1
|
Lafont R, Dinan L. Insect Sterols and Steroids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39384701 DOI: 10.1007/5584_2024_823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Insects are incapable of biosynthesising sterols de novo so they need to obtain them from their diets or, in certain cases, from symbiotic microorganisms. Sterols serve a structural role in cellular membranes and act as precursors for signalling molecules and defence compounds. Many phytophagous insects dealkylate phytosterols to yield primarily cholesterol, which is also the main sterol that carnivorous and omnivorous insects obtain in their diets. Some phytophagous species have secondarily lost the capacity to dealkylate and consequently use phytosterols for structural and functional roles. The polyhydroxylated steroid hormones of insects, the ecdysteroids, are derived from cholesterol (or phytosterols in non-dealkylating phytophagous species) and regulate many crucial aspects of insect development and reproduction by means of precisely regulated titres resulting from controlled synthesis, storage and further metabolism/excretion. Ecdysteroids differ significantly from vertebrate steroid hormones in their chemical, biochemical and biological properties. Defensive steroids (cardenolides, bufadienolides, cucurbitacins and ecdysteroids) can be accumulated from host plants or biosynthesised within the insect, depending on species, stored in significant amounts in the insect and released when it is attacked. Other allelochemical steroids serve as pheromones. Vertebrate-type steroids have also been conclusively identified from insect sources, but debate continues about their significance. Side chain dealkylation of phytosterols, ecdysteroid metabolism and ecdysteroid mode of action are targets of potential insect control strategies.
Collapse
Affiliation(s)
- René Lafont
- BIOSIPE, Sorbonne Université, Paris, France.
| | | |
Collapse
|
2
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
3
|
Roach TV, Lenhart KF. Mating-induced Ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. Development 2024; 151:dev202542. [PMID: 38832826 PMCID: PMC11190578 DOI: 10.1242/dev.202542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/29/2024] [Indexed: 06/06/2024]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased Ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females, but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
Affiliation(s)
- Tiffany V. Roach
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| | - Kari F. Lenhart
- Department of Biology, Drexel University, Chestnut St, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Zhang F, Song W, Yang R, Jin C, Xie Y, Shen Y, Gao X, Sun H, Nie T, Yue X, Song Z, Qi J, Zhang Q, He Y. Semen promotes oocyte development in Sebastesschlegelii elucidating ovarian development dynamics in live-bearing fish. iScience 2024; 27:109193. [PMID: 38433916 PMCID: PMC10907845 DOI: 10.1016/j.isci.2024.109193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/17/2023] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
In some vertebrates and invertebrates, semen release factors affecting female physiology and behavior. Here, we report that semen delivered to females is potentially beneficial for promoting oocyte development in a viviparous teleost, Sebastes schlegelii. 88% of mated ovaries develop normally and give birth to larval fish, whereas 61% of non-mated ovaries are arrested in the previtellogenic stage. Semen's significant role (p < 0.0001) in promoting oocyte development may involve remodeling follicular cells and regulating the expression of the extracellular matrix, which facilitates cell communication. Furthermore, the ovarian response to semen may influence the brain, affecting hormone release, follicular cell development and steroid production, and crucial for oocyte growth. This mechanism, which could potentially delay maternal investment in offspring until male genetic input occurs to avoid energy wastage, has not been previously described in teleosts. These findings enhance our understanding of ovarian development in viviparous fish, with broader implications for reproductive biology.
Collapse
Affiliation(s)
- Fengyan Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Weihao Song
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Ruiyan Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Chaofan Jin
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Yuheng Xie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Yiyang Shen
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Xiangyu Gao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Hao Sun
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Tianci Nie
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Xinlu Yue
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Zongcheng Song
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Jie Qi
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| | - Quanqi Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
- Weihai Shenghang Ocean Science and Technology Co., Ltd, Weihai, Shandong 264200, China
| | - Yan He
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Sanya Oceanographic Institution, Ocean University of China, Qingdao 266000/Sanya 572000, Shandong/Hainan, China
| |
Collapse
|
5
|
Yuan H, Cai P, Zhang W, Jin S, Jiang S, Xiong Y, Gong Y, Qiao H, Fu H. Identification of genes regulated by 20-Hydroxyecdysone in Macrobrachium nipponense using comparative transcriptomic analysis. BMC Genomics 2024; 25:35. [PMID: 38183039 PMCID: PMC10768235 DOI: 10.1186/s12864-023-09927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024] Open
Abstract
BACKGROUND Macrobrachium nipponense is a freshwater prawn of economic importance in China. Its reproductive molt is crucial for seedling rearing and directly impacts the industry's economic efficiency. 20-hydroxyecdysone (20E) controls various physiological behaviors in crustaceans, among which is the initiation of molt. Previous studies have shown that 20E plays a vital role in regulating molt and oviposition in M. nipponense. However, research on the molecular mechanisms underlying the reproductive molt and role of 20E in M. nipponense is still limited. RESULTS A total of 240.24 Gb of data was obtained from 18 tissue samples by transcriptome sequencing, with > 6 Gb of clean reads per sample. The efficiency of comparison with the reference transcriptome ranged from 87.05 to 92.48%. A total of 2532 differentially expressed genes (DEGs) were identified. Eighty-seven DEGs associated with molt or 20E were screened in the transcriptomes of the different tissues sampled in both the experimental and control groups. The reliability of the RNA sequencing data was confirmed using Quantitative Real-Time PCR. The expression levels of the eight strong candidate genes showed significant variation at the different stages of molt. CONCLUSION This study established the first transcriptome library for the different tissues of M. nipponense in response to 20E and demonstrated the dominant role of 20E in the molting process of this species. The discovery of a large number of 20E-regulated strong candidate DEGs further confirms the extensive regulatory role of 20E and provides a foundation for the deeper understanding of its molecular regulatory mechanisms.
Collapse
Affiliation(s)
- Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Shubo Jin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Hui Qiao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China.
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
6
|
Roach TV, Lenhart KF. Mating-induced ecdysone in the testis disrupts soma-germline contacts and stem cell cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562562. [PMID: 37905121 PMCID: PMC10614927 DOI: 10.1101/2023.10.16.562562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Germline maintenance relies on adult stem cells to continually replenish lost gametes over a lifetime and respond to external cues altering the demands on the tissue. Mating worsens germline homeostasis over time, yet a negative impact on stem cell behavior has not been explored. Using extended live imaging of the Drosophila testis stem cell niche, we find that short periods of mating in young males disrupts cytokinesis in germline stem cells (GSCs). This defect leads to failure of abscission, preventing release of differentiating cells from the niche. We find that GSC abscission failure is caused by increased ecdysone hormone signaling induced upon mating, which leads to disrupted somatic encystment of the germline. Abscission failure is rescued by isolating males from females but recurs with resumption of mating. Importantly, reiterative mating also leads to increased GSC loss, requiring increased restoration of stem cells via symmetric renewal and de-differentiation. Together, these results suggest a model whereby acute mating results in hormonal changes that negatively impact GSC cytokinesis but preserves the stem cell population.
Collapse
|
7
|
Wang H, Yang X, Liu J, Xu J, Zhang R, Zheng J, Shen B, Sun Y, Zhou D. Adverse effects of knocking down chitin synthase A on female reproduction in Culex pipiens pallens (Diptera: Culicidae). PEST MANAGEMENT SCIENCE 2023; 79:4463-4473. [PMID: 37409377 DOI: 10.1002/ps.7648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/29/2023] [Accepted: 07/06/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Current mosquito-borne disease vector control strategies, largely based on chemical insecticides, are seriously threatened by increasing resistance worldwide. There is also growing concerned about the adverse effects of insecticides on nontarget organisms and the environment, therefore effective and ecologically friendly alternative approaches are urgently needed. Targeting critical steps of reproduction is considered a potential way to control mosquito populations. Herein, we focused on the roles of chitin synthase A (encoded by chsa) in the reproduction of female mosquitoes. RESULTS The injection of small interfering RNA targeting Cpchsa in female Culex pipiens pallens (Diptera: Culicidae) had antireproductive effects, including decreased follicle numbers, egg-laying, and hatching rate. Scanning electron microscopy observations showed that Cpchsa silencing caused a defective egg envelope, including absence of the vitelline membrane and cracked chorion layers, which resulted in abnormal permeability. Widely distributed nurse cell apoptosis and follicular epithelial cell autophagy were observed in Cpchsa-silenced ovaries during the vitellogenesis phase. Consistent with the detective egg envelope formation during oogenesis, the exochorionic eggshell structures were also affected in eggs deposited by Cpchsa-silenced mosquitoes. CONCLUSION This study provided fundamental evidence for the role of chitin synthase A in the female reproductive process of mosquitoes and might result in a novel alternative strategy for mosquito control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Wang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Xiaoshan Yang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jin Liu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jingwei Xu
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Ruimin Zhang
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Junnan Zheng
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Bo Shen
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Yan Sun
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Dan Zhou
- Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Pan M, Champer J. Making waves: Comparative analysis of gene drive spread characteristics in a continuous space model. Mol Ecol 2023; 32:5673-5694. [PMID: 37694511 DOI: 10.1111/mec.17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023]
Abstract
With their ability to rapidly increase in frequency, gene drives can be used to modify or suppress target populations after an initial release of drive individuals. Recent advances have revealed many possibilities for different types of drives, and several of these have been realized in experiments. These drives have advantages and disadvantages related to their ease of construction, confinement and capacity to be used for modification or suppression. Though characteristics of these drives have been explored in modelling studies, assessment in continuous space environments has been limited, often focusing on outcomes rather than fundamental properties. Here, we conduct a comparative analysis of many different gene drive types that have the capacity to form a wave of advance in continuous space using individual-based simulations in continuous space. We evaluate the drive wave speed as a function of drive performance and ecological parameters, which reveals substantial differences between drive performance in panmictic versus spatial environments. In particular, we find that suppression drive waves are uniquely vulnerable to fitness costs and undesired CRISPR cleavage activity in embryos by maternal deposition. Some drives, however, retain robust performance even with widely varying efficiency parameters. To gain a better understanding of drive waves, we compare their panmictic performance and find that the rate of wild-type allele removal is correlated with drive wave speed, though this is also affected by other factors. Overall, our results provide a useful resource for understanding the performance of drives in spatially continuous environments, which may be most representative of potential drive deployment in many relevant scenarios.
Collapse
Affiliation(s)
- Mingzuyu Pan
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Guan GX, Yu XP, Li DT. Post-Mating Responses in Insects Induced by Seminal Fluid Proteins and Octopamine. BIOLOGY 2023; 12:1283. [PMID: 37886993 PMCID: PMC10604773 DOI: 10.3390/biology12101283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Following insect mating, females often exhibit a series of physiological, behavioral, and gene expression changes. These post-mating responses (PMRs) are induced by seminal fluid components other than sperm, which not only form network proteins to assist sperm localization, supplement female-specific protein requirements, and facilitate the formation of specialized functional structures, but also activate neuronal signaling pathways in insects. This review primarily discusses the roles of seminal fluid proteins (SFPs) and octopamine (OA) in various PMRs in insects. It explores the regulatory mechanisms and mediation conditions by which they trigger PMRs, along with the series of gene expression differences they induce. Insect PMRs involve a transition from protein signaling to neuronal signaling, ultimately manifested through neural regulation and gene expression. The intricate signaling network formed as a result significantly influences female behavior and organ function, contributing to both successful reproduction and the outcomes of sexual conflict.
Collapse
Affiliation(s)
| | | | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
11
|
Chen G, Gao X, Zhang Y, Ma C, Ma W, Zhou Z. The carboxypeptidase B and carbonic anhydrase genes play a reproductive regulatory role during multiple matings in Ophraella communa. Front Mol Biosci 2023; 10:1095645. [PMID: 37266330 PMCID: PMC10229896 DOI: 10.3389/fmolb.2023.1095645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Seminal fluid proteins (SFPs) are key factors in sexual reproduction and are transferred to females during mating with sperm. SFPs have a nutritional value because they protect and activate sperm storage and release to optimize fecundity. Multiple matings promote ovipositioning in several insect species. Therefore, insects may obtain more SFP through multiple matings to maximize reproduction, but this process has not yet been clearly confirmed. Here, the relationship between multiple matings and the SFPs in Ophraella communa (Coleoptera: Chrysomelidae), a biological control agent of the common ragweed Ambrosia artemisiifolia (Asterales: Asteraceae), was studied. Multiple matings significantly increased female fecundity and ovary egg deposition. Carboxypeptidase B (OcCpb) and carbonic anhydrase (OcCa) genes were identified as putative SFP genes in O. communa and they showed strong male-biased expression. Additionally, OcCpb and OcCa expression was upregulated in the bursa copulatrix of mating females compared to that in virgin females, but their expression gradually declined after copulation. Furthermore, OcCpb and OcCa knockdown in males led to a decrease in insect fecundity compared to that in the control. The reproductive tract of females mated with dsRNA-treated males was dissected and observed and, notably, the ovaries produced significantly fewer eggs. These data suggest that OcCpb and OcCa play regulatory roles during multiple matings in O. communa.
Collapse
Affiliation(s)
- Guangmei Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xuyuan Gao
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
- Guangxi Key Laboratory for Biology of Crop Diseases and Insect Pests, Institute of Plant Protection, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Chao Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhongshi Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
12
|
Phipps BL, Brown MR, Strand MR. Insulin-like peptides regulate oogenesis by stimulating ovarian ecdysteroid production in the Indian malaria mosquito Anopheles stephensi. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.06.535964. [PMID: 37066167 PMCID: PMC10104146 DOI: 10.1101/2023.04.06.535964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Females of many mosquito species feed on vertebrate blood to produce eggs, making them effective disease vectors. In the dengue vector Aedes aegypti , blood feeding signals the brain to release ovary ecdysteroidogenic hormone (OEH) and insulin-like peptides (ILPs) that trigger ecdysteroid production by the ovaries. These ecdysteroids regulate synthesis of the yolk protein vitellogenin (Vg) that is packaged into eggs. Less is known about the reproductive biology of Anopheles mosquitoes, which pose a greater public health threat than Aedes spp. because they are competent to transmit mammalian malaria. ILPs can trigger An. stephensi ovaries to secrete ecdysteroids. Unlike Ae. aegypti , Anopheles also transfer ecdysteroids from Anopheles males to females during mating. To elucidate the role of OEH and ILPs in An. stephensi , we decapitated blood-fed females to ablate the source of these peptides and injected them with each hormone. Yolk deposition into oocytes was abolished in decapitated females and rescued by ILP injection. ILP activity was dependent on blood feeding and little change in triglyceride and glycogen stores was observed in response to blood-feeding, suggesting this species requires nutrients from blood to form eggs. We also measured egg maturation, ecdysteroid titers, and yolk protein expression in mated and virgin females. Although yolk deposition into developing oocytes was significantly reduced in virgins compared to mated females, no differences in ecdysteroid titers or Vg transcript abundance were detected between these groups. 20-hydroxyecdysone (20E) stimulated Vg expression in female fat bodies in primary culture. Given these results, we conclude that ILPs control egg formation by regulating ecdysteroid production in the ovaries.
Collapse
|
13
|
Wu LJ, Li F, Song Y, Zhang ZF, Fan YL, Liu TX. Proteome Analysis of Male Accessory Gland Secretions in the Diamondback Moth, Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2023; 14:132. [PMID: 36835702 PMCID: PMC9960318 DOI: 10.3390/insects14020132] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
In insects, male accessory gland proteins (ACPs) are important reproductive proteins secreted by male accessory glands (MAGs) of the internal male reproductive system. During mating, ACPs are transferred along with sperms inside female bodies and have a significant impact on the post-mating physiology changes of the females. Under sexual selection pressures, the ACPs exhibit remarkably rapid and divergent evolution and vary from species to species. The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a major insect pest of cruciferous vegetables worldwide. Mating has a profound impact on the females' behavior and physiology in this species. It is still unclear what the ACPs are in this species. In this study, two different proteomic methods were used to identify ACPs in P. xylostella. The proteins of MAGs were compared immediately before and after mating by using a tandem mass tags (TMT) quantitative proteomic analysis. The proteomes of copulatory bursas (CB) in mated females shortly after mating were also analyzed by the shotgun LC-MS/MS technique. In total, we identified 123 putative secreted ACPs. Comparing P. xylostella with other four insect ACPs, trypsins were the only ACPs detected in all insect species. We also identified some new insect ACPs, including proteins with chitin binding Peritrophin-A domain, PMP-22/ EMP/ MP20/ Claudin tight junction domain-containing protein, netrin-1, type II inositol 1,4,5-trisphosphate 5-phosphatase, two spaetzles, allatostatin-CC, and cuticular protein. This is the first time that ACPs have been identified and analyzed in P. xylostella. Our results have provided an important list of putative secreted ACPs, and have set the stage for further exploration of the functions of these putative proteins in P. xylostella reproduction.
Collapse
Affiliation(s)
- Li-Juan Wu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Fan Li
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Agricultural Sciences of Suqian, Jiangsu Academy of Agricultural Sciences, Suqian 223800, China
| | - Yue Song
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Zhan-Feng Zhang
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Yong-Liang Fan
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
| | - Tong-Xian Liu
- State Key Laboratory for Crop Stress Biology in Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau, Ministry of Agriculture and Rural Affairs P. R. China, College of Plant Protection, Northwest A&F University, Xianyang 712100, China
- Institute of Entomology, Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
15
|
Peng D, Kakani EG, Mameli E, Vidoudez C, Mitchell SN, Merrihew GE, MacCoss MJ, Adams K, Rinvee TA, Shaw WR, Catteruccia F. A male steroid controls female sexual behaviour in the malaria mosquito. Nature 2022; 608:93-97. [PMID: 35794471 PMCID: PMC9352575 DOI: 10.1038/s41586-022-04908-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.
Collapse
Affiliation(s)
- Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | | | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kelsey Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tasneem A Rinvee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
16
|
Harrison RE, Chen K, South L, Lorenzi A, Brown MR, Strand MR. Ad libitum consumption of protein- or peptide-sucrose solutions stimulates egg formation by prolonging the vitellogenic phase of oogenesis in anautogenous mosquitoes. Parasit Vectors 2022; 15:127. [PMID: 35413939 PMCID: PMC9004051 DOI: 10.1186/s13071-022-05252-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anautogenous mosquitoes commonly consume nectars and other solutions containing sugar but are thought to only produce eggs in discrete gonadotrophic cycles after blood-feeding on a vertebrate host. However, some anautogenous species are known to produce eggs if amino acids in the form of protein are added to a sugar solution. Unclear is how different sources of amino acids in sugar solutions affect the processes that regulate egg formation and whether responses vary among species. In this study, we addressed these questions by focusing on Aedes aegypti and conducting some comparative assays with Aedes albopictus, Anopheles gambiae, Anopheles stephensi and Culex quinquefasciatus. METHODS Adult female mosquitoes were fed sugar solutions containing amino acids, peptides or protein. Markers for activation of a gonadotrophic cycle including yolk deposition into oocytes, oviposition, ovary ecdysteroidogenesis, expression of juvenile hormone and 20-hydroxyecdysone-responsive genes, and adult blood-feeding behavior were then measured. RESULTS The five anautogenous species we studied produced eggs when fed two proteins (bovine serum albumin, hemoglobin) or a mixture of peptides (tryptone) in 10% sucrose but deposited only small amounts of yolk into oocytes when fed amino acids in 10% sucrose. Focusing on Ae. aegypti, cultures were maintained for multiple generations by feeding adult females protein- or tryptone-sugar meals. Ad libitum access to protein- or tryptone-sugar solutions protracted production of ecdysteroids by the ovaries, vitellogenin by the fat body and protease activity by the midgut albeit at levels that were lower than in blood-fed females. Females also exhibited semi-continual oogenesis and repressed host-seeking behavior. CONCLUSIONS Several anautogenous mosquitoes produce eggs when provided ad libitum access to protein- or peptide-sugar meals, but several aspects of oogenesis also differ from females that blood-feed.
Collapse
Affiliation(s)
- Ruby E Harrison
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Kangkang Chen
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Lilith South
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Ange Lorenzi
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Mark R Brown
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA
| | - Michael R Strand
- Department of Entomology, The University of Georgia, 120 Cedar Street, 420 Biological Sciences, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Martinson EO, Chen K, Valzania L, Brown MR, Strand MR. Insulin-like peptide 3 stimulates hemocytes to proliferate in anautogenous and facultatively autogenous mosquitoes. J Exp Biol 2022; 225:274275. [PMID: 35129195 PMCID: PMC8976944 DOI: 10.1242/jeb.243460] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/31/2022] [Indexed: 11/20/2022]
Abstract
Most mosquito species are anautogenous, which means they must blood feed on a vertebrate host to produce eggs, while a few are autogenous and can produce eggs without blood feeding. Egg formation is best understood in the anautogenous mosquito Aedes aegypti, where insulin-like peptides (ILPs), ovary ecdysteroidogenic hormone (OEH) and 20-hydroxyecdysone (20E) interact to regulate gonadotrophic cycles. Circulating hemocytes also approximately double in abundance in conjunction with a gonadotrophic cycle, but the factors responsible for stimulating this increase remain unclear. Focusing on Ae. aegypti, we determined that hemocyte abundance similarly increased in intact blood-fed females and decapitated blood-fed females that were injected with ILP3, whereas OEH, 20E or heat-killed bacteria had no stimulatory activity. ILP3 upregulated insulin-insulin growth factor signaling in hemocytes, but few genes - including almost no transcripts for immune factors - were differentially expressed. ILP3 also stimulated circulating hemocytes to increase in two other anautogenous (Anopheles gambiae and Culex quinquefasciatus) and two facultatively autogenous mosquitoes (Aedes atropalpus and Culex pipiens molestus), but had no stimulatory activity in the obligately autogenous mosquito Toxorhynchites amboinensis. Altogether, our results identify ILPs as the primary regulators of hemocyte proliferation in association with egg formation, but also suggest this response has been lost in the evolution of obligate autogeny.
Collapse
Affiliation(s)
- Ellen O Martinson
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Kangkang Chen
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Luca Valzania
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
18
|
Hejníková M, Nouzova M, Ramirez CE, Fernandez-Lima F, Noriega FG, Doležel D. Sexual dimorphism of diapause regulation in the hemipteran bug Pyrrhocoris apterus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103721. [PMID: 35007710 DOI: 10.1016/j.ibmb.2022.103721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Diapause is one of the major strategies for insects to prepare for and survive harsh seasons. In females, the absence of juvenile hormone (JH) is a hallmark of adult reproductive diapause, a developmental arrest, which is much less characterized in males. Here we show that juvenile hormone III skipped bisepoxide (JHSB3) titers in hemolymph remarkably differ between reproductive males and females of the linden bug Pyrrhocoris apterus, whereas no JH was detected in diapausing adults of both sexes. Like in females, ectopic application of JH mimic effectively terminated male diapause through the canonical JH receptor components, Methoprene-tolerant and Taiman. In contrast to females, long photoperiod induced reproduction even in males with silenced JH reception or in males with removed corpus allatum (CA), the JH-producing gland. JHSB3 was detected in the accessory glands (MAG) of reproductive males, unexpectedly, even in males without CA. If there is a source of JHSB3 outside CA or a long-term storage of JHSB3 in MAGs remains to be elucidated. These sex-related idiosyncrasies are further manifested in different dynamics of diapause termination in P. apterus by low temperature. We would like to propose that this sexual dimorphism of diapause regulation might be explained by the different reproductive costs for each sex.
Collapse
Affiliation(s)
- Markéta Hejníková
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic
| | - Marcela Nouzova
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Parasitology, 37005, Ceske Budejovice, Czech Republic; Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Cesar E Ramirez
- Department of Chemistry and Biochemistry, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - Fernando Gabriel Noriega
- Department of Biological Sciences, Biomolecular Science Institute, Florida International University, Miami, FL, 33199, USA
| | - David Doležel
- Biology Center of the Academy of Sciences of the Czech Republic, Institute of Entomology, 37005, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia in Ceske Budejovice, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
19
|
Huck DT, Klein MS, Meuti ME. Determining the effects of nutrition on the reproductive physiology of male mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104191. [PMID: 33428881 DOI: 10.1016/j.jinsphys.2021.104191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 12/07/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Nutrition affects multiple aspects of insect physiology such as body size and fecundity, but we lack a detailed understanding of how nutrition influences the reproductive physiology of male insects such as mosquitoes. Given that female mosquitoes are vectors of many deadly diseases and can quickly proliferate, understanding how male nutrition impacts female fecundity could be of critical importance. To uncover the relationship between nutrition in adult male mosquitoes and its impacts on reproductive physiology, we reared larvae of the Northern house mosquito, Culex pipiens, on a standard lab diet and divided adult males among three different dietary treatments: low (3%), moderate (10%), and high (20%) sucrose. We found that although overall body size did not differ among treatments, one-week-old males raised on the 3% sucrose diet had significantly smaller male accessory glands (MAGs) compared to males that consumed the 10% and the 20% sucrose diets. Diet affected whole-body lipid content but did not affect whole-body protein content. Using nuclear magnetic resonance (NMR) spectroscopy, we found that diet altered the metabolic composition of the MAGs, including changes in lactic acid, formic acid, and glucose. We also observed changes in protein and lipid abundance and composition in MAGs. Females who mated with males on the 3% diet were found to produce significantly fewer larvae than females who had mated with males on the 10% diet. Taken together, our results demonstrate that the diet of adult male mosquitoes clearly affects male reproductive physiology and female fecundity.
Collapse
Affiliation(s)
- Derek T Huck
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| | - Matthias S Klein
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd, Columbus, OH 43210, United States.
| | - Megan E Meuti
- Department of Entomology, The Ohio State University, 2021 Coffey Rd, Columbus, OH 43210, United States.
| |
Collapse
|
20
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
21
|
Champer J, Kim IK, Champer SE, Clark AG, Messer PW. Suppression gene drive in continuous space can result in unstable persistence of both drive and wild-type alleles. Mol Ecol 2021; 30:1086-1101. [PMID: 33404162 DOI: 10.1111/mec.15788] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/31/2022]
Abstract
Rapid evolutionary processes can produce drastically different outcomes when studied in panmictic population models vs. spatial models. One such process is gene drive, which describes the spread of "selfish" genetic elements through a population. Engineered gene drives are being considered for the suppression of disease vectors or invasive species. While laboratory experiments and modelling in panmictic populations have shown that such drives can rapidly eliminate a population, it remains unclear if these results translate to natural environments where individuals inhabit a continuous landscape. Using spatially explicit simulations, we show that the release of a suppression drive can result in what we term "chasing" dynamics, in which wild-type individuals recolonize areas where the drive has locally eliminated the population. Despite the drive subsequently reconquering these areas, complete population suppression often fails to occur or is substantially delayed. This increases the likelihood that the drive is lost or that resistance evolves. We analyse how chasing dynamics are influenced by the type of drive, its efficiency, fitness costs, and ecological factors such as the maximal growth rate of the population and levels of dispersal and inbreeding. We find that chasing is more common for lower efficiency drives when dispersal is low and that some drive mechanisms are substantially more prone to chasing behaviour than others. Our results demonstrate that the population dynamics of suppression gene drives are determined by a complex interplay of genetic and ecological factors, highlighting the need for realistic spatial modelling to predict the outcome of drive releases in natural populations.
Collapse
Affiliation(s)
- Jackson Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Isabel K Kim
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Samuel E Champer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Andrew G Clark
- Department of Computational Biology, Cornell University, Ithaca, New York, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
22
|
Bascuñán P, Gabrieli P, Mameli E, Catteruccia F. Mating-regulated atrial proteases control reinsemination rates in Anopheles gambiae females. Sci Rep 2020; 10:21974. [PMID: 33319823 PMCID: PMC7738481 DOI: 10.1038/s41598-020-78967-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 11/20/2022] Open
Abstract
Anopheles gambiae mosquitoes are the most important vectors of human malaria. The reproductive success of these mosquitoes relies on a single copulation event after which the majority of females become permanently refractory to further mating. This refractory behavior is at least partially mediated by the male-synthetized steroid hormone 20-hydroxyecdysone (20E), which is packaged together with other seminal secretions into a gelatinous mating plug and transferred to the female atrium during mating. In this study, we show that two 20E-regulated chymotrypsin-like serine proteases specifically expressed in the reproductive tract of An. gambiae females play an important role in modulating the female susceptibility to mating. Silencing these proteases by RNA interference impairs correct plug processing and slows down the release of the steroid hormone 20E from the mating plug. In turn, depleting one of these proteases, the Mating Regulated Atrial Protease 1 (MatRAP1), reduces female refractoriness to further copulation, so that a significant proportion of females mate again. Microscopy analysis reveals that MatRAP1 is localized on a previously undetected peritrophic matrix-like structure surrounding the mating plug. These data provide novel insight into the molecular mechanisms shaping the post-mating biology of these important malaria vectors.
Collapse
Affiliation(s)
- Priscila Bascuñán
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Centers for Disease Control and Prevention, Entomology Branch, Atlanta, GA, USA
| | - Paolo Gabrieli
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Dipartimento di Medicina Sperimentale, Università degli studi di Perugia, Perugia, Italy.
| |
Collapse
|
23
|
Reynolds RA, Kwon H, Alves E Silva TL, Olivas J, Vega-Rodriguez J, Smith RC. The 20-hydroxyecdysone agonist, halofenozide, promotes anti-Plasmodium immunity in Anopheles gambiae via the ecdysone receptor. Sci Rep 2020; 10:21084. [PMID: 33273588 PMCID: PMC7713430 DOI: 10.1038/s41598-020-78280-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Mosquito physiology and immunity are integral determinants of malaria vector competence. This includes the principal role of hormonal signaling in Anopheles gambiae initiated shortly after blood-feeding, which stimulates immune induction and promotes vitellogenesis through the function of 20-hydroxyecdysone (20E). Previous studies demonstrated that manipulating 20E signaling through the direct injection of 20E or the application of a 20E agonist can significantly impact Plasmodium infection outcomes, reducing oocyst numbers and the potential for malaria transmission. In support of these findings, we demonstrate that a 20E agonist, halofenozide, is able to induce anti-Plasmodium immune responses that limit Plasmodium ookinetes. We demonstrate that halofenozide requires the function of ultraspiracle (USP), a component of the canonical heterodimeric ecdysone receptor, to induce malaria parasite killing responses. Additional experiments suggest that the effects of halofenozide treatment are temporal, such that its application only limits malaria parasites when applied prior to infection. Unlike 20E, halofenozide does not influence cellular immune function or AMP production. Together, our results further demonstrate the potential of targeting 20E signaling pathways to reduce malaria parasite infection in the mosquito vector and provide new insight into the mechanisms of halofenozide-mediated immune activation that differ from 20E.
Collapse
Affiliation(s)
| | - Hyeogsun Kwon
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Thiago Luiz Alves E Silva
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Janet Olivas
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Joel Vega-Rodriguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
24
|
Peirce MJ, Mitchell SN, Kakani EG, Scarpelli P, South A, Shaw WR, Werling KL, Gabrieli P, Marcenac P, Bordoni M, Talesa V, Catteruccia F. JNK signaling regulates oviposition in the malaria vector Anopheles gambiae. Sci Rep 2020; 10:14344. [PMID: 32873857 PMCID: PMC7462981 DOI: 10.1038/s41598-020-71291-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023] Open
Abstract
The reproductive fitness of the Anopheles gambiae mosquito represents a promising target to prevent malaria transmission. The ecdysteroid hormone 20-hydroxyecdysone (20E), transferred from male to female during copulation, is key to An. gambiae reproductive success as it licenses females to oviposit eggs developed after blood feeding. Here we show that 20E-triggered oviposition in these mosquitoes is regulated by the stress- and immune-responsive c-Jun N-terminal kinase (JNK). The heads of mated females exhibit a transcriptional signature reminiscent of a JNK-dependent wounding response, while mating—or injection of virgins with exogenous 20E—selectively activates JNK in the same tissue. RNAi-mediated depletion of JNK pathway components inhibits oviposition in mated females, whereas JNK activation by silencing the JNK phosphatase puckered induces egg laying in virgins. Together, these data identify JNK as a potential conduit linking stress responses and reproductive success in the most important vector of malaria.
Collapse
Affiliation(s)
- Matthew J Peirce
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.
| | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.,Verily Life Sciences, South San Francisco, CA, 94080, USA
| | - Paolo Scarpelli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Adam South
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Kristine L Werling
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Paolo Gabrieli
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy.,Dipartimento Bioscienze, University of Milan, 20133, Milan, Italy
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA
| | - Martina Bordoni
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Vincenzo Talesa
- Dipartimento di Medicina Sperimentale, Università Degli Studi di Perugia, Sant' Andrea Delle Fratte, Piano 4, Edificio D, Piazzale Gambuli 1, 06132, Perugia, Italy
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Building 1, Room 103, Boston, MA, 02115, USA.
| |
Collapse
|
25
|
Brown F, Paton DG, Catteruccia F, Ranson H, Ingham VA. A steroid hormone agonist reduces female fitness in insecticide-resistant Anopheles populations. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103372. [PMID: 32276112 PMCID: PMC10569452 DOI: 10.1016/j.ibmb.2020.103372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 06/11/2023]
Abstract
Insecticide based vector control tools such as insecticide treated bednets and indoor residual spraying represent the cornerstones of malaria control programs. Resistance to chemistries used in these programs is now widespread and represents a significant threat to the gains seen in reducing malaria-related morbidity and mortality. Recently, disruption of the 20-hydroxyecdysone steroid hormone pathway was shown to reduce Plasmodium development and significantly reduce both longevity and egg production in a laboratory susceptible Anopheles gambiae population. Here, we demonstrate that disruption of this pathway by application of the dibenzoylhydrazine, methoxyfenozide (DBH-M), to insecticide resistant An. coluzzii, An. gambiae sl and An. funestus populations significantly reduces egg production in both topical and tarsal application. Moreover, DBH-M reduces adult longevity when applied topically, and tarsally after blood feeding. As the cytochrome p450s elevated in pyrethroid resistant Anopheles only bind DBH-M very weakly, this compound is unlikely to be subject to cross-resistance in a field-based setting. Manipulation of this hormonal signalling pathway therefore represents a potential complementary approach to current malaria control strategies, particularly in areas where high levels of insecticide resistance are compromising existing tools.
Collapse
Affiliation(s)
- Faye Brown
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Douglas G Paton
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Hilary Ranson
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK
| | - Victoria A Ingham
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L35QA, UK.
| |
Collapse
|
26
|
Pondeville E, Puchot N, Parvy JP, Carissimo G, Poidevin M, Waterhouse RM, Marois E, Bourgouin C. Hemocyte-targeted gene expression in the female malaria mosquito using the hemolectin promoter from Drosophila. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 120:103339. [PMID: 32105779 PMCID: PMC7181189 DOI: 10.1016/j.ibmb.2020.103339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Hemocytes, the immune cells in mosquitoes, participate in immune defenses against pathogens including malaria parasites. Mosquito hemocytes can also be infected by arthropod-borne viruses but the pro- or anti-viral nature of this interaction is unknown. Although there has been progress on hemocyte characterization during pathogen infection in mosquitoes, the specific contribution of hemocytes to immune responses and the hemocyte-specific functions of immune genes and pathways remain unresolved due to the lack of genetic tools to manipulate gene expression in these cells specifically. Here, we used the Gal4-UAS system to characterize the activity of the Drosophila hemocyte-specific hemolectin promoter in the adults of Anopheles gambiae, the malaria mosquito. We established an hml-Gal4 driver line that we further crossed to a fluorescent UAS responder line, and examined the expression pattern in the adult progeny driven by the hml promoter. We show that the hml regulatory region drives hemocyte-specific transgene expression in a subset of hemocytes, and that transgene expression is triggered after a blood meal. The hml promoter drives transgene expression in differentiating prohemocytes as well as in differentiated granulocytes. Analysis of different immune markers in hemocytes in which the hml promoter drives transgene expression revealed that this regulatory region could be used to study phagocytosis as well as melanization. Finally, the hml promoter drives transgene expression in hemocytes in which o'nyong-nyong virus replicates. Altogether, the Drosophila hml promoter constitutes a good tool to drive transgene expression in hemocyte only and to analyze the function of these cells and the genes they express during pathogen infection in Anopheles gambiae.
Collapse
Affiliation(s)
- Emilie Pondeville
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| | - Nicolas Puchot
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | | | - Guillaume Carissimo
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France
| | - Mickael Poidevin
- Centre de Génétique Moléculaire, CNRS UPR 2167, Gif-sur-Yvette, France
| | - Robert M Waterhouse
- Department of Ecology and Evolution, Swiss Institute of Bioinformatics, University of Lausanne, 1015, Lausanne, Switzerland
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France
| | - Catherine Bourgouin
- CNRS Unit of Evolutionary Genomics, Modeling, and Health (UMR2000), Institut Pasteur, Paris, France.
| |
Collapse
|
27
|
20-Hydroxyecdysone Primes Innate Immune Responses That Limit Bacterial and Malarial Parasite Survival in Anopheles gambiae. mSphere 2020; 5:5/2/e00983-19. [PMID: 32295874 PMCID: PMC7160685 DOI: 10.1128/msphere.00983-19] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Blood feeding is an integral behavior of mosquitoes to acquire nutritional resources needed for reproduction. This requirement also enables mosquitoes to serve as efficient vectors to acquire and potentially transmit a multitude of mosquito-borne diseases, most notably malaria. Recent studies suggest that mosquito immunity is stimulated following a blood meal, independent of infection status. Since blood feeding promotes production of the hormone 20-hydroxyecdysone (20E), we hypothesized that 20E plays an important role in priming the immune response for pathogen challenge. Here, we examine the immunological effects of priming Anopheles gambiae with 20E prior to pathogen infection, demonstrating a significant reduction in bacteria and Plasmodium berghei survival in the mosquito host. Transcriptome sequencing (RNA-seq) analysis following 20E treatment identifies several known 20E-regulated genes, as well as several immune genes with previously reported function in antipathogen defense. Together, these data demonstrate that 20E influences cellular immune function and antipathogen immunity following mosquito blood feeding, arguing the importance of hormones in the regulation of mosquito innate immune function.IMPORTANCE Blood feeding is required to provide nutrients for mosquito egg production and serves as a mechanism to acquire and transmit pathogens. Shortly after a blood meal is taken, there is a peak in the production of 20-hydroxyecdysone (20E), a mosquito hormone that initiates physiological changes, including yolk protein production and mating refractoriness. Here, we examine additional roles of 20E in the regulation of mosquito immunity, demonstrating that priming the immune system with 20E increases mosquito resistance to pathogens. We identify differentially expressed genes in response to 20E treatment, including several involved in innate immune function as well as lipid metabolism and transport. Together, these data argue that 20E stimulates mosquito cellular immune function and innate immunity shortly after blood feeding.
Collapse
|
28
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
29
|
Yao Q, Dong Y, Chen J, Quan L, Zhang W, Chen B. Transcriptome Analysis of Female and Male Conopomorpha sinensis (Lepidoptera: Gracilariidae) Adults With a Focus on Hormone and Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2966-2975. [PMID: 31504646 DOI: 10.1093/jee/toz225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/10/2023]
Abstract
Conopomorpha sinensis Bradley is the dominant borer pest of litchi and longan in the Asian-pacific area. Reduction or interference of reproduction and mating of adult moths is one of the most used strategies to control C. sinensis. Insect reproduction is a critical biological process closely related to endocrine control. Conopomorpha sinensis genome and transcriptome information is limited, hampering both our understanding of the molecular mechanisms underlying hormone activity and reproduction and the development of control strategies for this borer pest. To explore the sex differences in gene expression profiles influencing these biological processes, de novo transcriptomes were assembled from female and male adult C. sinensis specimens. This analysis yielded 184,422 unigenes with an average length of 903 bp and 405,961 transcripts after sequencing and assembly. About 45.06, 22.41, 19.53, 34.05, 35.82, 36.42, and 19.85% of the unigenes had significant matches in seven public databases. Subsequently, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed comprehensive information about the function of each gene and identified enriched categories and pathways that were associated with the 2,890 female-biased genes and 2,964 male-biased genes. In addition, we identified some important unigenes related to hormone activity and reproduction among the sex-differentially expressed genes (DEGs), including unigenes coding for ecdysone-induced protein 78C, juvenile hormone (JH)-regulated gene fatty acyl-CoA reductase, vitellogenin, etc. Our findings provide a more comprehensive portrait of the sex differences involved in the relationship of two important physiological features-hormone activity and reproduction in C. sinensis and members of the family Gracillariidae.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Zunyi Medical University, Zunyi, Guizhou, China
| | - Linfa Quan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
30
|
Dahalan FA, Churcher TS, Windbichler N, Lawniczak MKN. The male mosquito contribution towards malaria transmission: Mating influences the Anopheles female midgut transcriptome and increases female susceptibility to human malaria parasites. PLoS Pathog 2019; 15:e1008063. [PMID: 31697788 PMCID: PMC6837289 DOI: 10.1371/journal.ppat.1008063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 09/02/2019] [Indexed: 12/25/2022] Open
Abstract
Mating causes dramatic changes in female physiology, behaviour, and immunity in many insects, inducing oogenesis, oviposition, and refractoriness to further mating. Females from the Anopheles gambiae species complex typically mate only once in their lifetime during which they receive sperm and seminal fluid proteins as well as a mating plug that contains the steroid hormone 20-hydroxyecdysone. This hormone, which is also induced by blood-feeding, plays a major role in activating vitellogenesis for egg production. Here we show that female Anopheles coluzzii susceptibility to Plasmodium falciparum infection is significantly higher in mated females compared to virgins. We also find that mating status has a major impact on the midgut transcriptome, detectable only under sugar-fed conditions: once females have blood-fed, the transcriptional changes that are induced by mating are likely masked by the widespread effects of blood-feeding on gene expression. To determine whether increased susceptibility to parasites could be driven by the additional 20E that mated females receive from males, we mimicked mating by injecting virgin females with 20E, finding that these females are significantly more susceptible to human malaria parasites than virgin females injected with the control 20E carrier. Further RNAseq was carried out to examine whether the genes that change upon 20E injection in the midgut are similar to those that change upon mating. We find that 79 midgut-expressed genes are regulated in common by both mating and 20E, and 96% (n = 76) of these are regulated in the same direction (up vs down in 20E/mated). Together, these findings show that male Anopheles mosquitoes induce changes in the female midgut that can affect female susceptibility to P. falciparum. This implies that in nature, males might contribute to malaria transmission in previously unappreciated ways, and that vector control strategies that target males may have additional benefits towards reducing transmission. Malaria mosquitoes must successfully mate and bloodfeed in order to reproduce. The impact of bloodfeeding on malaria transmission is clear given that all transmission is caused by female mosquitoes that have fed at least twice: once leading to an initial infection, and again 10–14 days later resulting in parasite transmission. The impact of mating on malaria transmission is less clear. Here we show that mating status significantly enhances transmission, such that mated females are more likely to transmit malaria parasites than virgin females. We further examine whether a hormone transferred by mating might cause this enhanced susceptibility, and we find that indeed the receipt of this hormone is also correlated with enhanced susceptibility. The results of this study imply that efforts to target male mosquitoes might not only suppress mosquito populations, but also act to decrease vector competence among residual females.
Collapse
Affiliation(s)
| | - Thomas S. Churcher
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | | | - Mara K. N. Lawniczak
- Imperial College London, South Kensington, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Sirot LK. On the evolutionary origins of insect seminal fluid proteins. Gen Comp Endocrinol 2019; 278:104-111. [PMID: 30682344 DOI: 10.1016/j.ygcen.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/11/2019] [Accepted: 01/17/2019] [Indexed: 02/06/2023]
Abstract
In most cases, proteins affect the phenotype of the individual in which they are produced. However, in some cases, proteins have evolved in such a way that they are able to influence the phenotype of another individual of the same or of a different species ("influential proteins"). Examples of interspecific influential proteins include venom proteins and proteins produced by parasites that influence their hosts' physiology or behavior. Examples of intraspecific influential proteins include those produced by both mothers and fetuses that mitigate maternal resource allocation and proteins transferred to females in the seminal fluid during mating that change female physiology and behavior. Although there has been much interest in the functions and evolutionary dynamics of these influential proteins, less is known about the origin of these proteins. Where does the DNA that encodes the proteins that can impact another individual's phenotype come from and how do the proteins acquire their influential abilities? In this mini-review, I use insect seminal fluid proteins as a case study to consider the origin of intraspecific influential proteins. The existing data suggest that influential insect seminal fluid proteins arise both through co-option of existing genes (both single copy genes and gene duplicates) and de novo evolution. Other mechanisms for the origin of new insect seminal fluid proteins (e.g., retrotransoposition and horizontal gene transfer) are plausible but have not yet been demonstrated. Additional gaps in our understanding of the origin of insect seminal fluid proteins include an understanding of the cis-regulatory elements that designate expression in the male reproductive tract and of the evolutionary steps by which individual proteins come to depend on other seminal fluid proteins for their activity within the mated female.
Collapse
Affiliation(s)
- Laura King Sirot
- Department of Biology, The College of Wooster, Wooster, OH 44691, United States.
| |
Collapse
|
32
|
Evolution of sexually-transferred steroids and mating-induced phenotypes in Anopheles mosquitoes. Sci Rep 2019; 9:4669. [PMID: 30874601 PMCID: PMC6420574 DOI: 10.1038/s41598-019-41094-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/28/2019] [Indexed: 11/08/2022] Open
Abstract
Human malaria, which remains a major public health problem, is transmitted by a subset of Anopheles mosquitoes belonging to only three out of eight subgenera: Anopheles, Cellia and Nyssorhynchus. Unlike almost every other insect species, males of some Anopheles species produce steroid hormones which are transferred to females during copulation to influence their reproduction. Steroids are consequently a potential target for malaria vector control. Here, we analysed the evolution of sexually-transferred steroids and their effects on female reproductive traits across Anopheles by using a set of 16 mosquito species (five Anopheles, eight Cellia, and three Nyssorhynchus), including malaria vector and non-vector species. We show that male steroid production and transfer are specific to the Cellia and therefore represent a synapomorphy of this subgenus. Furthermore, we show that mating-induced effects in females are variable across species and differences are not correlated with sexually-transferred steroids or with Anopheles ability to transmit human malaria. Overall, our findings highlight that Anopheles mosquitoes have evolved different reproductive strategies, independently of being a malaria vector or not.
Collapse
|
33
|
Meuti ME, Short SM. Physiological and Environmental Factors Affecting the Composition of the Ejaculate in Mosquitoes and Other Insects. INSECTS 2019; 10:E74. [PMID: 30875967 PMCID: PMC6468485 DOI: 10.3390/insects10030074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 01/02/2023]
Abstract
In addition to transferring sperm, male mosquitoes deliver several proteins, hormones and other factors to females in their seminal fluid that inhibit remating, alter host-seeking behaviors and stimulate oviposition. Recently, bioinformatics, transcriptomics and proteomics have been used to characterize the genes transcribed in male reproductive tissues and the individual proteins that are delivered to females. Thanks to these foundational studies, we now understand the complexity of the ejaculate in several mosquito species. Building on this work, researchers have begun to identify the functions of various proteins and hormones in the male ejaculate, and how they mediate their effects on female mosquitoes. Here, we present an overview of these studies, followed by a discussion of an under-studied aspect of male reproductive physiology: the effects of biotic and abiotic factors on the composition of the ejaculate. We argue that future research in this area would improve our understanding of male reproductive biology from a physiological and ecological perspective, and that researchers may be able to leverage this information to study key components of the ejaculate. Furthermore, this work has the potential to improve mosquito control by allowing us to account for relevant factors when implementing vector control strategies involving male reproductive biology.
Collapse
Affiliation(s)
- Megan E Meuti
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| | - Sarah M Short
- Department of Entomology, The Ohio State University, 2001 Fyffe Rd., Room 232 Howlett Hall, Columbus, OH 43210, USA.
| |
Collapse
|
34
|
Gouignard N, Cherrier F, Brito-Fravallo E, Pain A, Zmarlak NM, Cailliau K, Genève C, Vernick KD, Dissous C, Mitri C. Dual role of the Anopheles coluzzii Venus Kinase Receptor in both larval growth and immunity. Sci Rep 2019; 9:3615. [PMID: 30837655 PMCID: PMC6401105 DOI: 10.1038/s41598-019-40407-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/12/2019] [Indexed: 11/24/2022] Open
Abstract
Vector-borne diseases and especially malaria are responsible for more than half million deaths annually. The increase of insecticide resistance in wild populations of Anopheles malaria vectors emphasises the need for novel vector control strategies as well as for identifying novel vector targets. Venus kinase receptors (VKRs) constitute a Receptor Tyrosine Kinase (RTK) family only found in invertebrates. In this study we functionally characterized Anopheles VKR in the Gambiae complex member, Anophelescoluzzii. Results showed that Anopheles VKR can be activated by L-amino acids, with L-arginine as the most potent agonist. VKR was not required for the fecundity of A. coluzzii, in contrast to reports from other insects, but VKR function is required in both Anopheles males and females for development of larval progeny. Anopheles VKR function is also required for protection against infection by Plasmodium parasites, thus identifying a novel linkage between reproduction and immunity in Anopheles. The insect specificity of VKRs as well as the essential function for reproduction and immunity suggest that Anopheles VKR could be a potentially druggable target for novel vector control strategies.
Collapse
Affiliation(s)
- Nadège Gouignard
- CIIL- Institut Biologie de Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur Lille, Lille, France.,Department of Basic Science & Craniofacial Biology, New York University, College of Dentistry, New York, USA
| | - Floriane Cherrier
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France.,Oncogenesis of Lymphoma unit, INSERM U1053 - BaRITOn, Bordeaux, France
| | - Emma Brito-Fravallo
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Adrien Pain
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France.,Institut Pasteur - Bioinformatics and Biostatistics Hub - C3BI, USR, 3756 IP CNRS, Paris, France
| | - Natalia Marta Zmarlak
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Katia Cailliau
- Team "Signal Division Regulation", CNRS UMR 8576, University of Lille, Lille, France
| | - Corinne Genève
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Kenneth D Vernick
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France.,Centre National de la Recherche Scientifique, UMR2000, Paris, France
| | - Colette Dissous
- CIIL- Institut Biologie de Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur Lille, Lille, France.
| | - Christian Mitri
- Genetics and Genomics of Insect Vectors Unit, Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, UMR2000, Paris, France.
| |
Collapse
|
35
|
Izquierdo A, Fahrenberger M, Persampieri T, Benedict MQ, Giles T, Catteruccia F, Emes RD, Dottorini T. Evolution of gene expression levels in the male reproductive organs of Anopheles mosquitoes. Life Sci Alliance 2019; 2:e201800191. [PMID: 30623175 PMCID: PMC6315087 DOI: 10.26508/lsa.201800191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022] Open
Abstract
Modifications in gene expression determine many of the phenotypic differentiations between closely related species. This is particularly evident in reproductive tissues, where evolution of genes is more rapid, facilitating the appearance of distinct reproductive characteristics which may lead to species isolation and phenotypic variation. Large-scale, comparative analyses of transcript expression levels have been limited until recently by lack of inter-species data mining solutions. Here, by combining expression normalisation across lineages, multivariate statistical analysis, evolutionary rate, and protein-protein interaction analysis, we investigate ortholog transcripts in the male accessory glands and testes across five closely related species in the Anopheles gambiae complex. We first demonstrate that the differentiation by transcript expression is consistent with the known Anopheles phylogeny. Then, through clustering, we discover groups of transcripts with tissue-dependent expression patterns conserved across lineages, or lineage-dependent patterns conserved across tissues. The strongest associations with reproductive function, transcriptional regulatory networks, protein-protein subnetworks, and evolutionary rate are found for the groups of transcripts featuring large expression differences in lineage or tissue-conserved patterns.
Collapse
Affiliation(s)
- Abril Izquierdo
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Martin Fahrenberger
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Tania Persampieri
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Mark Q Benedict
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Entomology Branch, Atlanta, GA, USA
| | - Tom Giles
- Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Richard D Emes
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK.,Advanced Data Analysis Centre, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| | - Tania Dottorini
- School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Leicestershire, UK
| |
Collapse
|
36
|
Yokoi T, Nakagawa Y, Miyagawa H. Asymmetric synthesis of tetrahydroquinoline-type ecdysone agonists and QSAR for their binding affinity against Aedes albopictus ecdysone receptors. PEST MANAGEMENT SCIENCE 2019; 75:115-124. [PMID: 30070016 DOI: 10.1002/ps.5160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/27/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Tetrahydroquinolines (THQs) are a class of non-steroidal ecdysone agonists that specifically bind to mosquito ecdysone receptors (EcR). The THQ scaffold contains two chiral centers at the C-2 and C-4 positions, resulting in four stereoisomers. We have previously shown that the (2R,4S)-isomers are the most biologically active; however, the lack of a practical synthetic method for these isomers has hampered further structure-activity studies. RESULTS In this study, a chiral phosphoric acid-catalyzed Povarov reaction was employed to develop a facile asymmetric synthesis of THQs with a (2R,4S)-configuration, which allowed the preparation of a 40-compound library of enantiopure THQs. Evaluation of their binding affinity against Aedes albopictus EcR, followed by quantitative structure-activity relationship (QSAR) analyses, uncovered the physicochemical properties of THQs that are important for the ligand-receptor interaction. The most potent THQ derivative was twofold more active than the molting hormone, 20-hydroxyecdysone. CONCLUSION The QSAR results provide valuable information for the rational design of novel mosquito-specific ecdysone agonists. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Taiyo Yokoi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
37
|
Smidler AL, Scott SN, Mameli E, Shaw WR, Catteruccia F. A transgenic tool to assess Anopheles mating competitiveness in the field. Parasit Vectors 2018; 11:651. [PMID: 30583744 PMCID: PMC6304768 DOI: 10.1186/s13071-018-3218-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Background Malaria parasites, transmitted by the bite of an anopheline mosquito, pose an immense public health burden on many tropical and subtropical regions. The most important malaria vectors in sub-Saharan Africa are mosquitoes of the Anopheles gambiae complex including An. gambiae (sensu stricto). Given the increasing rates of insecticide resistance in these mosquitoes, alternative control strategies based on the release of genetically modified males are being evaluated to stop transmission by these disease vectors. These strategies rely on the mating competitiveness of release males, however currently there is no method to determine male mating success without sacrificing the female. Interestingly, unlike other insects, during mating An. gambiae males transfer their male accessory glands (MAGs) seminal secretions as a coagulated mating plug which is deposited in the female atrium. Results Here we exploit this male reproductive feature and validate the use of a MAG-specific promoter to fluorescently label the mating plug and visualize the occurrence of insemination in vivo. We used the promoter region of the major mating plug protein, Plugin, to control the expression of a Plugin-tdTomato (PluTo) fusion protein, hypothesizing that this fusion protein could be incorporated into the plug for sexual transfer to the female. Anopheles gambiae PluTo transgenic males showed strong red fluorescence specifically in the MAGs and with a pattern closely matching endogenous Plugin expression. Moreover, the fusion protein was integrated into the mating plug and transferred to the female atrium during mating where it could be visualized microscopically in vivo without sacrificing the female. PluTo males were equally as competitive at mating as wild type males, and females mated to these males did not show any reduction in reproductive fitness. Conclusion The validation of the first MAG-specific promoter in transgenic An. gambiae facilitates the live detection of successful insemination hours after copulation has occurred. This provides a valuable tool for the assessment of male mating competitiveness not only in laboratory experiments but also in semi-field and field studies aimed at testing the feasibility of releasing genetically modified mosquitoes for disease control. Electronic supplementary material The online version of this article (10.1186/s13071-018-3218-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea L Smidler
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Sean N Scott
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - Enzo Mameli
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA
| | - W Robert Shaw
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, MA, USA.
| |
Collapse
|
38
|
Analysis of natural female post-mating responses of Anopheles gambiae and Anopheles coluzzii unravels similarities and differences in their reproductive ecology. Sci Rep 2018; 8:6594. [PMID: 29700344 PMCID: PMC5920108 DOI: 10.1038/s41598-018-24923-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 03/20/2018] [Indexed: 11/18/2022] Open
Abstract
Anopheles gambiae and An. coluzzii, the two most important malaria vectors in sub-Saharan Africa, are recently radiated sibling species that are reproductively isolated even in areas of sympatry. In females from these species, sexual transfer of male accessory gland products, including the steroid hormone 20-hydroxyecdysone (20E), induces vast behavioral, physiological, and transcriptional changes that profoundly shape their post-mating ecology, and that may have contributed to the insurgence of post-mating, prezygotic reproductive barriers. As these barriers can be detected by studying transcriptional changes induced by mating, we set out to analyze the post-mating response of An. gambiae and An. coluzzii females captured in natural mating swarms in Burkina Faso. While the molecular pathways shaping short- and long-term mating-induced changes are largely conserved in females from the two species, we unravel significant inter-specific differences that suggest divergent regulation of key reproductive processes such as egg development, processing of seminal secretion, and mating behavior, that may have played a role in reproductive isolation. Interestingly, a number of these changes occur in genes previously shown to be regulated by the sexual transfer of 20E and may be due to divergent utilization of this steroid hormone in the two species.
Collapse
|
39
|
Nuss AB, Brown MR. Isolation of an insulin-like peptide from the Asian malaria mosquito, Anopheles stephensi, that acts as a steroidogenic gonadotropin across diverse mosquito taxa. Gen Comp Endocrinol 2018; 258:140-148. [PMID: 28502740 PMCID: PMC5681901 DOI: 10.1016/j.ygcen.2017.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/02/2017] [Accepted: 05/10/2017] [Indexed: 12/30/2022]
Abstract
Many insulin-like peptides (ILPs) have been identified in insects, yet only a few were isolated in their native form for structural and functional studies. Antiserum produced to ILP3 in Aedes aegypti was used in a radioimmunoassay to monitor the purification of an ILP from heads of adult An. stephensi and recognized the ILP in other immunoassays. The structure of the purified peptide matched that predicted for the ILP3 in this species. The native form stimulated ecdysteroid production by ovaries isolated from non-blood fed females. Synthetic forms of An. stephensi ILP3 and ILP4 similarly activated this process in a dose responsive manner. This function was first established for ILP3 and ILP4 homologs in Aedes aegypti, thus suggesting their structural and functional conservation in mosquitoes. We tested the extent of conservation by treating ovaries of An. gambiae, Ae. aegypti, and Culex quinquefasciatus with the An. stephensi ILPs, and both the native and synthetic ILP3 were stimulatory, as was the ILP4. Taken together, these results offer the first evidence for ILP functional conservation across the Anophelinae and Culicinae subfamilies.
Collapse
Affiliation(s)
- Andrew B Nuss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; Department of Agriculture, Nutrition and Veterinary Sciences, University of Nevada, Reno, NV 89557, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
40
|
Mitchell SN, Catteruccia F. Anopheline Reproductive Biology: Impacts on Vectorial Capacity and Potential Avenues for Malaria Control. Cold Spring Harb Perspect Med 2017; 7:a025593. [PMID: 28389513 PMCID: PMC5710097 DOI: 10.1101/cshperspect.a025593] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Vectorial capacity is a mathematical approximation of the efficiency of vector-borne disease transmission, measured as the number of new infections disseminated per case per day by an insect vector. Multiple elements of mosquito biology govern their vectorial capacity, including survival, population densities, feeding preferences, and vector competence. Intriguingly, biological pathways essential to mosquito reproductive fitness directly or indirectly influence a number of these elements. Here, we explore this complex interaction, focusing on how the interplay between mating and blood feeding in female Anopheles not only shapes their reproductive success but also influences their ability to sustain Plasmodium parasite development. Central to malaria transmission, mosquito reproductive biology has recently become the focus of research strategies aimed at malaria control, and we discuss promising new methods based on the manipulation of key reproductive steps. In light of widespread resistance to all public health-approved insecticides targeting mosquito reproduction may prove crucial to the success of malaria-eradication campaigns.
Collapse
Affiliation(s)
- Sara N Mitchell
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Department of Immunology and Infectious Diseases, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Papa F, Windbichler N, Waterhouse RM, Cagnetti A, D'Amato R, Persampieri T, Lawniczak MKN, Nolan T, Papathanos PA. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes. Genome Res 2017; 27:1536-1548. [PMID: 28747381 PMCID: PMC5580713 DOI: 10.1101/gr.217216.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/18/2017] [Indexed: 01/09/2023]
Abstract
Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues.
Collapse
Affiliation(s)
- Francesco Papa
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Nikolai Windbichler
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Robert M Waterhouse
- University of Geneva Medical School and Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
- Massachusetts Institute of Technology and the Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA
- Department of Ecology and Evolution, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Alessia Cagnetti
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | - Rocco D'Amato
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| | - Tania Persampieri
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
- Polo d'Innovazione di Genomica, Genetica e Biologia, 06132 Perugia, Italy
| | | | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ London, United Kingdom
| | - Philippos Aris Papathanos
- Section of Genomics and Genetics, Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy
| |
Collapse
|
42
|
League GP, Estévez-Lao TY, Yan Y, Garcia-Lopez VA, Hillyer JF. Anopheles gambiae larvae mount stronger immune responses against bacterial infection than adults: evidence of adaptive decoupling in mosquitoes. Parasit Vectors 2017; 10:367. [PMID: 28764812 PMCID: PMC5539753 DOI: 10.1186/s13071-017-2302-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The immune system of adult mosquitoes has received significant attention because of the ability of females to vector disease-causing pathogens while ingesting blood meals. However, few studies have focused on the immune system of larvae, which, we hypothesize, is highly robust due to the high density and diversity of microorganisms that larvae encounter in their aquatic environments and the strong selection pressures at work in the larval stage to ensure survival to reproductive maturity. Here, we surveyed a broad range of cellular and humoral immune parameters in larvae of the malaria mosquito, Anopheles gambiae, and compared their potency to that of newly-emerged adults and older adults. RESULTS We found that larvae kill bacteria in their hemocoel with equal or greater efficiency compared to newly-emerged adults, and that antibacterial ability declines further with adult age, indicative of senescence. This phenotype correlates with more circulating hemocytes and a differing spatial arrangement of sessile hemocytes in larvae relative to adults, as well as with the individual hemocytes of adults carrying a greater phagocytic burden. The hemolymph of larvae also possesses markedly stronger antibacterial lytic and melanization activity than the hemolymph of adults. Finally, infection induces a stronger transcriptional upregulation of immunity genes in larvae than in adults, including differences in the immunity genes that are regulated. CONCLUSIONS These results demonstrate that immunity is strongest in larvae and declines after metamorphosis and with adult age, and suggest that adaptive decoupling, or the independent evolution of larval and adult traits made possible by metamorphosis, has occurred in the mosquito lineage.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Yan Yan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | | | - Julián F. Hillyer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
43
|
Disrupting Mosquito Reproduction and Parasite Development for Malaria Control. PLoS Pathog 2016; 12:e1006060. [PMID: 27977810 PMCID: PMC5158081 DOI: 10.1371/journal.ppat.1006060] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/13/2016] [Indexed: 12/15/2022] Open
Abstract
The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.
Collapse
|
44
|
McKinney DA, Eum JH, Dhara A, Strand MR, Brown MR. Calcium influx enhances neuropeptide activation of ecdysteroid hormone production by mosquito ovaries. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2016; 70:160-169. [PMID: 26772671 PMCID: PMC4767660 DOI: 10.1016/j.ibmb.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/23/2015] [Accepted: 01/03/2016] [Indexed: 06/05/2023]
Abstract
A critical step in mosquito reproduction is the ingestion of a blood meal from a vertebrate host. In mosquitoes like Aedes aegypti, blood feeding stimulates the release of ovary ecdysteroidogenic hormone (OEH) and insulin-like peptide 3 (ILP3). This induces the ovaries to produce ecdysteroid hormone (ECD), which then drives egg maturation. In many immature insects, prothoracicotropic hormone (PTTH) stimulates the prothoracic glands to produce ECD that directs molting and metamorphosis. The receptors for OEH, ILP3 and PTTH are different receptor tyrosine kinases with OEH and ILP3 signaling converging downstream in the insulin pathway and PTTH activating the mitogen-activated protein kinase pathway. Calcium (Ca(2+)) flux and cAMP have also been implicated in PTTH signaling, but the role of Ca(2+) in OEH, ILP3, and cAMP signaling in ovaries is unknown. Here, we assessed whether Ca(2+) flux affects OEH, ILP3, and cAMP activity in A. aegypti ovaries and also asked whether PTTH stimulated ovaries to produce ECD. Results indicated that Ca(2+) flux enhanced but was not essential for OEH or ILP3 activity, whereas cAMP signaling was dependent on Ca(2+) flux. Recombinant PTTH from Bombyx mori fully activated ECD production by B. mori PTGs, but exhibited no activity toward A. aegypti ovaries. Recombinant PTTH from A. aegypti also failed to stimulate either B. mori PTGs or A. aegypti ovaries to produce ECD. We discuss the implications of these results in the context of mosquito reproduction and ECD biosynthesis by insects generally.
Collapse
Affiliation(s)
- David A McKinney
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Jai-Hoon Eum
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Animesh Dhara
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Mark R Brown
- Department of Entomology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
45
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
46
|
Uryu O, Ameku T, Niwa R. Recent progress in understanding the role of ecdysteroids in adult insects: Germline development and circadian clock in the fruit fly Drosophila melanogaster. ZOOLOGICAL LETTERS 2015; 1:32. [PMID: 26605077 PMCID: PMC4657291 DOI: 10.1186/s40851-015-0031-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/27/2015] [Indexed: 05/26/2023]
Abstract
Steroid hormones are one of the major bioactive molecules responsible for the coordinated regulation of biological processes in multicellular organisms. In insects, the principal steroid hormones are ecdysteroids, including 20-hydroxyecdysone. A great deal of research has investigated the roles played by ecdysteroids during insect development, especially the regulatory role in inducing molting and metamorphosis. However, little attention has been paid to the roles of these hormones in post-developmental processes, despite their undisputed presence in the adult insect body. Recently, molecular genetics of the fruit fly Drosophila melanogaster has revealed that ecdysteroid biosynthesis and signaling are indeed active in adult insects, and involved in diverse processes, including oogenesis, stress resistance, longevity, and neuronal activity. In this review, we focus on very recent progress in the understanding of two adult biological events that require ecdysteroid biosynthesis and/or signaling in Drosophila at the molecular level: germline development and the circadian clock.
Collapse
Affiliation(s)
- Outa Uryu
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Tomotsune Ameku
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
| | - Ryusuke Niwa
- />Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572 Japan
- />PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
47
|
Heterosis Increases Fertility, Fecundity, and Survival of Laboratory-Produced F1 Hybrid Males of the Malaria Mosquito Anopheles coluzzii. G3-GENES GENOMES GENETICS 2015; 5:2693-709. [PMID: 26497140 PMCID: PMC4683642 DOI: 10.1534/g3.115.021436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The success of vector control strategies aiming to decrease disease transmission via the release of sterile or genetically-modified male mosquitoes critically depends on mating between laboratory-reared males and wild females. Unfortunately, mosquito colonization, laboratory rearing, and genetic manipulations can all negatively affect male competitiveness. Heterosis is commonly used to produce domestic animals with enhanced vigor and homogenous genetic background and could therefore potentially improve the mating performance of mass-reared male mosquitoes. Here, we produced enhanced hybrid males of the malaria mosquito Anopheles coluzzii by crossing two strains colonized >35 and 8 years ago. We compared the amount of sperm and mating plug proteins they transferred to females, as well as their insemination rate, reproductive success and longevity under various experimental conditions. Across experiments, widespread adaptations to laboratory mating were detected in the older strain. In large-group mating experiments, no overall hybrid advantage in insemination rates and the amount of sperm and accessory gland proteins transferred to females was detected. Despite higher sperm activity, hybrid males did not appear more fecund. However, individual-male mating and laboratory-swarm experiments revealed that hybrid males, while inseminating fewer females than older inbred males, were significantly more fertile, producing larger mating plugs and drastically increasing female fecundity. Heterotic males also showed increased longevity. These results validate the use of heterosis for creating hybrid males with improved fitness from long-established inbred laboratory strains. Therefore, this simple approach could facilitate disease control strategies based on male mosquito releases with important ultimate benefits to human health.
Collapse
|
48
|
Shaw WR, Attardo GM, Aksoy S, Catteruccia F. A comparative analysis of reproductive biology of insect vectors of human disease. CURRENT OPINION IN INSECT SCIENCE 2015; 10:142-148. [PMID: 26140265 PMCID: PMC4484812 DOI: 10.1016/j.cois.2015.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Studying the reproductive strategies of insect species that transmit diseases to humans can identify new exploitable targets for the development of vector control methods. Here we describe shared characteristics and individual features of the reproductive biology of three major disease vectors: Anopheles gambiae, Aedes aegypti and Glossina morsitans. Current studies are identifying i) species-specific molecular cascades that determine female monandrous behavior, ii) core aspects of egg development that could be disrupted for controlling natural populations, and iii) the increasingly apparent role of resident microbiota in shaping reproductive success and disease transmission potential. The recent completion of multiple genome sequencing projects is allowing comparative genomics studies that not only increase our knowledge of reproductive processes but also facilitate the identification of novel targets for vector control.
Collapse
Affiliation(s)
- W Robert Shaw
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Huntington Avenue, Boston MA 02115, United States of America
| | - Geoffrey M Attardo
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven CT 06520 United States of America
| | - Serap Aksoy
- Division of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven CT 06520 United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Huntington Avenue, Boston MA 02115, United States of America ; Dipartimento di Medicina Sperimentale, Università degli Studi di Perugia, Perugia 06100, Italy
| |
Collapse
|
49
|
Laghezza Masci V, Di Luca M, Gambellini G, Taddei AR, Belardinelli MC, Guerra L, Mazzini M, Fausto AM. Reproductive biology in Anophelinae mosquitoes (Diptera, Culicidae): Fine structure of the female accessory gland. ARTHROPOD STRUCTURE & DEVELOPMENT 2015; 44:378-387. [PMID: 25895726 DOI: 10.1016/j.asd.2015.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/02/2015] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
The morphology and ultrastructure of female accessory reproductive glands of Anopheles maculipennis s.s., Anopheles labranchiae and Anopheles stephensi were investigated by light and electron microscopy. The reproductive system in these species is characterized by two ovaries, two lateral oviducts, a single spermatheca and a single accessory gland. The gland is globular and has a thin duct which empties into the vagina, near the opening of the spermathecal duct. Significant growth of the accessory reproductive gland is observed immediately after blood meal, but not at subsequent digestion steps. At ultrastructural level, the gland consists of functional glandular units belonging to type 3 ectodermal glands. The secretory cells are elongated and goblet shaped, with most of their cytoplasm and large nucleus in the basal part, close to the basement lamella. Finely fibrous electron-transparent material occupies the secretory cavity that is in contact with the end of a short efferent duct (ductule) emerging from the gland duct. The present study is the first detailed description of female accessory gland ultrastructure in Anophelinae and provides insights into the gland's functional role in the reproductive biology of these insects.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy
| | - Marco Di Luca
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Gabriella Gambellini
- Centro Grandi Attrezzature, sezione di Microscopia Elettronica, Università della Tuscia, 01100 Viterbo, Italy
| | - Anna Rita Taddei
- Centro Grandi Attrezzature, sezione di Microscopia Elettronica, Università della Tuscia, 01100 Viterbo, Italy
| | - Maria Cristina Belardinelli
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy
| | - Laura Guerra
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy
| | - Massimo Mazzini
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy
| | - Anna Maria Fausto
- Dipartimento per l'Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia, 01100 Viterbo, Italy.
| |
Collapse
|
50
|
De Loof A, Vandersmissen T, Marchal E, Schoofs L. Initiation of metamorphosis and control of ecdysteroid biosynthesis in insects: The interplay of absence of Juvenile hormone, PTTH, and Ca(2+)-homeostasis. Peptides 2015; 68:120-9. [PMID: 25102449 DOI: 10.1016/j.peptides.2014.07.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/25/2014] [Accepted: 07/25/2014] [Indexed: 11/24/2022]
Abstract
The paradigm saying that release of the brain neuropeptide big prothoracicotropic hormone (PTTH) initiates metamorphosis by activating the Torso-receptor/ERK pathway in larval prothoracic glands (PGs) is widely accepted nowadays. Upon ligand-receptor interaction Ca(2+) enters the PG cells and acts as a secondary messenger. Ecdysteroidogenesis results, later followed by apoptosis. Yet, some data do not fit in this model. In some species decapitated animals can still molt, even repeatedly, and metamorphose. PTTH does not universally occur in all insect species. PGs may also have other functions; PGs as counterpart of the vertebrate thymus? There are also small PTTHs. Finally, PTTH remains abundantly present in adults and plays a role in control of ecdysteroidogenesis (=sex steroid production) in gonads. This is currently documented only in males. This urges a rethinking of the PTTH-PG paradigm. The key question is: Why does PTTH-induced Ca(2+) entry only result in ecdysteroidogenesis and apoptosis in specific cells/tissues, namely the PGs and gonads? Indeed, numerous other neuropeptides also use Ca(2+) as secondary messenger. The recent rediscovery that in both invertebrates and vertebrates at least some isoforms of Ca(2+)-ATPase need the presence of an endogenous farnesol/juvenile hormone(JH)-like sesquiterpenoid for keeping cytosolic [Ca(2+)]i below the limit of apoptosis-induction, triggered the idea that it is not primarily PTTH, but rather the drop to zero of the JH titer that acts as the primordial initiator of metamorphosis by increasing [Ca(2+)]i. PTTH likely potentiates this effect but only in cells expressing Torso. PTTH: an evolutionarily ancient gonadotropin?
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Tim Vandersmissen
- Department of Teacher Education, Leuven University College, Leuven, Belgium.
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| |
Collapse
|