1
|
Giannakou M, Akrani I, Tsoka A, Myrianthopoulos V, Mikros E, Vorgias C, Hatzinikolaou DG. Discovery of Novel Inhibitors against ALS-Related SOD1(A4V) Aggregation through the Screening of a Chemical Library Using Differential Scanning Fluorimetry (DSF). Pharmaceuticals (Basel) 2024; 17:1286. [PMID: 39458929 PMCID: PMC11510448 DOI: 10.3390/ph17101286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Cu/Zn Superoxide Dismutase 1 (SOD1) is a 32 kDa cytosolic dimeric metalloenzyme that neutralizes superoxide anions into oxygen and hydrogen peroxide. Mutations in SOD1 are associated with ALS, a disease causing motor neuron atrophy and subsequent mortality. These mutations exert their harmful effects through a gain of function mechanism, rather than a loss of function. Despite extensive research, the mechanism causing selective motor neuron death still remains unclear. A defining feature of ALS pathogenesis is protein misfolding and aggregation, evidenced by ubiquitinated protein inclusions containing SOD1 in affected motor neurons. This work aims to identify compounds countering SOD1(A4V) misfolding and aggregation, which could potentially aid in ALS treatment. METHODS The approach employed was in vitro screening of a library comprising 1280 pharmacologically active compounds (LOPAC®) in the context of drug repurposing. Using differential scanning fluorimetry (DSF), these compounds were tested for their impact on SOD1(A4V) thermal stability. RESULTS AND CONCLUSIONS Dimer stability was the parameter chosen as the criterion for screening, since the dissociation of the native SOD1 dimer is the step prior to its in vitro aggregation. The screening revealed one compound raising protein-ligand Tm by 6 °C, eleven inducing a higher second Tm, suggesting a stabilization effect, and fourteen reducing Tm from 10 up to 26 °C, suggesting possible interactions or non-specific binding.
Collapse
Affiliation(s)
- Maria Giannakou
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Ifigeneia Akrani
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Angeliki Tsoka
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Vassilios Myrianthopoulos
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Emmanuel Mikros
- Laboratory of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, 15784 Zografou, Greece; (I.A.)
| | - Constantinos Vorgias
- Biochemistry and Molecular Biology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| | - Dimitris G. Hatzinikolaou
- Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, 15784 Zografou, Greece
| |
Collapse
|
2
|
Ashkaran F, Seyedalipour B, Baziyar P, Hosseinkhani S. Mutation/metal deficiency in the "electrostatic loop" enhanced aggregation process in apo/holo SOD1 variants: implications for ALS diseases. BMC Chem 2024; 18:177. [PMID: 39300574 PMCID: PMC11411779 DOI: 10.1186/s13065-024-01289-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024] Open
Abstract
Despite the many mechanisms it has created to prevent unfolding and aggregation of proteins, many diseases are caused by abnormal folding of proteins, which are called misfolding diseases. During this process, proteins undergo structural changes and become stable, insoluble beta-sheet aggregates called amyloid fibrils. Mutations/disruptions in metal ion homeostasis in the ALS-associated metalloenzyme superoxide dismutase (SOD1) reduce conformational stability, consistent with the protein aggregation hypothesis for neurodegenerative diseases. However, the exact mechanism of involvement is not well understood. Hence, to understand the role of mutation/ metal deficiency in SOD1 misfolding and aggregation, we investigated the effects of apo/holo SOD1 variants on structural properties using biophysical/experimental techniques. The MD results support the idea that the mutation/metal deficiency can lead to a change in conformation. The increased content of β-sheet structures in apo/holo SOD1 variants can be attributed to the aggregation tendency, which was confirmed by FTIR spectroscopy and dictionary of secondary structure in proteins (DSSP) results. Thermodynamic studies of GdnHCl showed that metal deficiency/mutation/intramolecular S-S reduction together are required to initiate misfolding/aggregation of SOD1. The results showed that apo/holo SOD1 variants under destabilizing conditions induced amyloid aggregates at physiological pH, which were detected by ThT/ANS fluorescence, as well as further confirmation of amyloid/amorphous species by TEM. This study confirms that mutations in the electrostatic loop of SOD1 lead to structural abnormalities, including changes in hydrophobicity, reduced disulfide bonds, and an increased propensity for protein denaturation. This process facilitates the formation of amyloid/amorphous aggregates ALS-associated.
Collapse
Affiliation(s)
- Faezeh Ashkaran
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
3
|
Tokuda E, Sakashita Y, Tokoro N, Date A, Kosuge Y, Miyasaka T. MS785-MS27 Reactive Misfolded/Non-Native Zn-Deficient SOD1 Species Exhibit Cytotoxicity and Adopt Heterozygous Conformations in Motor Neurons. Int J Mol Sci 2024; 25:5603. [PMID: 38891791 PMCID: PMC11171496 DOI: 10.3390/ijms25115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/11/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Misfolding of superoxide dismutase-1 (SOD1) is a pathological hallmark of amyotrophic lateral sclerosis (ALS) with SOD1 mutations. The development of antibodies specific for misfolded SOD1 deepens our understanding of how the protein participates in ALS pathogenesis. Since the term "misfolding" refers to various disordered conformers other than the natively folded one, which misfolded species are recognized by specific antibodies should be determined. Here, we molecularly characterized the recognition by MS785-MS27, an antibody cocktail experimentally confirmed to recognize over 100 ALS-linked SOD1 mutants. Indirect ELISA revealed that the antibody cocktail recognized Zn-deficient wild-type and mutated SOD1 species. It also recognized conformation-disordered wild-type and mutated SOD1 species, such as unfolded and oligomeric forms, but had less affinity for the aggregated form. Antibody-reactive SOD1 exhibited cytotoxicity to a motor neuron cell model, which was blocked by Zn treatment with Zn-deficient SOD1. Immunohistochemistry revealed antibody-reactive SOD1 mainly in spinal motor neurons of SOD1G93A mice throughout the disease course, and the distribution after symptomatic stages differed from that of other misfolded SOD1 species. This suggests that misfolded/non-native SOD1 species exist as heterogeneous populations. In conclusion, MS785-MS27 recognizes various conformation-disordered SOD1 species lacking the Zn ion.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yume Sakashita
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Naoya Tokoro
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Ayano Date
- Laboratory of Clinical Medicine, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan
| | - Yasuhiro Kosuge
- Laboratory of Pharmacology, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| | - Tomohiro Miyasaka
- Laboratory of Physiology and Anatomy, School of Pharmacy, Nihon University, 7-7-1 Narashinodai, Funabashi 274-8555, Chiba, Japan;
| |
Collapse
|
4
|
Zaji HD, Seyedalipour B, Hanun HM, Baziyar P, Hosseinkhani S, Akhlaghi M. Computational insight into in silico analysis and molecular dynamics simulation of the dimer interface residues of ALS-linked hSOD1 forms in apo/holo states: a combined experimental and bioinformatic perspective. 3 Biotech 2023; 13:92. [PMID: 36845075 PMCID: PMC9944573 DOI: 10.1007/s13205-023-03514-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/23/2023] Open
Abstract
The aggregation of misfolded SOD1 proteins in neurodegenerative illnesses is a key pathological hallmark in amyotrophic lateral sclerosis (ALS). SOD1 is stabilized and enzymatically activated after binding to Cu/Zn and forming intramolecular disulfide. SOD1 aggregation/oligomerization is triggered by the dissociation of Cu and/or Zn ions. Therefore, we compared the possible effects of ALS-associated point mutations of the holo/apo forms of WT/I149T/V148G SOD1 variants located at the dimer interface to determine structural characterization using spectroscopic methods, computational approaches as well as molecular dynamics (MD) simulations. Predictive results of computational analysis of single-nucleotide polymorphisms (SNPs) suggested that mutant SOD1 has a deleterious effect on activity and structure destabilization. MD data analysis indicated that changes in flexibility, stability, hydrophobicity of the protein as well as increased intramolecular interactions of apo-SOD1 were more than holo-SOD1. Furthermore, a decrease in enzymatic activity in apo-SOD1 was observed compared to holo-SOD1. Comparative intrinsic and ANS fluorescence results of holo/apo-WT-hSOD1 and mutants indicated structural alterations in the local environment of tryptophan residue and hydrophobic patches, respectively. Experimental and MD data supported that substitution effect and metal deficiency of mutants (apo forms) in the dimer interface may promote the tendency to protein mis-folding and aggregation, consequently disrupting the dimer-monomer equilibrium and increased propensity to dissociation dimer into SOD-monomer ultimately leading to loss of stability and function. Overall, data analysis of apo/holo SOD1 forms on protein structure and function using computational and experimental studies will contribute to a better understanding of ALS pathogenicity.
Collapse
Affiliation(s)
- Hamza Dakhil Zaji
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Haider Munzer Hanun
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Payam Baziyar
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mona Akhlaghi
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| |
Collapse
|
5
|
The Role of Superoxide Dismutase 1 in Amyotrophic Lateral Sclerosis: Identification of Signaling Pathways, Regulators, Molecular Interaction Networks, and Biological Functions through Bioinformatics. Brain Sci 2023; 13:brainsci13010151. [PMID: 36672132 PMCID: PMC9857031 DOI: 10.3390/brainsci13010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Mutations in superoxide dismutase 1 (SOD1) result in misfolding and aggregation of the protein, causing neurodegenerative amyotrophic lateral sclerosis (ALS). In recent years, several new SOD1 variants that trigger ALS have been identified, making it increasingly crucial to understand the SOD1 toxicity pathway in ALS. Here we used an integrated bioinformatics approach, including the Ingenuity Pathway Analysis (IPA) tool to analyze signaling pathways, regulators, functions, and network molecules of SOD1 with an emphasis on ALS. IPA toxicity analysis of SOD1 identified superoxide radicals' degradation, apelin adipocyte, ALS, NRF2-mediated oxidative stress response, and sirtuin signaling as the key signaling pathways, while the toxicity of SOD1 is exerted via mitochondrial swelling and oxidative stress. IPA listed CNR1, APLN, BTG2, MAPK, DRAP1, NFE2L2, SNCA, and CG as the upstream regulators of SOD1. IPA further revealed that mutation in SOD1 results in hereditary disorders, including ALS. The exploration of the relationship between SOD1 and ALS using IPA unveiled SOD1-ALS pathway molecules. The gene ontology (GO) analysis of SOD1-ALS pathway molecules with ShinyGO reaffirmed that SOD1 toxicity results in ALS and neurodegeneration. The GO analysis further identified enriched biological processes, molecular functions, and cellular components for SOD1-ALS pathway molecules. The construction of a protein-protein interaction network of SOD1-ALS pathway molecules using STRING and further analysis of that network with Cytoscape identified ACTB followed by TP53, IL6, CASP3, SOD1, IL1B, APP, APOE, and VEGFA as the major network hubs. Taken together, our study provides insight into the molecular underpinning of SOD1's toxicity in ALS.
Collapse
|
6
|
Camponeschi F, Banci L. Metal trafficking in the cell: Combining atomic resolution with cellular dimension. FEBS Lett 2023; 597:122-133. [PMID: 36285633 DOI: 10.1002/1873-3468.14524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023]
Abstract
Metals are widely present in biological systems as simple ions or complex cofactors, and are involved in a variety of processes essential for life. Their transport inside cells and insertion into the binding sites of the proteins that need metals to function occur through complex and selective pathways involving dedicated multiprotein machineries specifically and transiently interacting with each other, often sharing the coordination of metal ions and/or cofactors. The understanding of these machineries requires integrated approaches, ranging from bioinformatics to experimental investigations, possibly in the cellular context. In this review, we report two case studies where the use of integrated in vitro and in cellulo approaches is necessary to clarify at atomic resolution essential aspects of metal trafficking in cells.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.,Department of Chemistry, University of Florence, Italy
| |
Collapse
|
7
|
Wakayama K, Kimura S, Kobatake Y, Kamishina H, Nishii N, Takashima S, Honda R, Kamatari YO. Molecular Mechanisms of Aggregation of Canine SOD1 E40K Amyloidogenic Mutant Protein. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010156. [PMID: 36615350 PMCID: PMC9822309 DOI: 10.3390/molecules28010156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/17/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022]
Abstract
Canine degenerative myelopathy (DM) is a human amyotrophic lateral sclerosis (ALS)-like neurodegenerative disease. It is a unique, naturally occurring animal model of human ALS. Canine DM is associated with the aggregation of canine superoxide dismutase 1 (cSOD1), which is similar to human ALS. Almost 100% of cases in dogs are familial, and the E40K mutation in cSOD1 is a major causative mutation of DM. Therefore, it is important to understand the molecular mechanisms underlying cSOD1(E40K) aggregation. To address this, we first analyzed the structural model of wild type cSOD1. Interactions were evident between amino acid E40 and K91. Therefore, the mutation at residue E40 causes loss of the interaction and may destabilize the native structure of cSOD1. Differential scanning fluorimetry revealed that the E40K mutant was less stable than the wild type. Moreover, stability could be recovered by the E40K and K91E double mutation. Acceleration of amyloid fibril formation in vitro and aggregate formation in cells of cSOD1(E40K) was also suppressed by the introduction of this double mutation in thioflavin T fluorescence assay results and in transfectant cells, respectively. These results clearly show the importance of the interaction between amino acid residues E40 and K91 in cSOD1 for the stability of the native structure and aggregation.
Collapse
Affiliation(s)
- Kento Wakayama
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shintaro Kimura
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Yui Kobatake
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Hiroaki Kamishina
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Kyoto AR, 33 Sayama-Nakamichi, Kumiyama, Kuze, Kyoto 613-0036, Japan
| | - Naohito Nishii
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Satoshi Takashima
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Ryo Honda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuji O. Kamatari
- Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-Core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3900
| |
Collapse
|
8
|
Dalla Bella E, Bersano E, Bruzzone MG, Gellera C, Pensato V, Lauria G, Consonni M. Behavioral and Cognitive Phenotypes of Patients With Amyotrophic Lateral Sclerosis Carrying SOD1 Variants. Neurology 2022; 99:e2052-e2062. [PMID: 35985819 PMCID: PMC9651465 DOI: 10.1212/wnl.0000000000201044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES SOD1 variants in patients with amyotrophic lateral sclerosis (ALS) have been associated with peculiar clinical features and disease progression but rarely with cognitive and behavioral impairment. This study aims at describing the features of frontotemporal syndromes in patients with ALS carrying SOD1 variants. METHODS Italian patients with ALS were consecutively enrolled between 2012 and 2020 at our Motor Neuron Disease Center. All underwent clinical assessment, extensive neurophysiologic test battery for the evaluation of cognitive functions and behavior, and targeted next-generation sequencing of SOD1, FUS, TARDBP, VCP, PFN1, TUBA4A, OPTN, SQSTM1, UBQLN2, and C9orf72 genes. Neuropsychological profiles of SOD1+ patients (SOD1+) were compared with those with no gene variants (SOD1-). To this aim, the occurrence of cognitive and behavioral impairment defined according to the current guidelines, the number of pathologic test performances based on Italian normative values, and scores of the Frontal Behavioral Inventory were collected. RESULTS Among 288 patients consecutively examined, we identified 8 known pathogenic SOD1 variants and one variant of uncertain significance (p.Ser26Asn) not previously described in 14 patients with ALS belonging to 11 families. The clinical phenotypes were mainly characterized by predominant lower motor neuron involvement with onset at the lower limbs, and one patient had bulbar onset. SOD1+ patients (n = 14) were compared with SOD1- patients (N = 274). SOD1+ patients were younger than SOD1-, and both groups had similar functional motor disabilities and disease duration. Based on the overall neuropsychological findings, the percentage of SOD1+ and SOD1- patients with altered profiles were approximately 60%. However, behavioral impairment defined by the Strong criteria, and most commonly featuring with irritability and mental rigidity, was more frequent in SOD1+ than SOD1- patients and mainly associated with variants in exon 5. Conversely, cognitive impairment was mainly found in SOD1- patients. DISCUSSION Our findings from a large cohort of deeply phenotyped patients with ALS demonstrated that behavioral involvement is more common than previously thought among patients harboring SOD1 variants and that it is independent from patients' age and disease stage. These findings could be relevant for the assessment of clinical trial outcomes and disease management.
Collapse
Affiliation(s)
- Eleonora Dalla Bella
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| | - Enrica Bersano
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| | - Maria Grazia Bruzzone
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| | - Cinzia Gellera
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| | - Viviana Pensato
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| | - Giuseppe Lauria
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy.
| | - Monica Consonni
- From the 3rd Neurology Unit and Motor Neuron Diseases Centre (E.D.B., E.B., G.L., M.C.), Neuroradiology Unit (M.G.B.), Diagnostic and Technology Department, and Unit of Medical Genetics and Neurogenetics (C.G., V.P.), Fondazione IRCCS Istituto Neurologico "Carlo Besta"; Milan, and Department of Biomedical and Clinical and Sciences "Luigi Sacco" (E.B., G.L.), University of Milan, Italy
| |
Collapse
|
9
|
Dashnaw CM, Zhang AY, Gonzalez M, Koone JC, Shaw BF. Metal migration and subunit swapping in ALS-linked SOD1: Zn 2+ transfer between mutant and wild-type occurs faster than the rate of heterodimerization. J Biol Chem 2022; 298:102610. [PMID: 36265587 PMCID: PMC9667317 DOI: 10.1016/j.jbc.2022.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
The heterodimerization of WT Cu, Zn superoxide dismutase-1 (SOD1), and mutant SOD1 might be a critical step in the pathogenesis of SOD1-linked amyotrophic lateral sclerosis (ALS). Rates and free energies of heterodimerization (ΔGHet) between WT and ALS-mutant SOD1 in mismatched metalation states-where one subunit is metalated and the other is not-have been difficult to obtain. Consequently, the hypothesis that under-metalated SOD1 might trigger misfolding of metalated SOD1 by "stealing" metal ions remains untested. This study used capillary zone electrophoresis and mass spectrometry to track heterodimerization and metal transfer between WT SOD1, ALS-variant SOD1 (E100K, E100G, D90A), and triply deamidated SOD1 (modeled with N26D/N131D/N139D substitutions). We determined that rates of subunit exchange between apo dimers and metalated dimers-expressed as time to reach 30% heterodimer-ranged from t30% = 67.75 ± 9.08 to 338.53 ± 26.95 min; free energies of heterodimerization ranged from ΔGHet = -1.21 ± 0.31 to -3.06 ± 0.12 kJ/mol. Rates and ΔGHet values of partially metalated heterodimers were more similar to those of fully metalated heterodimers than apo heterodimers, and largely independent of which subunit (mutant or WT) was metal-replete or metal-free. Mass spectrometry and capillary electrophoresis demonstrated that mutant or WT 4Zn-SOD1 could transfer up to two equivalents of Zn2+ to mutant or WT apo-SOD1 (at rates faster than the rate of heterodimerization). This result suggests that zinc-replete SOD1 can function as a chaperone to deliver Zn2+ to apo-SOD1, and that WT apo-SOD1 might increase the toxicity of mutant SOD1 by stealing its Zn2+.
Collapse
|
10
|
Wang LQ, Ma Y, Yuan HY, Zhao K, Zhang MY, Wang Q, Huang X, Xu WC, Dai B, Chen J, Li D, Zhang D, Wang Z, Zou L, Yin P, Liu C, Liang Y. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion. Nat Commun 2022; 13:3491. [PMID: 35715417 PMCID: PMC9205981 DOI: 10.1038/s41467-022-31240-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/09/2022] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease. Misfolded Cu, Zn-superoxide dismutase (SOD1) has been linked to both familial and sporadic ALS. SOD1 fibrils formed in vitro share toxic properties with ALS inclusions. Here we produced cytotoxic amyloid fibrils from full-length apo human SOD1 under reducing conditions and determined the atomic structure using cryo-EM. The SOD1 fibril consists of a single protofilament with a left-handed helix. The fibril core exhibits a serpentine fold comprising N-terminal segment (residues 3–55) and C-terminal segment (residues 86–153) with an intrinsic disordered segment. The two segments are zipped up by three salt bridge pairs. By comparison with the structure of apo SOD1 dimer, we propose that eight β-strands (to form a β-barrel) and one α-helix in the subunit of apo SOD1 convert into thirteen β-strands stabilized by five hydrophobic cavities in the SOD1 fibril. Our data provide insights into how SOD1 converts between structurally and functionally distinct states. Misfolded SOD1 has been linked to both familial and sporadic ALS. Here the authors have determined the cryo-EM structure of SOD1 fibrils, providing insights into the conversion of SOD1 from its immature form into an aggregated form during pathogenesis of ALS.
Collapse
Affiliation(s)
- Li-Qiang Wang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Han-Ye Yuan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Kun Zhao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mu-Ya Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xi Huang
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Wen-Chang Xu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China
| | - Bin Dai
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China.,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China
| | - Dan Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, 200030, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengzhi Wang
- School of Civil Engineering, Wuhan University, 430072, Wuhan, China
| | - Liangyu Zou
- Department of Neurology, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), 518020, Shenzhen, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, 430070, Wuhan, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201210, Shanghai, China.
| | - Yi Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, China. .,Wuhan University Shenzhen Research Institute, 518057, Shenzhen, China.
| |
Collapse
|
11
|
Srinivasan E, Chandrasekhar G, Rajasekaran R. Probing the polyphenolic flavonoid, morin as a highly efficacious inhibitor against amyloid(A4V) mutant SOD1 in fatal amyotrophic lateral sclerosis. Arch Biochem Biophys 2022; 727:109318. [PMID: 35690129 DOI: 10.1016/j.abb.2022.109318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/02/2022]
Abstract
Deposition of misfolded protein aggregates in key areas of human brain is the quintessential trait of various pertinent neurodegenerative disorders including amyotrophic lateral sclerosis (ALS). Genetic point mutations in Cu/Zn superoxide dismutase (SOD1) are found to be the most important contributing factor behind familial ALS. Especially, single nucleotide polymorphism (SNP) A4V is the most nocuous since it substantially decreases life expectancy of patients. Besides, the use of naturally occurring polyphenolic flavonoids is profoundly being advocated for palliating amyloidogenic behavior of proteopathic proteins. In the present analysis, through proficient computational tools, we have attempted to ascertain a pharmacodynamically promising flavonoid compound that effectively curbs the pathogenic behavior of A4V SOD1 mutant. Initial screening of flavonoids that exhibit potency against amyloids identified morin, myricetin and epigallocatechin gallate as promising leads. Further, with the help of feasible and yet adept protein-ligand interaction studies and stalwart molecular simulation analyses, we were able to observe that aforementioned flavonoids were able to considerably divert mutant A4V SOD1 from its distinct pathogenic behavior. Among which, morin showed the most curative potential against A4V SOD1. Therefore, morin holds a great therapeutic potential in contriving highly efficacious inhibitors in mitigating fatal and insuperable ALS.
Collapse
Affiliation(s)
- E Srinivasan
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India; Department of Bioinformatics, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - G Chandrasekhar
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India
| | - R Rajasekaran
- Quantitative Biology Lab, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT, Deemed to be University), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
12
|
Trist BG, Genoud S, Roudeau S, Rookyard A, Abdeen A, Cottam V, Hare DJ, White M, Altvater J, Fifita JA, Hogan A, Grima N, Blair IP, Kysenius K, Crouch PJ, Carmona A, Rufin Y, Claverol S, Van Malderen S, Falkenberg G, Paterson DJ, Smith B, Troakes C, Vance C, Shaw CE, Al-Sarraj S, Cordwell S, Halliday G, Ortega R, Double KL. Altered SOD1 maturation and post-translational modification in amyotrophic lateral sclerosis spinal cord. Brain 2022; 145:3108-3130. [PMID: 35512359 PMCID: PMC9473357 DOI: 10.1093/brain/awac165] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aberrant self-assembly and toxicity of wild-type and mutant superoxide dismutase 1 (SOD1) has been widely examined in silico, in vitro, and in transgenic animal models of amyotrophic lateral sclerosis (ALS). Detailed examination of the protein in disease-affected tissues from ALS patients, however, remains scarce. We employed histological, biochemical and analytical techniques to profile alterations to SOD1 protein deposition, subcellular localization, maturation and post-translational modification in post-mortem spinal cord tissues from ALS cases and controls. Tissues were dissected into ventral and dorsal spinal cord grey matter to assess the specificity of alterations within regions of motor neuron degeneration. We provide evidence of the mislocalization and accumulation of structurally-disordered, immature SOD1 protein conformers in spinal cord motor neurons of SOD1-linked and non-SOD1-linked familial ALS cases, and sporadic ALS cases, compared with control motor neurons. These changes were collectively associated with instability and mismetallation of enzymatically-active SOD1 dimers, as well as alterations to SOD1 post-translational modifications and molecular chaperones governing SOD1 maturation. Atypical changes to SOD1 protein were largely restricted to regions of neurodegeneration in ALS cases, and clearly differentiated all forms of ALS from controls. Substantial heterogeneity in the presence of these changes was also observed between ALS cases. Our data demonstrates that varying forms of SOD1 proteinopathy are a common feature of all forms of ALS, and support the presence of one or more convergent biochemical pathways leading to SOD1 proteinopathy in ALS. The majority of these alterations are specific to regions of neurodegeneration, and may therefore constitute valid targets for therapeutic development.
Collapse
Affiliation(s)
- Benjamin G Trist
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sian Genoud
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Stéphane Roudeau
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Alexander Rookyard
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Amr Abdeen
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Veronica Cottam
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dominic J Hare
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Atomic Medicine Initiative, University of Technology Sydney, Broadway, New South Wales 2007, Australia
| | - Melanie White
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jens Altvater
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jennifer A Fifita
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Natalie Grima
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ian P Blair
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Kai Kysenius
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Peter J Crouch
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asuncion Carmona
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Yann Rufin
- Plateforme Biochimie, University of Bordeaux, France
| | | | - Stijn Van Malderen
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - David J Paterson
- Australian Synchrotron, ANSTO, Clayton, Victoria 3168, Australia
| | - Bradley Smith
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Claire Troakes
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Caroline Vance
- Maurice Wohl Clinical Neuroscience Institute and the Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, SE5 9RT, London, UK
| | - Christopher E Shaw
- UK Dementia Research Institute at King's College London, 5 Cutcombe Road, London, SE5 9RT, UK
| | - Safa Al-Sarraj
- London Neurodegenerative Diseases Brain Bank, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 8AF, London, UK
| | - Stuart Cordwell
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Richard Ortega
- Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
| | - Kay L Double
- Brain and Mind Centre and School of Medical Sciences (Neuroscience), Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Tak YJ, Kang S. The E2 ubiquitin-conjugating enzyme HIP2 is a crucial regulator of quality control against mutant SOD1 proteotoxicity. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166316. [PMID: 34856358 DOI: 10.1016/j.bbadis.2021.166316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) leading to the formation of intracellular protein aggregates cause amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder characterized by a selective degeneration of motor neurons. The ALS-linked mutant SOD1 emerged as a possible target for ubiquitin-proteasome system (UPS)-mediated degradation. We aimed to elucidate the role of huntingtin interaction protein 2 (HIP2), an E2 ubiquitin-conjugating enzyme, in the proteotoxicity of mutant SOD1 aggregates. We found that HIP2 interacts with mutant SOD1, but not wild-type SOD1, and is upregulated in response to mutant SOD1 expression. Upregulation of HIP2 protein was observed in the spinal cord of 16-week-old SOD1-G93A transgenic mice. HIP2 further modified mutant SOD1 proteins via K48-linked polyubiquitination and degraded mutant SOD1 proteins through the UPS. Upregulation of HIP2 protected cells from mutant SOD1-induced toxicity. Taken together, our findings demonstrate that HIP2 is a crucial regulator of quality control against the proteotoxicity of mutant SOD1. Our results suggest that modulating HIP2 may represent a novel therapeutic strategy for the treatment of ALS.
Collapse
Affiliation(s)
- Yeong Jin Tak
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Seongman Kang
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
14
|
Zhang Q, Wang B, Zhang Y, Yang J, Deng B, Ding B, Zhong D. Probing Intermolecular Interactions of Amyloidogenic Fragments of SOD1 by Site-Specific Tryptophan and Its Noncanonical Derivative. J Phys Chem B 2021; 125:13088-13098. [PMID: 34812635 DOI: 10.1021/acs.jpcb.1c07175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Transient amyloid intermediates are likely to be cytotoxic and play an essential role in amyloid-associated neurodegenerative diseases. Characterization of their structural and dynamic evolution is the key to elucidating the molecular mechanism of amyloid formation. Here, combining circular dichroism (CD), exciton couplet theory, and Fourier transform infrared spectroscopy with site-specific tryptophan (Trp) and its noncanonical derivative 5-cyano-tryptochan (Trp5CN), we developed a method to monitor strand-to-strand tertiary and sheet-to-sheet quaternary interactions in the aggregation cascades of an amyloidogenic fragment from protein SOD128-38 (with the sequence KVKVWGSIKGL). We found that the exciton couplet generated from the Bb band of Trp can be used as a probe for side chain interactions. Its sensitivity can be further improved by four times with the incorporation of Trp5CN. We further observed a red-shift of ∼2 cm-1 and a broadening of ∼2 cm-1 in the IR band generated from the CN stretch during the aggregation, which we attributed to the transition from a corkscrew-like structure to a cross-linked intermediate phase. We show here that the integration of optical methods with unique aromatic side chain-related probes is able to elucidate amyloid intermolecular interactions and even capture elusive transient intermediates on and off the amyloid assembling pathway.
Collapse
Affiliation(s)
- Qin Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingyao Wang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yifei Zhang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Yang
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bodan Deng
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,Department of Physics, Department of Chemistry and Biochemistry, and Programs of Biophysics, Chemical Physics, and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Computer analysis of the relation between hydrogen bond stability in SOD1 mutants and the survival time of amyotrophic lateral sclerosis patients. J Mol Graph Model 2021; 110:108026. [PMID: 34653813 DOI: 10.1016/j.jmgm.2021.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Mutations in the SOD1 protein can lead to the death of motor neurons, which, in turn, causes an incurable disease called amyotrophic lateral sclerosis (ALS). At the same time, the mechanism of the onset and development of this disease is not fully understood and is often contradictory. METHODS Accelerated Molecular Dynamics as implemented in the OpenMM library, principal component analysis, regression analysis, random forest method. RESULTS The stability of hydrogen bonds in 72 mutants of the SOD1 protein was calculated. Principal component analysis was carried out. Based on ten principal components acting as predictors, a multiple linear regression model was constructed. An analysis of the correlation of these ten principal components with the initial values of the stability of hydrogen bonds made it possible to characterize the contribution of known structurally and functionally important sites in the SOD1 to the scatter of ALS patients' survival time. CONCLUSION Such an analysis made it possible to put forward hypotheses about the relationship between the stabilizing and destabilizing effects of mutations in different structurally and functionally important regions of SOD1 with the patients's survival time.
Collapse
|
16
|
Kumar S, Kumar Bhardwaj V, Singh R, Purohit R. Explicit-solvent molecular dynamics simulations revealed conformational regain and aggregation inhibition of I113T SOD1 by Himalayan bioactive molecules. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Sirangelo I, Iannuzzi C. Understanding the Role of Protein Glycation in the Amyloid Aggregation Process. Int J Mol Sci 2021; 22:ijms22126609. [PMID: 34205510 PMCID: PMC8235188 DOI: 10.3390/ijms22126609] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Protein function and flexibility is directly related to the native distribution of its structural elements and any alteration in protein architecture leads to several abnormalities and accumulation of misfolded proteins. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidosis characterized by the accumulation of amyloid aggregates both in the extracellular space of tissues and as intracellular deposits. Post-translational modifications are known to have an active role in the in vivo amyloid aggregation as able to affect protein structure and dynamics. Among them, a key role seems to be played by non-enzymatic glycation, the most unwanted irreversible modification of the protein structure, which strongly affects long-living proteins throughout the body. This study provided an overview of the molecular effects induced by glycation on the amyloid aggregation process of several protein models associated with misfolding diseases. In particular, we analyzed the role of glycation on protein folding, kinetics of amyloid formation, and amyloid cytotoxicity in order to shed light on the role of this post-translational modification in the in vivo amyloid aggregation process.
Collapse
|
18
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2021; 60:9215-9246. [PMID: 32144830 PMCID: PMC8247289 DOI: 10.1002/anie.202000451] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) is a frontline antioxidant enzyme catalysing superoxide breakdown and is important for most forms of eukaryotic life. The evolution of aerobic respiration by mitochondria increased cellular production of superoxide, resulting in an increased reliance upon SOD1. Consistent with the importance of SOD1 for cellular health, many human diseases of the central nervous system involve perturbations in SOD1 biology. But far from providing a simple demonstration of how disease arises from SOD1 loss-of-function, attempts to elucidate pathways by which atypical SOD1 biology leads to neurodegeneration have revealed unexpectedly complex molecular characteristics delineating healthy, functional SOD1 protein from that which likely contributes to central nervous system disease. This review summarises current understanding of SOD1 biology from SOD1 genetics through to protein function and stability.
Collapse
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| | - James B. Hilton
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
- School of BioSciencesThe University of MelbourneParkvilleVictoria3052Australia
- Atomic Medicine InitiativeThe University of Technology SydneyBroadwayNew South Wales2007Australia
| | - Peter J. Crouch
- Department of Pharmacology and TherapeuticsThe University of MelbourneParkvilleVictoria3052Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of PharmacologyThe University of Sydney, CamperdownSydneyNew South Wales2050Australia
| |
Collapse
|
19
|
Sannigrahi A, Chowdhury S, Das B, Banerjee A, Halder A, Kumar A, Saleem M, Naganathan AN, Karmakar S, Chattopadhyay K. The metal cofactor zinc and interacting membranes modulate SOD1 conformation-aggregation landscape in an in vitro ALS model. eLife 2021; 10:e61453. [PMID: 33825682 PMCID: PMC8087447 DOI: 10.7554/elife.61453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 04/01/2021] [Indexed: 12/22/2022] Open
Abstract
Aggregation of Cu-Zn superoxide dismutase (SOD1) is implicated in the motor neuron disease, amyotrophic lateral sclerosis (ALS). Although more than 140 disease mutations of SOD1 are available, their stability or aggregation behaviors in membrane environment are not correlated with disease pathophysiology. Here, we use multiple mutational variants of SOD1 to show that the absence of Zn, and not Cu, significantly impacts membrane attachment of SOD1 through two loop regions facilitating aggregation driven by lipid-induced conformational changes. These loop regions influence both the primary (through Cu intake) and the gain of function (through aggregation) of SOD1 presumably through a shared conformational landscape. Combining experimental and theoretical frameworks using representative ALS disease mutants, we develop a 'co-factor derived membrane association model' wherein mutational stress closer to the Zn (but not to the Cu) pocket is responsible for membrane association-mediated toxic aggregation and survival time scale after ALS diagnosis.
Collapse
Affiliation(s)
- Achinta Sannigrahi
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
| | - Sourav Chowdhury
- Chemistry and Chemical Biology, Harvard UniversityCambridgeUnited States
| | - Bidisha Das
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| | | | | | - Amaresh Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Mohammed Saleem
- School of Biological Sciences, National Institute of Science Education and Research (NISER)BhubaneswarIndia
| | - Athi N Naganathan
- Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology MadrasChennaiIndia
| | | | - Krishnananda Chattopadhyay
- Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical BiologyKolkataIndia
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource development Centre CampusGhaziabadIndia
| |
Collapse
|
20
|
Bakavayev S, Argueti S, Venkatachalam N, Yehezkel G, Stavsky A, Barak Z, Israelson A, Engel S. Exposure of β6/β7-Loop in Zn/Cu Superoxide Dismutase (SOD1) Is Coupled to Metal Loss and Is Transiently Reversible During Misfolding. ACS Chem Neurosci 2021; 12:49-62. [PMID: 33326235 DOI: 10.1021/acschemneuro.0c00524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upon losing its structural integrity (misfolding), SOD1 acquires neurotoxic properties to become a pathogenic protein in ALS, a neurodegenerative disease targeting motor neurons; understanding the mechanism of misfolding may enable new treatment strategies for ALS. Here, we reported a monoclonal antibody, SE21, targeting the β6/β7-loop region of SOD1. The exposure of this region is coupled to metal loss and is entirely reversible during the early stages of misfolding. By using SE21 mAb, we demonstrated that, in apo-SOD1 incubated under the misfolding-promoting conditions, the reversible phase, during which SOD1 is capable of restoring its nativelike conformation in the presence of metals, is followed by an irreversible structural transition, autocatalytic in nature, which takes place prior to the onset of SOD1 aggregation and results in the formation of atypical apo-SOD1 that is unable to bind metals. The reversible phase defines a window of opportunity for pharmacological intervention using metal mimetics that stabilize SOD1 structure in its nativelike conformation to attenuate the spreading of the misfolding signal and disease progression by preventing the exposure of pathogenic SOD1 epitopes. Phenotypically similar apo-SOD1 species with impaired metal binding properties may also be produced via oxidation of Cys111, underscoring the diversity of SOD1 misfolding pathways.
Collapse
Affiliation(s)
- Shamchal Bakavayev
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Shirel Argueti
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Nachiyappan Venkatachalam
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Galit Yehezkel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Alexandra Stavsky
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Zeev Barak
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Adrian Israelson
- Department of Physiology and Cell Biology, Faculty of Health Sciences and The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
21
|
Trist BG, Hilton JB, Hare DJ, Crouch PJ, Double KL. Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Benjamin G. Trist
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| | - James B. Hilton
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Dominic J. Hare
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
- School of BioSciences The University of Melbourne Parkville Victoria 3052 Australia
- Atomic Medicine Initiative The University of Technology Sydney Broadway New South Wales 2007 Australia
| | - Peter J. Crouch
- Department of Pharmacology and Therapeutics The University of Melbourne Parkville Victoria 3052 Australia
| | - Kay L. Double
- Brain and Mind Centre and Discipline of Pharmacology The University of Sydney, Camperdown Sydney New South Wales 2050 Australia
| |
Collapse
|
22
|
ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int J Mol Sci 2020; 21:ijms21207525. [PMID: 33065963 PMCID: PMC7590160 DOI: 10.3390/ijms21207525] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive demise of motor neurons. One of the causes of familial ALS is the mutation of the gene encoding superoxide dismutase 1 (SOD1), which leads to abnormal protein aggregates. How SOD1 aggregation drives ALS is still poorly understood. Recently, ALS pathogenesis has been functionally implicated in mitophagy, specifically the clearance of damaged mitochondria. Here, to understand this mechanism, we investigated the relationship between the mitophagy receptor optineurin and SOD1 aggregates. We found that mutant SOD1 (mSOD1) proteins associate with and then sequester optineurin, which is required to form the mitophagosomes, to aggregates in N2a cells. Optineurin recruitment into mSOD1 aggregates resulted in a reduced mitophagy flux. Furthermore, we observed that an exogenous augmentation of optineurin alleviated the cellular cytotoxicity induced by mSOD1. Taken together, these studies demonstrate that ALS-linked mutations in SOD1 interfere with the mitophagy process through optineurin sequestration, suggesting that the accumulation of damaged mitochondria may play a crucial role in the pathophysiological mechanisms contributing to ALS.
Collapse
|
23
|
Dantas LS, Viviani LG, Inague A, Piccirillo E, Rezende LD, Ronsein GE, Augusto O, Medeiros MHG, Amaral ATD, Miyamoto S. Lipid aldehyde hydrophobicity affects apo-SOD1 modification and aggregation. Free Radic Biol Med 2020; 156:157-167. [PMID: 32598986 DOI: 10.1016/j.freeradbiomed.2020.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/30/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Unsaturated lipids are oxidized by reactive oxygen species and enzymes, leading to the increased formation of lipid hydroperoxides and several electrophilic products. Lipid-derived electrophiles can modify macromolecules, such as proteins, resulting in the loss of function and/or aggregation. The accumulation of Cu,Zn-superoxide dismutase (SOD1) aggregates has been associated with familial cases of amyotrophic lateral sclerosis (ALS). The protein aggregation mechanisms in motor neurons remain unclear, although recent studies have shown that lipids and oxidized lipid derivatives may play roles in this process. Here, we aimed to compare the effects of different lipid aldehydes on the induction of SOD1 modifications and aggregation, in vitro. Human recombinant apo-SOD1 was incubated with 4-hydroxy-2-hexenal (HHE), 4-hydroxy-2-nonenal (HNE), 2-hexen-1-al (HEX), 2,4-nonadienal (NON), 2,4-decadienal (DEC), or secosterol aldehydes (SECO-A or SECO-B). High-molecular-weight apo-SOD1 aggregates dramatically increased in the presence of highly hydrophobic aldehydes (LogPcalc > 3). Notably, several Lys residues were modified by exposure to all aldehydes. The observed modifications were primarily observed on Lys residues located near the dimer interface (K3 and K9) and at the electrostatic loop (K122, K128, and K136). Moreover, HHE and HNE induced extensive apo-SOD1 modifications, by forming Schiff bases or Michael adducts with Lys, His, and Cys residues. However, these aldehydes were unable to induce large protein aggregates. Overall, our data shed light on the importance of lipid aldehyde hydrophobicity on the induction of apo-SOD1 aggregation and identified preferential sites of lipid aldehyde-induced modifications.
Collapse
Affiliation(s)
- Lucas S Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Lucas G Viviani
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Erika Piccirillo
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil; Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Leandro de Rezende
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Graziella E Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marisa H G Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Antonia T do Amaral
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
24
|
Jahan I, Nayeem SM. Conformational dynamics of superoxide dismutase (SOD1) in osmolytes: a molecular dynamics simulation study. RSC Adv 2020; 10:27598-27614. [PMID: 35516947 PMCID: PMC9055598 DOI: 10.1039/d0ra02151b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease caused by the misfolding of Cu, Zn superoxide dismutase (SOD1). Several earlier studies have shown that monomeric apo SOD1 undergoes significant local unfolding dynamics and is the predecessor for aggregation. Here, we have employed atomistic molecular dynamics (MD) simulations to study the structure and dynamics of monomeric apo and holo SOD1 in water, aqueous urea and aqueous urea-TMAO (trimethylamine oxide) solutions. Loop IV (zinc-binding loop) and loop VII (electrostatic loop) of holo SOD1 are considered as functionally important loops as they are responsible for the structural stability of holo SOD1. We found larger local unfolding of loop IV and VII of apo SOD1 as compared to holo SOD1 in water. Urea induced more unfolding in holo SOD1 than apo SOD1, whereas the stabilization of both the form of SOD1 was observed in ternary solution (i.e. water/urea/TMAO solution) but the extent of stabilization was higher in holo SOD1 than apo SOD1. The partially unfolded structures of apo SOD1 in water, urea and holo SOD1 in urea were identified by the exposure of the hydrophobic cores, which are highly dynamic and these may be the initial events of aggregation in SOD1. Our simulation studies support the formation of aggregates by means of the local unfolding of monomeric apo SOD1 as compared to holo SOD1 in water.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| | - Shahid M Nayeem
- Department of Chemistry, Aligarh Muslim University Aligarh-202002 U.P. India +91-9412527078
| |
Collapse
|
25
|
Anzai I, Tokuda E, Handa S, Misawa H, Akiyama S, Furukawa Y. Oxidative misfolding of Cu/Zn-superoxide dismutase triggered by non-canonical intramolecular disulfide formation. Free Radic Biol Med 2020; 147:187-199. [PMID: 31863908 DOI: 10.1016/j.freeradbiomed.2019.12.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
Misfolded Cu/Zn-superoxide dismutase (SOD1) is a pathological species in a subset of amyotrophic lateral sclerosis (ALS). Oxidative stress is known to increase in affected spinal cords of ALS and is thus considered to cause damages on SOD1 leading to the misfolding and aggregation. Despite this, it still remains elusive what triggers misfolding of SOD1 under oxidizing environment. Here, we show that a thiol group of Cys111 in SOD1 is oxidized to a sulfenic acid with hydrogen peroxide and reveal that further dissociation of the bound metal ions from the oxidized SOD1 allows another free Cys residue (Cys6) to nucleophilically attack the sulfenylated Cys111. As a result, an intra-molecular disulfide bond forms between Cys6 and Cys111. Such an abnormal SOD1 with the non-canonical disulfide bond was conformationally extended with significant cytotoxicity as well as high propensity to aggregate. Taken together, we propose a new model of SOD1 misfolding under oxidizing environment, in which formation of the non-canonical intramolecular disulfide bond plays a pivotal role.
Collapse
Affiliation(s)
- Itsuki Anzai
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Eiichi Tokuda
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Sumika Handa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, 105-8512, Japan
| | - Shuji Akiyama
- Research Center of Integrative Molecular Systems (CIMoS), Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki, 444-8585, Japan; Department of Functional Molecular Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8585, Japan
| | - Yoshiaki Furukawa
- Department of Chemistry, Keio University, Yokohama, 223-8522, Japan.
| |
Collapse
|
26
|
Ghosh DK, Kumar A, Ranjan A. T54R mutation destabilizes the dimer of superoxide dismutase 1T54R by inducing steric clashes at the dimer interface. RSC Adv 2020; 10:10776-10788. [PMID: 35492906 PMCID: PMC9050410 DOI: 10.1039/c9ra09870d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/28/2020] [Indexed: 11/29/2022] Open
Abstract
Mutations cause abnormalities in protein structure, function and oligomerization. Different mutations in the superoxide dismutase 1 (SOD1) protein cause its misfolding, loss of dimerization and aggravate its aggregation in the amyotrophic lateral sclerosis disease. In this study, we report the mechanistic details of how a threonine-to-arginine mutation at the 54th position (T54R) of SOD1 results in destabilization of the dimer interface of SOD1T54R. Using computational and experimental methods, we show that the T54R mutation increases fluctuation of the mutation-harboring loop (R54-loop) of SOD1T54R. Fluctuation of this loop causes steric clashes that involve arginine-54 (R54) and other residues of SOD1T54R, resulting in loss of inter-subunit contacts at the dimer interface. Since the T54 residue-containing loop is necessary for the dimerization of wild-type SOD1, fluctuation of the R54-loop, steric clashes involving R54 and loss of inter-subunit contacts give rise to the loss of SOD1T54R dimer stability. This correlates to energetically unfavorable tethering of the monomers of SOD1T54R. The outcome is gradual splitting of SOD1T54R dimers into monomers, thereby exposing the previously buried hydrophobic interface residues to the aqueous environment. This event finally leads to aggregation of SOD1T54R. T54R mutation has no effect in altering the relative positions of copper and zinc ion binding residues of SOD1T54R. The native SOD1 structure is stable, and there is no destabilizing effect at its dimer interface. Overall, our study reveals the intricate mechanism of T54R mutation-associated destabilization of the dimer of the SOD1T54R protein. T54R mutation destabilizes the dimer of SOD1T54R.![]()
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
| | - Abhishek Kumar
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
- Graduate Studies
| | - Akash Ranjan
- Computational and Functional Genomics Group
- Centre for DNA Fingerprinting and Diagnostics
- Hyderabad 500039
- India
| |
Collapse
|
27
|
Sala D, Cerofolini L, Fragai M, Giachetti A, Luchinat C, Rosato A. A protocol to automatically calculate homo-oligomeric protein structures through the integration of evolutionary constraints and NMR ambiguous contacts. Comput Struct Biotechnol J 2019; 18:114-124. [PMID: 31969972 PMCID: PMC6961069 DOI: 10.1016/j.csbj.2019.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/20/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022] Open
Abstract
Protein assemblies are involved in many important biological processes. Solid-state NMR (SSNMR) spectroscopy is a technique suitable for the structural characterization of samples with high molecular weight and thus can be applied to such assemblies. A significant bottleneck in terms of both effort and time required is the manual identification of unambiguous intermolecular contacts. This is particularly challenging for homo-oligomeric complexes, where simple uniform labeling may not be effective. We tackled this challenge by exploiting coevolution analysis to extract information on homo-oligomeric interfaces from NMR-derived ambiguous contacts. After removing the evolutionary couplings (ECs) that are already satisfied by the 3D structure of the monomer, the predicted ECs are matched with the automatically generated list of experimental contacts. This approach provides a selection of potential interface residues that is used directly in monomer-monomer docking calculations. We validated the protocol on tetrameric L-asparaginase II and dimeric Sod1.
Collapse
Affiliation(s)
- Davide Sala
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Andrea Giachetti
- Consorzio Interuniversitario di Risonanze Magnetiche di Metallo Proteine, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Antonio Rosato
- Magnetic Resonance Center (CERM), University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
28
|
Abstract
Few proteins have come under such intense scrutiny as superoxide dismutase-1 (SOD1). For almost a century, scientists have dissected its form, function and then later its malfunction in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We now know SOD1 is a zinc and copper metalloenzyme that clears superoxide as part of our antioxidant defence and respiratory regulation systems. The possibility of reduced structural integrity was suggested by the first crystal structures of human SOD1 even before deleterious mutations in the sod1 gene were linked to the ALS. This concept evolved in the intervening years as an impressive array of biophysical studies examined the characteristics of mutant SOD1 in great detail. We now recognise how ALS-related mutations perturb the SOD1 maturation processes, reduce its ability to fold and reduce its thermal stability and half-life. Mutant SOD1 is therefore predisposed to monomerisation, non-canonical self-interactions, the formation of small misfolded oligomers and ultimately accumulation in the tell-tale insoluble inclusions found within the neurons of ALS patients. We have also seen that several post-translational modifications could push wild-type SOD1 down this toxic pathway. Recently we have come to view ALS as a prion-like disease where both the symptoms, and indeed SOD1 misfolding itself, are transmitted to neighbouring cells. This raises the possibility of intervention after the initial disease presentation. Several small-molecule and biologic-based strategies have been devised which directly target the SOD1 molecule to change the behaviour thought to be responsible for ALS. Here we provide a comprehensive review of the many biophysical advances that sculpted our view of SOD1 biology and the recent work that aims to apply this knowledge for therapeutic outcomes in ALS.
Collapse
|
29
|
Banks CJ, Andersen JL. Mechanisms of SOD1 regulation by post-translational modifications. Redox Biol 2019; 26:101270. [PMID: 31344643 PMCID: PMC6658992 DOI: 10.1016/j.redox.2019.101270] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022] Open
Abstract
SOD1 is commonly known for its ROS scavenging activity, but recent work has uncovered additional roles in modulating metabolism, maintaining redox balance, and regulating transcription. This new paradigm of expanded SOD1 function raises questions regarding the regulation of SOD1 and the cellular partitioning of its biological roles. Despite decades of research on SOD1, much of which focuses on its pathogenic role in amyotrophic lateral sclerosis, relatively little is known about its regulation by post-translational modifications (PTMs). However, over the last decade, advancements in mass spectrometry have led to a boom in PTM discovery across the proteome, which has also revealed new mechanisms of SOD1 regulation by PTMs and an array of SOD1 PTMs with high likelihood of biological function. In this review, we address emerging mechanisms of SOD1 regulation by post-translational modifications, many of which begin to shed light on how the various functions of SOD1 are regulated within the cell.
Collapse
Affiliation(s)
- C J Banks
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - J L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|
30
|
Huai J, Zhang Z. Structural Properties and Interaction Partners of Familial ALS-Associated SOD1 Mutants. Front Neurol 2019; 10:527. [PMID: 31164862 PMCID: PMC6536575 DOI: 10.3389/fneur.2019.00527] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common motor neuron degenerative disease in adults and has also been proven to be a type of conformational disease associated with protein misfolding and dysfunction. To date, more than 150 distinct genes have been found to be associated with ALS, among which Superoxide Dismutase 1 (SOD1) is the first and the most extensively studied gene. It has been well-established that SOD1 mutants-mediated toxicity is caused by a gain-of-function rather than the loss of the detoxifying activity of SOD1. Compared with the clear autosomal dominant inheritance of SOD1 mutants in ALS, the potential toxic mechanisms of SOD1 mutants in motor neurons remain incompletely understood. A large body of evidence has shown that SOD1 mutants may adopt a complex profile of conformations and interact with a wide range of client proteins. Here, in this review, we summarize the fundamental conformational properties and the gained interaction partners of the soluble forms of the SOD1 mutants which have been published in the past decades. Our goal is to find clues to the possible internal links between structural and functional anomalies of SOD1 mutants, as well as the relationships between their exposed epitopes and interaction partners, in order to help reveal and determine potential diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Jisen Huai
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| | - Zhongjian Zhang
- Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
31
|
Abstract
Biological molecules are often highly dynamic, and this flexibility can be critical for function. The large range of sampled timescales and the fact that many of the conformers that are continually explored are only transiently formed and sparsely populated challenge current biophysical approaches. Solution nuclear magnetic resonance (NMR) spectroscopy has emerged as a powerful method for characterizing biomolecular dynamics in detail, even in cases where excursions involve short-lived states. Here, we briefly review a number of NMR experiments for studies of biomolecular dynamics on the microsecond-to-second timescale and focus on applications to protein and nucleic acid systems that clearly illustrate the functional relevance of motion in both health and disease.
Collapse
Affiliation(s)
- Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Lewis E. Kay
- Departments of Molecular Genetics, Biochemistry, and Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
32
|
Kumar Ghosh D, Nanaji Shrikondawar A, Ranjan A. Local structural unfolding at the edge-strands of beta sheets is the molecular basis for instability and aggregation of G85R and G93A mutants of superoxide dismutase 1. J Biomol Struct Dyn 2019; 38:647-659. [DOI: 10.1080/07391102.2019.1584125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debasish Kumar Ghosh
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Akshaykumar Nanaji Shrikondawar
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
- Graduate Studies, Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Uppal, Hyderabad, India
| |
Collapse
|
33
|
Electronic and Functional Structure of Copper in Plant Cu/Zn Superoxide Dismutase with Combined Site-directed Mutagenesis and Electron Paramagnetic Resonance. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2019. [DOI: 10.1016/s1872-2040(19)61143-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Sheng Y, Capri J, Waring A, Valentine JS, Whitelegge J. Exposure of Solvent-Inaccessible Regions in the Amyloidogenic Protein Human SOD1 Determined by Hydroxyl Radical Footprinting. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:218-226. [PMID: 30328005 PMCID: PMC6347482 DOI: 10.1007/s13361-018-2075-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/18/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
Solvent-accessibility change plays a critical role in protein misfolding and aggregation, the culprit for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mass spectrometry-based hydroxyl radical (·OH) protein footprinting has evolved as a powerful and fast tool in elucidating protein solvent accessibility. In this work, we used fast photochemical oxidation of protein (FPOP) hydroxyl radical (·OH) footprinting to investigate solvent accessibility in human copper-zinc superoxide dismutase (SOD1), misfolded or aggregated forms of which underlie a portion of ALS cases. ·OH-mediated modifications to 56 residues were detected with locations largely as predicted based on X-ray crystallography data, while the interior of SOD1 β-barrel is hydrophobic and solvent-inaccessible and thus protected from modification. There were, however, two notable exceptions-two closely located residues inside the β-barrel, predicted to have minimal or no solvent accessibility, that were found modified by FPOP (Phe20 and Ile112). Molecular dynamics (MD) simulations were consistent with differential access of peroxide versus quencher to SOD1's interior complicating surface accessibility considerations. Modification of these two residues could potentially be explained either by local motions of the β-barrel that increased peroxide/solvent accessibility to the interior or by oxidative events within the interior that might include long-distance radical transfer to buried sites. Overall, comparison of modification patterns for the metal-free apoprotein versus zinc-bound forms demonstrated that binding of zinc protected the electrostatic loop and organized the copper-binding site. Our study highlights SOD1 hydrophobic groups that may contribute to early events in aggregation and discusses caveats to surface accessibility conclusions. Graphical Abstract.
Collapse
Affiliation(s)
- Yuewei Sheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Joseph Capri
- The Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA, USA
| | - Alan Waring
- Department of Medicine, University of California, Los Angeles, CA, USA
| | | | - Julian Whitelegge
- The Pasarow Mass Spectrometry Laboratory, University of California, Los Angeles, CA, USA.
- The Brain Research Institute, University of California, Los Angeles, CA, USA.
| |
Collapse
|
35
|
Alemasov NA, Ivanisenko NV, Taneja B, Taneja V, Ramachandran S, Ivanisenko VA. Improved regression model to predict an impact of SOD1 mutations on ALS patients survival time based on analysis of hydrogen bond stability. J Mol Graph Model 2018; 86:247-255. [PMID: 30414557 DOI: 10.1016/j.jmgm.2018.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterised by the inevitable degeneration of central and peripheral motor neurons. Aggregation of mutant SOD1 is one of the molecular mechanisms underlying the onset of the disease. There are a number of regression models designed to predict the survival of patients based on an analysis of experimental data on thermostability, heterodimerisation energy, and changes in the hydrophobicity of SOD1 mutants. Previously, we proposed regression models linking the change in the stability of hydrogen bonds in mutant SOD1 calculated using molecular dynamics and elastic networks with patients survival time. In this study, these models were improved in terms of accuracy of survival time prediction by taking into account the variance of survival time values relative to the mean, the number of patients carrying each specific mutation, and the use of random forest regression as a regression method. The accuracy of the previous models was roughly 5.2 years while the accuracy of the new ones are up to 4 years. The model is also superior to those published by other authors. It was found that the hydrogen bonds important for prediction of survival time are formed by residues at positions located in the regions of the protein responsible for aggregation as well as in structural and functionally important sites.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, 110025, New Delhi, Mathura Road, India
| | - Vibha Taneja
- Sir Ganga Ram Hospital, 110060, New Delhi, India
| | | | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| |
Collapse
|
36
|
Cantini F, Calderone V, Di Cesare Mannelli L, Korsak M, Gonnelli L, Francesconi O, Ghelardini C, Banci L, Nativi C. Interaction of Half Oxa-/Half cis-Platin Complex with Human Superoxide Dismutase and Induced Reduction of Neurotoxicity. ACS Med Chem Lett 2018; 9:1094-1098. [PMID: 30429951 DOI: 10.1021/acsmedchemlett.8b00199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of amorphous protein aggregates containing human superoxide dismutase (hSOD1) is thought to be involved in amyotrophic lateral sclerosis onset. cis-Platin inhibits the oligomerization of apo hSOD1, but its toxicity precludes any possible use in therapy. Herein, we propose a less toxic platinum complex, namely oxa/cis-platin, as hSOD1 antiaggregation lead compound. Oxa/cis-platin is able to interact with hSOD1 in the disulfide oxidized apo form by binding cysteine 111 (Cys111). The mild neurotoxic phenomena induced in vitro and in vivo by oxa/cis-platin can be successfully reverted by using lypoyl derivatives, which do not interfere with the antiaggregation properties of the platin derivative.
Collapse
Affiliation(s)
- Francesca Cantini
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Vito Calderone
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | | | - Magdalena Korsak
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Leonardo Gonnelli
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Oscar Francesconi
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
| | - Carla Ghelardini
- NEUROFARBA, University of Florence, v.le Pieraccini, 50, 50134 Firenze, Italy
| | - Lucia Banci
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
- CERM, University of Florence, via L. Sacconi, 6, 50019 Sesto Fiorentino (FI), Italy
| | - Cristina Nativi
- Dipartimento di Chimica “Ugo Schiff”, University of Florence, via della Lastruccia, 3-13 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
37
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|
38
|
Dantas LS, Chaves-Filho AB, Coelho FR, Genaro-Mattos TC, Tallman KA, Porter NA, Augusto O, Miyamoto S. Cholesterol secosterol aldehyde adduction and aggregation of Cu,Zn-superoxide dismutase: Potential implications in ALS. Redox Biol 2018; 19:105-115. [PMID: 30142602 PMCID: PMC6106709 DOI: 10.1016/j.redox.2018.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/06/2018] [Accepted: 08/12/2018] [Indexed: 12/19/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by degeneration of upper and lower motor neurons. While the fundamental causes of the disease are still unclear, the accumulation of Cu,Zn-superoxide dismutase (SOD1) immunoreactive aggregates is associated with familial ALS cases. Cholesterol 5,6-secosterol aldehydes (Seco A and Seco B) are reported to contribute to neurodegenerative disease pathology by inducing protein modification and aggregation. Here we have investigated the presence of secosterol aldehydes in ALS SOD1-G93A rats and their capacity to induce SOD1 aggregation. Secosterol aldehydes were analyzed in blood plasma, spinal cord and motor cortex of ALS rats at the pre-symptomatic and symptomatic stages. Seco B was significantly increased in plasma of symptomatic ALS rats compared to pre-symptomatic animals, suggesting an association with disease progression. In vitro experiments showed that both Seco A and Seco B induce the formation of high molecular weight (HMW) SOD1 aggregates with amorphous morphology. SOD1 adduction to ω-alkynyl-secosterols analyzed by click assay showed that modified proteins are only detected in the HMW region, indicating that secosterol adduction generates species highly prone to aggregate. Of note, SOD1-secosterol adducts containing up to five secosterol molecules were confirmed by MALDI-TOF analysis. Interestingly, mass spectrometry sequencing of SOD1 aggregates revealed preferential secosterol adduction to Lys residues located at the electrostatic loop (Lys 122, 128 and 136) and nearby the dimer interface (Lys 3 and 9). Altogether, our results show that secosterol aldehydes are increased in plasma of symptomatic ALS rats and represent a class of aldehydes that can potentially modify SOD1 enhancing its propensity to aggregate.
Collapse
Affiliation(s)
- Lucas S Dantas
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Adriano B Chaves-Filho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernando R Coelho
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Thiago C Genaro-Mattos
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| | - Ned A Porter
- Department of Chemistry, Vanderbilt Institute of Chemical Biology and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, United States
| | - Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
39
|
Savelieff MG, Nam G, Kang J, Lee HJ, Lee M, Lim MH. Development of Multifunctional Molecules as Potential Therapeutic Candidates for Alzheimer’s Disease, Parkinson’s Disease, and Amyotrophic Lateral Sclerosis in the Last Decade. Chem Rev 2018; 119:1221-1322. [DOI: 10.1021/acs.chemrev.8b00138] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masha G. Savelieff
- SciGency Science Communications, Ann Arbor, Michigan 48104, United States
| | - Geewoo Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
40
|
Manjula R, Wright GSA, Strange RW, Padmanabhan B. Assessment of ligand binding at a site relevant to
SOD
1 oxidation and aggregation. FEBS Lett 2018; 592:1725-1737. [DOI: 10.1002/1873-3468.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Ramu Manjula
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| | - Gareth S. A. Wright
- Molecular Biophysics Group Institute of Integrative Biology Faculty of Health and Life Sciences University of Liverpool UK
| | | | - Balasundaram Padmanabhan
- Department of Biophysics National Institute of Mental Health and Neurosciences (NIMHANS) Bangalore India
| |
Collapse
|
41
|
Alemasov NA, Ivanisenko NV, Ramachandran S, Ivanisenko VA. Molecular mechanisms underlying the impact of mutations in SOD1 on its conformational properties associated with amyotrophic lateral sclerosis as revealed with molecular modelling. BMC STRUCTURAL BIOLOGY 2018; 18:1. [PMID: 29431095 PMCID: PMC5808480 DOI: 10.1186/s12900-018-0080-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background So far, little is known about the molecular mechanisms of amyotrophic lateral sclerosis onset and progression caused by SOD1 mutations. One of the hypotheses is based on SOD1 misfolding resulting from mutations and subsequent deposition of its cytotoxic aggregates. This hypothesis is complicated by the fact that known SOD1 mutations of similar clinical effect could be distributed over the whole protein structure. Results In this work, a measure of hydrogen bond stability in conformational states was studied with elastic network analysis of 35 SOD1 mutants. Twenty-eight hydrogen bonds were detected in nine of 35 mutants with their stability being significantly different from that with the wild-type. These hydrogen bonds were formed by the amino acid residues known from the literature to be located in contact between SOD1 aggregates. Additionally, residues disposed between copper binding sites of both protein subunits were found from the models to form a stiff core, which can be involved in mechanical impulse transduction between these active centres. Conclusions The modelling highlights that both stability of the copper binding site and stability of the dimer can play an important role in ALS progression. Electronic supplementary material The online version of this article (10.1186/s12900-018-0080-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Srinivasan Ramachandran
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB, South Campus, New Delhi, 110025, India
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
42
|
Kumar V, Prakash A, Lynn AM. Alterations in local stability and dynamics of A4V SOD1 in the presence of trifluoroethanol. Biopolymers 2018; 109:e23102. [DOI: 10.1002/bip.23102] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/26/2017] [Accepted: 01/03/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Vijay Kumar
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar; New Delhi 110025 India
| | - Amresh Prakash
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| | - Andrew M. Lynn
- School of Computational and Integrative Sciences; Jawaharlal Nehru University; New Delhi 110067 India
| |
Collapse
|
43
|
Tompa DR, Kadhirvel S. Molecular dynamics of a far positioned SOD1 mutant V14M reveals pathogenic misfolding behavior. J Biomol Struct Dyn 2017; 36:4085-4098. [PMID: 29157189 DOI: 10.1080/07391102.2017.1407675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human superoxide dismutase (Cu/Zn SOD1) is a homodimeric enzyme. Mutations in Cu/Zn SOD1 causes a familial form of amyotrophic lateral sclerosis (fALS), and aggregation of mutant SOD1 has been proposed to play a role in neurodegeneration. Though a majority of the mutations are point substitutions, there are a few changes that result in amino acid deletions or truncations of the polypeptide. These pathogenic mutations are scattered throughout the three-dimensional structure of the dimeric enzyme, which creates a puzzling pattern to investigate the molecular determinants of fALS. The most common hypothesis proposed that the misfolding of SOD1 mutants are primarily triggered by decreased affinity for metal ions. However, this hypothesis is challenging, as a significant number of disease-causing mutations are located far away from the metal-binding site and dimer interface. So in the present study, we have investigated the influence of such a far positioned pathogenic mutation, V14M, in altering the stability and folding of the Cu/Zn SOD1. Though the location of Val14 is far positioned, it has a vital role in the stability of SOD1 by preserving its hydrophobic cluster at one end of the β barrel domain. We have performed MD simulations of the V14M mutant for 80 ns timescale. The results reveal the fact that irrespective of its location, V14M mutation triggers a conformational change that is more similar to that of the metal-deficient holo form and could resemble an intermediate state in the folding reaction which results in protein misfolding and aggregation.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| | - Saraboji Kadhirvel
- a Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology , SASTRA University , Thanjavur 613 401 , India
| |
Collapse
|
44
|
Partially native intermediates mediate misfolding of SOD1 in single-molecule folding trajectories. Nat Commun 2017; 8:1881. [PMID: 29192167 PMCID: PMC5709426 DOI: 10.1038/s41467-017-01996-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 10/31/2017] [Indexed: 01/10/2023] Open
Abstract
Prion-like misfolding of superoxide dismutase 1 (SOD1) is associated with the disease ALS, but the mechanism of misfolding remains unclear, partly because misfolding is difficult to observe directly. Here we study the most misfolding-prone form of SOD1, reduced un-metallated monomers, using optical tweezers to measure unfolding and refolding of single molecules. We find that the folding is more complex than suspected, resolving numerous previously undetected intermediate states consistent with the formation of individual β-strands in the native structure. We identify a stable core of the protein that unfolds last and refolds first, and directly observe several distinct misfolded states that branch off from the native folding pathways at specific points after the formation of the stable core. Partially folded intermediates thus play a crucial role mediating between native and non-native folding. These results suggest an explanation for SOD1's propensity for prion-like misfolding and point to possible targets for therapeutic intervention.
Collapse
|
45
|
Zeineddine R, Farrawell NE, Lambert-Smith IA, Yerbury JJ. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones 2017; 22:893-902. [PMID: 28560609 PMCID: PMC5655364 DOI: 10.1007/s12192-017-0804-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/11/2022] Open
Abstract
ALS is characterised by a focal onset of motor neuron loss, followed by contiguous outward spreading of pathology throughout the nervous system, resulting in paralysis and death generally within a few years after diagnosis. The aberrant release and uptake of toxic proteins including SOD1 and TDP-43 and their subsequent propagation, accumulation and deposition in motor neurons may explain such a pattern of pathology. Previous work has suggested that the internalization of aggregates triggers stress granule formation. Given the close association of stress granules and TDP-43, we wondered whether internalisation of SOD1 aggregates stimulated TDP-43 cytosolic aggregate structures. Addition of recombinant mutant G93A SOD1 aggregates to NSC-34 cells was found to trigger a rapid shift of TDP-43 to the cytoplasm where it was still accumulated after 48 h. In addition, SOD1 aggregates also triggered cleavage of TDP-43 into fragments including a 25 kDa fragment. Collectively, this study suggests a role for protein aggregate uptake in TDP-43 pathology.
Collapse
Affiliation(s)
- Rafaa Zeineddine
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Natalie E Farrawell
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Isabella A Lambert-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.
- School of Biological Sciences, Science Medicine and Health Faculty, University of Wollongong, Wollongong, NSW, Australia.
| |
Collapse
|
46
|
Alemasov NA, Ivanisenko NV, Ivanisenko VA. Regression model for predicting pathogenic properties of SOD1 mutants based on the analysis of conformational stability and conservation of hydrogen bonds. J Mol Graph Model 2017; 77:378-385. [DOI: 10.1016/j.jmgm.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
47
|
Cysteine to Serine Conversion at 111th Position Renders the Disaggregation and Retains the Stabilization of Detrimental SOD1 A4V Mutant Against Amyotrophic Lateral Sclerosis in Human-A Discrete Molecular Dynamics Study. Cell Biochem Biophys 2017; 76:231-241. [PMID: 28952073 DOI: 10.1007/s12013-017-0830-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 09/18/2017] [Indexed: 12/11/2022]
Abstract
Protein aggregation is a hallmark of various neurodegenerative disorders, such as amyotrophic lateral sclerosis (ALS) in humans. Mutations in Cu/Zn superoxide dismutase (SOD1) protein were found to be a prominent cause behind the majority of the familial ALS cases with abnormal protein aggregates. Herein, we report the biophysical characterization of the beneficial mutation C111S that stabilizes the SOD1 harboring A4V mutation, one of the most lethal diseases causing mutant that leads to protein destabilization and aggregation. In this study, we utilized discrete molecular dynamics (DMD) simulations, which stipulated an outlook over the systematic action of C111S mutation in the A4V mutant that stabilizes the protein and impedes the formation of protein aggregation. Herewith, the findings from our study manifested that the mutation of C111S in SOD1 could aid in regaining the protein structural conformations that protect against the formation of toxic aggregates, thereby hindering the disease pathogenicity subtly. Hence, our study provides a feasible pharmaceutical strategy in developing the treatment for incurable ALS affecting the mankind.
Collapse
|
48
|
The Role of Metal Binding in the Amyotrophic Lateral Sclerosis-Related Aggregation of Copper-Zinc Superoxide Dismutase. Molecules 2017; 22:molecules22091429. [PMID: 28850080 PMCID: PMC6151412 DOI: 10.3390/molecules22091429] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/22/2017] [Accepted: 08/27/2017] [Indexed: 12/13/2022] Open
Abstract
Protein misfolding and conformational changes are common hallmarks in many neurodegenerative diseases involving formation and deposition of toxic protein aggregates. Although many players are involved in the in vivo protein aggregation, physiological factors such as labile metal ions within the cellular environment are likely to play a key role. In this review, we elucidate the role of metal binding in the aggregation process of copper-zinc superoxide dismutase (SOD1) associated to amyotrophic lateral sclerosis (ALS). SOD1 is an extremely stable Cu-Zn metalloprotein in which metal binding is crucial for folding, enzymatic activity and maintenance of the native conformation. Indeed, demetalation in SOD1 is known to induce misfolding and aggregation in physiological conditions in vitro suggesting that metal binding could play a key role in the pathological aggregation of SOD1. In addition, this study includes recent advances on the role of aberrant metal coordination in promoting SOD1 aggregation, highlighting the influence of metal ion homeostasis in pathologic aggregation processes.
Collapse
|
49
|
Prakash A, Kumar V, Pandey P, Bharti DR, Vishwakarma P, Singh R, Hassan MI, Lynn AM. Solvent sensitivity of protein aggregation in Cu, Zn superoxide dismutase: a molecular dynamics simulation study. J Biomol Struct Dyn 2017; 36:2605-2617. [PMID: 28782426 DOI: 10.1080/07391102.2017.1364670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1barrel monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1barrel. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1barrel. Our computational studies supports the hypothesis of the formation of aggregation 'building blocks' by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.
Collapse
Affiliation(s)
- Amresh Prakash
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Vijay Kumar
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Preeti Pandey
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Deepak R Bharti
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Poonam Vishwakarma
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Ruhar Singh
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| | - Md Imtaiyaz Hassan
- b Centre for Interdisciplinary Research in Basic Sciences , Jamia Millia Islamia , Jamia Nagar, New Delhi , 110025 , India
| | - Andrew M Lynn
- a School of Computational & Integrative Sciences , Jawaharlal Nehru University , New Delhi , 110067 , India
| |
Collapse
|
50
|
Hanspal MA, Dobson CM, Yerbury JJ, Kumita JR. The relevance of contact-independent cell-to-cell transfer of TDP-43 and SOD1 in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2762-2771. [PMID: 28711596 PMCID: PMC6565888 DOI: 10.1016/j.bbadis.2017.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 06/22/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease involving the formation of cytoplasmic aggregates by proteins including TDP-43 and SOD1, in affected cells in the central nervous system (CNS). Pathology spreads from an initial site of onset to contiguous anatomical regions. There is evidence that for disease-associated proteins, including TDP-43 and SOD1, non-native protein conformers can promote misfolding of the natively folded counterparts, and cell-to-cell transfer of pathological aggregates may underlie the spread of the disease throughout the CNS. A variety of studies have demonstrated that SOD1 is released by neuron-like cells into the surrounding culture medium, either in their free state or encapsulated in extracellular vesicles such as exosomes. Extracellular SOD1 can then be internalised by naïve cells incubated in this conditioned medium, leading to the misfolding and aggregation of endogenous intracellular SOD1; an effect that propagates over serial passages. A similar phenomenon has also been observed with other proteins associated with protein misfolding and progressive neurological disorders, including tau, α-synuclein and both mammalian and yeast prions. Conditioned media experiments using TDP-43 have been less conclusive, with evidence for this protein undergoing intercellular transfer being less straightforward. In this review, we describe the properties of TDP-43 and SOD1 and look at the evidence for their respective abilities to participate in cell-to-cell transfer via conditioned medium, and discuss how variations in the nature of cell-to-cell transfer suggests that a number of different mechanisms are involved in the spreading of pathology in ALS. Protein aggregates transfer between cells in motor neuron disease. Cell contact-independent mechanisms may be a route of transfer. SOD1 undergoes cell-to-cell transfer via conditioned medium in cell culture. It is still unclear whether TDP-43 consistently undergoes cell-to-cell transfer Differences between the two proteins may explain this observation.
Collapse
Affiliation(s)
- Maya A Hanspal
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Christopher M Dobson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Justin J Yerbury
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, NSW 2522, Australia.
| | - Janet R Kumita
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|