1
|
Joyal M, Simard RD, Maharsy W, Prévost M, Nemer M, Guindon Y. Sialyl Lewis x Glycomimetics as E- and P-Selectin Antagonists Targeting Hyperinflammation. ACS Med Chem Lett 2025; 16:64-71. [PMID: 39811128 PMCID: PMC11726361 DOI: 10.1021/acsmedchemlett.4c00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Inflammatory disorders, such as sepsis, pancreatitis, and severe COVID-19, often cause immune dysfunction and high mortality. These conditions trigger excessive immune cell influx, leading to cytokine storms, organ damage, and compensatory immune suppression that results in immunoparalysis, organ dysfunction, and reinfection. Controlled and reversible immunosuppression limiting immune cell recruitment to inflammation sites could reduce hyperinflammation and prevent immune exhaustion. PSGL-1 on leukocytes binds to vascular P- and E-selectins via its sialyl Lewisx pharmacophore, triggering key features of systemic inflammatory response syndrome and sepsis. We report the discovery of two immunomodulators, sialyl Lewisx glycomimetics (12 and 13), with a tetrazole carboxyl bioisostere of 3a, which binds P- and E-selectin and blocks their interaction with PSGL-1. In an in vivo hyperinflammation model, they reduced immune cell recruitment, evidenced by decreased neutrophils, CD11b+, monocytes/macrophages, and PSGL-1-positive cells at various time points. These glycomimetics may be promising leads for managing the systemic inflammatory response syndrome.
Collapse
Affiliation(s)
- Mathieu Joyal
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ryan D. Simard
- Bioorganic
Chemistry Laboratory, Institut de recherches
cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Wael Maharsy
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michel Prévost
- Bioorganic
Chemistry Laboratory, Institut de recherches
cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mona Nemer
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Yvan Guindon
- Bioorganic
Chemistry Laboratory, Institut de recherches
cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
- Department
of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
2
|
Gandhi AK, Huang YH, Sun ZYJ, Kim WM, Kondo Y, Hanley T, Beauchemin N, Blumberg RS. Structural aspects of CEACAM1 interactions. Eur J Clin Invest 2024; 54 Suppl 2:e14357. [PMID: 39555955 DOI: 10.1111/eci.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/03/2024] [Indexed: 11/19/2024]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is a membrane protein that plays an important role in a variety of immune and non-immune functions. Such functions are regulated by its activity as a homophilic ligand but also through its ability to interact as a heterophilic ligand with various host proteins. These include CEACAM5, T cell immunoglobulin-mucin like protein-3 (TIM-3) and, potentially, protein death protein 1 (PD-1). Furthermore, CEACAM1 is targeted by various pathogens to allow them to invade a host and bypass an effective immune response. Clinically, CEACAM1 plays an important role in infectious diseases, autoimmunity and cancer. In this review, we describe the structural basis for CEACAM1 interactions as a homophilic and heterophilic ligand. We discuss the regulation of its monomeric, dimeric and oligomeric states in cis and trans binding as well as the consequences for eliciting downstream signalling activities. Furthermore, we explore the potential role of avidity in determining CEACAM1's activities.
Collapse
Affiliation(s)
- Amit K Gandhi
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Hwa Huang
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zhen-Yu J Sun
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Walter M Kim
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yasuyuki Kondo
- Division of Gastroenterology, Department of Internal Medicine, Graduate School of Medicine, Kobe University, Kobe, Japan
| | - Thomas Hanley
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Canada
| | - Richard S Blumberg
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Barkan CO, Bruinsma RF. Topology of molecular deformations induces triphasic catch bonding in selectin-ligand bonds. Proc Natl Acad Sci U S A 2024; 121:e2315866121. [PMID: 38294934 PMCID: PMC10861892 DOI: 10.1073/pnas.2315866121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/15/2023] [Indexed: 02/02/2024] Open
Abstract
Among the long-standing efforts to elucidate the physical mechanisms of protein-ligand catch bonding, particular attention has been directed at the family of selectin proteins. Selectins exhibit slip, catch-slip, and slip-catch-slip bonding, with minor structural modifications causing major changes in selectins' response to force. How can a single structural mechanism allow interconversion between these various behaviors? We present a unifying theory of selectin-ligand catch bonding, using a structurally motivated free energy landscape to show how the topology of force-induced deformations of the molecular system produces the full range of observed behaviors. We find that the pathway of bond rupture deforms in non-trivial ways, such that unbinding dynamics depend sensitively on force. This implies a severe breakdown of Bell's theory-a paradigmatic theory used widely in catch bond modeling-raising questions about the suitability of Bell's theory in modeling other catch bonds. Our approach can be applied broadly to other protein-ligand systems.
Collapse
Affiliation(s)
- Casey O. Barkan
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| | - Robijn F. Bruinsma
- Department of Physics and Astronomy, University of California, Los Angeles, CA90095
| |
Collapse
|
4
|
Belouin A, Simard RD, Joyal M, Maharsy W, Lau A, Prévost M, Nemer M, Guindon Y. Sialyl Lewis X glycomimetics bearing an extended anionic chain targeting E- and P- selectin binding sites. Bioorg Med Chem 2024; 98:117553. [PMID: 38128297 DOI: 10.1016/j.bmc.2023.117553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023]
Abstract
Neutrophil binding to vascular P- and E-selectin is the rate-limiting step in the recruitment of immune cells to sites of inflammation. Many diseases, including sickle cell anemia, post-myocardial infarction reperfusion injury, and acute respiratory distress syndrome are characterized by dysregulated inflammation. We have recently reported sialyl Lewisx analogues as potent antagonists of P- and E-selectin and demonstrated their in vivo immunosuppressive activity. A key component of these molecules is a tartrate diester that serves as an acyclic tether to orient the fucoside and the galactoside moiety in the required gauche conformation for optimal binding. The next stage of our study involved attaching an extended carbon chain onto one of the esters. This chain could be utilized to tether other pharmacophores, lipids, and contrast agents in the context of enhancing pharmacological applications through the sialyl Lewisx / receptor-mediated mechanism. Herein, we report our preliminary studies to generate a small library of tartrate based sialyl Lewisx analogues bearing extended carbon chains. Anionic charged chemical entities are attached to take advantage of proximal charged amino acids in the carbohydrate recognition domain of the selectin receptors. Starting with a common azido intermediate, synthesized using copper-catalyzed Huisgen 1,3-dipolar cycloadditions, these molecules demonstrate E- and P-selectin binding properties.
Collapse
Affiliation(s)
- Audrey Belouin
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Ryan D Simard
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mathieu Joyal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wael Maharsy
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Alice Lau
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Michel Prévost
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada
| | - Mona Nemer
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | - Yvan Guindon
- Bioorganic Chemistry Laboratory, Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec H2W 1R7, Canada; Department of Chemistry, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Sladek V, Šmak P, Tvaroška I. How E-, L-, and P-Selectins Bind to sLe x and PSGL-1: A Quantification of Critical Residue Interactions. J Chem Inf Model 2023; 63:5604-5618. [PMID: 37486087 DOI: 10.1021/acs.jcim.3c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Selectins and their ability to interact with specific ligands are a cornerstone in cell communication. Over the last three decades, a considerable wealth of experimental and molecular modeling insights into their structure and modus operandi were gathered. Nonetheless, explaining the role of individual selectin residues on a quantitative level remained elusive, despite its importance in understanding the structure-function relationship in these molecules and designing their inhibitors. This work explores essential interactions of selectin-ligand binding, employing a multiscale approach that combines molecular dynamics, quantum-chemical calculations, and residue interaction network models. Such an approach successfully reproduces most of the experimental findings. It proves to be helpful, with the potential for becoming an established tool for quantitative predictions of residue contribution to the binding of biomolecular complexes. The results empower us to quantify the importance of particular residues and functional groups in the protein-ligand interface and to pinpoint differences in molecular recognition by the three selectins. We show that mutations in the E-, L-, and P-selectins, e.g., different residues in positions 46, 85, 97, and 107, present a crucial difference in how the ligand is engaged. We assess the role of sulfation of tyrosine residues in PSGL-1 and suggest that TyrSO3- in position 51 interacting with Arg85 in P-selectin is a significant factor in the increased affinity of P-selectin to PSGL-1 compared to E- and L-selectins. We propose an original pharmacophore targeting five essential PSGL-binding sites based on the analysis of the selectin···PSGL-1 interactions.
Collapse
Affiliation(s)
- Vladimir Sladek
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| | - Pavel Šmak
- Department of Biochemistry, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Igor Tvaroška
- Institute of Chemistry, SAS, Dubravska cesta 9, 84538 Bratislava, Slovakia
| |
Collapse
|
6
|
Feng K, Wang K, Zhou Y, Xue H, Wang F, Jin H, Zhao W. Non-Anticoagulant Activities of Low Molecular Weight Heparins-A Review. Pharmaceuticals (Basel) 2023; 16:1254. [PMID: 37765064 PMCID: PMC10537022 DOI: 10.3390/ph16091254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/23/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Low molecular weight heparins (LMWHs) are derived from heparin through chemical or enzymatic cleavage with an average molecular weight (Mw) of 2000-8000 Da. They exhibit more selective activities and advantages over heparin, causing fewer side effects, such as bleeding and heparin-induced thrombocytopenia. Due to different preparation methods, LMWHs have diverse structures and extensive biological activities. In this review, we describe the basic preparation methods in this field and compare the main principles and advantages of these specific methods in detail. Importantly, we focus on the non-anticoagulant pharmacological effects of LMWHs and their conjugates, such as preventing glycocalyx shedding, anti-inflammatory, antiviral infection, anti-fibrosis, inhibiting angiogenesis, inhibiting cell adhesion and improving endothelial function. LMWHs are effective in various diseases at the animal level, including cancer, some viral diseases, fibrotic diseases, and obstetric diseases. Finally, we briefly summarize their usage and potential applications in the clinic to promote the development and utilization of LMWHs.
Collapse
Affiliation(s)
- Ke Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Kaixuan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Yu Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Haoyu Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Fang Wang
- Department of Stomatology, Tianjin Nankai Hospital, 6 Changjiang Road, Nankai District, Tianjin 300100, China
| | - Hongzhen Jin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| | - Wei Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, China; (K.F.); (K.W.); (Y.Z.); (H.X.); (W.Z.)
| |
Collapse
|
7
|
Goreke U, Iram S, Singh G, Domínguez-Medina S, Man Y, Bode A, An R, Little JA, Wirth CL, Hinczewski M, Gurkan UA. Catch bonds in sickle cell disease: Shear-enhanced adhesion of red blood cells to laminin. Biophys J 2023; 122:2564-2576. [PMID: 37177783 PMCID: PMC10323024 DOI: 10.1016/j.bpj.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/14/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Could the phenomenon of catch bonding-force-strengthened cellular adhesion-play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here, we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant microscale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific antiadhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example, leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation.
Collapse
Affiliation(s)
- Utku Goreke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Shamreen Iram
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Gundeep Singh
- Department of Physics, Case Western Reserve University, Cleveland, Ohio
| | - Sergio Domínguez-Medina
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Allison Bode
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ran An
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Jane A Little
- Division of Hematology and Blood Research Center, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Christopher L Wirth
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio.
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
8
|
Morwood AJ, El-Karim IA, Clarke SA, Lundy FT. The Role of Extracellular Matrix (ECM) Adhesion Motifs in Functionalised Hydrogels. Molecules 2023; 28:4616. [PMID: 37375171 DOI: 10.3390/molecules28124616] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
To create functional tissue engineering scaffolds, biomaterials should mimic the native extracellular matrix of the tissue to be regenerated. Simultaneously, the survival and functionality of stem cells should also be enhanced to promote tissue organisation and repair. Hydrogels, but in particular, peptide hydrogels, are an emerging class of biocompatible scaffolds which act as promising self-assembling biomaterials for tissue engineering and regenerative therapies, ranging from articular cartilage regeneration at joint defects, to regenerative spinal cord injury following trauma. To enhance hydrogel biocompatibility, it has become imperative to consider the native microenvironment of the site for regeneration, where the use of functionalised hydrogels with extracellular matrix adhesion motifs has become a novel, emerging theme. In this review, we will introduce hydrogels in the context of tissue engineering, provide insight into the complexity of the extracellular matrix, investigate specific adhesion motifs that have been used to generate functionalised hydrogels and outline their potential applications in a regenerative medicine setting. It is anticipated that by conducting this review, we will provide greater insight into functionalised hydrogels, which may help translate their use towards therapeutic roles.
Collapse
Affiliation(s)
- Anna J Morwood
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ikhlas A El-Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Susan A Clarke
- Medical Biology Centre, School of Nursing and Midwifery, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
9
|
The interface between biochemical signaling and cell mechanics shapes T lymphocyte migration and activation. Eur J Cell Biol 2022; 101:151236. [DOI: 10.1016/j.ejcb.2022.151236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/18/2022] Open
|
10
|
Yeini E, Satchi-Fainaro R. The role of P-selectin in cancer-associated thrombosis and beyond. Thromb Res 2022; 213 Suppl 1:S22-S28. [DOI: 10.1016/j.thromres.2021.12.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/12/2021] [Accepted: 12/27/2021] [Indexed: 10/18/2022]
|
11
|
Bandzerewicz A, Gadomska-Gajadhur A. Into the Tissues: Extracellular Matrix and Its Artificial Substitutes: Cell Signalling Mechanisms. Cells 2022; 11:914. [PMID: 35269536 PMCID: PMC8909573 DOI: 10.3390/cells11050914] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
The existence of orderly structures, such as tissues and organs is made possible by cell adhesion, i.e., the process by which cells attach to neighbouring cells and a supporting substance in the form of the extracellular matrix. The extracellular matrix is a three-dimensional structure composed of collagens, elastin, and various proteoglycans and glycoproteins. It is a storehouse for multiple signalling factors. Cells are informed of their correct connection to the matrix via receptors. Tissue disruption often prevents the natural reconstitution of the matrix. The use of appropriate implants is then required. This review is a compilation of crucial information on the structural and functional features of the extracellular matrix and the complex mechanisms of cell-cell connectivity. The possibilities of regenerating damaged tissues using an artificial matrix substitute are described, detailing the host response to the implant. An important issue is the surface properties of such an implant and the possibilities of their modification.
Collapse
|
12
|
Fu H, Jiang Y, Wong WP, Springer TA. Single-molecule imaging of von Willebrand factor reveals tension-dependent self-association. Blood 2021; 138:2425-2434. [PMID: 34882208 PMCID: PMC8662069 DOI: 10.1182/blood.2021012595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/22/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) is an ultralong concatemeric protein important in hemostasis and thrombosis. VWF molecules can associate with other VWF molecules, but little is known about the mechanism. Hydrodynamic drag exerts tensile force on surface-tethered VWF that extends it and is maximal at the tether point and declines linearly to 0 at the downstream free end. Using single-molecule fluorescence microscopy, we directly visualized the kinetics of binding of free VWF in flow to surface-tethered single VWF molecules. We showed that self-association requires elongation of tethered VWF and that association increases with tension in tethered VWF, reaches half maximum at a characteristic tension of ∼10 pN, and plateaus above ∼25 pN. Association is reversible and hence noncovalent; a sharp decrease in shear flow results in rapid dissociation of bound VWF. Tethered primary VWF molecules can recruit more than their own mass of secondary VWF molecules from the flow stream. Kinetics show that instead of accelerating, the rate of accumulation decreases with time, revealing an inherently self-limiting self-association mechanism. We propose that this may occur because multiple tether points between secondary and primary VWF result in lower tension on the secondary VWF, which shields more highly tensioned primary VWF from further association. Glycoprotein Ibα (GPIbα) binding and VWF self-association occur in the same region of high tension in tethered VWF concatemers; however, the half-maximal tension required for activation of GPIbα is higher, suggesting differences in molecular mechanisms. These results have important implications for the mechanism of platelet plug formation in hemostasis and thrombosis.
Collapse
Affiliation(s)
- Hongxia Fu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Division of Hematology, Department of Medicine
- Institute for Stem Cell and Regeneration Medicine, and
- Department of Bioengineering, University of Washington, Seattle, WA; and
- Bloodworks Northwest Research Institute, Seattle, WA
| | - Yan Jiang
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Wesley P Wong
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, and
- Department of Pediatrics, Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Li L, Ding Q, Zhou J, Wu Y, Zhang M, Guo X, Long M, Lü S. Distinct binding kinetics of E-, P- and L-selectins to CD44. FEBS J 2021; 289:2877-2894. [PMID: 34839587 DOI: 10.1111/febs.16303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/22/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
Abstract
Molecular-level selectin-cluster of differentiation 44 (CD44) interactions are far from clear because of the complexity and diversity of CD44 glycosylation and isoforms expressed on various types of cells. By combining experimental measurements and simulation predictions, the binding kinetics of three selectin members to the recombinant CD44 were quantified and the corresponding microstructural mechanisms were explored, respectively. Experimental results showed that the E-selectin-CD44 interactions mainly mediated the firm adhesion of microbeads under shear flow with the strongest rupture force. P- and L-selectins had similar interaction strength but different association and dissociation rates by mediating stable rolling and transient adhesions of microbeads, respectively. Molecular docking and molecular dynamics (MD) simulations predicted that the binding epitopes of CD44 to selectins are all located at the side face of each selectin, although the interfaces denoted as the hinge region are between lectin and epidermal growth factor domains of E-selectin, Lectin domain side of P-selectin and epidermal growth factor domain side of L-selectin, respectively. The lowest binding free energy, the largest rupture force and the longest lifetime for E-selectin, as well as the comparable values for P- and L-selectins, demonstrated in both equilibration and steered MD simulations, supported the above experimental results. These results offer basic data for understanding the functional differences of selectin-CD44 interactions.
Collapse
Affiliation(s)
- Linda Li
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.,Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Qihan Ding
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhou
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xingming Guo
- Key Laboratory of Biorheology Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Mian Long
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center of Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), Beijing Key Laboratory of Engineered Construction and Mechanobiology, and CAS Center for Excellence in Complex System Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
14
|
Activated nanoscale actin-binding domain motion in the catenin-cadherin complex revealed by neutron spin echo spectroscopy. Proc Natl Acad Sci U S A 2021; 118:2025012118. [PMID: 33753508 DOI: 10.1073/pnas.2025012118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As the core component of the adherens junction in cell-cell adhesion, the cadherin-catenin complex transduces mechanical tension between neighboring cells. Structural studies have shown that the cadherin-catenin complex exists as an ensemble of flexible conformations, with the actin-binding domain (ABD) of α-catenin adopting a variety of configurations. Here, we have determined the nanoscale protein domain dynamics of the cadherin-catenin complex using neutron spin echo spectroscopy (NSE), selective deuteration, and theoretical physics analyses. NSE reveals that, in the cadherin-catenin complex, the motion of the entire ABD becomes activated on nanosecond to submicrosecond timescales. By contrast, in the α-catenin homodimer, only the smaller disordered C-terminal tail of ABD is moving. Molecular dynamics (MD) simulations also show increased mobility of ABD in the cadherin-catenin complex, compared to the α-catenin homodimer. Biased MD simulations further reveal that the applied external forces promote the transition of ABD in the cadherin-catenin complex from an ensemble of diverse conformational states to specific states that resemble the actin-bound structure. The activated motion and an ensemble of flexible configurations of the mechanosensory ABD suggest the formation of an entropic trap in the cadherin-catenin complex, serving as negative allosteric regulation that impedes the complex from binding to actin under zero force. Mechanical tension facilitates the reduction in dynamics and narrows the conformational ensemble of ABD to specific configurations that are well suited to bind F-actin. Our results provide a protein dynamics and entropic explanation for the observed force-sensitive binding behavior of a mechanosensitive protein complex.
Collapse
|
15
|
Stabilization of the Hinge Region of Human E-selectin Enhances Binding Affinity to Ligands Under Force. Cell Mol Bioeng 2021; 14:65-74. [PMID: 33633813 PMCID: PMC7878631 DOI: 10.1007/s12195-021-00666-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/04/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction E-selectin is a member of the selectin family of cell adhesion molecules expressed on the plasma membrane of inflamed endothelium and facilitates initial leukocyte tethering and subsequent cell rolling during the early stages of the inflammatory response via binding to glycoproteins expressing sialyl LewisX and sialyl LewisA (sLeX/A). Existing crystal structures of the extracellular lectin/EGF-like domain of E-selectin complexed with sLeX have revealed that E-selectin can exist in two conformation states, a low affinity (bent) conformation, and a high affinity (extended) conformation. The differentiating characteristic of the two conformations is the interdomain angle between the lectin and the EGF-like domain. Methods Using molecular dynamics (MD) simulations we observed that in the absence of tensile force E-selectin undergoes spontaneous switching between the two conformational states at equilibrium. A single amino acid substitution at residue 2 (serine to tyrosine) on the lectin domain favors the extended conformation. Results Steered molecular dynamics (SMD) simulations of E-selectin and PSGL-1 in conjunction with experimental cell adhesion assays show a longer binding lifetime of E-selectin (S2Y) to PSGL-1 compared to wildtype protein. Conclusions The findings in this study advance our understanding into how the structural makeup of E-selectin allosterically influences its adhesive dynamics.
Collapse
|
16
|
Review: Inhibitory potential of low molecular weight Heparin in cell adhesion; emphasis on tumor metastasis. Eur J Pharmacol 2020; 892:173778. [PMID: 33271153 DOI: 10.1016/j.ejphar.2020.173778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 01/13/2023]
Abstract
Low molecular weight heparin is a Heparin derivative, produced from commercial-grade Heparin through Chemical or enzymatic depolymerization. LMWH has remained a favored regimen for anticoagulation in cancer patients. Evidence from several studies has suggested that LMWHs possess antitumor and antimetastatic activity aside from their anticoagulant activity. Cancer metastasis is the foremost reason for cancer-related motility rate. Studies have pointed out that adhesion molecules play a decisive role in enhancing recurrent, invasive, and distant metastasis. Therefore, it is hypothesized that Cell adhesion molecules can be determined as a potential therapeutic target group, as antibodies or small-molecule inhibitors could easily access their extracellular domains. Furthermore, data from several investigations have reported LWMH potential effects as antimetastatic agents through influencing cell adhesion molecules. This review's objective is to emphasize the evidence available for the effects of the LMWHs in cell adhesion to inhibit tumor metastasis.
Collapse
|
17
|
Xu XP, Pokutta S, Torres M, Swift MF, Hanein D, Volkmann N, Weis WI. Structural basis of αE-catenin-F-actin catch bond behavior. eLife 2020; 9:e60878. [PMID: 32915141 PMCID: PMC7588230 DOI: 10.7554/elife.60878] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 11/13/2022] Open
Abstract
Cell-cell and cell-matrix junctions transmit mechanical forces during tissue morphogenesis and homeostasis. α-Catenin links cell-cell adhesion complexes to the actin cytoskeleton, and mechanical load strengthens its binding to F-actin in a direction-sensitive manner. Specifically, optical trap experiments revealed that force promotes a transition between weak and strong actin-bound states. Here, we describe the cryo-electron microscopy structure of the F-actin-bound αE-catenin actin-binding domain, which in solution forms a five-helix bundle. In the actin-bound structure, the first helix of the bundle dissociates and the remaining four helices and connecting loops rearrange to form the interface with actin. Deletion of the first helix produces strong actin binding in the absence of force, suggesting that the actin-bound structure corresponds to the strong state. Our analysis explains how mechanical force applied to αE-catenin or its homolog vinculin favors the strongly bound state, and the dependence of catch bond strength on the direction of applied force.
Collapse
Affiliation(s)
| | - Sabine Pokutta
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of MedicineStanfordUnited States
| | - Megan Torres
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of MedicineStanfordUnited States
| | | | - Dorit Hanein
- Scintillon InstituteSan DiegoUnited States
- Department of Structural Biology and Chemistry, Pasteur InstituteParisFrance
| | - Niels Volkmann
- Scintillon InstituteSan DiegoUnited States
- Department of Structural Biology and Chemistry, Pasteur InstituteParisFrance
| | - William I Weis
- Departments of Structural Biology and Molecular & Cellular Physiology, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
18
|
Tvaroška I, Selvaraj C, Koča J. Selectins-The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules-A Review. Molecules 2020; 25:molecules25122835. [PMID: 32575485 PMCID: PMC7355470 DOI: 10.3390/molecules25122835] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Selectins belong to a group of adhesion molecules that fulfill an essential role in immune and inflammatory responses and tissue healing. Selectins are glycoproteins that decode the information carried by glycan structures, and non-covalent interactions of selectins with these glycan structures mediate biological processes. The sialylated and fucosylated tetrasaccharide sLex is an essential glycan recognized by selectins. Several glycosyltransferases are responsible for the biosynthesis of the sLex tetrasaccharide. Selectins are involved in a sequence of interactions of circulated leukocytes with endothelial cells in the blood called the adhesion cascade. Recently, it has become evident that cancer cells utilize a similar adhesion cascade to promote metastases. However, like Dr. Jekyll and Mr. Hyde’s two faces, selectins also contribute to tissue destruction during some infections and inflammatory diseases. The most prominent function of selectins is associated with the initial stage of the leukocyte adhesion cascade, in which selectin binding enables tethering and rolling. The first adhesive event occurs through specific non-covalent interactions between selectins and their ligands, with glycans functioning as an interface between leukocytes or cancer cells and the endothelium. Targeting these interactions remains a principal strategy aimed at developing new therapies for the treatment of immune and inflammatory disorders and cancer. In this review, we will survey the significant contributions to and the current status of the understanding of the structure of selectins and the role of selectins in various biological processes. The potential of selectins and their ligands as therapeutic targets in chronic and acute inflammatory diseases and cancer will also be discussed. We will emphasize the structural characteristic of selectins and the catalytic mechanisms of glycosyltransferases involved in the biosynthesis of glycan recognition determinants. Furthermore, recent achievements in the synthesis of selectin inhibitors will be reviewed with a focus on the various strategies used for the development of glycosyltransferase inhibitors, including substrate analog inhibitors and transition state analog inhibitors, which are based on knowledge of the catalytic mechanism.
Collapse
Affiliation(s)
- Igor Tvaroška
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- Institute of Chemistry, Slovak Academy of Sciences, 84538 Bratislava, Slovak Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| | - Chandrabose Selvaraj
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
| | - Jaroslav Koča
- Central European Institute of Technology (CEITEC), Masaryk University, 62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.T.); (J.K.); Tel.: +421-948-535-601 (I.T.); +420-731-682-606 (J.K.)
| |
Collapse
|
19
|
Janiszewska M, Primi MC, Izard T. Cell adhesion in cancer: Beyond the migration of single cells. J Biol Chem 2020; 295:2495-2505. [PMID: 31937589 DOI: 10.1074/jbc.rev119.007759] [Citation(s) in RCA: 352] [Impact Index Per Article: 70.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homeostasis in healthy tissues strongly relies on cell-to-cell adhesion and cell-to-extracellular matrix interactions. For instance, normal epithelial cells maintain tissue structure by adhering to each other and to the extracellular matrix. The proteins that mediate these distinct interactions are collectively called cell adhesion molecules and are divided into four major groups: cadherins, integrins, selectins, and immunoglobulins. They not only physically anchor cells, but also critically integrate signaling between the extracellular microenvironment and cells. These signals include biochemical cues, as adhesion proteins can both act as ligand-activated receptors and activate mechanotransduction triggered by changes in the physical environment. Molecular mechanisms related to cell adhesion signaling have been extensively studied, especially because mutations and changes in expression of these proteins, particularly cadherins and integrins, are frequently associated with diseases ranging from developmental intellectual disability to cancer. In fact, two major hallmarks of cancer, loss of cell-to-cell adhesion and anchorage-independent growth, are both dependent on cell adhesion molecules. Despite many studies elucidating the relationships between malignant transformation and metastasis and cellular adhesion processes, several areas still await exploration. Here, we highlight recently discovered roles of adhesion molecules in collective cancer cell migration and discuss the utility of three-dimensional models in studying cell-cell adhesion. We also describe recent therapeutic approaches targeting adhesion molecules.
Collapse
Affiliation(s)
- Michalina Janiszewska
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458.
| | - Marina Candido Primi
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, Florida 33458
| |
Collapse
|
20
|
Lancellotti S, Sacco M, Basso M, De Cristofaro R. Mechanochemistry of von Willebrand factor. Biomol Concepts 2019; 10:194-208. [PMID: 31778361 DOI: 10.1515/bmc-2019-0022] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
Von Willebrand factor (VWF), a blood multimeric protein with a very high molecular weight, plays a crucial role in the primary haemostasis, the physiological process characterized by the adhesion of blood platelets to the injured vessel wall. Hydrodynamic forces are responsible for extensive conformational transitions in the VWF multimers that change their structure from a globular form to a stretched linear conformation. This feature makes this protein particularly prone to be investigated by mechanochemistry, the branch of the biophysical chemistry devoted to investigating the effects of shear forces on protein conformation. This review describes the structural elements of the VWF molecule involved in the biochemical response to shear forces. The stretched VWF conformation favors the interaction with the platelet GpIb and at the same time with ADAMTS-13, the zinc-protease that cleaves VWF in the A2 domain, limiting its prothrombotic capacity. The shear-induced conformational transitions favor also a process of self-aggregation, responsible for the formation of a spider-web like network, particularly efficient in the trapping process of flowing platelets. The investigation of the biophysical effects of shear forces on VWF conformation contributes to unraveling the molecular mechanisms of many types of thrombotic and haemorrhagic syndromes.
Collapse
Affiliation(s)
- Stefano Lancellotti
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Monica Sacco
- Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| | - Maria Basso
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italy.,Istituto di Medicina Interna e Geriatria, Facoltà di Medicina e Chirurgia "A. Gemelli", Università Cattolica S. Cuore, Roma, Italy
| |
Collapse
|
21
|
Feng J, Dong X, Pinello J, Zhang J, Lu C, Iacob RE, Engen JR, Snell WJ, Springer TA. Fusion surface structure, function, and dynamics of gamete fusogen HAP2. eLife 2018; 7:e39772. [PMID: 30281023 PMCID: PMC6170185 DOI: 10.7554/elife.39772] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/02/2018] [Indexed: 01/16/2023] Open
Abstract
HAP2 is a class II gamete fusogen in many eukaryotic kingdoms. A crystal structure of Chlamydomonas HAP2 shows a trimeric fusion state. Domains D1, D2.1 and D2.2 line the 3-fold axis; D3 and a stem pack against the outer surface. Surprisingly, hydrogen-deuterium exchange shows that surfaces of D1, D2.2 and D3 closest to the 3-fold axis are more dynamic than exposed surfaces. Three fusion helices in the fusion loops of each monomer expose hydrophobic residues at the trimer apex that are splayed from the 3-fold axis, leaving a solvent-filled cavity between the fusion loops in each monomer. At the base of the two fusion loops, Arg185 docks in a carbonyl cage. Comparisons to other structures, dynamics, and the greater effect on Chlamydomonas gamete fusion of mutation of axis-proximal than axis-distal fusion helices suggest that the apical portion of each monomer could tilt toward the 3-fold axis with merger of the fusion helices into a common fusion surface.
Collapse
Affiliation(s)
- Juan Feng
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineChildren's Hospital BostonBostonUnited States
| | - Xianchi Dong
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineChildren's Hospital BostonBostonUnited States
| | - Jennifer Pinello
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Jun Zhang
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Chafen Lu
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineChildren's Hospital BostonBostonUnited States
| | - Roxana E Iacob
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUnited States
| | - John R Engen
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonUnited States
| | - William J Snell
- Department of Cell Biology and Molecular GeneticsUniversity of MarylandCollege ParkUnited States
| | - Timothy A Springer
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonUnited States
- Program in Cellular and Molecular MedicineChildren's Hospital BostonBostonUnited States
| |
Collapse
|
22
|
Adhikari S, Moran J, Weddle C, Hinczewski M. Unraveling the mechanism of the cadherin-catenin-actin catch bond. PLoS Comput Biol 2018; 14:e1006399. [PMID: 30118477 PMCID: PMC6114904 DOI: 10.1371/journal.pcbi.1006399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/29/2018] [Accepted: 07/24/2018] [Indexed: 11/19/2022] Open
Abstract
The adherens junctions between epithelial cells involve a protein complex formed by E-cadherin, β-catenin, α-catenin and F-actin. The stability of this complex was a puzzle for many years, since in vitro studies could reconstitute various stable subsets of the individual proteins, but never the entirety. The missing ingredient turned out to be mechanical tension: a recent experiment that applied physiological forces to the complex with an optical tweezer dramatically increased its lifetime, a phenomenon known as catch bonding. However, in the absence of a crystal structure for the full complex, the microscopic details of the catch bond mechanism remain mysterious. Building on structural clues that point to α-catenin as the force transducer, we present a quantitative theoretical model for how the catch bond arises, fully accounting for the experimental lifetime distributions. The underlying hypothesis is that force induces a rotational transition between two conformations of α-catenin, overcoming a significant energy barrier due to a network of salt bridges. This transition allosterically regulates the energies at the interface between α-catenin and F-actin. The model allows us to predict these energetic changes, as well as highlighting the importance of the salt bridge rotational barrier. By stabilizing one of the α-catenin states, this barrier could play a role in how the complex responds to additional in vivo binding partners like vinculin. Since significant conformational energy barriers are a common feature of other adhesion systems that exhibit catch bonds, our model can be adapted into a general theoretical framework for integrating structure and function in a variety of force-regulated protein complexes.
Collapse
Affiliation(s)
- Shishir Adhikari
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jacob Moran
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Christopher Weddle
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
23
|
Liu Z, Yago T, Zhang N, Panicker SR, Wang Y, Yao L, Mehta-D'souza P, Xia L, Zhu C, McEver RP. L-selectin mechanochemistry restricts neutrophil priming in vivo. Nat Commun 2017; 8:15196. [PMID: 28497779 PMCID: PMC5437312 DOI: 10.1038/ncomms15196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/09/2017] [Indexed: 01/02/2023] Open
Abstract
Circulating neutrophils must avoid premature activation to prevent tissue injury. The leukocyte adhesion receptor L-selectin forms bonds with P-selectin glycoprotein ligand-1 (PSGL-1) on other leukocytes and with peripheral node addressin (PNAd) on high endothelial venules. Mechanical forces can strengthen (catch) or weaken (slip) bonds between biological molecules. How these mechanochemical processes influence function in vivo is unexplored. Here we show that mice expressing an L-selectin mutant (N138G) have altered catch bonds and prolonged bond lifetimes at low forces. Basal lymphocyte homing and neutrophil recruitment to inflamed sites are normal. However, circulating neutrophils form unstable aggregates and are unexpectedly primed to respond robustly to inflammatory mediators. Priming requires signals transduced through L-selectin N138G after it engages PSGL-1 or PNAd. Priming enhances bacterial clearance but increases inflammatory injury and enlarges venous thrombi. Thus, L-selectin mechanochemistry limits premature activation of neutrophils. Our results highlight the importance of probing how mechanochemistry functions in vivo.
Collapse
Affiliation(s)
- Zhenghui Liu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Tadayuki Yago
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Sumith R. Panicker
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Ying Wang
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Longbiao Yao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Padmaja Mehta-D'souza
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Cheng Zhu
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rodger P. McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
24
|
Chakrabarti S, Hinczewski M, Thirumalai D. Phenomenological and microscopic theories for catch bonds. J Struct Biol 2017; 197:50-56. [PMID: 27046010 PMCID: PMC5580263 DOI: 10.1016/j.jsb.2016.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/15/2022]
Abstract
Lifetimes of bound states of protein complexes or biomolecule folded states typically decrease when subject to mechanical force. However, a plethora of biological systems exhibit the counter-intuitive phenomenon of catch bonding, where non-covalent bonds become stronger under externally applied forces. The quest to understand the origin of catch-bond behavior has led to the development of phenomenological and microscopic theories that can quantitatively recapitulate experimental data. Here, we assess the successes and limitations of such theories in explaining experimental data. The most widely applied approach is a phenomenological two-state model, which fits all of the available data on a variety of complexes: actomyosin, kinetochore-microtubule, selectin-ligand, and cadherin-catenin binding to filamentous actin. With a primary focus on the selectin family of cell-adhesion complexes, we discuss the positives and negatives of phenomenological models and the importance of evaluating the physical relevance of fitting parameters. We describe a microscopic theory for selectins, which provides a structural basis for catch bonds and predicts a crucial allosteric role for residues Asn82-Glu88. We emphasize the need for new theories and simulations that can mimic experimental conditions, given the complex response of cell adhesion complexes to force and their potential role in a variety of biological contexts.
Collapse
Affiliation(s)
- Shaon Chakrabarti
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, United States; Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, United States.
| | - Michael Hinczewski
- Department of Physics, Case Western Reserve University, OH 44106, United States
| | - D Thirumalai
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| |
Collapse
|
25
|
Mehta-D'souza P, Klopocki AG, Oganesyan V, Terzyan S, Mather T, Li Z, Panicker SR, Zhu C, McEver RP. Glycan Bound to the Selectin Low Affinity State Engages Glu-88 to Stabilize the High Affinity State under Force. J Biol Chem 2016; 292:2510-2518. [PMID: 28011641 DOI: 10.1074/jbc.m116.767186] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/13/2016] [Indexed: 11/06/2022] Open
Abstract
Selectin interactions with fucosylated glycan ligands mediate leukocyte rolling in the vasculature under shear forces. Crystal structures of P- and E-selectin suggest a two-state model in which ligand binding to the lectin domain closes loop 83-89 around the Ca2+ coordination site, enabling Glu-88 to engage Ca2+ and fucose. This triggers further allostery that opens the lectin/EGF domain hinge. The model posits that force accelerates transition from the bent (low affinity) to the extended (high affinity) state. However, transition intermediates have not been described, and the role of Glu-88 in force-assisted allostery has not been examined. Here we report the structure of the lectin and EGF domains of L-selectin bound to a fucose mimetic; that is, a terminal mannose on an N-glycan attached to a symmetry-related molecule. The structure is a transition intermediate where loop 83-89 closes to engage Ca2+ and mannose without triggering allostery that opens the lectin/EGF domain hinge. We used three complementary assays to compare ligand binding to WT selectins and to E88D selectins that replaced Glu-88 with Asp. Soluble P-selectinE88D bound with an ∼9-fold lower affinity to PSGL-1, a physiological ligand, due to faster dissociation. Adhesion frequency experiments with a biomembrane force probe could not detect interactions of P-selectinE88D with PSGL-1. Cells expressing transmembrane P-selectinE88D or L-selectinE88D detached from immobilized ligands immediately after initiating flow. Cells expressing E-selectinE88D rolled but detached faster. Our data support a two-state model for selectins in which Glu-88 must engage ligand to trigger allostery that stabilizes the high affinity state under force.
Collapse
Affiliation(s)
| | | | | | - Simon Terzyan
- Crystallography Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104
| | | | - Zhenhai Li
- the Coulter Department of Biomedical Engineering
| | | | - Cheng Zhu
- the Coulter Department of Biomedical Engineering.,Woodruff School of Mechanical Engineering, and.,the Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Rodger P McEver
- From the Cardiovascular Biology Research Program and .,the Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|
26
|
Abstract
Mechanical force regulates a broad range of molecular interactions in biology. Three types of counterintuitive mechanical regulation of receptor–ligand dissociation have been described. Catch bonds are strengthened by constant forces, as opposed to slip bonds that are weakened by constant forces. The phenomenon that bonds become stronger with prior application of cyclic forces is termed cyclic mechanical reinforcement (CMR). Slip and catch bonds have respectively been explained by two-state models. However, they assume fast equilibration between internal states and hence are inadequate for CMR. Here we propose a three-state model for CMR where both loading and unloading regulate the transition of bonds among the short-lived, intermediate, and long-lived state. Cyclic forces favor bonds in the long-lived state, hence greatly prolonging their lifetimes. The three-state model explains the force history effect and agrees with the experimental CMR effect of integrin α5β1–fibronectin interaction. This model helps decipher the distinctive ways by which molecular bonds are mechanically strengthened: catch bonds by constant forces and CMR by cyclic forces. The different types of mechanical regulation may enable the cell to fine tune its mechanotransduction via membrane receptors.
Collapse
|
27
|
Li Z, Lee H, Zhu C. Molecular mechanisms of mechanotransduction in integrin-mediated cell-matrix adhesion. Exp Cell Res 2016; 349:85-94. [PMID: 27720950 DOI: 10.1016/j.yexcr.2016.10.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/30/2016] [Accepted: 10/03/2016] [Indexed: 01/09/2023]
Abstract
Cell-matrix adhesion complexes are multi-protein structures linking the extracellular matrix (ECM) to the cytoskeleton. They are essential to both cell motility and function by bidirectionally sensing and transmitting mechanical and biochemical stimulations. Several types of cell-matrix adhesions have been identified and they share many key molecular components, such as integrins and actin-integrin linkers. Mechanochemical coupling between ECM molecules and the actin cytoskeleton has been observed from the single cell to the single molecule level and from immune cells to neuronal cells. However, the mechanisms underlying force regulation of integrin-mediated mechanotransduction still need to be elucidated. In this review article, we focus on integrin-mediated adhesions and discuss force regulation of cell-matrix adhesions and key adaptor molecules, three different force-dependent behaviors, and molecular mechanisms for mechanochemical coupling in force regulation.
Collapse
Affiliation(s)
- Zhenhai Li
- Molecular Modeling and Simulation Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7 Umemidai, Kizugawa, Kyoto 619-0215, Japan
| | - Hyunjung Lee
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Cheng Zhu
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; George W Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
28
|
Rocheleau AD, Cao TM, Takitani T, King MR. Comparison of human and mouse E-selectin binding to Sialyl-Lewis(x). BMC STRUCTURAL BIOLOGY 2016; 16:10. [PMID: 27368167 PMCID: PMC4930595 DOI: 10.1186/s12900-016-0060-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022]
Abstract
Background During inflammation, leukocytes are captured by the selectin family of adhesion receptors lining blood vessels to facilitate exit from the bloodstream. E-selectin is upregulated on stimulated endothelial cells and binds to several ligands on the surface of leukocytes. Selectin:ligand interactions are mediated in part by the interaction between the lectin domain and Sialyl-Lewis x (sLex), a tetrasaccharide common to selectin ligands. There is a high degree of homology between selectins of various species: about 72 and 60 % in the lectin and EGF domains, respectively. In this study, molecular dynamics, docking, and steered molecular dynamics simulations were used to compare the binding and dissociation mechanisms of sLex with mouse and human E-selectin. First, a mouse E-selectin homology model was generated using the human E-selectin crystal structure as a template. Results Mouse E-selectin was found to have a greater interdomain angle, which has been previously shown to correlate with stronger binding among selectins. sLex was docked onto human and mouse E-selectin, and the mouse complex was found to have a higher free energy of binding and a lower dissociation constant, suggesting stronger binding. The mouse complex had higher flexibility in a few key residues. Finally, steered molecular dynamics was used to dissociate the complexes at force loading rates of 2000–5000 pm/ps2. The mouse complex took longer to dissociate at every force loading rate and the difference was statistically significant at 3000 pm/ps2. When sLex-coated microspheres were perfused through microtubes coated with human or mouse E-selectin, the particles rolled more slowly on mouse E-selectin. Conclusions Both molecular dynamics simulations and microsphere adhesion experiments show that mouse E-selectin protein binds more strongly to sialyl Lewis x ligand than human E-selectin. This difference was explained by a greater interdomain angle for mouse E-selectin, and greater flexibility in key residues. Future work could introduce similar amino acid substitutions into the human E-selectin sequence to further modulate adhesion behavior.
Collapse
Affiliation(s)
- Anne D Rocheleau
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Thong M Cao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Tait Takitani
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Michael R King
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
29
|
Abstract
Many receptors display conformational flexibility, in which the binding pocket has an open inactive conformation in the absence of ligand and a tight active conformation when bound to ligand. Here we study the bacterial adhesin FimH to address the role of the inactive conformation of the pocket for initiating binding by comparing two variants: a wild-type FimH variant that is in the inactive state when not bound to its target mannose, and an engineered activated variant that is always in the active state. Not surprisingly, activated FimH has a longer lifetime and higher affinity, and bacteria expressing activated FimH bound better in static conditions. However, bacteria expressing wild-type FimH bound better in flow. Wild-type and activated FimH demonstrated similar mechanical strength, likely because mechanical force induces the active state in wild-type FimH. However, wild-type FimH displayed a faster bond association rate than activated FimH. Moreover, the ability of different FimH variants to mediate adhesion in flow reflected the fraction of FimH in the inactive state. These results demonstrate a new model for ligand-associated conformational changes that we call the kinetic-selection model, in which ligand-binding selects the faster-binding inactive state and then induces the active state. This model predicts that in physiological conditions for cell adhesion, mechanical force will drive a nonequilibrium cycle that uses the fast binding rate of the inactive state and slow unbinding rate of the active state, for a higher effective affinity than is possible at equilibrium.
Collapse
|
30
|
Preston RC, Jakob RP, Binder FPC, Sager CP, Ernst B, Maier T. E-selectin ligand complexes adopt an extended high-affinity conformation. J Mol Cell Biol 2015; 8:62-72. [PMID: 26117840 PMCID: PMC4710209 DOI: 10.1093/jmcb/mjv046] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
E-selectin is a cell-adhesion molecule of the vascular endothelium that promotes essential leukocyte rolling in the early inflammatory response by binding to glycoproteins containing the tetrasaccharide sialyl Lewis(x) (sLe(x)). Efficient leukocyte recruitment under vascular flow conditions depends on an increased lifetime of E-selectin/ligand complexes under tensile force in a so-called catch-bond binding mode. Co-crystal structures of a representative fragment of the extracellular E-selectin region with sLe(x) and a glycomimetic antagonist thereof reveal an extended E-selectin conformation, which is identified as a high-affinity binding state of E-selectin by molecular dynamics simulations. Small-angle X-ray scattering experiments demonstrate a direct link between ligand binding and E-selectin conformational transition under static conditions in solution. This permits tracing a series of concerted structural changes connecting ligand binding to conformational stretching as the structural basis of E-selectin catch-bond-mediated leukocyte recruitment. The detailed molecular view of the binding site paves the way for the design of a new generation of selectin antagonists. This is of special interest, since their therapeutic potential was recently demonstrated with the pan-selectin antagonists GMI-1070 (Rivipansel).
Collapse
Affiliation(s)
- Roland C Preston
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Roman P Jakob
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| | - Florian P C Binder
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Christoph P Sager
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Beat Ernst
- Institute of Molecular Pharmacy, Universität Basel, 4056 Basel, Switzerland
| | - Timm Maier
- Biozentrum, Universität Basel, 4056 Basel, Switzerland
| |
Collapse
|
31
|
Force-induced on-rate switching and modulation by mutations in gain-of-function von Willebrand diseases. Proc Natl Acad Sci U S A 2015; 112:4648-53. [PMID: 25810255 DOI: 10.1073/pnas.1501689112] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mutations in the ultralong vascular protein von Willebrand factor (VWF) cause the common human bleeding disorder, von Willebrand disease (VWD). The A1 domain in VWF binds to glycoprotein Ibα (GPIbα) on platelets, in a reaction triggered, in part, by alterations in flow during bleeding. Gain-of-function mutations in A1 and GPIbα in VWD suggest conformational regulation. We report that force application switches A1 and/or GPIbα to a second state with faster on-rate, providing a mechanism for activating VWF binding to platelets. Switching occurs near 10 pN, a force that also induces a state of the receptor-ligand complex with slower off-rate. Force greatly increases the effects of VWD mutations, explaining pathophysiology. Conversion of single molecule kon (s(-1)) to bulk phase kon (s(-1)M(-1)) and the kon and koff values extrapolated to zero force for the low-force pathways show remarkably good agreement with bulk-phase measurements.
Collapse
|
32
|
Lü S, Chen S, Mao D, Zhang Y, Long M. Contribution of the CR domain to P-selectin lectin domain allostery by regulating the orientation of the EGF domain. PLoS One 2015; 10:e0118083. [PMID: 25675100 PMCID: PMC4326174 DOI: 10.1371/journal.pone.0118083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 01/04/2015] [Indexed: 12/01/2022] Open
Abstract
The allostery of P-selectin has been studied extensively with a focus on the Lec and EGF domains, whereas the contribution of the CR domain remains unclear. Here, molecular dynamics simulations (MDS) combined with homology modeling were preformed to investigate the impact of the CR domain on P-selectin allostery. The results indicated that the CR domain plays a role in the allosteric dynamics of P-selectin in two ways. First, the CR1 domain tends to stabilize the low affinity of P-selectin during the equilibration processes with the transition inhibition from the S1 to S1’ state by restraining the extension of the bent EGF orientation, or with the relaxation acceleration of the S2 state by promoting the bending of the extended EGF orientation. Second, the existence of CR domain increases intramolecular extension prior to complex separation, increasing the time available for the allosteric shift during forced dissociation with a prolonged bond duration. These findings further our understanding of the structure-function relationship of P-selectin with the enriched micro-structural bases of the CR domain.
Collapse
Affiliation(s)
- Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SQL); (ML)
| | - Shenbao Chen
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Debin Mao
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Center of Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- * E-mail: (SQL); (ML)
| |
Collapse
|
33
|
Abstract
Integrin α5β1 binds to an Arg-Gly-Asp (RGD) motif in its ligand fibronectin. We report high-resolution crystal structures of a four-domain α5β1 headpiece fragment, alone or with RGD peptides soaked into crystals, and RGD peptide affinity measurements. The headpiece crystallizes in a closed conformation essentially identical to that seen previously for α5β1 complexed with a Fab that allosterically inhibits ligand binding by stabilizing the closed conformation. Soaking experiments show that binding of cyclic RGD peptide with 20-fold higher affinity than a linear RGD peptide induces conformational change in the β1-subunit βI domain to a state that is intermediate between closed (low affinity) and open (high affinity). In contrast, binding of a linear RGD peptide induces no shape shifting. However, linear peptide binding induces shape shifting when Ca(2+) is depleted during soaking. Ca(2+) bound to the adjacent to metal ion-dependent adhesion site (ADMIDAS), at the locus of shape shifting, moves and decreases in occupancy, correlating with an increase in affinity for RGD measured when Ca(2+) is depleted. The results directly demonstrate that Ca(2+) binding to the ADMIDAS stabilizes integrins in the low-affinity, closed conformation. Comparisons in affinity between four-domain and six-domain headpiece constructs suggest that flexible integrin leg domains contribute to conformational equilibria. High-resolution views of the hybrid domain interface with the plexin-semaphorin-integrin (PSI) domain in different orientations show a ball-and-socket joint with a hybrid domain Arg side chain that rocks in a PSI domain socket lined with carbonyl oxygens.
Collapse
|
34
|
Abstract
Biological mechano-transduction and force-dependent changes scale from protein conformation (â„« to nm) to cell organization and multi-cell function (mm to cm) to affect cell organization, fate, and homeostasis. External forces play complex roles in cell organization, fate, and homeostasis. Changes in these forces, or how cells respond to them, can result in abnormal embryonic development and diseases in adults. How cells sense and respond to these mechanical stimuli requires an understanding of the biophysical principles that underlie changes in protein conformation and result in alterations in the organization and function of cells and tissues. Here, we discuss mechano-transduction as it applies to protein conformation, cellular organization, and multi-cell (tissue) function.
Collapse
Affiliation(s)
- Beth L. Pruitt
- Department of Mechanical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - William I. Weis
- Department of Structural Biology, Stanford University, Stanford, California, United States of America
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| | - W. James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, California, United States of America
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail: (BLP); (ARD); (WIW); (WJN)
| |
Collapse
|
35
|
Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N, Weis WI, Nelson WJ, Dunn AR. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 2014; 346:1254211. [PMID: 25359979 DOI: 10.1126/science.1254211] [Citation(s) in RCA: 448] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Linkage between the adherens junction (AJ) and the actin cytoskeleton is required for tissue development and homeostasis. In vivo findings indicated that the AJ proteins E-cadherin, β-catenin, and the filamentous (F)-actin binding protein αE-catenin form a minimal cadherin-catenin complex that binds directly to F-actin. Biochemical studies challenged this model because the purified cadherin-catenin complex does not bind F-actin in solution. Here, we reconciled this difference. Using an optical trap-based assay, we showed that the minimal cadherin-catenin complex formed stable bonds with an actin filament under force. Bond dissociation kinetics can be explained by a catch-bond model in which force shifts the bond from a weakly to a strongly bound state. These results may explain how the cadherin-catenin complex transduces mechanical forces at cell-cell junctions.
Collapse
Affiliation(s)
- Craig D Buckley
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Jiongyi Tan
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Karen L Anderson
- Bioinformatics and Structural Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Dorit Hanein
- Bioinformatics and Structural Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - Niels Volkmann
- Bioinformatics and Structural Systems Biology Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | - William I Weis
- Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.,Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - W James Nelson
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.,Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
36
|
Rakshit S, Sivasankar S. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 2014; 16:2211-23. [PMID: 24419646 DOI: 10.1039/c3cp53963f] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell adhesion proteins play critical roles in positioning cells during development, segregating cells into distinct tissue compartments and in maintaining tissue integrity. The principle function of these proteins is to bind cells together and resist mechanical force. Adhesive proteins also enable migrating cells to adhere and roll on surfaces even in the presence of shear forces exerted by fluid flow. Recently, several experimental and theoretical studies have provided quantitative insights into the physical mechanisms by which adhesion proteins modulate their unbinding kinetics in response to tensile force. This perspective reviews these biophysical investigations. We focus on single molecule studies of cadherins, selectins, integrins, the von Willebrand factor and FimH adhesion proteins; the effect of mechanical force on the lifetime of these interactions has been extensively characterized. We review both theoretical models and experimental investigations and discuss future directions in this exciting area of research.
Collapse
Affiliation(s)
- Sabyasachi Rakshit
- Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA.
| | | |
Collapse
|
37
|
Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes. Proc Natl Acad Sci U S A 2014; 111:9048-53. [PMID: 24927549 DOI: 10.1073/pnas.1405384111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mechanical forces acting on cell adhesion receptor proteins regulate a range of cellular functions by formation and rupture of noncovalent interactions with ligands. Typically, force decreases the lifetimes of intact complexes ("slip bonds"), making the discovery that these lifetimes can also be prolonged ("catch bonds") a surprise. We created a microscopic analytic theory by incorporating the structures of selectin and integrin receptors into a conceptual framework based on the theory of stochastic equations, which quantitatively explains a wide range of experimental data (including catch bonds at low forces and slip bonds at high forces). Catch bonds arise due to force-induced remodeling of hydrogen bond networks, a finding that also accounts for unbinding in structurally unrelated integrin-fibronectin and actomyosin complexes. For the selectin family, remodeling of hydrogen bond networks drives an allosteric transition resulting in the formation of the maximum number of hydrogen bonds determined only by the structure of the receptor and independent of the ligand. A similar transition allows us to predict the increase in the number of hydrogen bonds in a particular allosteric state of α5β1 integrin-fibronectin complex, a conformation which is yet to be crystallized. We also make a testable prediction that a single point mutation (Tyr51Phe) in the ligand associated with selectin should dramatically alter the nature of the catch bond compared with the wild type. Our work suggests that nature uses a ductile network of hydrogen bonds to engineer function over a broad range of forces.
Collapse
|
38
|
Riese SB, Kuehne C, Tedder TF, Hallmann R, Hohenester E, Buscher K. Heterotropic modulation of selectin affinity by allosteric antibodies affects leukocyte rolling. THE JOURNAL OF IMMUNOLOGY 2014; 192:1862-9. [PMID: 24431230 DOI: 10.4049/jimmunol.1302147] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selectins are a family of adhesion receptors designed for efficient leukocyte tethering to the endothelium under shear. As a key property to resist premature bond disruption, selectin adhesiveness is enhanced by tensile forces that promote the conversion of a bent into an extended conformation of the N-terminal lectin and epidermal growth factor-like domains. Conformation-specific Abs have been invaluable in deciphering the activation mechanism of integrins, but similar reagents are not available for selectins. In this study, we show that the anti-human L-selectin mAbs DREG-55 and LAM1-5 but not DREG-56, DREG-200, or LAM1-1 heterotropically modulate adhesion presumably by stabilizing the extended receptor conformation. Force-free affinity assays, flow chamber, and microkinetic studies reveal a ligand-specific modulation of L-selectin affinity by DREG-55 mAb, resulting in a dramatic decrease of rolling velocity under flow. Furthermore, secondary tethering of polymorphonuclear cells was blocked by DREG-200 but significantly boosted by DREG-55 mAb. The results emphasize the need for a new classification for selectin Abs and introduce the new concept of heterotropic modulation of receptor function.
Collapse
Affiliation(s)
- Sebastian B Riese
- Institute of Laboratory Medicine, Clinical Chemistry and Pathobiochemistry, Charité-University of Medicine Berlin, 10117 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
39
|
Mechanochemitry: a molecular biomechanics view of mechanosensing. Ann Biomed Eng 2013; 42:388-404. [PMID: 24006131 DOI: 10.1007/s10439-013-0904-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/28/2013] [Indexed: 12/27/2022]
Abstract
Molecular biomechanics includes two themes: the study of mechanical aspects of biomolecules and the study of molecular biology of the cell using mechanical tools. The two themes are interconnected for obvious reasons. The present review focuses on one of the interconnected areas-the mechanical regulation of molecular interaction and conformational change. Recent conceptual developments are summarized, including catch bonds, regulation of molecular interaction by the history of force application, and cyclic mechanical reinforcement. These studies elucidate the mechanochemistry of some of the candidate mechanosensing molecules, thereby providing a natural connection to mechanobiology.
Collapse
|
40
|
Liu Y, Esser L, Interlandi G, Kisiela DI, Tchesnokova V, Thomas WE, Sokurenko E, Xia D, Savarino SJ. Tight conformational coupling between the domains of the enterotoxigenic Escherichia coli fimbrial adhesin CfaE regulates binding state transition. J Biol Chem 2013; 288:9993-10001. [PMID: 23393133 DOI: 10.1074/jbc.m112.413534] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
CfaE, the tip adhesin of enterotoxigenic Escherichia coli colonization factor antigen I fimbriae, initiates binding of this enteropathogen to the small intestine. It comprises stacked β-sandwich adhesin (AD) and pilin (PD) domains, with the putative receptor-binding pocket at one pole and an equatorial interdomain interface. CfaE binding to erythrocytes is enhanced by application of moderate shear stress. A G168D replacement along the AD facing the CfaE interdomain region was previously shown to decrease the dependence on shear by increasing binding at lower shear forces. To elucidate the structural basis for this functional change, we studied the properties of CfaE G168D (with a self-complemented donor strand) and solved its crystal structure at 2.6 Å resolution. Compared with native CfaE, CfaE G168D showed a downward shift in peak erythrocyte binding under shear stress and greater binding under static conditions. The thermal melting transition of CfaE G168D occurred 10 °C below that of CfaE. Compared with CfaE, the atomic structure of CfaE G168D revealed a 36% reduction in the buried surface area at the interdomain interface. Despite the location of this single modification in the AD, CfaE G168D exhibited structural derangements only in the adjoining PD compared with CfaE. In molecular dynamics simulations, the G168D mutation was associated with weakened interdomain interactions under tensile force. Taken together, these findings indicate that the AD and PD of CfaE are conformationally tightly coupled and support the hypothesis that opening of the interface plays a critical modulatory role in the allosteric activation of CfaE.
Collapse
Affiliation(s)
- Yang Liu
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910
| | - Lothar Esser
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Gianluca Interlandi
- Department of Engineering, University of Washington, Seattle, Washington 98195
| | - Dagmara I Kisiela
- Department of Microbiology, University of Washington, Seattle, Washington 98195
| | | | - Wendy E Thomas
- Department of Engineering, University of Washington, Seattle, Washington 98195
| | - Evgeni Sokurenko
- Department of Microbiology, University of Washington, Seattle, Washington 98195.
| | - Di Xia
- Laboratory of Cell Biology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| | - Stephen J Savarino
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland 20910; Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814.
| |
Collapse
|
41
|
Sundd P, Pospieszalska MK, Ley K. Neutrophil rolling at high shear: flattening, catch bond behavior, tethers and slings. Mol Immunol 2012; 55:59-69. [PMID: 23141302 DOI: 10.1016/j.molimm.2012.10.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/30/2022]
Abstract
Neutrophil recruitment to sites of inflammation involves neutrophil rolling along the inflamed endothelium in the presence of shear stress imposed by blood flow. Neutrophil rolling in post-capillary venules in vivo is primarily mediated by P-selectin on the endothelium binding to P-selectin glycoprotein ligand-1 (PSGL-1) constitutively expressed on neutrophils. Blood flow exerts a hydrodynamic drag on the rolling neutrophil which is partially or fully balanced by the adhesive forces generated in the P-selectin-PSGL-1 bonds. Rolling is the result of rapid formation and dissociation of P-selectin-PSGL-1 bonds at the center and rear of the rolling cell, respectively. Neutrophils roll stably on P-selectin in post-capillary venules in vivo and flow chambers in vitro at wall shear stresses greater than 6 dyn cm(-2). However, the mechanisms that enable neutrophils to roll at such high shear stress are not completely understood. In vitro and in vivo studies have led to the discovery of four potential mechanisms, viz. cell flattening, catch bond behavior, membrane tethers, and slings. Rolling neutrophils undergo flattening at high shear stress, which not only increases the size of the cell footprint but also reduces the hydrodynamic drag experienced by the rolling cell. P-selectin-PSGL-1 bonds behave as catch bonds at small detachment forces and thus become stronger with increasing force. Neutrophils rolling at high shear stress form membrane tethers which can be longer than the cell diameter and promote the survival of P-selectin-PSGL-1 bonds. Finally, neutrophils rolling at high shear stress form 'slings', which act as cell autonomous adhesive substrates and support step-wise peeling. Tethers and slings act together and contribute to the forces balancing the hydrodynamic drag. How the synergy between the four mechanisms leads to stable rolling at high shear stress is an area that needs further investigation.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- Charles E. Sing
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Alfredo Alexander-Katz
- Department
of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
43
|
KHRANOVSKAYA NATALYA, OREL VALERII, GRINEVICH YURIY, ALEKSEENKO OXANA, ROMANOV ANDRIY, SKACHKOVA OXANA, DZYATKOVSKAYA NATALYA, BURLAKA ANATOLIY, LUKIN SERGEY. MECHANICAL HETEROGENIZATION OF LEWIS LUNG CARCINOMA CELLS CAN IMPROVE ANTIMETASTATIC EFFECT OF DENDRITIC CELLS. J MECH MED BIOL 2012. [DOI: 10.1142/s0219519411004757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The effect of mechanically heterogenized (MCH) microparticles of tumor cells (TCs) on antimetastatic action of dendritic cells (DCs) is studied in C57BL/6 mice with Lewis' carcinoma. DCs isolated from mice spleens and loaded with MCH-TCs are analyzed with flow cytometry methods. MCH-TCs are analyzed with optical and/or electron microscopy. The paper describes an original high-precision medical microvibromill with high-acceleration linear induction motor that generates magnetic levitation to produce mechanical heterogenization of TCs. MCH-TCs have a more asymmetric morphology, larger surface and higher internal structure heterogeneity, and higher concentration of free radicals with respect to conventionally treated TCs. The rate of DCs maturity, being affected by pre-incubation with MCH-TCs is found to be higher than its counterpart treated with conventional TCs. DCs loaded with MCH-TCs show a significantly higher ability to induce proliferation of allogeneic lymphocytes in mixed leukocyte reaction. The inhibition index of metastases formation increases from 42% (conventional TCs) to 66% when DCs are treated with MCH-TCs. The present results demonstrate the feasibility of increasing antimetastatic activity of DCs-based vaccines when MCH-TCs is used for their loading. Mathematical model is developed in order to simulate the processes of capture, processing and presentation of tumor antigens by DCs when using conventional TCs or MCH-TCs.
Collapse
Affiliation(s)
- NATALYA KHRANOVSKAYA
- Experimental Oncology Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - VALERII OREL
- Medical Physics & Bioengineering Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - YURIY GRINEVICH
- Clinical Immunology Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - OXANA ALEKSEENKO
- Cytology Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - ANDRIY ROMANOV
- Medical Physics & Bioengineering Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - OXANA SKACHKOVA
- Experimental Oncology Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - NATALYA DZYATKOVSKAYA
- Medical Physics & Bioengineering Laboratory, National Cancer Institute, 33/43 Lomonosov Street, Kyiv, 03022, Ukraine
| | - ANATOLIY BURLAKA
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 45, Vasil'kovsky Street, Kyiv, 03022, Ukraine
| | - SERGEY LUKIN
- R. E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, 45, Vasil'kovsky Street, Kyiv, 03022, Ukraine
| |
Collapse
|
44
|
Pereverzev YV, Prezhdo E, Sokurenko EV. The two-pathway model of the biological catch-bond as a limit of the allosteric model. Biophys J 2012; 101:2026-36. [PMID: 22004757 DOI: 10.1016/j.bpj.2011.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 08/11/2011] [Indexed: 01/25/2023] Open
Abstract
Catch-binding is a counterintuitive phenomenon in which the lifetime of a receptor/ligand bond increases when a force is applied to break the bond. Several mechanisms have been proposed to rationalize catch-binding. In the two-pathway model, the force drives the system away from its native dissociation pathway into an alternative pathway involving a higher energy barrier. Here, we analyze an allosteric model suggesting that a force applied to the complex alters the distribution of receptor conformations, and as a result, induces changes in the ligand-binding site. The model assumes explicitly that the allosteric transitions govern the properties of the ligand site. We demonstrate that the dynamics of the ligand is described by two relaxation times, one of which arises from the allosteric site. Therefore, we argue that one can characterize the allosteric transitions by studying the receptor/ligand binding. We show that the allosteric description reduces to the two-pathway model in the limit when the allosteric transitions are faster than the bond dissociation. The formal results are illustrated with two systems, P-selectin/PSGL-1 and FimH/mannose, subjected to both constant and time-dependent forces. The report advances our understanding of catch-binding by combining alternative physical models into a unified description and makes the problem more tractable for the bond mechanics community.
Collapse
Affiliation(s)
- Yuriy V Pereverzev
- Department of Chemistry, University of Rochester, Rochester, New York, USA
| | | | | |
Collapse
|
45
|
Sundd P, Pospieszalska MK, Cheung LSL, Konstantopoulos K, Ley K. Biomechanics of leukocyte rolling. Biorheology 2011; 48:1-35. [PMID: 21515934 DOI: 10.3233/bir-2011-0579] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Leukocyte rolling on endothelial cells and other P-selectin substrates is mediated by P-selectin binding to P-selectin glycoprotein ligand-1 expressed on the tips of leukocyte microvilli. Leukocyte rolling is a result of rapid, yet balanced formation and dissociation of selectin-ligand bonds in the presence of hydrodynamic shear forces. The hydrodynamic forces acting on the bonds may either increase (catch bonds) or decrease (slip bonds) their lifetimes. The force-dependent 'catch-slip' bond kinetics are explained using the 'two pathway model' for bond dissociation. Both the 'sliding-rebinding' and the 'allosteric' mechanisms attribute 'catch-slip' bond behavior to the force-induced conformational changes in the lectin-EGF domain hinge of selectins. Below a threshold shear stress, selectins cannot mediate rolling. This 'shear-threshold' phenomenon is a consequence of shear-enhanced tethering and catch bond-enhanced rolling. Quantitative dynamic footprinting microscopy has revealed that leukocytes rolling at venular shear stresses (>0.6 Pa) undergo cellular deformation (large footprint) and form long tethers. The hydrodynamic shear force and torque acting on the rolling cell are thought to be synergistically balanced by the forces acting on tethers and stressed microvilli, however, their relative contribution remains to be determined. Thus, improvement beyond the current understanding requires in silico models that can predict both cellular and microvillus deformation and experiments that allow measurement of forces acting on individual microvilli and tethers.
Collapse
Affiliation(s)
- Prithu Sundd
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
46
|
Sarangapani KK, Qian J, Chen W, Zarnitsyna VI, Mehta P, Yago T, McEver RP, Zhu C. Regulation of catch bonds by rate of force application. J Biol Chem 2011; 286:32749-61. [PMID: 21775439 DOI: 10.1074/jbc.m111.240044] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The current paradigm for receptor-ligand dissociation kinetics assumes off-rates as functions of instantaneous force without impact from its prior history. This a priori assumption is the foundation for predicting dissociation from a given initial state using kinetic equations. Here we have invalidated this assumption by demonstrating the impact of force history with single-bond kinetic experiments involving selectins and their ligands that mediate leukocyte tethering and rolling on vascular surfaces during inflammation. Dissociation of bonds between L-selectin and P-selectin glycoprotein ligand-1 (PSGL-1) loaded at a constant ramp rate to a constant hold force behaved as catch-slip bonds at low ramp rates that transformed to slip-only bonds at high ramp rates. Strikingly, bonds between L-selectin and 6-sulfo-sialyl Lewis X were impervious to ramp rate changes. This ligand-specific force history effect resembled the effect of a point mutation at the L-selectin surface (L-selectinA108H) predicted to contact the former but not the latter ligand, suggesting that the high ramp rate induced similar structural changes as the mutation. Although the A108H substitution in L-selectin eliminated the ramp rate responsiveness of its dissociation from PSGL-1, the inverse mutation H108A in P-selectin acquired the ramp rate responsiveness. Our data are well explained by the sliding-rebinding model for catch-slip bonds extended to incorporate the additional force history dependence, with Ala-108 playing a pivotal role in this structural mechanism. These results call for a paradigm shift in modeling the mechanical regulation of receptor-ligand bond dissociation, which includes conformational coupling between binding pocket and remote regions of the interacting molecules.
Collapse
Affiliation(s)
- Krishna K Sarangapani
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Structural specialisations enable von Willebrand factor (VWF) to assemble during biosynthesis into helical tubules in Weibel-Palade bodies (WPB). Specialisations include a pH-regulated dimeric bouquet formed by the C-terminal half of VWF and helical assembly guided by the N-terminal half that templates inter-dimer disulphide bridges. Orderly assembly and storage of ultra-long concatamers in helical tubules, without crosslinking of neighboring tubules, enables unfurling during secretion without entanglement. Length regulation occurs post-secretion, by hydrodynamic force-regulated unfolding of the VWF A2 domain, and its cleavage by the plasma protease ADAMTS13 (a disintegrin and metalloprotease with a thrombospondin type 1 motif, member 13). VWF is longest at its site of secretion, where its haemostatic function is most important. Moreover, elongational hydrodynamic forces on VWF are strongest just where needed, when bound to the vessel wall, or in elongational flow in the circulation at sites of vessel rupture or vasoconstriction in haemostasis. Elongational forces regulate haemostasis by activating binding of the A1 domain to platelet GPIbα, and over longer time periods, regulate VWF length by unfolding of the A2 domain for cleavage by ADAMTS13. Recent structures of A2 and single molecule measurements of A2 unfolding and cleavage by ADAMTS13 illuminate the mechanisms of VWF length regulation. Single molecule studies on the A1-GPIb receptor-ligand bond demonstrate a specialised flex-bond that enhances resistance to the strong hydrodynamic forces experienced at sites of haemorrhage.
Collapse
Affiliation(s)
- T A Springer
- Immune Disease Institute, Children's Hospital Boston, Boston, MA, USA.
| |
Collapse
|
48
|
Paschos KA, Canovas D, Bird NC. The engagement of selectins and their ligands in colorectal cancer liver metastases. J Cell Mol Med 2011; 14:165-74. [PMID: 19627399 PMCID: PMC3837616 DOI: 10.1111/j.1582-4934.2009.00852.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The colonization of the liver by colorectal cancer (CRC) cells is a complicated process which includes many stages, until macrometastases occur. The entrapment of malignant cells within the hepatic sinusoids and their interactions with resident non-parenchymal cells are considered very important for the whole metastatic sequence. In the sinusoids, cell connection and signalling is mediated by multiple cell adhesion molecules, such as the selectins. The three members of the selectin family, E-, P- and L-selectin, in conjunction with sialylated Lewis ligands and CD44 variants, regulate colorectal cell communication and adhesion with platelets, leucocytes, sinusoidal endothelial cells and stellate cells. Their role in CRC liver metastases has been investigated in animal models and human tissue, in vivo and in vitro, in static and shear flow conditions, and their key-function in several molecular pathways has been displayed. Therefore, trials have already commenced aiming to exploit selectins and their ligands in the treatment of benign and malignant diseases. Multiple pharmacological agents have been developed that are being tested for potential therapeutic applications.
Collapse
Affiliation(s)
- Konstantinos A Paschos
- Liver Research Group, Section of Oncology, School of Medicine, Royal Hallamshire Hospital, The University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
49
|
J A, W M J A, M P D, B M, B M. Benchmarking the environmental performance of the Jatropha biodiesel system through a generic life cycle assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5447-53. [PMID: 21591673 DOI: 10.1021/es200257m] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In addition to available country or site-specific life cycle studies on Jatropha biodiesel we present a generic, location-independent life cycle assessment and provide a general but in-depth analysis of the environmental performance of Jatropha biodiesel for transportation. Additionally, we assess the influence of changes in byproduct use and production chain. In our assessments, we went beyond the impact on energy requirement and global warming by including impacts on ozone layer and terrestrial acidification and eutrophication. The basic Jatropha biodiesel system consumes eight times less nonrenewable energy than conventional diesel and reduces greenhouse gas emissions by 51%. This result coincides with the lower limit of the range of reduction percentages available in literature for this system and for other liquid biofuels. The impact on the ozone layer is also lower than that provoked by fossil diesel, although eutrophication and acidification increase eight times. This study investigates the general impact trends of the Jatropha system, although not considering land-use change. The results are useful as a benchmark against which other biodiesel systems can be evaluated, to calculate repayment times for land-use change induced carbon loss or as guideline with default values for assessing the environmental performance of specific variants of the system.
Collapse
Affiliation(s)
- Almeida J
- Division Forest, Nature and Landscape, Katholieke Universiteit Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
50
|
Marin L, Colombo P, Bebawy M, Young PM, Traini D. Chronic obstructive pulmonary disease: patho-physiology, current methods of treatment and the potential for simvastatin in disease management. Expert Opin Drug Deliv 2011; 8:1205-20. [PMID: 21615218 DOI: 10.1517/17425247.2011.588697] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Chronic Obstructive Pulmonary Disease (COPD) is a severe disease that leads to a non-reversible obstruction of the small airways. The prevalence of this disease is rapidly increasing in developed countries, and in 2020 it has been predicted that this disease will reach the third cause of mortality worldwide. COPD patients do not respond well to current treatment modalities, such as bronchodilators and corticosteroids. AREAS COVERED This review article focuses on the patho-physiology of COPD, explores current approaches to alleviate and treat the disease, and discusses the potential use of statins for treatment. Specifically, the mechanism of action and metabolism of simvastatin, the most known and studied molecule among the statin family, are critically reviewed. EXPERT OPINION Various cellular pathways have been implicated in COPD, with alveolar macrophages emerging as pivotal inflammatory mediators in the COPD patho-physiology. Recently, emerging anti-cytokine therapies, such as PDE4 inhibitors and ACE inhibitors, have shown good anti-inflammatory properties that can be useful in COPD treatment. Recently, statins as a drug class have gained much interest with respect to COPD management, following studies which show simvastatin to exert effective anti-inflammatory effects, via inhibition of the mevalonic acid cascade in alveolar macrophages.
Collapse
Affiliation(s)
- Laura Marin
- Pharmaceutical Department, Faculty of Pharmacy, University of Parma, Parma, Italy
| | | | | | | | | |
Collapse
|