1
|
Mukhametzyanova L, Schmitt LT, Torres-Rivera J, Rojo-Romanos T, Lansing F, Paszkowski-Rogacz M, Hollak H, Brux M, Augsburg M, Schneider PM, Buchholz F. Activation of recombinases at specific DNA loci by zinc-finger domain insertions. Nat Biotechnol 2024; 42:1844-1854. [PMID: 38297187 PMCID: PMC11631766 DOI: 10.1038/s41587-023-02121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Recombinases have several potential advantages as genome editing tools compared to nucleases and other editing enzymes, but the process of engineering them to efficiently recombine predetermined DNA targets demands considerable investment of time and labor. Here we sought to harness zinc-finger DNA-binding domains (ZFDs) to program recombinase binding by developing fusions, in which ZFDs are inserted into recombinase coding sequences. By screening libraries of hybrid proteins, we optimized the insertion site, linker length, spacing and ZFD orientation and generated Cre-type recombinases that remain dormant unless the insertionally fused ZFD binds its target site placed in the vicinity of the recombinase binding site. The developed fusion improved targeted editing efficiencies of recombinases by four-fold and abolished measurable off-target activity in mammalian cells. The ZFD-dependent activity is transferable to a recombinase with relaxed specificity, providing the means for developing fully programmable recombinases. Our engineered recombinases provide improved genome editing tools with increased precision and efficiency.
Collapse
Affiliation(s)
- Liliya Mukhametzyanova
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Julia Torres-Rivera
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Teresa Rojo-Romanos
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | | | - Heike Hollak
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Melanie Brux
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Bisht D, Salave S, Desai N, Gogoi P, Rana D, Biswal P, Sarma G, Benival D, Kommineni N, Desai D. Genome editing and its role in vaccine, diagnosis, and therapeutic advancement. Int J Biol Macromol 2024; 269:131802. [PMID: 38670178 DOI: 10.1016/j.ijbiomac.2024.131802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/25/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
Genome editing involves precise modification of specific nucleotides in the genome using nucleases like CRISPR/Cas, ZFN, or TALEN, leading to increased efficiency of homologous recombination (HR) for gene editing, and it can result in gene disruption events via non-homologous end joining (NHEJ) or homology-driven repair (HDR). Genome editing, particularly CRISPR-Cas9, revolutionizes vaccine development by enabling precise modifications of pathogen genomes, leading to enhanced vaccine efficacy and safety. It allows for tailored antigen optimization, improved vector design, and deeper insights into host genes' impact on vaccine responses, ultimately enhancing vaccine development and manufacturing processes. This review highlights different types of genome editing methods, their associated risks, approaches to overcome the shortcomings, and the diverse roles of genome editing.
Collapse
Affiliation(s)
- Deepanker Bisht
- ICAR- Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India
| | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Nimeet Desai
- Indian Institute of Technology Hyderabad, Kandi 502285, Telangana, India
| | - Purnima Gogoi
- School of Medicine and Public Health, University of Wisconsin and Madison, Madison, WI 53726, USA
| | - Dhwani Rana
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India
| | - Prachurya Biswal
- College of Veterinary and Animal Sciences, Bihar Animal Sciences University, Kishanganj 855115, Bihar, India
| | - Gautami Sarma
- College of Veterinary & Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, U.S. Nagar, Uttarakhand, India
| | - Derajram Benival
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, Gujarat, India.
| | | | - Dhruv Desai
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
3
|
Yarnall MTN, Ioannidi EI, Schmitt-Ulms C, Krajeski RN, Lim J, Villiger L, Zhou W, Jiang K, Garushyants SK, Roberts N, Zhang L, Vakulskas CA, Walker JA, Kadina AP, Zepeda AE, Holden K, Ma H, Xie J, Gao G, Foquet L, Bial G, Donnelly SK, Miyata Y, Radiloff DR, Henderson JM, Ujita A, Abudayyeh OO, Gootenberg JS. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat Biotechnol 2023; 41:500-512. [PMID: 36424489 PMCID: PMC10257351 DOI: 10.1038/s41587-022-01527-4] [Citation(s) in RCA: 181] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/23/2022] [Indexed: 11/26/2022]
Abstract
Programmable genome integration of large, diverse DNA cargo without DNA repair of exposed DNA double-strand breaks remains an unsolved challenge in genome editing. We present programmable addition via site-specific targeting elements (PASTE), which uses a CRISPR-Cas9 nickase fused to both a reverse transcriptase and serine integrase for targeted genomic recruitment and integration of desired payloads. We demonstrate integration of sequences as large as ~36 kilobases at multiple genomic loci across three human cell lines, primary T cells and non-dividing primary human hepatocytes. To augment PASTE, we discovered 25,614 serine integrases and cognate attachment sites from metagenomes and engineered orthologs with higher activity and shorter recognition sequences for efficient programmable integration. PASTE has editing efficiencies similar to or exceeding those of homology-directed repair and non-homologous end joining-based methods, with activity in non-dividing cells and in vivo with fewer detectable off-target events. PASTE expands the capabilities of genome editing by allowing large, multiplexed gene insertion without reliance on DNA repair pathways.
Collapse
Affiliation(s)
- Matthew T N Yarnall
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Eleonora I Ioannidi
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- ETH Zürich, Zürich, Switzerland
| | - Cian Schmitt-Ulms
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rohan N Krajeski
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Justin Lim
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lukas Villiger
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Wenyuan Zhou
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyi Jiang
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sofya K Garushyants
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | | | - Liyang Zhang
- Integrated DNA Technologies, Coralville, IA, USA
| | | | | | | | | | | | - Hong Ma
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jun Xie
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Guangping Gao
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | - Greg Bial
- Yecuris Corporation, Tualatin, OR, USA
| | | | | | | | | | | | - Omar O Abudayyeh
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jonathan S Gootenberg
- McGovern Institute for Brain Research at MIT, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
4
|
Nambiar TS, Baudrier L, Billon P, Ciccia A. CRISPR-based genome editing through the lens of DNA repair. Mol Cell 2022; 82:348-388. [PMID: 35063100 PMCID: PMC8887926 DOI: 10.1016/j.molcel.2021.12.026] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Genome editing technologies operate by inducing site-specific DNA perturbations that are resolved by cellular DNA repair pathways. Products of genome editors include DNA breaks generated by CRISPR-associated nucleases, base modifications induced by base editors, DNA flaps created by prime editors, and integration intermediates formed by site-specific recombinases and transposases associated with CRISPR systems. Here, we discuss the cellular processes that repair CRISPR-generated DNA lesions and describe strategies to obtain desirable genomic changes through modulation of DNA repair pathways. Advances in our understanding of the DNA repair circuitry, in conjunction with the rapid development of innovative genome editing technologies, promise to greatly enhance our ability to improve food production, combat environmental pollution, develop cell-based therapies, and cure genetic and infectious diseases.
Collapse
Affiliation(s)
- Tarun S Nambiar
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lou Baudrier
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | - Pierre Billon
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
| | - Alberto Ciccia
- Department of Genetics and Development, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
5
|
Zhang M, Yang C, Tasan I, Zhao H. Expanding the Potential of Mammalian Genome Engineering via Targeted DNA Integration. ACS Synth Biol 2021; 10:429-446. [PMID: 33596056 DOI: 10.1021/acssynbio.0c00576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inserting custom designed DNA sequences into the mammalian genome plays an essential role in synthetic biology. In particular, the ability to introduce foreign DNA in a site-specific manner offers numerous advantages over random DNA integration. In this review, we focus on two mechanistically distinct systems that have been widely adopted for targeted DNA insertion in mammalian cells, the CRISPR/Cas9 system and site-specific recombinases. The CRISPR/Cas9 system has revolutionized the genome engineering field thanks to its high programmability and ease of use. However, due to its dependence on linearized DNA donor and endogenous cellular pathways to repair the induced double-strand break, CRISPR/Cas9-mediated DNA insertion still faces limitations such as small insert size, and undesired editing outcomes via error-prone repair pathways. In contrast, site-specific recombinases, in particular the Serine integrases, demonstrate large-cargo capability and no dependence on cellular repair pathways for DNA integration. Here we first describe recent advances in improving the overall efficacy of CRISPR/Cas9-based methods for DNA insertion. Moreover, we highlight the advantages of site-specific recombinases over CRISPR/Cas9 in the context of targeted DNA integration, with a special focus on the recent development of programmable recombinases. We conclude by discussing the importance of protein engineering to further expand the current toolkit for targeted DNA insertion in mammalian cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Che Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ipek Tasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Standage-Beier K, Brookhouser N, Balachandran P, Zhang Q, Brafman DA, Wang X. RNA-Guided Recombinase-Cas9 Fusion Targets Genomic DNA Deletion and Integration. CRISPR J 2020; 2:209-222. [PMID: 31436506 DOI: 10.1089/crispr.2019.0013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CRISPR-based technologies have become central to genome engineering. However, CRISPR-based editing strategies are dependent on the repair of DNA breaks via endogenous DNA repair mechanisms, which increases susceptibility to unwanted mutations. Here we complement Cas9 with a recombinase's functionality by fusing a hyperactive mutant resolvase from transposon Tn3, a member of serine recombinases, to a catalytically inactive Cas9, which we term integrase Cas9 (iCas9). We demonstrate iCas9 targets DNA deletion and integration. First, we validate iCas9's function in Saccharomyces cerevisiae using a genome-integrated reporter. Cooperative targeting by CRISPR RNAs at spacings of 22 or 40 bp enables iCas9-mediated recombination. Next, iCas9's ability to target DNA deletion and integration in human HEK293 cells is demonstrated using dual GFP-mCherry fluorescent reporter plasmid systems. Finally, we show that iCas9 is capable of targeting integration into a genomic reporter locus. We envision targeting and design concepts of iCas9 will contribute to genome engineering and synthetic biology.
Collapse
Affiliation(s)
- Kylie Standage-Beier
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, Arizona; University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Nicholas Brookhouser
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona.,Graduate Program in Clinical Translational Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Parithi Balachandran
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Qi Zhang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - David A Brafman
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| | - Xiao Wang
- School of Biological and Health Systems Engineering and University of Arizona College of Medicine-Phoenix, Phoenix, Arizona
| |
Collapse
|
7
|
Mori H, Evans-Yamamoto D, Ishiguro S, Tomita M, Yachie N. Fast and global detection of periodic sequence repeats in large genomic resources. Nucleic Acids Res 2019; 47:e8. [PMID: 30304510 PMCID: PMC6344855 DOI: 10.1093/nar/gky890] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
Periodically repeating DNA and protein elements are involved in various important biological events including genomic evolution, gene regulation, protein complex formation, and immunity. Notably, the currently used genome editing tools such as ZFNs, TALENs, and CRISPRs are also all associated with periodically repeating biomolecules of natural organisms. Despite the biological importance of periodically repeating sequences and the expectation that new genome editing modules could be discovered from such periodical repeats, no software that globally detects such structured elements in large genomic resources in a high-throughput and unsupervised manner has been developed. We developed new software, SPADE (Search for Patterned DNA Elements), that exhaustively explores periodic DNA and protein repeats from large-scale genomic datasets based on k-mer periodicity evaluation. With a simple constraint, sequence periodicity, SPADE captured reported genome-editing-associated sequences and other protein families involving repeating domains such as tetratricopeptide, ankyrin and WD40 repeats with better performance than the other software designed for limited sets of repetitive biomolecular sequences, suggesting the high potential of this software to contribute to the discovery of new biological events and new genome editing modules.
Collapse
Affiliation(s)
- Hideto Mori
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Daniel Evans-Yamamoto
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Soh Ishiguro
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan.,Department of Environment and Information Studies, Keio University, Fujisawa 252-0882, Japan
| | - Nozomu Yachie
- Synthetic Biology Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153-8904, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0035, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa 252-0882, Japan.,Department of Biological Sciences, School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,PRESTO, Japan Science and Technology Agency (JST), Tokyo 153-8904, Japan
| |
Collapse
|
8
|
Bessen JL, Afeyan LK, Dančík V, Koblan LW, Thompson DB, Leichner C, Clemons PA, Liu DR. High-resolution specificity profiling and off-target prediction for site-specific DNA recombinases. Nat Commun 2019; 10:1937. [PMID: 31028261 PMCID: PMC6486577 DOI: 10.1038/s41467-019-09987-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/05/2019] [Indexed: 12/26/2022] Open
Abstract
The development of site-specific recombinases (SSRs) as genome editing agents is limited by the difficulty of altering their native DNA specificities. Here we describe Rec-seq, a method for revealing the DNA specificity determinants and potential off-target substrates of SSRs in a comprehensive and unbiased manner. We applied Rec-seq to characterize the DNA specificity determinants of several natural and evolved SSRs including Cre, evolved variants of Cre, and other SSR family members. Rec-seq profiling of these enzymes and mutants thereof revealed previously uncharacterized SSR interactions, including specificity determinants not evident from SSR:DNA structures. Finally, we used Rec-seq specificity profiles to predict off-target substrates of Tre and Brec1 recombinases, including endogenous human genomic sequences, and confirmed their ability to recombine these off-target sequences in human cells. These findings establish Rec-seq as a high-resolution method for rapidly characterizing the DNA specificity of recombinases with single-nucleotide resolution, and for informing their further development. The development of site-specific recombinases as genome editing tools is limited by the difficulty of altering their DNA sequence specificity. Here the authors present Rec-seq, a method for identifying specificity determinants and off-target substrates of recombinases in an unbiased manner.
Collapse
Affiliation(s)
- Jeffrey L Bessen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Lena K Afeyan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Vlado Dančík
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | - David B Thompson
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA
| | | | - Paul A Clemons
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, 02138, USA. .,Howard Hughes Medical Institute, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
9
|
Nomura W. Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. CHEM REC 2018; 18:1717-1726. [PMID: 30066981 DOI: 10.1002/tcr.201800036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 07/17/2018] [Indexed: 12/17/2022]
Abstract
Zinc finger (ZF) proteins are composed of repeated ββα modules and coordinate a zinc ion. ZF domains recognizing specific DNA target sequences can be substituted for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methyltransferases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the CRISPR-Cas9 system has expanded the range of possibilities for genome-editing technologies. In addition, these DNA binding domains can also be utilized to build a toolbox for epigenetic controls by fusing them with protein- or DNA-modifying enzymes. Here, our research on epigenome editing including the development of artificial zinc finger recombinase (ZFR), split DNA methyltransferase, and fluorescence imaging of histone proteins by ZIP tag-probe system is introduced. Advances in the ZF, TALE, and CRISPR-Cas9 platforms have paved the way for the next generation of genome/epigenome engineering approaches.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioenginerring, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo, 101-0062, Japan
| |
Collapse
|
10
|
Weisenberger MS, Deans TL. Bottom-up approaches in synthetic biology and biomaterials for tissue engineering applications. J Ind Microbiol Biotechnol 2018; 45:599-614. [PMID: 29552703 PMCID: PMC6041164 DOI: 10.1007/s10295-018-2027-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/11/2018] [Indexed: 12/30/2022]
Abstract
Synthetic biologists use engineering principles to design and construct genetic circuits for programming cells with novel functions. A bottom-up approach is commonly used to design and construct genetic circuits by piecing together functional modules that are capable of reprogramming cells with novel behavior. While genetic circuits control cell operations through the tight regulation of gene expression, a diverse array of environmental factors within the extracellular space also has a significant impact on cell behavior. This extracellular space offers an addition route for synthetic biologists to apply their engineering principles to program cell-responsive modules within the extracellular space using biomaterials. In this review, we discuss how taking a bottom-up approach to build genetic circuits using DNA modules can be applied to biomaterials for controlling cell behavior from the extracellular milieu. We suggest that, by collectively controlling intrinsic and extrinsic signals in synthetic biology and biomaterials, tissue engineering outcomes can be improved.
Collapse
Affiliation(s)
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
11
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:62. [PMID: 29554925 PMCID: PMC5859405 DOI: 10.1186/s13046-018-0732-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/12/2018] [Indexed: 12/26/2022]
Abstract
Background The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). Methods We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. Results The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. Conclusion These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients. Electronic supplementary material The online version of this article (10.1186/s13046-018-0732-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
12
|
Huang N, Huang Z, Gao M, Luo Z, Zhou F, Liu L, Xiao Q, Wang X, Feng W. Induction of apoptosis in imatinib sensitive and resistant chronic myeloid leukemia cells by efficient disruption of bcr-abl oncogene with zinc finger nucleases. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018. [PMID: 29554925 DOI: 10.1186/s13046-018-0732-4.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The bcr-abl fusion gene is the pathological origin of chronic myeloid leukemia (CML) and plays a critical role in the resistance of imatinib. Thus, bcr-abl disruption-based novel therapeutic strategy may warrant exploration. In our study, we were surprised to find that the characteristics of bcr-abl sequences met the design requirements of zinc finger nucleases (ZFNs). METHODS We constructed the ZFNs targeting bcr-abl with high specificity through simple modular assembly approach. Western blotting was conducted to detect the expression of BCR-ABL and phosphorylation of its downstream STAT5, ERK and CRKL in CML cells. CCK8 assay, colony-forming assay and flow cytometry (FCM) were used to evaluate the effect of the ZFNs on the viablity and apoptosis of CML cells and CML CD34+ cells. Moreover, mice model was used to determine the ability of ZFNs in disrupting the leukemogenesis of bcr-abl in vivo. RESULTS The ZFNs skillfully mediated 8-base NotI enzyme cutting site addition in bcr-abl gene of imatinib sensitive and resistant CML cells by homology-directed repair (HDR), which led to a stop codon and terminated the translation of BCR-ABL protein. As expected, the disruption of bcr-abl gene induced cell apoptosis and inhibited cell proliferation. Notably, we obtained similar result in CD34+ cells from CML patients. Moreover, the ZFNs significantly reduced the oncogenicity of CML cells in mice. CONCLUSION These results reveal that the bcr-abl gene disruption based on ZFNs may provide a treatment choice for imatinib resistant or intolerant CML patients.
Collapse
Affiliation(s)
- Ningshu Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Zhenglan Huang
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Miao Gao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhenhong Luo
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Fangzhu Zhou
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Qing Xiao
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xin Wang
- Department of Hematology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wenli Feng
- Department of Clinical Hematology, Key Laboratory of Laboratory Medical Diagnostics Designated by the Ministry of Education, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
13
|
Abstract
Serine integrases catalyze precise rearrangement of DNA through site-specific recombination of small sequences of DNA called attachment (att) sites. Unlike other site-specific recombinases, the recombination reaction driven by serine integrases is highly directional and can only be reversed in the presence of an accessory protein called a recombination directionality factor (RDF). The ability to control reaction directionality has led to the development of serine integrases as tools for controlled rearrangement and modification of DNA in synthetic biology, gene therapy, and biotechnology. This review discusses recent advances in serine integrase technologies focusing on their applications in genome engineering, DNA assembly, and logic and data storage devices.
Collapse
Affiliation(s)
- Christine A. Merrick
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| | - Jia Zhao
- Novo
Nordisk (China) Pharmaceuticals Co., Ltd., Lei Shing Hong Center, Guangshunnan Avenue, Beijing 100102, China
| | - Susan J. Rosser
- School
of Biological Sciences, University of Edinburgh, Roger Land Building, Alexander Crum
Brown Road, Edinburgh EH9
3FF, U.K
| |
Collapse
|
14
|
Nelson CE, Robinson-Hamm JN, Gersbach CA. Genome engineering: a new approach to gene therapy for neuromuscular disorders. Nat Rev Neurol 2017; 13:647-661. [DOI: 10.1038/nrneurol.2017.126] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Kim MS, Kini AG. Engineering and Application of Zinc Finger Proteins and TALEs for Biomedical Research. Mol Cells 2017; 40:533-541. [PMID: 28835021 PMCID: PMC5582299 DOI: 10.14348/molcells.2017.0139] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
Engineered DNA-binding domains provide a powerful technology for numerous biomedical studies due to their ability to recognize specific DNA sequences. Zinc fingers (ZF) are one of the most common DNA-binding domains and have been extensively studied for a variety of applications, such as gene regulation, genome engineering and diagnostics. Another novel DNA-binding domain known as a transcriptional activator-like effector (TALE) has been more recently discovered, which has a previously undescribed DNA-binding mode. Due to their modular architecture and flexibility, TALEs have been rapidly developed into artificial gene targeting reagents. Here, we describe the methods used to design these DNA-binding proteins and their key applications in biomedical research.
Collapse
Affiliation(s)
- Moon-Soo Kim
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101,
USA
| | - Anu Ganesh Kini
- Department of Chemistry, Western Kentucky University, 1906 College Heights Blvd., Bowling Green, KY 42101,
USA
| |
Collapse
|
16
|
Olorunniji FJ, Rosser SJ, Marshall Stark W. Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol 2017; 1642:229-245. [PMID: 28815504 DOI: 10.1007/978-1-4939-7169-5_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zinc finger recombinases (ZFRs) are designer site-specific recombinases that have been adapted for a variety of genome editing purposes. Due to their modular nature, ZFRs can be customized for targeted sequence recognition and recombination. There has been substantial research on the in vivo properties and applications of ZFRs; however, in order to fully understand and customize them, it will be necessary to study their properties in vitro. Experiments in vitro can allow us to optimize catalytic activities, improve target specificity, measure and minimize off-target activity, and characterize key steps in the recombination pathway that might be modified to improve performance. Here, we present a straightforward set of protocols for the expression and purification of ZFRs, an assay system for catalytic proficiency in vitro and bandshift assays for detection of sequence-specific DNA interactions.
Collapse
Affiliation(s)
- Femi J Olorunniji
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland
| | - Susan J Rosser
- SynthSys-Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, CH Waddington Building, The King's Buildings, Mayfield Road, Edinburgh, EH9 3JD, Scotland
| | - W Marshall Stark
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, Glasgow, G12 8QQ, Scotland.
| |
Collapse
|
17
|
MacDonald IC, Deans TL. Tools and applications in synthetic biology. Adv Drug Deliv Rev 2016; 105:20-34. [PMID: 27568463 DOI: 10.1016/j.addr.2016.08.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022]
Abstract
Advances in synthetic biology have enabled the engineering of cells with genetic circuits in order to program cells with new biological behavior, dynamic gene expression, and logic control. This cellular engineering progression offers an array of living sensors that can discriminate between cell states, produce a regulated dose of therapeutic biomolecules, and function in various delivery platforms. In this review, we highlight and summarize the tools and applications in bacterial and mammalian synthetic biology. The examples detailed in this review provide insight to further understand genetic circuits, how they are used to program cells with novel functions, and current methods to reliably interface this technology in vivo; thus paving the way for the design of promising novel therapeutic applications.
Collapse
Affiliation(s)
- I Cody MacDonald
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States
| | - Tara L Deans
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, United States.
| |
Collapse
|
18
|
Chaikind B, Bessen JL, Thompson DB, Hu JH, Liu DR. A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res 2016; 44:9758-9770. [PMID: 27515511 PMCID: PMC5175349 DOI: 10.1093/nar/gkw707] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
We describe the development of ‘recCas9’, an RNA-programmed small serine recombinase that functions in mammalian cells. We fused a catalytically inactive dCas9 to the catalytic domain of Gin recombinase using an optimized fusion architecture. The resulting recCas9 system recombines DNA sites containing a minimal recombinase core site flanked by guide RNA-specified sequences. We show that these recombinases can operate on DNA sites in mammalian cells identical to genomic loci naturally found in the human genome in a manner that is dependent on the guide RNA sequences. DNA sequencing reveals that recCas9 catalyzes guide RNA-dependent recombination in human cells with an efficiency as high as 32% on plasmid substrates. Finally, we demonstrate that recCas9 expressed in human cells can catalyze in situ deletion between two genomic sites. Because recCas9 directly catalyzes recombination, it generates virtually no detectable indels or other stochastic DNA modification products. This work represents a step toward programmable, scarless genome editing in unmodified cells that is independent of endogenous cellular machinery or cell state. Current and future generations of recCas9 may facilitate targeted agricultural breeding, or the study and treatment of human genetic diseases.
Collapse
Affiliation(s)
- Brian Chaikind
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - Jeffrey L Bessen
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| | - David B Thompson
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - Johnny H Hu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA
| | - David R Liu
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA .,Howard Hughes Medical institute, Harvard University, Cambridge, MA 02138 USA
| |
Collapse
|
19
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
20
|
Weninger A, Killinger M, Vogl T. Key Methods for Synthetic Biology: Genome Engineering and DNA Assembly. Synth Biol (Oxf) 2016. [DOI: 10.1007/978-3-319-22708-5_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
21
|
Abstract
The development of a facile genome engineering technology based on transcription activator-like effector nucleases (TALENs) has led to significant advances in diverse areas of science and medicine. In this review, we provide a broad overview of the development of TALENs and the use of this technology in basic science, biotechnology, and biomedical applications. This includes the discovery of DNA recognition by TALEs, engineering new TALE proteins to diverse targets, general advances in nuclease-based editing strategies, and challenges that are specific to various applications of the TALEN technology. We review examples of applying TALENs for studying gene function and regulation, generating disease models, and developing gene therapies. The current status of genome editing and future directions for other uses of these technologies are also discussed.
Collapse
Affiliation(s)
- David G Ousterout
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Room 136 Hudson Hall, Box 90281, Durham, NC, 27708-0281, USA. .,Center for Genomic and Computational Biology, Duke University, Durham, NC, 27708, USA. .,Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
22
|
|
23
|
Abstract
Advances in genome engineering technologies have made the precise control over genome sequence and regulation possible across a variety of disciplines. These tools can expand our understanding of fundamental biological processes and create new opportunities for therapeutic designs. The rapid evolution of these methods has also catalyzed a new era of genomics that includes multiple approaches to functionally characterize and manipulate the regulation of genomic information. Here, we review the recent advances of the most widely adopted genome engineering platforms and their application to functional genomics. This includes engineered zinc finger proteins, TALEs/TALENs, and the CRISPR/Cas9 system as nucleases for genome editing, transcription factors for epigenome editing, and other emerging applications. We also present current and potential future applications of these tools, as well as their current limitations and areas for future advances.
Collapse
Affiliation(s)
- Isaac B Hilton
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA; Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708, USA; Department of Orthopaedic Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
24
|
Nomura W. [Application and potential of genome engineering by artificial enzymes]. YAKUGAKU ZASSHI 2015; 135:405-14. [PMID: 25759050 DOI: 10.1248/yakushi.14-00240-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial zinc finger proteins (ZFPs) consist of Cys2-His2-type modules composed of approximately 30 amino acids that adopt a ββα structure and coordinate a zinc ion. ZFPs recognizing specific DNA target sequences can substitute for the binding domains of various DNA-modifying enzymes to create designer nucleases, recombinases, and methylases with programmable sequence specificity. Enzymatic genome editing and modification can be applied to many fields of basic research and medicine. The recent development of new platforms using transcription activator-like effector (TALE) proteins or the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein (CRISPR/Cas) system has expanded the range of possibilities for genome-editing technologies. These technologies empower investigators with the ability to efficiently knockout or regulate the functions of genes of interest. In this review, we discuss historical advancements in artificial ZFP applications and important issues that may influence the future of genome editing and engineering technologies. The development of artificial ZFPs has greatly increased the feasibility of manipulating endogenous gene functions through transcriptional control and gene modification. Advances in the ZFP, TALE, and CRISPR/Cas platforms have paved the way for the next generation of genome engineering approaches. Perspectives for the future of genome engineering are also discussed, including applications of targeting specific genomic alleles and studies in synthetic biology.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
25
|
Abstract
ABSTRACT
In site-specific recombination, two short DNA sequences (‘sites’) are each cut at specific points in both strands, and the cut ends are rejoined to new partners. The enzymes that mediate recognition of the sites and the subsequent cutting and rejoining steps are called recombinases. Most recombinases fall into one of two families according to similarities of their protein sequences and mechanisms; these families are known as the tyrosine recombinases and the serine recombinases, the names referring to the conserved amino acid residue that attacks the DNA phosphodiester and becomes covalently linked to a DNA strand end during catalysis. This chapter gives an overview of our current understanding of the serine recombinases, their types, biological roles, structures, catalytic mechanisms, mechanisms of regulation, and applications.
Collapse
|
26
|
Si T, Xiao H, Zhao H. Rapid prototyping of microbial cell factories via genome-scale engineering. Biotechnol Adv 2014; 33:1420-32. [PMID: 25450192 DOI: 10.1016/j.biotechadv.2014.11.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
Abstract
Advances in reading, writing and editing genetic materials have greatly expanded our ability to reprogram biological systems at the resolution of a single nucleotide and on the scale of a whole genome. Such capacity has greatly accelerated the cycles of design, build and test to engineer microbes for efficient synthesis of fuels, chemicals and drugs. In this review, we summarize the emerging technologies that have been applied, or are potentially useful for genome-scale engineering in microbial systems. We will focus on the development of high-throughput methodologies, which may accelerate the prototyping of microbial cell factories.
Collapse
Affiliation(s)
- Tong Si
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Han Xiao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
27
|
Nakanishi H, Higuchi Y, Yamashita F, Hashida M. Targeted gene integration using the combination of a sequence-specific DNA-binding protein and phiC31 integrase. J Biotechnol 2014; 186:139-47. [PMID: 25038544 DOI: 10.1016/j.jbiotec.2014.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/06/2014] [Accepted: 07/09/2014] [Indexed: 01/04/2023]
Abstract
PhiC31 integrase-based vectors can integrate therapeutic genes selectively into attP or pseudo-attP sites in genomes, but considerable numbers of pseudo-attP sites in human genomes exist inside endogenous gene-coding regions. To avoid endogenous gene disruptions, we aimed to enhance the integration site-specificity of the phiC31 integrase-based vector using a sequence-specific DNA-binding protein containing Gal4 and LexA DNA-binding motifs. The dual DNA-binding protein was designed to tether the UAS-containing donor vector to the target sequence, the LexA operator, and restrict integration to sites close to the LexA operator. To analyze the site-specificity in chromosomal integration, a human cell line having LexA operators on the genome was established, and the cell line was transfected with donor vectors expressing the DNA-binding protein and the phiC31 integrase expression vector (helper vector). Quantitative PCR indicated that integration around the LexA operator was 26-fold higher with the UAS-containing donor vector than with the control. Sequence analysis confirmed that the integration occurred around the LexA operator. The dual DNA-binding protein-based targeted integration strategy developed herein would allow safer and more reliable genetic manipulations for various applications, including gene and cell therapies.
Collapse
Affiliation(s)
- Hideyuki Nakanishi
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Japan Society for the Promotion of Science (JSPS), Sumitomo-Ichibancho FS Bldg., 8 Ichibancho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - Yuriko Higuchi
- Institute for Innovative NanoBio Drug Discovery and Development, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; PRESTO, Japan Science and Technology Agency (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Fumiyoshi Yamashita
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mitsuru Hashida
- Department of Drug Delivery Research, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, 69 Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
28
|
Gersbach CA, Gaj T, Barbas CF. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc Chem Res 2014; 47:2309-18. [PMID: 24877793 PMCID: PMC4139171 DOI: 10.1021/ar500039w] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
![]()
The understanding
of gene regulation and the structure and function
of the human genome increased dramatically at the end of the 20th
century. Yet the technologies for manipulating the genome have been
slower to develop. For instance, the field of gene therapy has been
focused on correcting genetic diseases and augmenting tissue repair
for more than 40 years. However, with the exception of a few very
low efficiency approaches, conventional genetic engineering methods
have only been able to add auxiliary genes to cells. This has been
a substantial obstacle to the clinical success of gene therapies and
has also led to severe unintended consequences in several cases. Therefore,
technologies that facilitate the precise modification of cellular
genomes have diverse and significant implications in many facets of
research and are essential for translating the products of the Genomic
Revolution into tangible benefits for medicine and biotechnology.
To address this need, in the 1990s, we embarked on a mission to develop
technologies for engineering protein–DNA interactions with
the aim of creating custom tools capable of targeting any DNA sequence.
Our goal has been to allow researchers to reach into genomes to specifically
regulate, knock out, or replace any gene. To realize these goals,
we initially focused on understanding and manipulating zinc finger
proteins. In particular, we sought to create a simple and straightforward
method that enables unspecialized laboratories to engineer custom
DNA-modifying proteins using only defined modular components, a web-based
utility, and standard recombinant DNA technology. Two significant
challenges we faced were (i) the development of zinc finger domains
that target sequences not recognized by naturally occurring zinc finger
proteins and (ii) determining how individual zinc finger domains could
be tethered together as polydactyl proteins to recognize unique locations
within complex genomes. We and others have since used this modular
assembly method to engineer artificial proteins and enzymes that activate,
repress, or create defined changes to user-specified genes in human
cells, plants, and other organisms. We have also engineered novel
methods for externally controlling protein activity and delivery,
as well as developed new strategies for the directed evolution of
protein and enzyme function. This Account summarizes our work in these
areas and highlights independent studies that have successfully used
the modular assembly approach to create proteins with novel function.
We also discuss emerging alternative methods for genomic targeting,
including transcription activator-like effectors (TALEs) and CRISPR/Cas
systems, and how they complement the synthetic zinc finger protein
technology.
Collapse
Affiliation(s)
- Charles A. Gersbach
- Department
of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Thomas Gaj
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Carlos F. Barbas
- The
Skaggs Institute for Chemical Biology and the Departments of Chemistry
and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
29
|
Wolfs JM, DaSilva M, Meister SE, Wang X, Schild-Poulter C, Edgell DR. MegaTevs: single-chain dual nucleases for efficient gene disruption. Nucleic Acids Res 2014; 42:8816-29. [PMID: 25013171 PMCID: PMC4117789 DOI: 10.1093/nar/gku573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Targeting gene disruptions in complex genomes relies on imprecise repair by the non-homologous end-joining DNA pathway, creating mutagenic insertions or deletions (indels) at the break point. DNA end-processing enzymes are often co-expressed with genome-editing nucleases to enhance the frequency of indels, as the compatible cohesive ends generated by the nucleases can be precisely repaired, leading to a cycle of cleavage and non-mutagenic repair. Here, we present an alternative strategy to bias repair toward gene disruption by fusing two different nuclease active sites from I-TevI (a GIY-YIG enzyme) and I-OnuI E2 (an engineered meganuclease) into a single polypeptide chain. In vitro, the MegaTev enzyme generates two double-strand breaks to excise an intervening 30-bp fragment. In HEK 293 cells, we observe a high frequency of gene disruption without co-expression of DNA end-processing enzymes. Deep sequencing of disrupted target sites revealed minimal processing, consistent with the MegaTev sequestering the double-strand breaks from the DNA repair machinery. Off-target profiling revealed no detectable cleavage at sites where the I-TevI CNNNG cleavage motif is not appropriately spaced from the I-OnuI binding site. The MegaTev enzyme represents a small, programmable nuclease platform for extremely specific genome-engineering applications.
Collapse
Affiliation(s)
- Jason M Wolfs
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Matthew DaSilva
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Sarah E Meister
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| | - Xu Wang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5B7, Canada
| | - David R Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, N6A 5C1, Canada
| |
Collapse
|
30
|
Siuti P, Yazbek J, Lu TK. Engineering genetic circuits that compute and remember. Nat Protoc 2014; 9:1292-300. [DOI: 10.1038/nprot.2014.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
31
|
Gaj T, Sirk SJ, Tingle RD, Mercer AC, Wallen MC, Barbas CF. Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc 2014; 136:5047-56. [PMID: 24611715 PMCID: PMC3985937 DOI: 10.1021/ja4130059] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Despite
recent advances in genome engineering made possible by
the emergence of site-specific endonucleases, there remains a need
for tools capable of specifically delivering genetic payloads into
the human genome. Hybrid recombinases based on activated catalytic
domains derived from the resolvase/invertase family of serine recombinases
fused to Cys2-His2 zinc-finger or TAL effector
DNA-binding domains are a class of reagents capable of achieving this.
The utility of these enzymes, however, has been constrained by their
low overall targeting specificity, largely due to the formation of
side-product homodimers capable of inducing off-target modifications.
Here, we combine rational design and directed evolution to re-engineer
the serine recombinase dimerization interface and generate a recombinase
architecture that reduces formation of these undesirable homodimers
by >500-fold. We show that these enhanced recombinases demonstrate
substantially improved targeting specificity in mammalian cells and
achieve rates of site-specific integration similar to those previously
reported for site-specific nucleases. Additionally, we show that enhanced
recombinases exhibit low toxicity and promote the delivery of the
human coagulation factor IX and α-galactosidase genes into endogenous
genomic loci with high specificity. These results provide a general
means for improving hybrid recombinase specificity by protein engineering
and illustrate the potential of these enzymes for basic research and
therapeutic applications.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute , La Jolla, California 92037, United States
| | | | | | | | | | | |
Collapse
|
32
|
Sirk SJ, Gaj T, Jonsson A, Mercer AC, Barbas CF. Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res 2014; 42:4755-66. [PMID: 24452803 PMCID: PMC3985619 DOI: 10.1093/nar/gkt1389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The serine recombinases are a diverse family of modular enzymes that promote high-fidelity DNA rearrangements between specific target sites. Replacement of their native DNA-binding domains with custom-designed Cys2–His2 zinc-finger proteins results in the creation of engineered zinc-finger recombinases (ZFRs) capable of achieving targeted genetic modifications. The flexibility afforded by zinc-finger domains enables the design of hybrid recombinases that recognize a wide variety of potential target sites; however, this technology remains constrained by the strict recognition specificities imposed by the ZFR catalytic domains. In particular, the ability to fully reprogram serine recombinase catalytic specificity has been impeded by conserved base requirements within each recombinase target site and an incomplete understanding of the factors governing DNA recognition. Here we describe an approach to complement the targeting capacity of ZFRs. Using directed evolution, we isolated mutants of the β and Sin recombinases that specifically recognize target sites previously outside the scope of ZFRs. Additionally, we developed a genetic screen to determine the specific base requirements for site-specific recombination and showed that specificity profiling enables the discovery of unique genomic ZFR substrates. Finally, we conducted an extensive and family-wide mutational analysis of the serine recombinase DNA-binding arm region and uncovered a diverse network of residues that confer target specificity. These results demonstrate that the ZFR repertoire is extensible and highlights the potential of ZFRs as a class of flexible tools for targeted genome engineering.
Collapse
Affiliation(s)
- Shannon J Sirk
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA, Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA and Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
33
|
Chavez-Munoz C, Hartwell R, Jalili RB, Ghahary A. Immunoprotective role of IDO in engraftment of allogeneic skin substitutes. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
|
35
|
Genome-scale engineering for systems and synthetic biology. Mol Syst Biol 2013; 9:641. [PMID: 23340847 PMCID: PMC3564264 DOI: 10.1038/msb.2012.66] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/16/2012] [Indexed: 12/15/2022] Open
Abstract
This review provides an overview of methodologies and technologies enabling genome-scale engineering, focusing on the design, construction, and testing of modified genomes in a variety of organisms. Future applications for systems and synthetic biology are discussed. Genome-modification technologies enable the rational engineering and perturbation of biological systems. Historically, these methods have been limited to gene insertions or mutations at random or at a few pre-defined locations across the genome. The handful of methods capable of targetedgene editing suffered from low efficiencies, significant labor costs, or both. Recent advances have dramatically expanded our ability to engineer cells in a directed and combinatorial manner. Here, we review current technologies and methodologies for genome-scale engineering, discuss the prospects for extending efficient genome modification to new hosts, and explore the implications of continued advances toward the development of flexibly programmable chasses, novel biochemistries, and safer organismal and ecological engineering.
Collapse
|
36
|
Gaj T, Sirk SJ, Barbas CF. Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng 2013; 111:1-15. [PMID: 23982993 DOI: 10.1002/bit.25096] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/20/2022]
Abstract
Site-specific recombinases are tremendously valuable tools for basic research and genetic engineering. By promoting high-fidelity DNA modifications, site-specific recombination systems have empowered researchers with unprecedented control over diverse biological functions, enabling countless insights into cellular structure and function. The rigid target specificities of many sites-specific recombinases, however, have limited their adoption in fields that require highly flexible recognition abilities. As a result, intense effort has been directed toward altering the properties of site-specific recombination systems by protein engineering. Here, we review key developments in the rational design and directed molecular evolution of site-specific recombinases, highlighting the numerous applications of these enzymes across diverse fields of study.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology and the Departments of Chemistry and Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, 92037
| | | | | |
Collapse
|
37
|
Siuti P, Yazbek J, Lu TK. Synthetic circuits integrating logic and memory in living cells. Nat Biotechnol 2013; 31:448-52. [PMID: 23396014 DOI: 10.1038/nbt.2510] [Citation(s) in RCA: 339] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 01/17/2013] [Indexed: 01/13/2023]
Abstract
Logic and memory are essential functions of circuits that generate complex, state-dependent responses. Here we describe a strategy for efficiently assembling synthetic genetic circuits that use recombinases to implement Boolean logic functions with stable DNA-encoded memory of events. Application of this strategy allowed us to create all 16 two-input Boolean logic functions in living Escherichia coli cells without requiring cascades comprising multiple logic gates. We demonstrate long-term maintenance of memory for at least 90 cell generations and the ability to interrogate the states of these synthetic devices with fluorescent reporters and PCR. Using this approach we created two-bit digital-to-analog converters, which should be useful in biotechnology applications for encoding multiple stable gene expression outputs using transient inputs of inducers. We envision that this integrated logic and memory system will enable the implementation of complex cellular state machines, behaviors and pathways for therapeutic, diagnostic and basic science applications.
Collapse
Affiliation(s)
- Piro Siuti
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
38
|
Gaj T, Mercer AC, Sirk SJ, Smith HL, Barbas CF. A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res 2013; 41:3937-46. [PMID: 23393187 PMCID: PMC3616721 DOI: 10.1093/nar/gkt071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Zinc-finger recombinases (ZFRs) represent a potentially powerful class of tools for targeted genetic engineering. These chimeric enzymes are composed of an activated catalytic domain derived from the resolvase/invertase family of serine recombinases and a custom-designed zinc-finger DNA-binding domain. The use of ZFRs, however, has been restricted by sequence requirements imposed by the recombinase catalytic domain. Here, we combine substrate specificity analysis and directed evolution to develop a diverse collection of Gin recombinase catalytic domains capable of recognizing an estimated 3.77 × 107 unique DNA sequences. We show that ZFRs assembled from these engineered catalytic domains recombine user-defined DNA targets with high specificity, and that designed ZFRs integrate DNA into targeted endogenous loci in human cells. This study demonstrates the feasibility of generating customized ZFRs and the potential of ZFR technology for a diverse range of applications, including genome engineering, synthetic biology and gene therapy.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
39
|
Engineered Zinc Finger Nucleases for Targeted Genome Editing. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
40
|
Bhakta MS, Henry IM, Ousterout DG, Das KT, Lockwood SH, Meckler JF, Wallen MC, Zykovich A, Yu Y, Leo H, Xu L, Gersbach CA, Segal DJ. Highly active zinc-finger nucleases by extended modular assembly. Genome Res 2012; 23:530-8. [PMID: 23222846 PMCID: PMC3589541 DOI: 10.1101/gr.143693.112] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Zinc-finger nucleases (ZFNs) are important tools for genome engineering. Despite intense interest by many academic groups, the lack of robust noncommercial methods has hindered their widespread use. The modular assembly (MA) of ZFNs from publicly available one-finger archives provides a rapid method to create proteins that can recognize a very broad spectrum of DNA sequences. However, three- and four-finger arrays often fail to produce active nucleases. Efforts to improve the specificity of the one-finger archives have not increased the success rate above 25%, suggesting that the MA method might be inherently inefficient due to its insensitivity to context-dependent effects. Here we present the first systematic study on the effect of array length on ZFN activity. ZFNs composed of six-finger MA arrays produced mutations at 15 of 21 (71%) targeted loci in human and mouse cells. A novel drop-out linker scheme was used to rapidly assess three- to six-finger combinations, demonstrating that shorter arrays could improve activity in some cases. Analysis of 268 array variants revealed that half of MA ZFNs of any array composition that exceed an ab initio B-score cutoff of 15 were active. These results suggest that, when used appropriately, MA ZFNs are able to target more DNA sequences with higher success rates than other current methods.
Collapse
Affiliation(s)
- Mital S Bhakta
- Genome Center and Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
TG1 integrase-based system for site-specific gene integration into bacterial genomes. Appl Microbiol Biotechnol 2012; 97:4039-48. [DOI: 10.1007/s00253-012-4491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/30/2012] [Accepted: 10/02/2012] [Indexed: 10/27/2022]
|
42
|
Smith KR, Chan S, Harris J. Human germline genetic modification: scientific and bioethical perspectives. Arch Med Res 2012; 43:491-513. [PMID: 23072719 DOI: 10.1016/j.arcmed.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, Abertay University, Dundee, United Kingdom.
| | | | | |
Collapse
|
43
|
Mercer AC, Gaj T, Fuller RP, Barbas CF. Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res 2012; 40:11163-72. [PMID: 23019222 PMCID: PMC3510496 DOI: 10.1093/nar/gks875] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Site-specific recombinases are powerful tools for genome engineering. Hyperactivated variants of the resolvase/invertase family of serine recombinases function without accessory factors, and thus can be re-targeted to sequences of interest by replacing native DNA-binding domains (DBDs) with engineered zinc-finger proteins (ZFPs). However, imperfect modularity with particular domains, lack of high-affinity binding to all DNA triplets, and difficulty in construction has hindered the widespread adoption of ZFPs in unspecialized laboratories. The discovery of a novel type of DBD in transcription activator-like effector (TALE) proteins from Xanthomonas provides an alternative to ZFPs. Here we describe chimeric TALE recombinases (TALERs): engineered fusions between a hyperactivated catalytic domain from the DNA invertase Gin and an optimized TALE architecture. We use a library of incrementally truncated TALE variants to identify TALER fusions that modify DNA with efficiency and specificity comparable to zinc-finger recombinases in bacterial cells. We also show that TALERs recombine DNA in mammalian cells. The TALER architecture described herein provides a platform for insertion of customized TALE domains, thus significantly expanding the targeting capacity of engineered recombinases and their potential applications in biotechnology and medicine.
Collapse
Affiliation(s)
- Andrew C Mercer
- The Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
44
|
Owens JB, Urschitz J, Stoytchev I, Dang NC, Stoytcheva Z, Belcaid M, Maragathavally KJ, Coates CJ, Segal DJ, Moisyadi S. Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids Res 2012; 40:6978-91. [PMID: 22492708 PMCID: PMC3413120 DOI: 10.1093/nar/gks309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/23/2012] [Accepted: 03/25/2012] [Indexed: 11/14/2022] Open
Abstract
Integrating vectors such as viruses and transposons insert transgenes semi-randomly and can potentially disrupt or deregulate genes. For these techniques to be of therapeutic value, a method for controlling the precise location of insertion is required. The piggyBac (PB) transposase is an efficient gene transfer vector active in a variety of cell types and proven to be amenable to modification. Here we present the design and validation of chimeric PB proteins fused to the Gal4 DNA binding domain with the ability to target transgenes to pre-determined sites. Upstream activating sequence (UAS) Gal4 recognition sites harbored on recipient plasmids were preferentially targeted by the chimeric Gal4-PB transposase in human cells. To analyze the ability of these PB fusion proteins to target chromosomal locations, UAS sites were randomly integrated throughout the genome using the Sleeping Beauty transposon. Both N- and C-terminal Gal4-PB fusion proteins but not native PB were capable of targeting transposition nearby these introduced sites. A genome-wide integration analysis revealed the ability of our fusion constructs to bias 24% of integrations near endogenous Gal4 recognition sequences. This work provides a powerful approach to enhance the properties of the PB system for applications such as genetic engineering and gene therapy.
Collapse
Affiliation(s)
- Jesse B. Owens
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Johann Urschitz
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Ilko Stoytchev
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Nong C. Dang
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Zoia Stoytcheva
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Mahdi Belcaid
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Kommineni J. Maragathavally
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Craig J. Coates
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - David J. Segal
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Stefan Moisyadi
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry, and Physiology, John A. Burns School of Medicine, Department of Information and Computer Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, Entomology Department, Texas A&M University, College Station, TX 77843 and Genome Center, Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
45
|
Perez-Pinera P, Ousterout DG, Gersbach CA. Advances in targeted genome editing. Curr Opin Chem Biol 2012; 16:268-77. [PMID: 22819644 DOI: 10.1016/j.cbpa.2012.06.007] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/16/2012] [Accepted: 06/20/2012] [Indexed: 01/19/2023]
Abstract
New technologies have recently emerged that enable targeted editing of genomes in diverse systems. This includes precise manipulation of gene sequences in their natural chromosomal context and addition of transgenes to specific genomic loci. This progress has been facilitated by advances in engineering targeted nucleases with programmable, site-specific DNA-binding domains, including zinc finger proteins and transcription activator-like effectors (TALEs). Recent improvements have enhanced nuclease performance, accelerated nuclease assembly, and lowered the cost of genome editing. These advances are driving new approaches to many areas of biotechnology, including biopharmaceutical production, agriculture, creation of transgenic organisms and cell lines, and studies of genome structure, regulation, and function. Genome editing is also being investigated in preclinical and clinical gene therapies for many diseases.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | | | |
Collapse
|
46
|
Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF. Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 2012; 9:805-7. [PMID: 22751204 PMCID: PMC3424280 DOI: 10.1038/nmeth.2030] [Citation(s) in RCA: 247] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 05/30/2012] [Indexed: 11/22/2022]
Abstract
Zinc-finger nucleases (ZFNs) are versatile reagents that have redefined genome engineering. Realizing the full potential of this technology requires the development of safe and effective methods for delivering ZFNs into cells. We demonstrate the intrinsic cell-penetrating capabilities of the standard ZFN architecture and show that direct delivery of ZFNs as proteins leads to efficient endogenous gene disruption in various mammalian cell types with minimal off-target effects.
Collapse
Affiliation(s)
- Thomas Gaj
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
47
|
Nomura W, Masuda A, Ohba K, Urabe A, Ito N, Ryo A, Yamamoto N, Tamamura H. Effects of DNA binding of the zinc finger and linkers for domain fusion on the catalytic activity of sequence-specific chimeric recombinases determined by a facile fluorescent system. Biochemistry 2012; 51:1510-7. [PMID: 22304662 DOI: 10.1021/bi201878x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Artificial zinc finger proteins (ZFPs) consist of Cys(2)-His(2)-type modules composed of ∼30 amino acids with a ββα structure that coordinates a zinc ion. ZFPs that recognize specific DNA target sequences can substitute for the binding domains of enzymes that act on DNA to create designer enzymes with programmable sequence specificity. The most studied of these engineered enzymes are zinc finger nucleases (ZFNs). ZFNs have been widely used to model organisms and are currently in human clinical trials with an aim of therapeutic gene editing. Difficulties with ZFNs arise from unpredictable mutations caused by nonhomologous end joining and off-target DNA cleavage and mutagenesis. A more recent strategy that aims to address the shortcomings of ZFNs involves zinc finger recombinases (ZFRs). A thorough understanding of ZFRs and methods for their modification promises powerful new tools for gene manipulation in model organisms as well as in gene therapy. In an effort to design efficient and specific ZFRs, the effects of the DNA binding affinity of the zinc finger domains and the linker sequence between ZFPs and recombinase catalytic domains have been assessed. A plasmid system containing ZFR target sites was constructed for evaluation of catalytic activities of ZFRs with variable linker lengths and numbers of zinc finger modules. Recombination efficiencies were evaluated by restriction enzyme analysis of isolated plasmids after reaction in Escherichia coli and changes in EGFP fluorescence in mammalian cells. The results provide information relevant to the design of ZFRs that will be useful for sequence-specific genome modification.
Collapse
Affiliation(s)
- Wataru Nomura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA. Gene targeting to the ROSA26 locus directed by engineered zinc finger nucleases. Nucleic Acids Res 2011; 40:3741-52. [PMID: 22169954 PMCID: PMC3333879 DOI: 10.1093/nar/gkr1214] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Targeted gene addition to mammalian genomes is central to biotechnology, basic research and gene therapy. For example, gene targeting to the ROSA26 locus by homologous recombination in embryonic stem cells is commonly used for mouse transgenesis to achieve ubiquitous and persistent transgene expression. However, conventional methods are not readily adaptable to gene targeting in other cell types. The emerging zinc finger nuclease (ZFN) technology facilitates gene targeting in diverse species and cell types, but an optimal strategy for engineering highly active ZFNs is still unclear. We used a modular assembly approach to build ZFNs that target the ROSA26 locus. ZFN activity was dependent on the number of modules in each zinc finger array. The ZFNs were active in a variety of cell types in a time- and dose-dependent manner. The ZFNs directed gene addition to the ROSA26 locus, which enhanced the level of sustained gene expression, the uniformity of gene expression within clonal cell populations and the reproducibility of gene expression between clones. These ZFNs are a promising resource for cell engineering, mouse transgenesis and pre-clinical gene therapy studies. Furthermore, this characterization of the modular assembly method provides general insights into the implementation of the ZFN technology.
Collapse
Affiliation(s)
- Pablo Perez-Pinera
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | | | | | | |
Collapse
|
49
|
Towards artificial metallonucleases for gene therapy: recent advances and new perspectives. Future Med Chem 2011; 3:1935-66. [DOI: 10.4155/fmc.11.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The process of DNA targeting or repair of mutated genes within the cell, induced by specifically positioned double-strand cleavage of DNA near the mutated sequence, can be applied for gene therapy of monogenic diseases. For this purpose, highly specific artificial metallonucleases are developed. They are expected to be important future tools of modern genetics. The present state of art and strategies of research are summarized, including protein engineering and artificial ‘chemical’ nucleases. From the results, we learn about the basic role of the metal ions and the various ligands, and about the DNA binding and cleavage mechanism. The results collected provide useful guidance for engineering highly controlled enzymes for use in gene therapy.
Collapse
|
50
|
Turan S, Bode J. Site‐specific recombinases: from tag‐and‐target‐ to tag‐and‐exchange‐based genomic modifications. FASEB J 2011; 25:4088-107. [DOI: 10.1096/fj.11-186940] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Soeren Turan
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| | - Juergen Bode
- Institute for Experimental Hematology, Hannover Medical School Hannover Germany
| |
Collapse
|