the profile of liver secretome in a p53-dependent manner. Cell Death Dis 2018; 9:647. [PMID: 29844359 PMCID: PMC5974134 DOI: 10.1038/s41419-018-0697-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 05/01/2018] [Accepted: 05/07/2018] [Indexed: 12/25/2022]
Abstract
Liver is an important secretory organ that consistently manages various insults in order to retain whole-body homeostasis. Importantly, it was suggested that the tumor-suppressor p53 plays a role in a variety of liver physiological processes and thus it is being regarded as a systemic homeostasis regulator. Using high-throughput mass spectrometric analysis, we identified various p53-dependent liver secretome profiles. This allowed a global view on the role of p53 in maintaining the harmony of liver and whole-body homeostasis. We found that p53 altered the liver secretome differently under various conditions. Under physiological conditions, p53 controls factors that are related mainly to lipid metabolism and injury response. Upon exposure to various types of cancer therapy agents, the hepatic p53 is activated and induces the secretion of proteins related to additional pathways, such as hemostasis, immune response, and cell adhesion. Interestingly, we identified a possible relationship between p53-dependent liver functions and lung tumors. The latter modify differently liver secretome profile toward the secretion of proteins mainly related to cell migration and immune response. The notion that p53 may rewire the liver secretome profile suggests a new non-cell autonomous role of p53 that affect different liver functions and whole organism homeostasis.
Collapse
Affiliation(s)
- Meital Charni-Natan
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hilla Solomon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Jacob-Berger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Naomi Goldfinger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
29
|
Miyazaki M, Otomo R, Matsushima-Hibiya Y, Suzuki H, Nakajima A, Abe N, Tomiyama A, Ichimura K, Matsuda K, Watanabe T, Ochiya T, Nakagama H, Sakai R, Enari M. The p53 activator overcomes resistance to ALK inhibitors by regulating p53-target selectivity in ALK-driven neuroblastomas. Cell Death Discov 2018; 4:56. [PMID: 29760954 PMCID: PMC5945735 DOI: 10.1038/s41420-018-0059-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/30/2018] [Accepted: 04/06/2018] [Indexed: 01/23/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK) is an oncogenic receptor tyrosine kinase that is activated by gene amplification and mutation in neuroblastomas. ALK inhibitors can delay the progression of ALK-driven cancers, but are of limited use owing to ALK inhibitor resistance. Here, we show that resistance to ALK inhibitor in ALK-driven neuroblastomas can be attenuated by combination treatment with a p53 activator. Either ALK inhibition or p53 activator treatment induced cell cycle arrest, whereas combination treatment induced apoptosis, and prevented tumour relapse both in vitro and in vivo. This shift toward apoptosis, and away from cell-cycle arrest, in the presence of an ALK inhibitor and a p53 activator, is mediated by inhibition of the ALK-AKT-FOXO3a axis leading to a specific upregulation of SOX4. SOX4 cooperates with p53 to upregulate the pro-apoptotic protein PUMA. These data therefore suggest a novel combination therapy strategy for treating ALK-driven neuroblastomas.
Collapse
Affiliation(s)
- Makoto Miyazaki
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,2Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan.,3Department of Computational Biology and Medical Sciences, Tumour Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Ryo Otomo
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,11Present Address: Division of Biomedical Information Analysis, Iwate Tohoku Medical Megabank Organization, Disaster Reconstruction Center, Iwate Medical University, Yahaba-cho, Shiwa-gun, Iwate 028-3694 Japan
| | - Yuko Matsushima-Hibiya
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Hidenobu Suzuki
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,5Department of NCC Cancer Science, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510 Japan
| | - Ayana Nakajima
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,6Molecular and Cellular Biology Laboratory, Graduate school of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Naomi Abe
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Arata Tomiyama
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,7Department of Neurosurgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513 Japan
| | - Koichi Ichimura
- 4Division of Brain Tumour Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Koichi Matsuda
- 2Department of Computational Biology and Medical Sciences, Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
| | - Toshiki Watanabe
- 3Department of Computational Biology and Medical Sciences, Tumour Cell Biology, Graduate School of Frontier Sciences, The University of Tokyo, Minato-ku, Tokyo 108-8639 Japan
| | - Takahiro Ochiya
- 8Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Hitoshi Nakagama
- 9Division of Cancer Development System, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| | - Ryuichi Sakai
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan.,10Division of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Masato Enari
- 1Division of Refractory and Advanced Cancer, National Cancer Center Research Institute, Chuo-ku, Tokyo 104-0045 Japan
| |
Collapse
|
30
|
Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget 2018; 8:25310-25322. [PMID: 28445976 PMCID: PMC5421932 DOI: 10.18632/oncotarget.15813] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 02/07/2017] [Indexed: 12/29/2022] Open
Abstract
Reactive oxygen species (ROS) play important roles in follicular development and survival. Granulosa cell death is associated with increased ROS, but the mechanism of granulosa cell death induced by ROS is not clear. In order to define the molecular link between ROS and granulosa cell death, COV434, human granulosa tumor cells, were treated with H2O2. Compared to control cells, H2O2 induced granulosa cell death in a dose- and time-dependent manner. H2O2 induced an increase in Bax, Bak and Puma, and a decrease in anti-apoptotic molecules such as Bcl-2, Bcl-xL and Mcl-1. Both knockdown of Puma and overexpression of Bcl-xL could inhibit H2O2-induced granulosa cell death. These results suggest that suppression of Puma and overexpression of anti-apoptotic Bcl-2 family members could improve granulosa cell survival. To explore the mechanisms responsible for these findings, ROS in granulosa cells treatment with H2O2 were measured. The results showed that ROS was increased in a H2O2 dose- and time-dependent manner at the earlier time point. In addition, H2O2 induced an increase in Nrf2 and phosphorylation of JNK and p53. SP600125, an inhibitor of JNK, inhibits H2O2-induced phosphorylation of JNK and p53, and granulosa cell death. Antioxidant N-acetylcysteine (NAC) dose-dependently prevents H2O2-induced granulosa cell death. Furthermore, NAC also prevents phosphorylation of JNK and p53 induced by H2O2. Taken together, these data suggest that H2O2 regulates cell death in granulosa cells via the ROS-JNK-p53 pathway. These findings provide an improved understanding of the mechanisms underlying granulosa cell apoptosis, which could potentially be useful for future clinical applications.
Collapse
|
31
|
Liu M, Chen YL, Kuo YH, Lu MK, Liao CC. Aqueous extract of Sapindus mukorossi induced cell death of A549 cells and exhibited antitumor property in vivo. Sci Rep 2018; 8:4831. [PMID: 29555954 PMCID: PMC5859273 DOI: 10.1038/s41598-018-23096-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 03/02/2018] [Indexed: 12/15/2022] Open
Abstract
Sapindus mukorossi is a deciduous plant and has recently been recognized to have anticancer property. In the present study, we discovered that S. mukorossi leaf and stem aqueous extract (SaM) contained two polysaccharides mainly made of myo-inositol, galactose, glucose, and fructose and the aim of this study was to investigate the antitumor property the aqueous extract SaM. In vitro treatment of SaM diminished proliferative potential of lung adenocarcinomic cells and induced intracellular oxidative stress, as well as necrotic cell death. Moreover, exposure to SaM attenuated cell migration, demonstrating the effectiveness at reducing invasive property of malignant lung cells. Gene and protein expression studies indicated that SaM treatment altered the expression of proliferation/survival modulator NF-κB, tumor growth modulator ERK2, metastasis-associated molecules MMP9/12, and tumor suppressor p53 in A549 cells. Using model animals bearing Lewis lung cancer cell LL/2, we demonstrated that SaM was antitumoral and did not induce any undesired organ damage, immunotoxicity, and off-target inflammation. This work, to our knowledge, is the first study documents the antitumor bioactivity of aqueous extract riched in polysaccharides from S. mukorossi and provides insights into the potential pharmacological application of SaM as antitumor agent against lung cancer.
Collapse
Affiliation(s)
- Min Liu
- Department of Life Science, Chinese Culture University, Taipei, Republic of China. .,Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China.
| | - Yen-Lin Chen
- Department of Life Science, Chinese Culture University, Taipei, Republic of China
| | - Yao-Haur Kuo
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, Republic of China.,Graduate Institute of Integrated Medicine, China Medial University, Taichung, Republic of China.,Department of Horticulture and Biotechnology, College of Agriculture, Chinese Culture University, Taipei, Republic of China
| | - Mei-Kuang Lu
- Ministry of Health and Welfare, National Research Institute of Chinese Medicine, Taipei, Republic of China
| | - Chia-Ching Liao
- Department of Biology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
32
|
Napoletano F, Gibert B, Yacobi-Sharon K, Vincent S, Favrot C, Mehlen P, Girard V, Teil M, Chatelain G, Walter L, Arama E, Mollereau B. p53-dependent programmed necrosis controls germ cell homeostasis during spermatogenesis. PLoS Genet 2017; 13:e1007024. [PMID: 28945745 PMCID: PMC5629030 DOI: 10.1371/journal.pgen.1007024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/05/2017] [Accepted: 09/15/2017] [Indexed: 01/02/2023] Open
Abstract
The importance of regulated necrosis in pathologies such as cerebral stroke and myocardial infarction is now fully recognized. However, the physiological relevance of regulated necrosis remains unclear. Here, we report a conserved role for p53 in regulating necrosis in Drosophila and mammalian spermatogenesis. We found that Drosophila p53 is required for the programmed necrosis that occurs spontaneously in mitotic germ cells during spermatogenesis. This form of necrosis involved an atypical function of the initiator caspase Dronc/Caspase 9, independent of its catalytic activity. Prevention of p53-dependent necrosis resulted in testicular hyperplasia, which was reversed by restoring necrosis in spermatogonia. In mouse testes, p53 was required for heat-induced germ cell necrosis, indicating that regulation of necrosis is a primordial function of p53 conserved from invertebrates to vertebrates. Drosophila and mouse spermatogenesis will thus be useful models to identify inducers of necrosis to treat cancers that are refractory to apoptosis.
Collapse
Affiliation(s)
- Francesco Napoletano
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Benjamin Gibert
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Stéphane Vincent
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Clémentine Favrot
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Patrick Mehlen
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Centre de Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Victor Girard
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Margaux Teil
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Gilles Chatelain
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Ludivine Walter
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Bertrand Mollereau
- Laboratory of Biology and Modelling of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, INSERM U1210, UMS 3444 Biosciences Lyon Gerland, Université de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
33
|
Lan H, Yuan H, Lin C. Sulforaphane induces p53‑deficient SW480 cell apoptosis via the ROS‑MAPK signaling pathway. Mol Med Rep 2017; 16:7796-7804. [PMID: 28944886 DOI: 10.3892/mmr.2017.7558] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 05/08/2017] [Indexed: 11/06/2022] Open
Abstract
Sulforaphane (SFN) has been revealed to inhibit the growth and induce apoptosis of cancer cells. However, the detailed anticancer effects of SFN on p53‑deficient colon cancer cells has yet to be clearly elucidated. The present study employed p53‑deficient SW480 cells to establish an SFN‑induced in vitro model of apoptosis. The critical events leading to apoptosis were then evaluated in SFN‑treated p53‑deficient SW480 cells, by performing an MTT assay, flow cytometry, western blotting and ELISA. The results demonstrated that SFN at concentrations of 5, 10, 15 and 20 µM induced mitochondria‑associated cell apoptosis, which was further confirmed by disruption of the mitochondrial membrane potential, an increase in the Bax/Bcl‑2 ratio, as well as activation of caspase‑3, ‑7 and ‑9. In addition, SFN‑induced apoptosis was associated with an increase in the generation of reactive oxygen species (ROS), and the activation of extracellular signal‑regulated kinases (Erk) and p38 mitogen‑activated protein kinases. However, SFN did not induce expression of the p53 family member, p73. SFN‑induced apoptosis was subsequently confirmed to be ROS‑dependent and associated with Erk/p38, as the specific inhibitors for ROS, phosphorylated (p)‑Erk and p‑p38, completely or partially attenuated the SFN‑induced reduction in SW480 cell viability. In addition, the results demonstrated that even at the lowest concentrations (5 µM), SFN increased the sensitivity of p53‑proficient HCT‑116 cells to cisplatin. In conclusion, the results suggest that SFN may induce apoptosis in p53‑deficient SW480 cells via p53/p73‑independent and ROS‑Erk/p38‑dependent signaling pathways.
Collapse
Affiliation(s)
- Hai Lan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hongyin Yuan
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Congyao Lin
- Department of Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
34
|
Biphasic ROS production, p53 and BIK dictate the mode of cell death in response to DNA damage in colon cancer cells. PLoS One 2017; 12:e0182809. [PMID: 28796811 PMCID: PMC5552129 DOI: 10.1371/journal.pone.0182809] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/31/2017] [Indexed: 01/08/2023] Open
Abstract
Necrosis, apoptosis and autophagic cell death are the main cell death pathways in multicellular organisms, all with distinct and overlapping cellular and biochemical features. DNA damage may trigger different types of cell death in cancer cells but the molecular events governing the mode of cell death remain elusive. Here we showed that increased BH3-only protein BIK levels promoted cisplatin- and UV-induced mitochondrial apoptosis and biphasic ROS production in HCT-116 wild-type cells. Nonetheless, early single peak of ROS formation along with lysosomal membrane permeabilization and cathepsin activation regulated cisplatin- and UV-induced necrosis in p53-null HCT-116 cells. Of note, necrotic cell death in p53-null HCT-116 cells did not depend on BIK, mitochondrial outer membrane permeabilization or caspase activation. These data demonstrate how cancer cells with different p53 background respond to DNA-damaging agents by integrating distinct cell signaling pathways dictating the mode of cell death.
Collapse
|
35
|
Sun W, Wu X, Gao H, Yu J, Zhao W, Lu JJ, Wang J, Du G, Chen X. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells. Free Radic Biol Med 2017; 108:433-444. [PMID: 28414098 DOI: 10.1016/j.freeradbiomed.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 01/13/2023]
Abstract
Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca2+) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium accumulation is a critical mediator in MAM-induced necroptosis through sustained JNK activation and mitochondrial ROS production. Our study also provided new insights into the molecular regulation of necroptosis in human colon cancer cells.
Collapse
Affiliation(s)
- Wen Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xiaxia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Hongwei Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jie Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Wenwen Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
36
|
Non-Canonical Cell Death Induced by p53. Int J Mol Sci 2016; 17:ijms17122068. [PMID: 27941671 PMCID: PMC5187868 DOI: 10.3390/ijms17122068] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/19/2022] Open
Abstract
Programmed cell death is a vital biological process for multicellular organisms to maintain cellular homeostasis, which is regulated in a complex manner. Over the past several years, apart from apoptosis, which is the principal mechanism of caspase-dependent cell death, research on non-apoptotic forms of programmed cell death has gained momentum. p53 is a well characterized tumor suppressor that controls cell proliferation and apoptosis and has also been linked to non-apoptotic, non-canonical cell death mechanisms. p53 impacts these non-canonical forms of cell death through transcriptional regulation of its downstream targets, as well as direct interactions with key players involved in these mechanisms, in a cell type- or tissue context-dependent manner. In this review article, we summarize and discuss the involvement of p53 in several non-canonical modes of cell death, including caspase-independent apoptosis (CIA), ferroptosis, necroptosis, autophagic cell death, mitotic catastrophe, paraptosis, and pyroptosis, as well as its role in efferocytosis which is the process of clearing dead or dying cells.
Collapse
|
37
|
Mazzolini G, Sowa JP, Canbay A. Cell death mechanisms in human chronic liver diseases: a far cry from clinical applicability. Clin Sci (Lond) 2016; 130:2121-2138. [DOI: 10.1042/cs20160035] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
The liver is constantly exposed to a host of injurious stimuli. This results in hepatocellular death mainly by apoptosis and necrosis, but also due to autophagy, necroptosis, pyroptosis and in some cases by an intricately balanced combination thereof. Overwhelming and continuous cell death in the liver leads to inflammation, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Although data from various disease models may suggest a specific (predominant) cell death mode for different aetiologies, the clinical reality is not as clear cut. Reliable and non-invasive cell death markers are not available in general practice and assessment of cell death mode to absolute certainty from liver biopsies does not seem feasible, yet. Various aetiologies probably induce different predominant cell death modes within the liver, although the death modes involved may change during disease progression. Moreover, current methods applicable in patients are limited to surrogate markers for apoptosis (M30), and possibly for pyroptosis (IL-1 family) and necro(pto)sis (HMGB1). Although markers for some death modes are not available at all (autophagy), others may not be specific for a cell death mode or might not always definitely indicate dying cells. Physicians need to take care in asserting the presence of cell death. Still the serum-derived markers are valuable tools to assess severity of chronic liver diseases. This review gives a short overview of known hepatocellular cell death modes in various aetiologies of chronic liver disease. Also the limitations of current knowledge in human settings and utilization of surrogate markers for disease assessment are summarized.
Collapse
Affiliation(s)
- Guillermo Mazzolini
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
- Gene Therapy Laboratory, Instituto de Investigaciones Medicas Aplicadas, Universidad Austral-CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas), Pilar Centro, Buenos Aires, Argentina
| | - Jan-Peter Sowa
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| | - Ali Canbay
- Department for Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
38
|
Lu C, Xu W, Zhang F, Shao J, Zheng S. Nrf2 Knockdown Disrupts the Protective Effect of Curcumin on Alcohol-Induced Hepatocyte Necroptosis. Mol Pharm 2016; 13:4043-4053. [PMID: 27764939 DOI: 10.1021/acs.molpharmaceut.6b00562] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
It has emerged that hepatocyte necroptosis plays a critical role in chronic alcoholic liver disease (ALD). Our previous study has identified that the beneficial therapeutic effect of curcumin on alcohol-caused liver injury might be attributed to activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), whereas the role of curcumin in regulating necroptosis and the underlying mechanism remain to be determined. We first found that chronic alcohol consumption triggered obvious hepatocyte necroptosis, leading to increased expression of receptor-interacting protein 1, receptor-interacting protein 3, high-mobility group box 1, and phosphorylated mixed lineage kinase domain-like in murine livers. Curcumin dose-dependently ameliorated hepatocyte necroptosis and alleviated alcohol-caused decrease in hepatic Nrf2 expression in alcoholic mice. Then Nrf2 shRNA lentivirus was introduced to generate Nrf2-knockdown mice. Our results indicated that Nrf2 knockdown aggravated the effects of alcohol on liver injury and necroptosis and even abrogated the inhibitory effect of curcumin on necroptosis. Further, activated Nrf2 by curcumin inhibited p53 expression in both livers and cultured hepatocytes under alcohol stimulation. The next in vitro experiments, similar to in vivo ones, revealed that although Nrf2 knockdown abolished the suppression of curcumin on necroptosis of hepatocytes exposed to ethanol, p53 siRNA could clearly rescued the relative effect of curcumin. In summary, for the first time, we concluded that curcumin attenuated alcohol-induced hepatocyte necroptosis in a Nrf2/p53-dependent mechanism. These findings make curcumin an excellent candidate for ALD treatment and advance the understanding of ALD mechanisms associated with hepatocyte necroptosis.
Collapse
Affiliation(s)
- Chunfeng Lu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Wenxuan Xu
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Feng Zhang
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Jiangjuan Shao
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| | - Shizhong Zheng
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine , Nanjing, Jiangsu, China
| |
Collapse
|
39
|
Autophagy and the invisible line between life and death. Eur J Cell Biol 2016; 95:598-610. [PMID: 28340912 DOI: 10.1016/j.ejcb.2016.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
For a considerable time cell death has been considered to represent mutually exclusive states with cell death modalities that are governed by their inherent and unique mode of action involving specific molecular entities and have therefore been studied primarily in isolation. It is now, however, becoming increasingly clear that these modalities are regulated by similar pathways and share a number of initiator and effector molecules that control both cell death as well as cell survival mechanisms, demanding a newly aligned and integrative approach of cell death assessment. Frequently cell death is triggered through a dual action that incorporates signaling events associated with more than one death modality. Apoptosis and necrosis regularly co-operate in a tightly balanced interplay that involves autophagy to serve context dependently either as a pro-survival or a pro-death mechanism. In this review we will assess current cell death modalities and their molecular overlap with the goal of clarifying the controversial role of autophagy in the cell death response. By dissecting the key molecular pathways and their positioning within a network of regulatory signalling hubs and checkpoints we discuss a distinct approach that integrates autophagy with a resultant cell death manifestation. In doing so, former classifications of cell death modalities fade and reveal the intricate molecular proportions and complexities of the cell death response that may contribute towards an enhanced means of cell death control.
Collapse
|
40
|
Abstract
The p53 protein is essential for the implementation of the cellular response to challenging environmental conditions. Reacting to stochastic nutrient stress, p53 integrates the activity of key metabolite-sensing pathways to coordinate an appropriate cell response. During starvation, p53 activity augments cell survival pathways, inhibits unnecessary growth, and promotes efficient nutrient generation, utilization, and conservation. Similarly, during oxygen stress, p53 facilitates redirection of cellular metabolism toward energy generation through nonoxidative means, the suppression of reactive oxygen species (ROS) generation, and ROS detoxification-promoting cell survival. However, if adverse conditions are too acute or persistent, p53 can switch roles to implement canonical cell killing. The ability of p53 to regulate metabolism is a powerful feature of p53 biology that can both promote cell survival and act as a check on the inappropriate proliferation of cancer cells.
Collapse
|
41
|
Ying Y, Padanilam BJ. Regulation of necrotic cell death: p53, PARP1 and cyclophilin D-overlapping pathways of regulated necrosis? Cell Mol Life Sci 2016; 73:2309-24. [PMID: 27048819 PMCID: PMC5490387 DOI: 10.1007/s00018-016-2202-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/15/2022]
Abstract
In contrast to apoptosis and autophagy, necrotic cell death was considered to be a random, passive cell death without definable mediators. However, this dogma has been challenged by recent developments suggesting that necrotic cell death can also be a regulated process. Regulated necrosis includes multiple cell death modalities such as necroptosis, parthanatos, ferroptosis, pyroptosis, and mitochondrial permeability transition pore (MPTP)-mediated necrosis. Several distinctive executive molecules, particularly residing on the mitochondrial inner and outer membrane, amalgamating to form the MPTP have been defined. The c-subunit of the F1F0ATP synthase on the inner membrane and Bax/Bak on the outer membrane are considered to be the long sought components that form the MPTP. Opening of the MPTP results in loss of mitochondrial inner membrane potential, disruption of ATP production, increased ROS production, organelle swelling, mitochondrial dysfunction and consequent necrosis. Cyclophilin D, along with adenine nucleotide translocator and the phosphate carrier are considered to be important regulators involved in the opening of MPTP. Increased production of ROS can further trigger other necrotic pathways mediated through molecules such as PARP1, leading to irreversible cell damage. This review examines the roles of PARP1 and cyclophilin D in necrotic cell death. The hierarchical role of p53 in regulation and integration of key components of signaling pathway to elicit MPTP-mediated necrosis and ferroptosis is explored. In the context of recent insights, the indistinct role of necroptosis signaling in tubular necrosis after ischemic kidney injury is scrutinized. We conclude by discussing the participation of p53, PARP1 and cyclophilin D and their overlapping pathways to elicit MPTP-mediated necrosis and ferroptosis in acute kidney injury.
Collapse
Affiliation(s)
- Yuan Ying
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, 985850 University of Nebraska Medical Center, Omaha, NE, 68198-5850, USA.
- Department of Internal Medicine, Division of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
42
|
He J, Ji X, Li Y, Xue X, Feng G, Zhang H, Wang H, Gao M. Subchronic exposure of benzo(a)pyrene interferes with the expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in sub-regions of cerebral cortex and hippocampus. ACTA ACUST UNITED AC 2016; 68:149-56. [DOI: 10.1016/j.etp.2015.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/05/2015] [Accepted: 11/25/2015] [Indexed: 12/23/2022]
|
43
|
Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH. An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol 2015; 17:1270-81. [PMID: 26344567 PMCID: PMC4589531 DOI: 10.1038/ncb3236] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 08/06/2015] [Indexed: 12/18/2022]
Abstract
Multidomain proapoptotic BAX and BAK, once activated, permeabilize mitochondria to trigger apoptosis, whereas antiapoptotic BCL-2 members preserve mitochondrial integrity. The BH3-only molecules (BH3s) promote apoptosis by either activating BAX-BAK or inactivating antiapoptotic members. Here, we present biochemical and genetic evidence that NOXA is a bona fide activator BH3. Using combinatorial gain-of-function and loss-of-function approaches in Bid−/−Bim−/−Puma−/−Noxa−/− and Bax−/−Bak−/− cells, we have constructed an interconnected hierarchical model that accommodates and explains how the intricate interplays between the BCL-2 members dictate cellular survival versus death. BID, BIM, PUMA and NOXA directly induce stepwise, bimodal activation of BAX-BAK. BCL-2, BCL-XL and MCL-1 inhibit both modes of BAX-BAK activation by sequestering activator BH3s and “BH3-exposed” monomers of BAX-BAK, respectively. Furthermore, autoactivation of BAX and BAK can occur independently of activator BH3s through downregulation of BCL-2, BCL-XL and MCL-1. Our studies lay a foundation on targeting the BCL-2 family for treating diseases with dysregulated apoptosis.
Collapse
Affiliation(s)
- Hui-Chen Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Masayuki Kanai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Akane Inoue-Yamauchi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ho-Chou Tu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yafen Huang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Decheng Ren
- Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| | - Hyungjin Kim
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794, USA
| | - Shugaku Takeda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Denis E Reyna
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Po M Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yogesh Tengarai Ganesan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chung-Ping Liao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - James J Hsieh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, New York 10065, USA
| |
Collapse
|
44
|
Kruiswijk F, Labuschagne CF, Vousden KH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill. Nat Rev Mol Cell Biol 2015; 16:393-405. [PMID: 26122615 DOI: 10.1038/nrm4007] [Citation(s) in RCA: 805] [Impact Index Per Article: 80.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The function of p53 as a tumour suppressor has been attributed to its ability to promote cell death or permanently inhibit cell proliferation. However, in recent years, it has become clear that p53 can also contribute to cell survival. p53 regulates various metabolic pathways, helping to balance glycolysis and oxidative phosphorylation, limiting the production of reactive oxygen species, and contributing to the ability of cells to adapt to and survive mild metabolic stresses. Although these activities may be integrated into the tumour suppressive functions of p53, deregulation of some elements of the p53-induced response might also provide tumours with a survival advantage.
Collapse
Affiliation(s)
- Flore Kruiswijk
- 1] Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK. [2]
| | | | - Karen H Vousden
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
45
|
Mrschtik M, Ryan KM. Lysosomal proteins in cell death and autophagy. FEBS J 2015; 282:1858-70. [PMID: 25735653 DOI: 10.1111/febs.13253] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 02/17/2015] [Accepted: 02/23/2015] [Indexed: 12/29/2022]
Abstract
Nearly 60 years ago, lysosomes were first described in the laboratory of Christian de Duve, a discovery that significantly contributed to him being awarded a share of the 1974 Nobel Prize in Physiology or Medicine for elucidating 'the structural and functional organization of the cell'. Initially thought of as a simple waste degradation facility of the cell, these organelles recently emerged as signalling centres with connections to major cellular processes. This review provides an overview of the many roles of lysosomal proteins in two of these processes: cell death and autophagy. We discuss both resident lysosomal proteins as well those that temporarily associate with lysosomes to influence autophagy and cell death pathways. Particular focus is given to studies in mammalian cells and in vivo systems.
Collapse
Affiliation(s)
- Michaela Mrschtik
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| |
Collapse
|
46
|
Brown DI, Griendling KK. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ Res 2015; 116:531-49. [PMID: 25634975 DOI: 10.1161/circresaha.116.303584] [Citation(s) in RCA: 368] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oxidative stress has long been implicated in cardiovascular disease, but more recently, the role of reactive oxygen species (ROS) in normal physiological signaling has been elucidated. Signaling pathways modulated by ROS are complex and compartmentalized, and we are only beginning to identify the molecular modifications of specific targets. Here, we review the current literature on ROS signaling in the cardiovascular system, focusing on the role of ROS in normal physiology and how dysregulation of signaling circuits contributes to cardiovascular diseases, including atherosclerosis, ischemia-reperfusion injury, cardiomyopathy, and heart failure. In particular, we consider how ROS modulate signaling pathways related to phenotypic modulation, migration and adhesion, contractility, proliferation and hypertrophy, angiogenesis, endoplasmic reticulum stress, apoptosis, and senescence. Understanding the specific targets of ROS may guide the development of the next generation of ROS-modifying therapies to reduce morbidity and mortality associated with oxidative stress.
Collapse
Affiliation(s)
- David I Brown
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- From the Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA.
| |
Collapse
|
47
|
Wang HY, Zhang B. Cobalt Chloride Induces Necroptosis in Human Colon Cancer HT-29 Cells. Asian Pac J Cancer Prev 2015; 16:2569-74. [DOI: 10.7314/apjcp.2015.16.6.2569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
48
|
Suntharalingam K, Awuah SG, Bruno PM, Johnstone TC, Wang F, Lin W, Zheng YR, Page JE, Hemann MT, Lippard SJ. Necroptosis-inducing rhenium(V) oxo complexes. J Am Chem Soc 2015; 137:2967-74. [PMID: 25698398 PMCID: PMC4702498 DOI: 10.1021/ja511978y] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Rhenium(V) oxo complexes of general formula [ReO(OMe)(N^N)Cl2], where N^N = 4,7-diphenyl-1,10-phenanthroline, 1, or 3,4,7,8-tetramethyl-1,10-phenanthroline, 2, effectively kill cancer cells by triggering necroptosis, a non-apoptotic form of cell death. Both complexes evoke necrosome (RIP1-RIP3)-dependent intracellular reactive oxygen species (ROS) production and propidium iodide uptake. The complexes also induce mitochondrial membrane potential depletion, a possible downstream effect of ROS production. Apparently, 1 and 2 are the first rhenium complexes to evoke cellular events consistent with programmed necrosis in cancer cells. Furthermore, 1 and 2 display low acute toxicity in C57BL/6 mice and reasonable stability in fresh human blood.
Collapse
Affiliation(s)
- Kogularamanan Suntharalingam
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Department of Chemistry, King’s College London, London, SE1 1DB, United Kingdom
| | - Samuel G. Awuah
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Peter M. Bruno
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Timothy C. Johnstone
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Fang Wang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Wei Lin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Yao-Rong Zheng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Julia E. Page
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Michael T. Hemann
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
49
|
Moriwaki K, Bertin J, Gough PJ, Orlowski GM, Chan FKM. Differential roles of RIPK1 and RIPK3 in TNF-induced necroptosis and chemotherapeutic agent-induced cell death. Cell Death Dis 2015; 6:e1636. [PMID: 25675296 PMCID: PMC4669795 DOI: 10.1038/cddis.2015.16] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 12/30/2014] [Accepted: 01/07/2015] [Indexed: 12/12/2022]
Abstract
Apoptosis is a key mechanism for metazoans to eliminate unwanted cells. Resistance to apoptosis is a hallmark of many cancer cells and a major roadblock to traditional chemotherapy. Recent evidence indicates that inhibition of caspase-dependent apoptosis sensitizes many cancer cells to a form of non-apoptotic cell death termed necroptosis. This has led to widespread interest in exploring necroptosis as an alternative strategy for anti-cancer therapy. Here we show that in human colon cancer tissues, the expression of the essential necroptosis adaptors receptor interacting protein kinase (RIPK)1 and RIPK3 is significantly decreased compared with adjacent normal colon tissues. The expression of RIPK1 and RIPK3 was suppressed by hypoxia, but not by epigenetic DNA modification. To explore the role of necroptosis in chemotherapy-induced cell death, we used inhibitors of RIPK1 or RIPK3 kinase activity, and modulated their expression in colon cancer cell lines using short hairpin RNAs. We found that RIPK1 and RIPK3 were largely dispensable for classical chemotherapy-induced cell death. Caspase inhibitor and/or second mitochondria-derived activator of caspase mimetic, which sensitize cells to RIPK1- and RIPK3-dependent necroptosis downstream of tumor necrosis factor receptor-like death receptors, also did not alter the response of cancer cells to chemotherapeutic agents. In contrast to the RIPKs, we found that cathepsins are partially responsible for doxorubicin or etoposide-induced cell death. Taken together, these results indicate that traditional chemotherapeutic agents are not efficient inducers of necroptosis and that more potent pathway-specific drugs are required to fully harness the power of necroptosis in anti-cancer therapy.
Collapse
Affiliation(s)
- K Moriwaki
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-Inflammation Therapeutic Area, GlaxoSmithKline, Collegeville, PA 19422, USA
| | - G M Orlowski
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| | - F K M Chan
- Department of Pathology, Immunology and Microbiology Program, University of Massachusetts Medical School (UMMS), Worcester, MA 01655, USA
| |
Collapse
|
50
|
Luo Y, Roy M, Xiao X, Sun S, Liang L, Chen H, Fu Y, Sun Y, Zhu M, Ye M, Liu J. Lycorine induces programmed necrosis in the multiple myeloma cell line ARH-77. Tumour Biol 2014; 36:2937-45. [PMID: 25487618 DOI: 10.1007/s13277-014-2924-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022] Open
Abstract
Lycorine, a natural alkaloid, has been widely reported to possess potential efficacy against cancer. However, the anti-multiple myeloma mechanism of lycorine is not fully understood. In this study, the results demonstrated that lycorine is effective against multiple myeloma cell line ARH-77 via inducing programmed necrosis. The mechanisms of lycorine on the multiple myeloma cell line ARH-77 are associated with G1 phase cell cycle arrest, mitochondrial dysfunction, reactive oxygen species (ROS) generation, ATP depletion, and DNA damage. Our results elucidate the new mechanism of lycorine against multiple myeloma.
Collapse
Affiliation(s)
- Yuhao Luo
- The State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|