1
|
Hossain MJ, O’Connor TJ. An efficient and cost-effective method for disrupting genes in RAW264.7 macrophages using CRISPR-Cas9. PLoS One 2024; 19:e0299513. [PMID: 38483963 PMCID: PMC10939251 DOI: 10.1371/journal.pone.0299513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) are widely used for genome editing in cultured cell lines. However, the implementation of genome editing is still challenging due to the complex and often costly multi-step process associated with this technique. Moreover, the efficiency of genome editing varies across cell types, often limiting utility. Herein, we describe pCRISPR-EASY, a vector for simplified cloning of single guide RNAs (sgRNAs) and its simultaneous introduction with CRISPR-Cas9 into cultured cells using a non-viral delivery system. We outline a comprehensive, step-by-step protocol for genome editing in RAW264.7 macrophages, a mouse macrophage cell line widely used in biomedical research for which genome editing using CRISPR-Cas9 has been restricted to lentiviral or expensive commercial reagents. This provides an economical, highly efficient and reliable method for genome editing that can easily be adapted for use in other systems.
Collapse
Affiliation(s)
- Mohammad J. Hossain
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Tamara J. O’Connor
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Tomita A, Sasanuma H, Owa T, Nakazawa Y, Shimada M, Fukuoka T, Ogi T, Nakada S. Inducing multiple nicks promotes interhomolog homologous recombination to correct heterozygous mutations in somatic cells. Nat Commun 2023; 14:5607. [PMID: 37714828 PMCID: PMC10504326 DOI: 10.1038/s41467-023-41048-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
CRISPR/Cas9-mediated gene editing has great potential utility for treating genetic diseases. However, its therapeutic applications are limited by unintended genomic alterations arising from DNA double-strand breaks and random integration of exogenous DNA. In this study, we propose NICER, a method for correcting heterozygous mutations that employs multiple nicks (MNs) induced by Cas9 nickase and a homologous chromosome as an endogenous repair template. Although a single nick near the mutation site rarely leads to successful gene correction, additional nicks on homologous chromosomes strongly enhance gene correction efficiency via interhomolog homologous recombination (IH-HR). This process partially depends on BRCA1 and BRCA2, suggesting the existence of several distinct pathways for MN-induced IH-HR. According to a genomic analysis, NICER rarely induces unintended genomic alterations. Furthermore, NICER restores the expression of disease-causing genes in cells derived from genetic diseases with compound heterozygous mutations. Overall, NICER provides a precise strategy for gene correction.
Collapse
Affiliation(s)
- Akiko Tomita
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-0057, Japan
| | - Tomoo Owa
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Takahiro Fukuoka
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Genomedia Inc., Tokyo, 113-0033, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine (RIeM), Nagoya University, Nagoya, 464-8601, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, 464-8601, Japan
| | - Shinichiro Nakada
- Department of Bioregulation and Cellular Response, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
3
|
Sato G, Kuroda K. Overcoming the Limitations of CRISPR-Cas9 Systems in Saccharomyces cerevisiae: Off-Target Effects, Epigenome, and Mitochondrial Editing. Microorganisms 2023; 11:microorganisms11041040. [PMID: 37110464 PMCID: PMC10145089 DOI: 10.3390/microorganisms11041040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Modification of the genome of the yeast Saccharomyces cerevisiae has great potential for application in biological research and biotechnological advancements, and the CRISPR-Cas9 system has been increasingly employed for these purposes. The CRISPR-Cas9 system enables the precise and simultaneous modification of any genomic region of the yeast to a desired sequence by altering only a 20-nucleotide sequence within the guide RNA expression constructs. However, the conventional CRISPR-Cas9 system has several limitations. In this review, we describe the methods that were developed to overcome these limitations using yeast cells. We focus on three types of developments: reducing the frequency of unintended editing to both non-target and target sequences in the genome, inducing desired changes in the epigenetic state of the target region, and challenging the expansion of the CRISPR-Cas9 system to edit genomes within intracellular organelles such as mitochondria. These developments using yeast cells to overcome the limitations of the CRISPR-Cas9 system are a key factor driving the advancement of the field of genome editing.
Collapse
Affiliation(s)
- Genki Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Department of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat Biotechnol 2023:10.1038/s41587-022-01574-x. [PMID: 36593413 DOI: 10.1038/s41587-022-01574-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/14/2022] [Indexed: 01/03/2023]
Abstract
CRISPR-associated transposases (CASTs) enable recombination-independent, multi-kilobase DNA insertions at RNA-programmed genomic locations. However, the utility of type V-K CASTs is hindered by high off-target integration and a transposition mechanism that results in a mixture of desired simple cargo insertions and undesired plasmid cointegrate products. Here we overcome both limitations by engineering new CASTs with improved integration product purity and genome-wide specificity. To do so, we engineered a nicking homing endonuclease fusion to TnsB (named HELIX) to restore the 5' nicking capability needed for cargo excision on the DNA donor. HELIX enables cut-and-paste DNA insertion with up to 99.4% simple insertion product purity, while retaining robust integration efficiencies on genomic targets. HELIX has substantially higher on-target specificity than canonical CASTs, and we identify several novel factors that further regulate targeted and genome-wide integration. Finally, we extend HELIX to other type V-K orthologs and demonstrate the feasibility of HELIX-mediated integration in human cell contexts.
Collapse
|
5
|
Xu Y, Chen C, Guo Y, Hu S, Sun Z. Effect of CRISPR/Cas9-Edited PD-1/PD-L1 on Tumor Immunity and Immunotherapy. Front Immunol 2022; 13:848327. [PMID: 35300341 PMCID: PMC8920996 DOI: 10.3389/fimmu.2022.848327] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 01/31/2022] [Indexed: 12/12/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease9 (CRISPR/Cas9) gene editing technology implements precise programming of the human genome through RNA guidance. At present, it has been widely used in the construction of animal tumor models, the study of drug resistance regulation mechanisms, epigenetic control and innovation in cancer treatment. Tumor immunotherapy restores the normal antitumor immune response by restarting and maintaining the tumor-immune cycle. CRISPR/Cas9 technology has occupied a central position in further optimizing anti-programmed cell death 1(PD-1) tumor immunotherapy. In this review, we summarize the recent progress in exploring the regulatory mechanism of tumor immune PD-1 and programmed death ligand 1(PD-L1) based on CRISPR/Cas9 technology and its clinical application in different cancer types. In addition, CRISPR genome-wide screening identifies new drug targets and biomarkers to identify potentially sensitive populations for anti-PD-1/PD-L1 therapy and maximize antitumor effects. Finally, the strong potential and challenges of CRISPR/Cas9 for future clinical applications are discussed.
Collapse
Affiliation(s)
- Yanxin Xu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chen Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
6
|
Xu SY. Engineering Infrequent DNA Nicking Endonuclease by Fusion of a BamHI Cleavage-Deficient Mutant and a DNA Nicking Domain. Front Microbiol 2022; 12:787073. [PMID: 35178039 PMCID: PMC8845596 DOI: 10.3389/fmicb.2021.787073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Strand-specific DNA nicking endonucleases (NEases) typically nick 3–7 bp sites. Our goal is to engineer infrequent NEase with a >8 bp recognition sequence. A BamHI catalytic-deficient mutant D94N/E113K was constructed, purified, and shown to bind and protect the GGATCC site from BamHI restriction. The mutant was fused to a 76-amino acid (aa) DNA nicking domain of phage Gamma HNH (gHNH) NEase. The chimeric enzyme was purified, and it was shown to nick downstream of a composite site 5′ GGATCC-N(4-6)-AC↑CGR 3′ (R, A, or G) or to nick both sides of BamHI site at the composite site 5′ CCG↓GT-N5-GGATCC-N5-AC↑CGG 3′ (the down arrow ↓ indicates the strand shown is nicked; the up arrow↑indicates the bottom strand is nicked). Due to the attenuated activity of the small nicking domain, the fusion nickase is active in the presence of Mn2+ or Ni2+, and it has low activity in Mg2+ buffer. This work provided a proof-of-concept experiment in which a chimeric NEase could be engineered utilizing the binding specificity of a Type II restriction endonucleases (REases) in fusion with a nicking domain to generate infrequent nickase, which bridges the gap between natural REases and homing endonucleases. The engineered chimeric NEase provided a framework for further optimization in molecular diagnostic applications.
Collapse
|
7
|
Kuroda K, Ueda M. CRISPR Nickase-Mediated Base Editing in Yeast. Methods Mol Biol 2021; 2196:27-37. [PMID: 32889710 DOI: 10.1007/978-1-0716-0868-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has enabled efficient, markerless genome editing in a wide range of organisms. However, there is an off-target effect and a limit to the area of precise editing. Bases that can be precisely edited are limited to within the 20-base pair gRNA-targeting site and protospacer adjacent motif (PAM) sequence. We have developed a CRISPR nickase system that can perform a precise genome-wide base editing in Saccharomyces cerevisiae using a single Cas9 nickase. This system can precisely edit a broader genomic region by the avoidance of double-strand break (DSB) and subsequent non-homologous end joining (NHEJ). Furthermore, unintended mutations were not found at off-target sites in this system. In combination with yeast gap repair cloning, precise genome editing of yeast cells can be performed in 5 days. Here, we describe the methods for precise and convenient genome editing using this novel CRISPR nickase system.
Collapse
Affiliation(s)
- Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
8
|
Murakami Y, Futamata R, Horibe T, Ueda K, Kinoshita M. CRISPR/Cas9 nickase‐mediated efficient and seamless knock‐in of lethal genes in the medaka fish
Oryzias latipes. Dev Growth Differ 2020; 62:554-567. [DOI: 10.1111/dgd.12700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/01/2020] [Accepted: 11/01/2020] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Murakami
- Division of Applied Biosciences Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Ryota Futamata
- Division of Applied Life Sciences Graduate School of Agriculture Kyoto University Kyoto Japan
| | - Tomohisa Horibe
- Department of Medical‐Bioscience Faculty of Bio‐Science Nagahama Institute of Bio‐Science and Technology Shiga Japan
| | - Kazumitsu Ueda
- Institute for integrated Cell‐Material Sciences (WPI‐iCeMS)KUIASKyoto University Kyoto Japan
| | - Masato Kinoshita
- Division of Applied Biosciences Graduate School of Agriculture Kyoto University Kyoto Japan
| |
Collapse
|
9
|
Tandem Paired Nicking Promotes Precise Genome Editing with Scarce Interference by p53. Cell Rep 2020; 30:1195-1207.e7. [PMID: 31995758 DOI: 10.1016/j.celrep.2019.12.064] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 12/26/2022] Open
Abstract
Targeted knockin mediated by double-stranded DNA cleavage is accompanied by unwanted insertions and deletions (indels) at on-target and off-target sites. A nick-mediated approach scarcely generates indels but exhibits reduced efficiency of targeted knockin. Here, we demonstrate that tandem paired nicking, a method for targeted knockin involving two Cas9 nickases that create nicks at the homologous regions of the donor DNA and the genome in the same strand, scarcely creates indels at the edited genomic loci, while permitting the efficiency of targeted knockin largely equivalent to that of the Cas9-nuclease-based approach. Tandem paired nicking seems to accomplish targeted knockin by DNA recombination analogous to Holliday's model and creates intended genomic changes without introducing additional nucleotide changes, such as silent mutations. Targeted knockin through tandem paired nicking neither triggers significant p53 activation nor occurs preferentially in p53-suppressed cells. These properties of tandem paired nicking demonstrate its utility in precision genome engineering.
Collapse
|
10
|
Chen X, Tasca F, Wang Q, Liu J, Janssen JM, Brescia MD, Bellin M, Szuhai K, Kenrick J, Frock RL, Gonçalves MAFV. Expanding the editable genome and CRISPR-Cas9 versatility using DNA cutting-free gene targeting based on in trans paired nicking. Nucleic Acids Res 2020; 48:974-995. [PMID: 31799604 PMCID: PMC6954423 DOI: 10.1093/nar/gkz1121] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Genome editing typically involves recombination between donor nucleic acids and acceptor genomic sequences subjected to double-stranded DNA breaks (DSBs) made by programmable nucleases (e.g. CRISPR-Cas9). Yet, nucleases yield off-target mutations and, most pervasively, unpredictable target allele disruptions. Remarkably, to date, the untoward phenotypic consequences of disrupting allelic and non-allelic (e.g. pseudogene) sequences have received scant scrutiny and, crucially, remain to be addressed. Here, we demonstrate that gene-edited cells can lose fitness as a result of DSBs at allelic and non-allelic target sites and report that simultaneous single-stranded DNA break formation at donor and acceptor DNA by CRISPR-Cas9 nickases (in trans paired nicking) mostly overcomes such disruptive genotype-phenotype associations. Moreover, in trans paired nicking gene editing can efficiently and precisely add large DNA segments into essential and multiple-copy genomic sites. As shown herein by genotyping assays and high-throughput genome-wide sequencing of DNA translocations, this is achieved while circumventing most allelic and non-allelic mutations and chromosomal rearrangements characteristic of nuclease-dependent procedures. Our work demonstrates that in trans paired nicking retains target protein dosages in gene-edited cell populations and expands gene editing to chromosomal tracts previously not possible to modify seamlessly due to their recurrence in the genome or essentiality for cell function.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Francesca Tasca
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Qian Wang
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Marcella D Brescia
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Milena Bellin
- Leiden University Medical Center, Department of Anatomy and Embryology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Karoly Szuhai
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josefin Kenrick
- Stanford University School of Medicine, Division of Radiation and Cancer Biology, Department of Radiation Oncology, 269 Campus Dr. Stanford, CA 94305, USA
| | - Richard L Frock
- Stanford University School of Medicine, Division of Radiation and Cancer Biology, Department of Radiation Oncology, 269 Campus Dr. Stanford, CA 94305, USA
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| |
Collapse
|
11
|
Advances in genome editing through control of DNA repair pathways. Nat Cell Biol 2019; 21:1468-1478. [PMID: 31792376 DOI: 10.1038/s41556-019-0425-z] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
Eukaryotic cells deploy overlapping repair pathways to resolve DNA damage. Advancements in genome editing take advantage of these pathways to produce permanent genetic changes. Despite recent improvements, genome editing can produce diverse outcomes that can introduce risks in clinical applications. Although homology-directed repair is attractive for its ability to encode precise edits, it is particularly difficult in human cells. Here we discuss the DNA repair pathways that underlie genome editing and strategies to favour various outcomes.
Collapse
|
12
|
Maizels N, Davis L. Initiation of homologous recombination at DNA nicks. Nucleic Acids Res 2019; 46:6962-6973. [PMID: 29986051 PMCID: PMC6101574 DOI: 10.1093/nar/gky588] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/04/2018] [Indexed: 12/14/2022] Open
Abstract
Discontinuities in only a single strand of the DNA duplex occur frequently, as a result of DNA damage or as intermediates in essential nuclear processes and DNA repair. Nicks are the simplest of these lesions: they carry clean ends bearing 3′-hydroxyl groups that can undergo ligation or prime new DNA synthesis. In contrast, single-strand breaks also interrupt only one DNA strand, but they carry damaged ends that require clean-up before subsequent steps in repair. Despite their apparent simplicity, nicks can have significant consequences for genome stability. The availability of enzymes that can introduce a nick almost anywhere in a large genome now makes it possible to systematically analyze repair of nicks. Recent experiments demonstrate that nicks can initiate recombination via pathways distinct from those active at double-strand breaks (DSBs). Recombination at targeted DNA nicks can be very efficient, and because nicks are intrinsically less mutagenic than DSBs, nick-initiated gene correction is useful for genome engineering and gene therapy. This review revisits some physiological examples of recombination at nicks, and outlines experiments that have demonstrated that nicks initiate homology-directed repair by distinctive pathways, emphasizing research that has contributed to our current mechanistic understanding of recombination at nicks in mammalian cells.
Collapse
Affiliation(s)
- Nancy Maizels
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA.,Department of Biochemistry, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Luther Davis
- Department of Immunology, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Chen X, Gonçalves MAFV. DNA, RNA, and Protein Tools for Editing the Genetic Information in Human Cells. iScience 2018; 6:247-263. [PMID: 30240615 PMCID: PMC6137403 DOI: 10.1016/j.isci.2018.08.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/23/2018] [Accepted: 07/31/2018] [Indexed: 12/27/2022] Open
Abstract
Solving the structure of DNA in 1953 has unleashed a tour de force in molecular biology that has illuminated how the genetic information stored in DNA is copied and flows downstream into RNA and proteins. Currently, increasingly powerful technologies permit not only reading and writing DNA in vitro but also editing the genetic instructions in cells from virtually any organism. Editing specific genomic sequences in living cells has been particularly accelerated with the introduction of programmable RNA-guided nucleases (RGNs) based on prokaryotic CRISPR adaptive immune systems. The repair of chromosomal breaks made by RGNs with donor DNA patches results in targeted genome editing involving the introduction of specific genetic changes at predefined genomic positions. Hence, donor DNAs, guide RNAs, and nuclease proteins, each representing the molecular entities underlying the storage, transmission, and expression of genetic information, are, once delivered into cells, put to work as agents of change of that very same genetic text. Here, after providing an outline of the programmable nuclease-assisted genome editing field, we review the increasingly diverse range of DNA, RNA, and protein components (e.g., nucleases and "nickases") that, when brought together, underlie RGN-based genome editing in eukaryotic cells.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands
| | - Manuel A F V Gonçalves
- Department of Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, Leiden 2333 ZC, the Netherlands.
| |
Collapse
|
14
|
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol Adv 2018; 36:641-665. [PMID: 29331410 DOI: 10.1016/j.biotechadv.2018.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
15
|
Brustel J, Kozik Z, Gromak N, Savic V, Sweet SMM. Large XPF-dependent deletions following misrepair of a DNA double strand break are prevented by the RNA:DNA helicase Senataxin. Sci Rep 2018; 8:3850. [PMID: 29497062 PMCID: PMC5832799 DOI: 10.1038/s41598-018-21806-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/09/2018] [Indexed: 01/04/2023] Open
Abstract
Deletions and chromosome re-arrangements are common features of cancer cells. We have established a new two-component system reporting on epigenetic silencing or deletion of an actively transcribed gene adjacent to a double-strand break (DSB). Unexpectedly, we find that a targeted DSB results in a minority (<10%) misrepair event of kilobase deletions encompassing the DSB site and transcribed gene. Deletions are reduced upon RNaseH1 over-expression and increased after knockdown of the DNA:RNA helicase Senataxin, implicating a role for DNA:RNA hybrids. We further demonstrate that the majority of these large deletions are dependent on the 3′ flap endonuclease XPF. DNA:RNA hybrids were detected by DNA:RNA immunoprecipitation in our system after DSB generation. These hybrids were reduced by RNaseH1 over-expression and increased by Senataxin knock-down, consistent with a role in deletions. Overall, these data are consistent with DNA:RNA hybrid generation at the site of a DSB, mis-processing of which results in genome instability in the form of large deletions.
Collapse
Affiliation(s)
- Julien Brustel
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK
| | - Zuzanna Kozik
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK
| | - Natalia Gromak
- Sir William Dunn School of Pathology, University of Oxford, Oxford, South Parks Road, OX1 3RE, UK
| | - Velibor Savic
- Brighton and Sussex Medical School (BSMS), University of Sussex, Brighton, BN1 9RQ, UK.,Horizon Discovery Ltd, 8100 Cambridge Research Park, Cambridge, CB25 9TL, UK
| | - Steve M M Sweet
- Genome Damage and Stability Centre (GDSC), University of Sussex, Brighton, BN1 9RQ, UK. .,NantOmics, 9600 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
16
|
Abstract
Nicks are the most common form of DNA damage, but they have only recently been shown to initiate damage that requires repair. Analysis of the pathways of nick repair in human cells has benefited from the development of enzymes that target nicks to specific sites in the genome and of reporters that enable rapid analysis of homology-directed repair and mutagenic end joining. Nicks undergo efficient repair by single-stranded oligonucleotide donors complementary to either the nicked or intact DNA strand, via pathways that are normally suppressed by RAD51. Here we discuss the details of reporter assays that take advantage of the convenience and sensitivity of flow cytometry to analyze pathways of repair at targeted DNA nicks. These assays are readily carried out in 96-well format cell culture plates, enabling mechanistic questions to be addressed by determining the contributions of specific factors by depletion and/or ectopic expression.
Collapse
Affiliation(s)
- Luther Davis
- University of Washington, Seattle, WA, United States.
| | - Yinbo Zhang
- University of Washington, Seattle, WA, United States
| | - Nancy Maizels
- University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Chemical Approach to Biological Safety: Molecular-Level Control of an Integrated Zinc Finger Nuclease. Chembiochem 2017; 19:66-75. [DOI: 10.1002/cbic.201700420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Indexed: 01/20/2023]
|
18
|
Trevisan M, Palù G, Barzon L. Genome editing technologies to fight infectious diseases. Expert Rev Anti Infect Ther 2017; 15:1001-1013. [PMID: 29090592 DOI: 10.1080/14787210.2017.1400379] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Genome editing by programmable nucleases represents a promising tool that could be exploited to develop new therapeutic strategies to fight infectious diseases. These nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein 9 (Cas9) and homing endonucleases, are molecular scissors that can be targeted at predetermined loci in order to modify the genome sequence of an organism. Areas covered: By perturbing genomic DNA at predetermined loci, programmable nucleases can be used as antiviral and antimicrobial treatment. This approach includes targeting of essential viral genes or viral sequences able, once mutated, to inhibit viral replication; repurposing of CRISPR-Cas9 system for lethal self-targeting of bacteria; targeting antibiotic-resistance and virulence genes in bacteria, fungi, and parasites; engineering arthropod vectors to prevent vector-borne infections. Expert commentary: While progress has been done in demonstrating the feasibility of using genome editing as antimicrobial strategy, there are still many hurdles to overcome, such as the risk of off-target mutations, the raising of escape mutants, and the inefficiency of delivery methods, before translating results from preclinical studies into clinical applications.
Collapse
Affiliation(s)
- Marta Trevisan
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Giorgio Palù
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| | - Luisa Barzon
- a Department of Molecular Medicine , University of Padova , Padova , Italy
| |
Collapse
|
19
|
Chen X, Janssen JM, Liu J, Maggio I, 't Jong AEJ, Mikkers HMM, Gonçalves MAFV. In trans paired nicking triggers seamless genome editing without double-stranded DNA cutting. Nat Commun 2017; 8:657. [PMID: 28939824 PMCID: PMC5610252 DOI: 10.1038/s41467-017-00687-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/19/2017] [Indexed: 01/22/2023] Open
Abstract
Precise genome editing involves homologous recombination between donor DNA and chromosomal sequences subjected to double-stranded DNA breaks made by programmable nucleases. Ideally, genome editing should be efficient, specific, and accurate. However, besides constituting potential translocation-initiating lesions, double-stranded DNA breaks (targeted or otherwise) are mostly repaired through unpredictable and mutagenic non-homologous recombination processes. Here, we report that the coordinated formation of paired single-stranded DNA breaks, or nicks, at donor plasmids and chromosomal target sites by RNA-guided nucleases based on CRISPR-Cas9 components, triggers seamless homology-directed gene targeting of large genetic payloads in human cells, including pluripotent stem cells. Importantly, in addition to significantly reducing the mutagenicity of the genome modification procedure, this in trans paired nicking strategy achieves multiplexed, single-step, gene targeting, and yields higher frequencies of accurately edited cells when compared to the standard double-stranded DNA break-dependent approach.CRISPR-Cas9-based gene editing involves double-strand breaks at target sequences, which are often repaired by mutagenic non-homologous end-joining. Here the authors use Cas9 nickases to generate coordinated single-strand breaks in donor and target DNA for precise homology-directed gene editing.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Josephine M Janssen
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Jin Liu
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Ignazio Maggio
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Anke E J 't Jong
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Harald M M Mikkers
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
20
|
Chandrasekaran AP, Song M, Ramakrishna S. Genome editing: a robust technology for human stem cells. Cell Mol Life Sci 2017; 74:3335-3346. [PMID: 28405721 PMCID: PMC11107609 DOI: 10.1007/s00018-017-2522-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/05/2017] [Accepted: 04/07/2017] [Indexed: 12/20/2022]
Abstract
Human pluripotent stem cells comprise induced pluripotent and embryonic stem cells, which have tremendous potential for biological and therapeutic applications. The development of efficient technologies for the targeted genome alteration of stem cells in disease models is a prerequisite for utilizing stem cells to their full potential. Genome editing of stem cells is possible with the help of synthetic nucleases that facilitate site-specific modification of a gene of interest. Recent advances in genome editing techniques have improved the efficiency and speed of the development of stem cells for human disease models. Zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system are powerful tools for editing DNA at specific loci. Here, we discuss recent technological advances in genome editing with site-specific nucleases in human stem cells.
Collapse
Affiliation(s)
| | - Minjung Song
- Division of Bioindustry, Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, Republic of Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Republic of Korea.
- College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Satomura A, Nishioka R, Mori H, Sato K, Kuroda K, Ueda M. Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep 2017; 7:2095. [PMID: 28522803 PMCID: PMC5437071 DOI: 10.1038/s41598-017-02013-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 04/03/2017] [Indexed: 11/09/2022] Open
Abstract
The CRISPR/Cas9 system has been applied to efficient genome editing in many eukaryotic cells. However, the bases that can be edited by this system have been limited to those within the protospacer adjacent motif (PAM) and guide RNA-targeting sequences. In this study, we developed a genome-wide base editing technology, "CRISPR Nickase system" that utilizes a single Cas9 nickase. This system was free from the limitation of editable bases that was observed in the CRISPR/Cas9 system, and was able to precisely edit bases up to 53 bp from the nicking site. In addition, this system showed no off-target editing, in contrast to the CRISPR/Cas9 system. Coupling the CRISPR Nickase system with yeast gap repair cloning enabled the construction of yeast mutants within only five days. The CRISPR Nickase system provides a versatile and powerful technology for rapid, site-specific, and precise base editing in yeast.
Collapse
Affiliation(s)
- Atsushi Satomura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Nishioka
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hitoshi Mori
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kosuke Sato
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.
| |
Collapse
|
22
|
Vriend LEM, Krawczyk PM. Nick-initiated homologous recombination: Protecting the genome, one strand at a time. DNA Repair (Amst) 2016; 50:1-13. [PMID: 28087249 DOI: 10.1016/j.dnarep.2016.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
Abstract
Homologous recombination (HR) is an essential, widely conserved mechanism that utilizes a template for accurate repair of DNA breaks. Some early HR models, developed over five decades ago, anticipated single-strand breaks (nicks) as initiating lesions. Subsequent studies favored a more double-strand break (DSB)-centered view of HR initiation and at present this pathway is primarily considered to be associated with DSB repair. However, mounting evidence suggests that nicks can indeed initiate HR directly, without first being converted to DSBs. Moreover, recent studies reported on novel branches of nick-initiated HR (nickHR) that rely on single-, rather than double-stranded repair templates and that are characterized by mechanistically and genetically unique properties. The physiological significance of nickHR is not well documented, but its high-fidelity nature and low mutagenic potential are relevant in recently developed, precise gene editing approaches. Here, we review the evidence for stimulation of HR by nicks, as well as the data on the interactions of nickHR with other DNA repair pathways and on its mechanistic properties. We conclude that nickHR is a bona-fide pathway for nick repair, sharing the molecular machinery with the canonical HR but nevertheless characterized by unique properties that secure its inclusion in DNA repair models and warrant future investigations.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Gaj T, Sirk SJ, Shui SL, Liu J. Genome-Editing Technologies: Principles and Applications. Cold Spring Harb Perspect Biol 2016; 8:a023754. [PMID: 27908936 PMCID: PMC5131771 DOI: 10.1101/cshperspect.a023754] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted nucleases have provided researchers with the ability to manipulate virtually any genomic sequence, enabling the facile creation of isogenic cell lines and animal models for the study of human disease, and promoting exciting new possibilities for human gene therapy. Here we review three foundational technologies-clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), and zinc-finger nucleases (ZFNs). We discuss the engineering advances that facilitated their development and highlight several achievements in genome engineering that were made possible by these tools. We also consider artificial transcription factors, illustrating how this technology can complement targeted nucleases for synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- Department of Bioengineering, University of California, Berkeley, California 94720
| | - Shannon J Sirk
- Department of Chemical Engineering, Stanford University, Stanford, California 94305
| | - Sai-Lan Shui
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| |
Collapse
|
24
|
Analysis of Repair Mechanisms following an Induced Double-Strand Break Uncovers Recessive Deleterious Alleles in the Candida albicans Diploid Genome. mBio 2016; 7:mBio.01109-16. [PMID: 27729506 PMCID: PMC5061868 DOI: 10.1128/mbio.01109-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The diploid genome of the yeast Candida albicans is highly plastic, exhibiting frequent loss-of-heterozygosity (LOH) events. To provide a deeper understanding of the mechanisms leading to LOH, we investigated the repair of a unique DNA double-strand break (DSB) in the laboratory C. albicans SC5314 strain using the I-SceI meganuclease. Upon I-SceI induction, we detected a strong increase in the frequency of LOH events at an I-SceI target locus positioned on chromosome 4 (Chr4), including events spreading from this locus to the proximal telomere. Characterization of the repair events by single nucleotide polymorphism (SNP) typing and whole-genome sequencing revealed a predominance of gene conversions, but we also observed mitotic crossover or break-induced replication events, as well as combinations of independent events. Importantly, progeny that had undergone homozygosis of part or all of Chr4 haplotype B (Chr4B) were inviable. Mining of genome sequencing data for 155 C. albicans isolates allowed the identification of a recessive lethal allele in the GPI16 gene on Chr4B unique to C. albicans strain SC5314 which is responsible for this inviability. Additional recessive lethal or deleterious alleles were identified in the genomes of strain SC5314 and two clinical isolates. Our results demonstrate that recessive lethal alleles in the genomes of C. albicans isolates prevent the occurrence of specific extended LOH events. While these and other recessive lethal and deleterious alleles are likely to accumulate in C. albicans due to clonal reproduction, their occurrence may in turn promote the maintenance of corresponding nondeleterious alleles and, consequently, heterozygosity in the C. albicans species. IMPORTANCE Recessive lethal alleles impose significant constraints on the biology of diploid organisms. Using a combination of an I-SceI meganuclease-mediated DNA DSB, a fluorescence-activated cell sorter (FACS)-optimized reporter of LOH, and a compendium of 155 genome sequences, we were able to unmask and identify recessive lethal and deleterious alleles in isolates of Candida albicans, a diploid yeast and the major fungal pathogen of humans. Accumulation of recessive deleterious mutations upon clonal reproduction of C. albicans could contribute to the maintenance of heterozygosity despite the high frequency of LOH events in this species.
Collapse
|
25
|
Vriend LEM, Prakash R, Chen CC, Vanoli F, Cavallo F, Zhang Y, Jasin M, Krawczyk PM. Distinct genetic control of homologous recombination repair of Cas9-induced double-strand breaks, nicks and paired nicks. Nucleic Acids Res 2016; 44:5204-17. [PMID: 27001513 PMCID: PMC4914091 DOI: 10.1093/nar/gkw179] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 03/05/2016] [Accepted: 03/07/2016] [Indexed: 12/29/2022] Open
Abstract
DNA double-strand breaks (DSBs) are known to be powerful inducers of homologous recombination (HR), but single-strand breaks (nicks) have also been shown to trigger HR. Both DSB- and nick-induced HR ((nick)HR) are exploited in advanced genome-engineering approaches based on the bacterial RNA-guided nuclease Cas9. However, the mechanisms of (nick)HR are largely unexplored. Here, we applied Cas9 nickases to study (nick)HR in mammalian cells. We find that (nick)HR is unaffected by inhibition of major damage signaling kinases and that it is not suppressed by nonhomologous end-joining (NHEJ) components, arguing that nick processing does not require a DSB intermediate to trigger HR. Relative to a single nick, nicking both strands enhances HR, consistent with a DSB intermediate, even when nicks are induced up to ∼1kb apart. Accordingly, HR and NHEJ compete for repair of these paired nicks, but, surprisingly, only when 5' overhangs or blunt ends can be generated. Our study advances the understanding of molecular mechanisms driving nick and paired-nick repair in mammalian cells and clarify phenomena associated with Cas9-mediated genome editing.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Rohit Prakash
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Francesca Cavallo
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA Weill Cornell Graduate School of Medical Sciences, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Przemek M Krawczyk
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ, The Netherlands Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| |
Collapse
|
26
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
27
|
Pang J, Wu Y, Li Z, Hu Z, Wang X, Hu X, Wang X, Liu X, Zhou M, Liu B, Wang Y, Feng M, Liang D. Targeting of the human F8 at the multicopy rDNA locus in Hemophilia A patient-derived iPSCs using TALENickases. Biochem Biophys Res Commun 2016; 472:144-9. [PMID: 26921444 DOI: 10.1016/j.bbrc.2016.02.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 02/19/2016] [Indexed: 10/22/2022]
Abstract
Hemophilia A (HA) is a monogenic disease due to lack of the clotting factor VIII (FVIII). This deficiency may lead to spontaneous joint hemorrhages or life-threatening bleeding but there is no cure for HA until very recently. In this study, we derived induced pluripotent stem cells (iPSCs) from patients with severe HA and used transcription activator-like effector nickases (TALENickases) to target the factor VIII gene (F8) at the multicopy ribosomal DNA (rDNA) locus in HA-iPSCs, aiming to rescue the shortage of FVIII protein. The results revealed that more than one copy of the exogenous F8 could be integrated into the rDNA locus. Importantly, we detected exogenous F8 mRNA and FVIII protein in targeted HA-iPSCs. After they were differentiated into endothelial cells (ECs), the exogenous FVIII protein was still detectable. Thus, it is showed that the multicopy rDNA locus could be utilized as an effective target site in patient-derived iPSCs for gene therapy. This strategy provides a novel iPSCs-based therapeutic option for HA and other monogenic diseases.
Collapse
Affiliation(s)
- Jialun Pang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhuo Li
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhiqing Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaolin Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xuyun Hu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xiaoyan Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Xionghao Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Miaojin Zhou
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Bo Liu
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yanchi Wang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Mai Feng
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
28
|
Lee J, Chung JH, Kim HM, Kim DW, Kim H. Designed nucleases for targeted genome editing. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:448-62. [PMID: 26369767 DOI: 10.1111/pbi.12465] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 05/20/2023]
Abstract
Targeted genome-editing technology using designed nucleases has been evolving rapidly, and its applications are widely expanding in research, medicine and biotechnology. Using this genome-modifying technology, researchers can precisely and efficiently insert, remove or change specific sequences in various cultured cells, micro-organisms, animals and plants. This genome editing is based on the generation of double-strand breaks (DSBs), repair of which modifies the genome through nonhomologous end-joining (NHEJ) or homology-directed repair (HDR). In addition, designed nickase-induced generation of single-strand breaks can also lead to precise genome editing through HDR, albeit at relatively lower efficiencies than that induced by nucleases. Three kinds of designed nucleases have been used for targeted DSB formation: zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system. A growing number of researchers are using genome-editing technologies, which have become more accessible and affordable since the discovery and adaptation of CRISPR-Cas9. Here, the repair mechanism and outcomes of DSBs are reviewed and the three types of designed nucleases are discussed with the hope that such understanding will facilitate applications to genome editing.
Collapse
Affiliation(s)
- Junwon Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jae-Hee Chung
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Ho Min Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Dong-Wook Kim
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hyongbum Kim
- Department of Pharmacology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
- Graduate Program of Nano Science and Technology, Yonsei University, Seoul, Korea
| |
Collapse
|
29
|
Shen BW, Lambert A, Walker BC, Stoddard BL, Kaiser BK. The Structural Basis of Asymmetry in DNA Binding and Cleavage as Exhibited by the I-SmaMI LAGLIDADG Meganuclease. J Mol Biol 2016; 428:206-220. [PMID: 26705195 PMCID: PMC4749321 DOI: 10.1016/j.jmb.2015.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/13/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023]
Abstract
LAGLIDADG homing endonucleases ("meganucleases") are highly specific DNA cleaving enzymes that are used for genome engineering. Like other enzymes that act on DNA targets, meganucleases often display binding affinities and cleavage activities that are dominated by one protein domain. To decipher the underlying mechanism of asymmetric DNA recognition and catalysis, we identified and characterized a new monomeric meganuclease (I-SmaMI), which belongs to a superfamily of homologous enzymes that recognize divergent DNA sequences. We solved a series of crystal structures of the enzyme-DNA complex representing a progression of sequential reaction states, and we compared the structural rearrangements and surface potential distributions within each protein domain against their relative contribution to binding affinity. We then determined the effects of equivalent point mutations in each of the two enzyme active sites to determine whether asymmetry in DNA recognition is translated into corresponding asymmetry in DNA cleavage activity. These experiments demonstrate the structural basis for "dominance" by one protein domain over the other and provide insights into this enzyme's conformational switch from a nonspecific search mode to a more specific recognition mode.
Collapse
Affiliation(s)
- Betty W. Shen
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Abigail Lambert
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Bradley C. Walker
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| | - Barry L. Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Brett K. Kaiser
- Department of Biology, Seattle University, 901 12th Avenue, Seattle, WA 98122, USA
| |
Collapse
|
30
|
The Development and Use of Zinc-Finger Nucleases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016. [DOI: 10.1007/978-1-4939-3509-3_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Applications of TALENs and CRISPR/Cas9 in human cells and their potentials for gene therapy. Mol Biotechnol 2015; 56:681-8. [PMID: 24870618 DOI: 10.1007/s12033-014-9771-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The newly developed TALENs and emerging CRISPR/Cas9 have spurred interests in the field of genome engineering because of their ease of customization and high-efficient site-specific cleavages. Although these novel technologies have been successfully used in many types of cells, it is of great importance to apply them in human-derived cells to further observe and evaluate their clinical potentials in gene therapy. Here, we review the working mechanism of TALEN and CRISPR/Cas9, their effectiveness and specificity in human cells, and current methods to enhance efficiency and reduce off-target effects. Besides, CCR5 gene was chosen as a target example to illustrate their clinical potentials. Finally, some questions are raised for future research and for researchers to consider when making a proper choice bases on different purposes.
Collapse
|
32
|
Molina R, Marcaida MJ, Redondo P, Marenchino M, Duchateau P, D'Abramo M, Montoya G, Prieto J. Engineering a Nickase on the Homing Endonuclease I-DmoI Scaffold. J Biol Chem 2015; 290:18534-44. [PMID: 26045557 DOI: 10.1074/jbc.m115.658666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Indexed: 12/27/2022] Open
Abstract
Homing endonucleases are useful tools for genome modification because of their capability to recognize and cleave specifically large DNA targets. These endonucleases generate a DNA double strand break that can be repaired by the DNA damage response machinery. The break can be repaired by homologous recombination, an error-free mechanism, or by non-homologous end joining, a process susceptible to introducing errors in the repaired sequence. The type of DNA cleavage might alter the balance between these two alternatives. The use of "nickases" producing a specific single strand break instead of a double strand break could be an approach to reduce the toxicity associated with non-homologous end joining by promoting the use of homologous recombination to repair the cleavage of a single DNA break. Taking advantage of the sequential DNA cleavage mechanism of I-DmoI LAGLIDADG homing endonuclease, we have developed a new variant that is able to cut preferentially the coding DNA strand, generating a nicked DNA target. Our structural and biochemical analysis shows that by decoupling the action of the catalytic residues acting on each strand we can inhibit one of them while keeping the other functional.
Collapse
Affiliation(s)
| | | | | | - Marco Marenchino
- NMR Unit, Structural Biology and Biocomputing Program, Spanish National Cancer Research Center (CNIO), c/Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | | | - Marco D'Abramo
- Department of Chemistry, University of Rome "La Sapienza," Piazzale Aldo Moro 5, 00185, Rome, Italy, and
| | - Guillermo Montoya
- From the Macromolecular Crystallography Group and Novo Nordisk Foundation Center for Protein Research, Protein Structure and Function Program, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Jesús Prieto
- From the Macromolecular Crystallography Group and
| |
Collapse
|
33
|
Zou B, Mittal R, Grati M, Lu Z, Shu Y, Tao Y, Feng Y, Xie D, Kong W, Yang S, Chen ZY, Liu X. The application of genome editing in studying hearing loss. Hear Res 2015; 327:102-8. [PMID: 25987504 DOI: 10.1016/j.heares.2015.04.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 12/26/2022]
Abstract
Targeted genome editing mediated by clustered, regularly interspaced, short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9) technology has emerged as one of the most powerful tools to study gene functions, and with potential to treat genetic disorders. Hearing loss is one of the most common sensory disorders, affecting approximately 1 in 500 newborns with no treatment. Mutations of inner ear genes contribute to the largest portion of genetic deafness. The simplicity and robustness of CRISPR/Cas9-directed genome editing in human cells and model organisms such as zebrafish, mice and primates make it a promising technology in hearing research. With CRISPR/Cas9 technology, functions of inner ear genes can be studied efficiently by the disruption of normal gene alleles through non-homologous-end-joining (NHEJ) mechanism. For genetic hearing loss, CRISPR/Cas9 has potential to repair gene mutations by homology-directed-repair (HDR) or to disrupt dominant mutations by NHEJ, which could restore hearing. Our recent work has shown CRISPR/Cas9-mediated genome editing can be efficiently performed in the mammalian inner ear in vivo. Thus, application of CRISPR/Cas9 in hearing research will open up new avenues for understanding the pathology of genetic hearing loss and provide new routes in the development of treatment to restore hearing. In this review, we describe major methodologies currently used for genome editing. We will highlight applications of these technologies in studies of genetic disorders and discuss issues pertaining to applications of CRISPR/Cas9 in auditory systems implicated in genetic hearing loss.
Collapse
Affiliation(s)
- Bing Zou
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - M'hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Zhongmin Lu
- Department of Biology, University of Miami, Miami, FL 33146, USA
| | - Yilai Shu
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA; Department of Otology and Skull Base Surgery, Eye, Ear, Nose and Throat Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yong Tao
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA; Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Youg Feng
- Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dinghua Xie
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Weijia Kong
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China
| | - Zheng-Yi Chen
- Department of Otology and Laryngology, Harvard Medical School and Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston 02114, USA.
| | - Xuezhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital Central South University, Changsha, Hunan, China; Department of Otolaryngology-Head and Neck Surgery, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
34
|
Lee KY, Lee KY, Kim JH, Lee IG, Lee SH, Sim DW, Won HS, Lee BJ. Structure-based functional identification of Helicobacter pylori HP0268 as a nuclease with both DNA nicking and RNase activities. Nucleic Acids Res 2015; 43:5194-207. [PMID: 25916841 PMCID: PMC4446426 DOI: 10.1093/nar/gkv348] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/03/2015] [Indexed: 12/18/2022] Open
Abstract
HP0268 is a conserved, uncharacterized protein from Helicobacter pylori. Here, we determined the solution structure of HP0268 using three-dimensional nuclear magnetic resonance (NMR) spectroscopy, revealing that this protein is structurally most similar to a small MutS-related (SMR) domain that exhibits nicking endonuclease activity. We also demonstrated for the first time that HP0268 is a nicking endonuclease and a purine-specific ribonuclease through gel electrophoresis and fluorescence spectroscopy. The nuclease activities for DNA and RNA were maximally increased by Mn2+ and Mg2+ ions, respectively, and decreased by Cu2+ ions. Using NMR chemical shift perturbations, the metal and nucleotide binding sites of HP0268 were determined to be spatially divided but close to each other. The lysine residues (Lys7, Lys11 and Lys43) are clustered and form the nucleotide binding site. Moreover, site-directed mutagenesis was used to define the catalytic active site of HP0268, revealing that this site contains two acidic residues, Asp50 and Glu54, in the metal binding site. The nucleotide binding and active sites are not conserved in the structural homologues of HP0268. This study will contribute to improving our understanding of the structure and functionality of a wide spectrum of nucleases.
Collapse
Affiliation(s)
- Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Kyu-Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - In-Gyun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Sung-Hee Lee
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Dae-Won Sim
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Hyung-Sik Won
- Department of Biotechnology, College of Biomedical and Health Science, Konkuk University, Chungju, Chungbuk 380-701, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
35
|
Maggio I, Gonçalves MAFV. Genome editing at the crossroads of delivery, specificity, and fidelity. Trends Biotechnol 2015; 33:280-91. [PMID: 25819765 DOI: 10.1016/j.tibtech.2015.02.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022]
Abstract
Genome editing (GE) entails the modification of specific genomic sequences in living cells for the purpose of determining, changing, or expanding their function(s). Typically, GE occurs after delivering sequence-specific designer nucleases (e.g., ZFNs, TALENs, and CRISPR/Cas9) and donor DNA constructs into target cells. These designer nucleases can generate gene knockouts or gene knock-ins when applied alone or in combination with donor DNA templates, respectively. We review progress in this field, with an emphasis on designer nuclease and donor template delivery into mammalian target cell populations. We also discuss the impact that incremental improvements to these tools are having on the specificity and fidelity attainable with state-of-the-art DNA-editing procedures. Finally, we identify areas that warrant further investigation.
Collapse
Affiliation(s)
- Ignazio Maggio
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Molecular Cell Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
36
|
Osakabe Y, Osakabe K. Genome editing with engineered nucleases in plants. PLANT & CELL PHYSIOLOGY 2015; 56:389-400. [PMID: 25416289 DOI: 10.1093/pcp/pcu170] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Numerous examples of successful 'genome editing' now exist. Genome editing uses engineered nucleases as powerful tools to target specific DNA sequences to edit genes precisely in the genomes of both model and crop plants, as well as a variety of other organisms. The DNA-binding domains of zinc finger (ZF) proteins were the first to be used as genome editing tools, in the form of designed ZF nucleases (ZFNs). More recently, transcription activator-like effector nucleases (TALENs), as well as the clustered regularly interspaced short palindromic repeats/Cas9 (CRISPR/Cas9) system, which utilizes RNA-DNA interactions, have proved useful. A key step in genome editing is the generation of a double-stranded DNA break that is specific to the target gene. This is achieved by custom-designed endonucleases, which enable site-directed mutagenesis via a non-homologous end-joining (NHEJ) repair pathway and/or gene targeting via homologous recombination (HR) to occur efficiently at specific sites in the genome. This review provides an overview of recent advances in genome editing technologies in plants, and discusses how these can provide insights into current plant molecular biology research and molecular breeding technology.
Collapse
Affiliation(s)
- Yuriko Osakabe
- RIKEN Center for Sustainable Resource Science, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074 Japan
| | - Keishi Osakabe
- Center for Collaboration among Agriculture, Industry and Commerce, The University of Tokushima, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
37
|
Metzger MJ, Certo MT. Design and analysis of site-specific single-strand nicking endonucleases for gene correction. Methods Mol Biol 2014; 1114:237-44. [PMID: 24557907 DOI: 10.1007/978-1-62703-761-7_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Single-strand nicking endonucleases ("nickases") have been shown to induce homology-mediated gene correction with reduced toxicity of DNA double-strand break-producing enzymes, and nickases have been engineered from both homing endonuclease and FokI-based scaffolds. We describe the strategies used to engineer these site-specific nickases as well as the in vitro methods used to confirm their activity and specificity. Additionally, we describe the Traffic Light Reporter system, which uses a flow cytometric assay to simultaneously detect both gene repair and mutagenic nonhomologous end-joining outcomes at a single targeted site in mammalian cells. With these methods, novel nickases can be designed and tested for use in gene correction with novel target sites.
Collapse
Affiliation(s)
- Michael J Metzger
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
38
|
Ren X, Yang Z, Mao D, Chang Z, Qiao HH, Wang X, Sun J, Hu Q, Cui Y, Liu LP, Ji JY, Xu J, Ni JQ. Performance of the Cas9 nickase system in Drosophila melanogaster. G3 (BETHESDA, MD.) 2014; 4:1955-62. [PMID: 25128437 PMCID: PMC4199701 DOI: 10.1534/g3.114.013821] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/12/2014] [Indexed: 11/18/2022]
Abstract
Recent studies of the Cas9/sgRNA system in Drosophila melanogaster genome editing have opened new opportunities to generate site-specific mutant collections in a high-throughput manner. However, off-target effects of the system are still a major concern when analyzing mutant phenotypes. Mutations converting Cas9 to a DNA nickase have great potential for reducing off-target effects in vitro. Here, we demonstrated that injection of two plasmids encoding neighboring offset sgRNAs into transgenic Cas9(D10A) nickase flies efficiently produces heritable indel mutants. We then determined the effective distance between the two sgRNA targets and their orientations that affected the ability of the sgRNA pairs to generate mutations when expressed in the transgenic nickase flies. Interestingly, Cas9 nickase greatly reduces the ability to generate mutants with one sgRNA, suggesting that the application of Cas9 nickase and sgRNA pairs can almost avoid off-target effects when generating indel mutants. Finally, a defined piwi mutant allele is generated with this system through homology-directed repair. However, Cas9(D10A) is not as effective as Cas9 in replacing the entire coding sequence of piwi with two sgRNAs.
Collapse
Affiliation(s)
- Xingjie Ren
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zhihao Yang
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Decai Mao
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Zai Chang
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Huan-Huan Qiao
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xia Wang
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jin Sun
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qun Hu
- Tsinghua Fly Center, Tsinghua University, Beijing 100084, China
| | - Yan Cui
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Lu-Ping Liu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China Tsinghua Fly Center, Tsinghua University, Beijing 100084, China
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Jiang Xu
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Jian-Quan Ni
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Beck C, Robert I, Reina-San-Martin B, Schreiber V, Dantzer F. Poly(ADP-ribose) polymerases in double-strand break repair: focus on PARP1, PARP2 and PARP3. Exp Cell Res 2014; 329:18-25. [PMID: 25017100 DOI: 10.1016/j.yexcr.2014.07.003] [Citation(s) in RCA: 216] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 06/24/2014] [Accepted: 07/01/2014] [Indexed: 10/25/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a post-translational modification of proteins catalysed by Poly(ADP-ribose) polymerases (PARP). A wealth of recent advances in the biochemical and functional characterization of the DNA-dependent PARP family members have highlighted their key contribution in the DNA damage response network, the best characterized being the role of PARP1 and PARP2 in the resolution of single-strand breaks as part of the BER/SSBR process. How PARylation contributes to the repair of double-strand breaks is less well defined but has become recently the subject of significant research in the field. The aim of this review is to provide an overview of the current knowledge concerning the role of the DNA-activated PARP1, PARP2 and PARP3 in cellular response to double-strand breaks (DSB). In addition, we outline the biological significance of these properties in response to programmed DNA lesions formed during physiological processes such as antibody repertoire assembly and diversification.
Collapse
Affiliation(s)
- Carole Beck
- Poly(ADP-ribosyl)ation and Genome Integrity, Equipe labellisée Ligue Nationale Contre Le Cancer, Laboratoire d׳Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l׳Ecole de Biotechnologie de Strasbourg, bld. S. Brant, BP10413,67412 Illkirch, France
| | - Isabelle Robert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Institut National de la Santé et de la Recherche Médicale, U964; Centre National de la Recherche Scientifique, UMR7104; Université de Strasbourg; Illkirch, 67400, France
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; Institut National de la Santé et de la Recherche Médicale, U964; Centre National de la Recherche Scientifique, UMR7104; Université de Strasbourg; Illkirch, 67400, France
| | - Valérie Schreiber
- Poly(ADP-ribosyl)ation and Genome Integrity, Equipe labellisée Ligue Nationale Contre Le Cancer, Laboratoire d׳Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l׳Ecole de Biotechnologie de Strasbourg, bld. S. Brant, BP10413,67412 Illkirch, France
| | - Françoise Dantzer
- Poly(ADP-ribosyl)ation and Genome Integrity, Equipe labellisée Ligue Nationale Contre Le Cancer, Laboratoire d׳Excellence Medalis, UMR7242, Centre National de la Recherche Scientifique/Université de Strasbourg, Institut de Recherche de l׳Ecole de Biotechnologie de Strasbourg, bld. S. Brant, BP10413,67412 Illkirch, France.
| |
Collapse
|
40
|
Abstract
Genetic instabilities, including mutations and chromosomal rearrangements, lead to cancer and other diseases in humans and play an important role in evolution. A frequent cause of genetic instabilities is double-strand DNA breaks (DSBs), which may arise from a wide range of exogeneous and endogeneous cellular factors. Although the repair of DSBs is required, some repair pathways are dangerous because they may destabilize the genome. One such pathway, break-induced replication (BIR), is the mechanism for repairing DSBs that possesses only one repairable end. This situation commonly arises as a result of eroded telomeres or collapsed replication forks. Although BIR plays a positive role in repairing DSBs, it can alternatively be a dangerous source of several types of genetic instabilities, including loss of heterozygosity, telomere maintenance in the absence of telomerase, and non-reciprocal translocations. Also, mutation rates in BIR are about 1000 times higher as compared to normal DNA replication. In addition, micro-homology-mediated BIR (MMBIR), which is a mechanism related to BIR, can generate copy-number variations (CNVs) as well as various complex chromosomal rearrangements. Overall, activation of BIR may contribute to genomic destabilization resulting in substantial biological consequences including those affecting human health.
Collapse
Affiliation(s)
| | | | - Anna Malkova
- Author to whom correspondence should be addressed; ; Tel.: +1-317-278-5717; Fax: +1-317-274-2946
| |
Collapse
|
41
|
He C, Gouble A, Bourdel A, Manchev V, Poirot L, Paques F, Duchateau P, Edelman A, Danos O. Lentiviral protein delivery of meganucleases in human cells mediates gene targeting and alleviates toxicity. Gene Ther 2014; 21:759-66. [DOI: 10.1038/gt.2014.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 04/08/2014] [Accepted: 04/28/2014] [Indexed: 12/29/2022]
|
42
|
Abstract
Programmable nucleases - including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and RNA-guided engineered nucleases (RGENs) derived from the bacterial clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated) system - enable targeted genetic modifications in cultured cells, as well as in whole animals and plants. The value of these enzymes in research, medicine and biotechnology arises from their ability to induce site-specific DNA cleavage in the genome, the repair (through endogenous mechanisms) of which allows high-precision genome editing. However, these nucleases differ in several respects, including their composition, targetable sites, specificities and mutation signatures, among other characteristics. Knowledge of nuclease-specific features, as well as of their pros and cons, is essential for researchers to choose the most appropriate tool for a range of applications.
Collapse
Affiliation(s)
- Hyongbum Kim
- Graduate School of Biomedical Science and Engineering, and College of Medicine, Hanyang University, Wangsimni-ro 222, Sungdong-gu, Seoul 133-791, South Korea
| | - Jin-Soo Kim
- 1] Center for Genome Engineering, Institute for Basic Science, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea. [2] Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul 151-747, South Korea
| |
Collapse
|
43
|
Gutjahr A, Xu SY. Engineering nicking enzymes that preferentially nick 5-methylcytosine-modified DNA. Nucleic Acids Res 2014; 42:e77. [PMID: 24609382 PMCID: PMC4027164 DOI: 10.1093/nar/gku192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
N.ϕGamma is a strand-specific and site-specific DNA nicking enzyme (YCG↓GT or AC↑CGR). Here we describe the isolation of single and double mutants of N.ϕGamma with attenuated activity. The nicking domains (NDs) of E59A and 11 double mutants were fused to the 5mCG-binding domain of MBD2 and generated fusion enzymes that preferentially nick 5mCG-modified DNA. The CG dinucleotide can be modified by C5 methyltransferases (MTases) such as M.SssI, M.HhaI or M.HpaII to create composite sites AC↑YGG N(8-15) 5mCG. We also constructed a fusion enzyme 2xMBD2-ND(N.BceSVIII) targeting more frequent composite sites AS↑YS N(5-12) 5mCG in Mn2+ buffer. 5mCG-dependent nicking requires special digestion conditions in high salt (0.3 M KCl) or in Ni2+ buffer. The fusion enzyme can be used to nick and label 5mCG-modified plasmid and genomic DNAs with fluorescently labeled Cy3-dUTP and potentially be useful for diagnostic applications, DNA sequencing and optical mapping of epigenetic markers. The importance of the predicted catalytic residues D89, H90, N106 and H115 in N.ϕGamma was confirmed by mutagenesis. We found that the wild-type enzyme N.ϕGamma prefers to nick 5mCG-modified DNA in Ni2+ buffer even though the nicking activity is sub-optimal compared to the activity in Mg2+ buffer.
Collapse
Affiliation(s)
- Alice Gutjahr
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shuang-yong Xu
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
44
|
Abstract
Current technology enables the production of highly specific genome modifications with excellent efficiency and specificity. Key to this capability are targetable DNA cleavage reagents and cellular DNA repair pathways. The break made by these reagents can produce localized sequence changes through inaccurate nonhomologous end joining (NHEJ), often leading to gene inactivation. Alternatively, user-provided DNA can be used as a template for repair by homologous recombination (HR), leading to the introduction of desired sequence changes. This review describes three classes of targetable cleavage reagents: zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR/Cas RNA-guided nucleases (RGNs). As a group, these reagents have been successfully used to modify genomic sequences in a wide variety of cells and organisms, including humans. This review discusses the properties, advantages, and limitations of each system, as well as the specific considerations required for their use in different biological systems.
Collapse
Affiliation(s)
- Dana Carroll
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah 84112;
| |
Collapse
|
45
|
Stoddard BL. Homing endonucleases from mobile group I introns: discovery to genome engineering. Mob DNA 2014; 5:7. [PMID: 24589358 PMCID: PMC3943268 DOI: 10.1186/1759-8753-5-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/13/2014] [Indexed: 12/20/2022] Open
Abstract
Homing endonucleases are highly specific DNA cleaving enzymes that are encoded within genomes of all forms of microbial life including phage and eukaryotic organelles. These proteins drive the mobility and persistence of their own reading frames. The genes that encode homing endonucleases are often embedded within self-splicing elements such as group I introns, group II introns and inteins. This combination of molecular functions is mutually advantageous: the endonuclease activity allows surrounding introns and inteins to act as invasive DNA elements, while the splicing activity allows the endonuclease gene to invade a coding sequence without disrupting its product. Crystallographic analyses of representatives from all known homing endonuclease families have illustrated both their mechanisms of action and their evolutionary relationships to a wide range of host proteins. Several homing endonucleases have been completely redesigned and used for a variety of genome engineering applications. Recent efforts to augment homing endonucleases with auxiliary DNA recognition elements and/or nucleic acid processing factors has further accelerated their use for applications that demand exceptionally high specificity and activity.
Collapse
Affiliation(s)
- Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave, N, A3-025, Seattle, WA 98109, USA.
| |
Collapse
|
46
|
Homology-directed repair of DNA nicks via pathways distinct from canonical double-strand break repair. Proc Natl Acad Sci U S A 2014; 111:E924-32. [PMID: 24556991 DOI: 10.1073/pnas.1400236111] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
DNA nicks are the most common form of DNA damage, and if unrepaired can give rise to genomic instability. In human cells, nicks are efficiently repaired via the single-strand break repair pathway, but relatively little is known about the fate of nicks not processed by that pathway. Here we show that homology-directed repair (HDR) at nicks occurs via a mechanism distinct from HDR at double-strand breaks (DSBs). HDR at nicks, but not DSBs, is associated with transcription and is eightfold more efficient at a nick on the transcribed strand than at a nick on the nontranscribed strand. HDR at nicks can proceed by a pathway dependent upon canonical HDR factors RAD51 and BRCA2; or by an efficient alternative pathway that uses either ssDNA or nicked dsDNA donors and that is strongly inhibited by RAD51 and BRCA2. Nicks generated by either I-AniI or the CRISPR/Cas9(D10A) nickase are repaired by the alternative HDR pathway with little accompanying mutagenic end-joining, so this pathway may be usefully applied to genome engineering. These results suggest that alternative HDR at nicks may be stimulated in physiological contexts in which canonical RAD51/BRCA2-dependent HDR is compromised or down-regulated, which occurs frequently in tumors.
Collapse
|
47
|
Katz SS, Gimble FS, Storici F. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells. PLoS One 2014; 9:e88840. [PMID: 24558436 PMCID: PMC3928301 DOI: 10.1371/journal.pone.0088840] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR) machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB) at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB), or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI) to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293) cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy.
Collapse
Affiliation(s)
- Samantha S. Katz
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Frederick S. Gimble
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
48
|
Vriend LEM, Jasin M, Krawczyk PM. Assaying break and nick-induced homologous recombination in mammalian cells using the DR-GFP reporter and Cas9 nucleases. Methods Enzymol 2014; 546:175-91. [PMID: 25398341 PMCID: PMC4408992 DOI: 10.1016/b978-0-12-801185-0.00009-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Thousands of DNA breaks occur daily in mammalian cells, including potentially tumorigenic double-strand breaks (DSBs) and less dangerous but vastly more abundant single-strand breaks (SSBs). The majority of SSBs are quickly repaired, but some can be converted to DSBs, posing a threat to the integrity of the genome. Although SSBs are usually repaired by dedicated pathways, they can also trigger homologous recombination (HR), an error-free pathway generally associated with DSB repair. While HR-mediated DSB repair has been extensively studied, the mechanisms of HR-mediated SSB repair are less clear. This chapter describes a protocol to investigate SSB-induced HR in mammalian cells employing the DR-GFP reporter, which has been widely used in DSB repair studies, together with an adapted bacterial CRISPR/Cas system.
Collapse
Affiliation(s)
- Lianne E M Vriend
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA.
| | - Przemek M Krawczyk
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, New York, USA; Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
49
|
Abstract
Genome editing in human cells is of great value in research, medicine, and biotechnology. Programmable nucleases including zinc-finger nucleases, transcription activator-like effector nucleases, and RNA-guided engineered nucleases recognize a specific target sequence and make a double-strand break at that site, which can result in gene disruption, gene insertion, gene correction, or chromosomal rearrangements. The target sequence complexities of these programmable nucleases are higher than 3.2 mega base pairs, the size of the haploid human genome. Here, we briefly introduce the structure of the human genome and the characteristics of each programmable nuclease, and review their applications in human cells including pluripotent stem cells. In addition, we discuss various delivery methods for nucleases, programmable nickases, and enrichment of gene-edited human cells, all of which facilitate efficient and precise genome editing in human cells.
Collapse
Affiliation(s)
- Minjung Song
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, South Korea
| | - Young-Hoon Kim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, South Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Seoul, South Korea; Department of Chemistry, Seoul National University, Seoul, South Korea.
| | - Hyongbum Kim
- Graduate School of Biomedical Science and Engineering, College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
50
|
Abstract
Homing endonucleases are strong drivers of genetic exchange and horizontal transfer of both their own genes and their local genetic environment. The mechanisms that govern the function and evolution of these genetic oddities have been well documented over the past few decades at the genetic, biochemical, and structural levels. This wealth of information has led to the manipulation and reprogramming of the endonucleases and to their exploitation in genome editing for use as therapeutic agents, for insect vector control and in agriculture. In this chapter we summarize the molecular properties of homing endonucleases and discuss their strengths and weaknesses in genome editing as compared to other site-specific nucleases such as zinc finger endonucleases, TALEN, and CRISPR-derived endonucleases.
Collapse
|