1
|
Au E, Panganiban KJ, Wu S, Sun K, Humber B, Remington G, Agarwal SM, Giacca A, Pereira S, Hahn M. Antipsychotic-induced dysregulation of glucose metabolism through the central nervous system: a scoping review of animal models. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00300-8. [PMID: 39461717 DOI: 10.1016/j.bpsc.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The use of antipsychotic drugs is associated with adverse metabolic effects. Disruptions in glucose metabolism such as hyperglycemia and insulin resistance have been shown to occur with antipsychotic use, independent of changes in body weight or adiposity. The regulation of whole-body glucose metabolism is partly mediated by the central nervous system (CNS). In particular, the hypothalamus and brainstem are responsive to peripheral energy signals and subsequently mediate feedback mechanisms to maintain peripheral glucose homeostasis. In this scoping review of preclinical in vivo studies, we aimed to explore central mechanisms through which antipsychotics dysregulate glucose metabolism. A systematic search for animal studies identified 29 studies that met our eligibility criteria for qualitative synthesis. The studies suggest that antipsychotic-induced changes in autonomic nervous system activity, certain neurotransmitter systems, expression of neuropeptides, and central insulin action mediate impairments in glucose metabolism. These findings provide insight into potential targets for the mitigation of the adverse effects of antipsychotics on glucose metabolism.
Collapse
Affiliation(s)
- Emily Au
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - Kristoffer J Panganiban
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Sally Wu
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Kira Sun
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Bailey Humber
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Gary Remington
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sri Mahavir Agarwal
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Adria Giacca
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada
| | - Sandra Pereira
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Margaret Hahn
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Banting and Best Diabetes Centre, University of Toronto, Toronto, Ontario, Canada; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Xu J, Wan K, Wang H, Shi X, Wang J, Zhong Y, Gao C, Zhang Y, Nie G. Polyethylenimine-Poly(lactic- co-glycolic acid) 2 Nanoparticles Show an Innate Targeting Ability to the Submandibular Salivary Gland via the Muscarinic 3 Receptor. ACS CENTRAL SCIENCE 2021; 7:1938-1948. [PMID: 34841064 PMCID: PMC8614106 DOI: 10.1021/acscentsci.1c01083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Polymeric nanoparticles have been extensively explored for biomedical applications, especially as framework materials for the construction of functional nanostructures. However, less attention has been paid to the inherent biological activities of those polymers. In this work, one of the commonly used polymers in gene and protein delivery, polyethylenimine-poly(lactic-co-glycolic acid)2 (PEI-PLGA), was discovered by accident to be able to mediate the nanoparticles to target the submandibular salivary glands of mice after intravenous injection. PEI-PLGA nanoparticles with an unmodified PEI surface selectively accumulated in submandibular salivary glands with ex vivo and in vitro study, suggesting that a ligand-receptor interaction between PEI and muscarinic acetylcholine receptor subtype 3 (M3 receptor) contributed to this affinity. Docking computation for the molecular binding mode between PEI segments and M3 receptor indicated the way they interacted was similar to that of the FDA-approved specific M3 receptor antagonist, tiotropium. The key amino acids mediated this specific interaction between PEI-PLGA nanoparticles and M3 receptor were identified via a simulated alanine mutation study. This work demonstrates the unique characteristic of PEI-PLGA nanoparticles, which may be useful for the development of muscarinic receptor targeted nanomedicines and should be taken into consideration when PEI-based nanoparticles are applied in gene delivery.
Collapse
Affiliation(s)
- Junchao Xu
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaiwei Wan
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xinghua Shi
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Wang
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi Zhong
- State
Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical
Sciences, Peking University, Beijing 100191, China
| | - Chao Gao
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yinlong Zhang
- School
of Nanoscience and Technology, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangjun Nie
- CAS
Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety,
Laboratory of Theoretical and Computational Nanoscience, CAS Center
for Excellence in Nanoscience, National
Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Takahashi T, Shiraishi A, Murata J, Matsubara S, Nakaoka S, Kirimoto S, Osawa M. Muscarinic receptor M3 contributes to intestinal stem cell maintenance via EphB/ephrin-B signaling. Life Sci Alliance 2021; 4:4/9/e202000962. [PMID: 34244422 PMCID: PMC8321669 DOI: 10.26508/lsa.202000962] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/31/2022] Open
Abstract
Acetylcholine (ACh) signaling through activation of nicotinic and muscarinic ACh receptors regulates expression of specific genes that mediate and sustain proliferation, differentiation, and homeostasis in the intestinal crypts. This signaling plays a pivotal role in the regulation of intestinal stem cell function, but the details have not been clarified. Here, we performed experiments using type 3 muscarinic acetylcholine receptor (M3) knockout mice and their intestinal organoids and report that endogenous ACh affects the size of the intestinal stem niche via M3 signaling. RNA sequencing of crypts identified up-regulation of the EphB/ephrin-B signaling pathway. Furthermore, using an MEK inhibitor (U0126), we found that mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling, which is downstream of EphB/ephrin-B signaling, is activated in M3-deficient crypts. Collectively, M3, EphB/ephrin-B, and the MAPK/ERK signaling cascade work together to maintain the homeostasis of intestinal epithelial cell growth and differentiation following modifications of the cholinergic intestinal niche.
Collapse
Affiliation(s)
- Toshio Takahashi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Akira Shiraishi
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Jun Murata
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | - Shin Matsubara
- Suntory Foundation for Life Sciences, Bioorganic Research Institute, Kyoto, Japan
| | | | | | - Masatake Osawa
- Department of Regenerative Medicine and Applied Biomedical Sciences, Graduate School of Medicine, Gifu University, Gifu, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu, Japan
| |
Collapse
|
4
|
Wysocka A, Palasz E, Steczkowska M, Niewiadomska G. Dangerous Liaisons: Tau Interaction with Muscarinic Receptors. Curr Alzheimer Res 2021; 17:224-237. [PMID: 32329686 PMCID: PMC7509759 DOI: 10.2174/1567205017666200424134311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 02/05/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022]
Abstract
The molecular processes underlying neurodegenerative diseases (such as Alzheimer's Disease - AD) remain poorly understood. There is also an imperative need for disease-modifying therapies in AD since the present treatments, acetylcholinesterase inhibitors and NMDA antagonists, do not halt its progression. AD and other dementias present unique pathological features such as that of microtubule associated protein tau metabolic regulation. Tau has numerous binding partners, including signaling molecules, cytoskeletal elements and lipids, which suggests that it is a multifunctional protein. AD has also been associated with severe loss of cholinergic markers in the brain and such loss may be due to the toxic interaction of tau with cholinergic muscarinic receptors. By using specific antagonists of muscarinic receptors it was found in vitro that extracellular tau binds to M1 and M3 receptors and which the increase of intracellular calcium found in neuronal cells upon tau-binding. However, so far, the significance of tau signaling through muscarinic receptor in vivo in tauopathic models remains uncertain. The data reviewed in the present paper highlight the significant effect of M1 receptor/tau interaction in exacerbating tauopathy related pathological features and suggest that selective M1 agonists may serve as a prototype for future therapeutic development toward modification of currently intractable neurodegenerative diseases, such as tauopathies.
Collapse
Affiliation(s)
- Adrianna Wysocka
- Neurobiology Center, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Ewelina Palasz
- Department of Applied Physiology, Mossakowski Medical Research Center, 02-093 Warsaw, Poland
| | - Marta Steczkowska
- Department of Applied Physiology, Mossakowski Medical Research Center, 02-093 Warsaw, Poland
| | - Grazyna Niewiadomska
- Neurobiology Center, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| |
Collapse
|
5
|
Blockade of the M1 muscarinic acetylcholine receptors impairs eyeblink serial feature-positive discrimination learning in mice. PLoS One 2020; 15:e0237451. [PMID: 32790748 PMCID: PMC7425847 DOI: 10.1371/journal.pone.0237451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/27/2020] [Indexed: 11/19/2022] Open
Abstract
The serial feature-positive discrimination task requires the subjects to respond differentially to the identical stimulus depending on the temporal context given by a preceding cue stimulus. In the present study, we examined the involvement of the M1 muscarinic acetylcholine receptors using a selective M1 antagonist VU0255035 in the serial feature-positive discrimination task of eyeblink conditioning in mice. In this task, mice received a 2-s light stimulus as the conditional cue 5 or 6 s before the presentation of a 350-ms tone conditioned stimulus (CS) paired with a 100-ms peri-orbital electrical shock (cued trials), while they did not receive the cue before the presentation of the CS alone (non-cued trials). Each day mice randomly received 30 cued and 30 non-cued trials. We found that VU0255035 impaired acquisition of the conditional discrimination as well as the overall acquisition of the conditioned response (CR) and diminished the difference in onset latency of the CR between the cued and non-cued trials. VU0255035 administration to the control mice after sufficient learning did not impair the pre-acquired conditional discrimination or the CR expression itself. These effects of VU0255035 were almost similar to those with the scopolamine in our previous study, suggesting that among the several types of muscarinic acetylcholine receptors, the M1 receptors may play an important role in the acquisition of the conditional discrimination memory but not in mediating the discrimination itself after the memory had formed in the eyeblink serial feature-positive discrimination learning.
Collapse
|
6
|
Quaresma PGF, Teixeira PDS, Wasinski F, Campos AMP, List EO, Kopchick JJ, Donato J. Cholinergic neurons in the hypothalamus and dorsal motor nucleus of the vagus are directly responsive to growth hormone. Life Sci 2020; 259:118229. [PMID: 32781065 DOI: 10.1016/j.lfs.2020.118229] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023]
Abstract
AIMS Cholinergic neurons are distributed in brain areas containing growth hormone (GH)-responsive cells. We determined if cholinergic neurons are directly responsive to GH and the metabolic consequences of deleting the GH receptor (GHR) specifically in choline acetyltransferase (ChAT)-expressing cells. MAIN METHODS Mice received an acute injection of GH to detect neurons co-expressing ChAT and phosphorylated STAT5 (pSTAT5), a well-established marker of GH-responsive cells. For the physiological studies, mice carrying ablation of GHR exclusively in ChAT-expressing cells were produced and possible changes in energy and glucose homeostasis were determined when consuming regular chow or high-fat diet (HFD). KEY FINDINGS The majority of cholinergic neurons in the arcuate nucleus (60%) and dorsomedial nucleus (84%) of the hypothalamus are directly responsive to GH. Approximately 34% of pre-ganglionic parasympathetic neurons in the dorsal motor nucleus of the vagus also exhibited GH-induced pSTAT5. GH-induced pSTAT5 in these ChAT neurons was absent in GHR ChAT knockout mice. Mice carrying ChAT-specific GHR deletion, either in chow or HFD, did not exhibit significant changes in body weight, body adiposity, lean body mass, food intake, energy expenditure, respiratory quotient, ambulatory activity, serum leptin levels, glucose tolerance, insulin sensitivity and metabolic responses to 2-deoxy-d-glucose. However, GHR deletion in ChAT neurons caused decreased hypothalamic Pomc mRNA levels in HFD mice. SIGNIFICANCE Cholinergic neurons that regulate the metabolism are directly responsive to GH, although GHR signaling in these cells is not required for energy and glucose homeostasis. Thus, the physiological importance of GH action on cholinergic neurons still needs to be identified.
Collapse
Affiliation(s)
- Paula G F Quaresma
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Pryscila D S Teixeira
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Frederick Wasinski
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Ana M P Campos
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil
| | - Edward O List
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Jose Donato
- Universidade de Sao Paulo, Instituto de Ciencias Biomedicas, Departamento de Fisiologia e Biofisica, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
7
|
Elham E, Wumaier R, Wang C, Luo X, Chen T, Zhong N. Anatomic evidence shows that lymphatic drainage exists in the pituitary to loop the cerebral lymphatic circulation. Med Hypotheses 2020; 143:109898. [PMID: 32504926 PMCID: PMC7260572 DOI: 10.1016/j.mehy.2020.109898] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Respiratory infections can result in intracranial infections and unknown neurological symptoms. The central nervous system lacks classical meningeal lymphatic (circulation) drainage, and the exact underlying mechanisms of how immune cells from the peripheral lymphatic system enter the central nervous system (CNS) remain unknown. To determine whether the perinasal lymphatic system or lymphatic vessels are involved in cerebral immune defence and play a role in causing CNS infections (especially respiratory tract-related infections), we performed an anatomic study to investigate the drainage differences between the perinasal and intracerebral lymphatic systems by using injection of Evans blue and anatomic surgery, together with immunohistochemistry and immunofluorescence assays. Surprisingly, we found that (1) the pituitary (adenohypophysis) is involved and is rich in lymphatic vessels and (2) perinasal tissue could communicate with central pituitary lymphatic vessels in a specific and unidirectional manner. Taken together, our study may be the first to anatomically demonstrate the existence of novel lymphatic vessel structures in the pituitary, as well as their communication with the perinasal (lymphatic) tissue. Our findings suggest the existence of an ultimate loop for “classical” meningeal lymphatic drainage and are relevant to cerebral infection and immune defence.
Collapse
Affiliation(s)
- Elzat Elham
- Reconstruction and Micro-Surgery Center, Xuzhou Renci Hospital, Xuzhou Medical University, Xuzhou 221000, Jiangsu, China
| | - Reziya Wumaier
- Key Laboratory of Medical Molecular Virology, Institute of Biomedical Sciences and Institute of Medical Microbiology, Shanghai Medical College, Fudan University, 200032 Shanghai, China
| | - Chengji Wang
- Shanghai Laboratory Animal Research Center, 201203, Shanghai, China
| | - Xiangying Luo
- Department of Neurosurgery, XiangYa Hospital of Central South University, Changsha 410078, China
| | - Tao Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510120, China.
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong Province 510120, China
| |
Collapse
|
8
|
Goshu HA, Xiaoyun W, Chu M, Pengjia B, Xue Zhi D, Yan P. Novel copy number variations of the CHRM3 gene associated with gene expression and growth traits in Chinese Datong yak (Bos grunniens). JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1753750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Habtamu Abera Goshu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
- Oromia Agricultural Research Institute, Bako Agricultural Research Center, Bako, Ethiopia
| | - Wu Xiaoyun
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Min Chu
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Bao Pengjia
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ding Xue Zhi
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Science, Lanzhou, People’s Republic of China
| |
Collapse
|
9
|
Chowański S, Pacholska-Bogalska J, Rosiński G. Cholinergic Agonists and Antagonists Have an Effect on the Metabolism of the Beetle Tenebrio Molitor. Molecules 2018; 24:E17. [PMID: 30577556 PMCID: PMC6337165 DOI: 10.3390/molecules24010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/09/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022] Open
Abstract
Synthetic insecticides are still widely used in plant protection. The main target for their action is the nervous system, in which the cholinergic system plays a vital role. Currently available insecticides have low selectivity and act on the cholinergic systems of invertebrates and vertebrates. Acetylcholine, a cholinergic system neurotransmitter, acts on cells by two types of receptors: nicotinic and muscarinic. In mammals, the role of muscarinic acetylcholine receptors (mAChRs) is quite well-known but in insects, is still not enough. Based on data indicating that the muscarinic cholinergic system strongly affects mammalian metabolism, we investigated if it similarly occurs in insects. We investigated the influence of agonists (acetylcholine, carbachol, and pilocarpine) and antagonists (tropane alkaloids: atropine and scopolamine) of mAChRs on the level of selected metabolites in Tenebrio molitor beetle trophic tissues. We analyzed the glycogen content in the fat body and midgut, the total free sugar concentration in the hemolymph and the lipid amount in the fat body. Moreover, we analyzed the levels of insulin-like peptides in the hemolymph. The tested compounds significantly influenced the mentioned parameters. They increased the glycogen content in the fat body and midgut but decreased the concentration of free sugars in the hemolymph. The observed effects were tissue-specific, and were also time- and dose-dependent. We used nonligated and neck-ligated larvae (to eliminate the influence of head factors on tissue metabolism) to determine whether the observed changes are the result of direct or indirect impacts on tissues. The obtained data suggest that the cholinergic system affects the fat body and midgut indirectly and directly and a pleiotropic role for mAChRs exists in the regulation of energy metabolism in insects. Moreover, tested compounds significantly affected the level of insulin-like peptides in hemolymph. Our studies for the first time showed that mAChRs are involved in regulation of insect metabolism of trophic tissues, and act on them directly and indirectly. Improved knowledge about insect cholinergic system may help in searching more selective and environment-friendly solutions in pest management.
Collapse
Affiliation(s)
- Szymon Chowański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland.
| | - Joanna Pacholska-Bogalska
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland.
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University, 61-712 Poznań, Poland.
| |
Collapse
|
10
|
Lecomte MJ, Bertolus C, Ramanantsoa N, Saurini F, Callebert J, Sénamaud-Beaufort C, Ringot M, Bourgeois T, Matrot B, Collet C, Nardelli J, Mallet J, Vodjdani G, Gallego J, Launay JM, Berrard S. Acetylcholine Modulates the Hormones of the Growth Hormone/Insulinlike Growth Factor-1 Axis During Development in Mice. Endocrinology 2018; 159:1844-1859. [PMID: 29509880 DOI: 10.1210/en.2017-03175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/23/2018] [Indexed: 12/28/2022]
Abstract
Pituitary growth hormone (GH) and insulinlike growth factor (IGF)-1 are anabolic hormones whose physiological roles are particularly important during development. The activity of the GH/IGF-1 axis is controlled by complex neuroendocrine systems including two hypothalamic neuropeptides, GH-releasing hormone (GHRH) and somatostatin (SRIF), and a gastrointestinal hormone, ghrelin. The neurotransmitter acetylcholine (ACh) is involved in tuning GH secretion, and its GH-stimulatory action has mainly been shown in adults but is not clearly documented during development. ACh, together with these hormones and their receptors, is expressed before birth, and somatotroph cells are already responsive to GHRH, SRIF, and ghrelin. We thus hypothesized that ACh could contribute to the modulation of the main components of the somatotropic axis during development. In this study, we generated a choline acetyltransferase knockout mouse line and showed that heterozygous mice display a transient deficit in ACh from embryonic day 18.5 to postnatal day 10, and they recover normal ACh levels from the second postnatal week. This developmental ACh deficiency had no major impact on weight gain and cardiorespiratory status of newborn mice. Using this mouse model, we found that endogenous ACh levels determined the concentrations of circulating GH and IGF-1 at embryonic and postnatal stages. In particular, serum GH level was correlated with brain ACh content. ACh also modulated the levels of GHRH and SRIF in the hypothalamus and ghrelin in the stomach, and it affected the levels of these hormones in the circulation. This study identifies ACh as a potential regulator of the somatotropic axis during the developmental period.
Collapse
Affiliation(s)
- Marie-José Lecomte
- Univercell-Biosolutions, Centre de Recherche des Cordeliers, Paris, France
| | - Chloé Bertolus
- Département de Chirurgie Maxillo-Faciale, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
| | - Nélina Ramanantsoa
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Françoise Saurini
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Callebert
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | - Maud Ringot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Thomas Bourgeois
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Boris Matrot
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Corinne Collet
- U1132-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Jeannette Nardelli
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jacques Mallet
- UMRS1127-CNRS, Inserm, Université Pierre et Marie Curie, Sorbonne Universités, Hôpital Pitié-Salpêtrière, Paris, France
| | - Guilan Vodjdani
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| | - Jorge Gallego
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
| | - Jean-Marie Launay
- U942-Inserm, Université Paris-Descartes, Sorbonne Paris Cité, Hôpital Lariboisière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Sylvie Berrard
- PROTECT UMR1141-Inserm, Université Paris-Diderot, Sorbonne Paris Cité, Hôpital Robert Debré, Paris, France
- CNRS, Paris, France
| |
Collapse
|
11
|
Thomsen M, Sørensen G, Dencker D. Physiological roles of CNS muscarinic receptors gained from knockout mice. Neuropharmacology 2017; 136:411-420. [PMID: 28911965 DOI: 10.1016/j.neuropharm.2017.09.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022]
Abstract
Because the five muscarinic acetylcholine receptor subtypes have overlapping distributions in many CNS tissues, and because ligands with a high degree of selectivity for a given subtype long remained elusive, it has been difficult to determine the physiological functions of each receptor. Genetically engineered knockout mice, in which one or more muscarinic acetylcholine receptor subtype has been inactivated, have been instrumental in identifying muscarinic receptor functions in the CNS, at the neuronal, circuit, and behavioral level. These studies revealed important functions of muscarinic receptors modulating neuronal activity and neurotransmitter release in many brain regions, shaping neuronal plasticity, and affecting functions ranging from motor and sensory function to cognitive processes. As gene targeting technology evolves including the use of conditional, cell type specific strains, knockout mice are likely to continue to provide valuable insights into brain physiology and pathophysiology, and advance the development of new medications for a range of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and addictions, as well as non-opioid analgesics. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Morgane Thomsen
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark; Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | - Gunnar Sørensen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | - Ditte Dencker
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and University of Copenhagen, Denmark
| |
Collapse
|
12
|
Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol 2015; 37:2105-17. [DOI: 10.1007/s13277-015-4011-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 01/07/2023] Open
|
13
|
Muscarinic acetylcholine receptors: novel opportunities for drug development. Nat Rev Drug Discov 2014; 13:549-60. [PMID: 24903776 DOI: 10.1038/nrd4295] [Citation(s) in RCA: 300] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The muscarinic acetylcholine receptors are a subfamily of G protein-coupled receptors that regulate numerous fundamental functions of the central and peripheral nervous system. The past few years have witnessed unprecedented new insights into muscarinic receptor physiology, pharmacology and structure. These advances include the first structural views of muscarinic receptors in both inactive and active conformations, as well as a better understanding of the molecular underpinnings of muscarinic receptor regulation by allosteric modulators. These recent findings should facilitate the development of new muscarinic receptor subtype-selective ligands that could prove to be useful for the treatment of many severe pathophysiological conditions.
Collapse
|
14
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
15
|
Jiang S, Li Y, Zhang C, Zhao Y, Bu G, Xu H, Zhang YW. M1 muscarinic acetylcholine receptor in Alzheimer's disease. Neurosci Bull 2014; 30:295-307. [PMID: 24590577 DOI: 10.1007/s12264-013-1406-z] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/28/2013] [Indexed: 01/31/2023] Open
Abstract
The degeneration of cholinergic neurons and cholinergic hypofunction are pathologies associated with Alzheimer's disease (AD). Muscarinic acetylcholine receptors (mAChRs) mediate acetylcholine-induced neurotransmission and five mAChR subtypes (M1-M5) have been identified. Among them, M1 mAChR is widely expressed in the central nervous system and has been implicated in many physiological and pathological brain functions. In addition, M1 mAChR is postulated to be an important therapeutic target for AD and several other neurodegenerative diseases. In this article, we review recent progress in understanding the functional involvement of M1 mAChR in AD pathology and in developing M1 mAChR agonists for AD treatment.
Collapse
Affiliation(s)
- Shangtong Jiang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, Xiamen, 361102, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Second generation antipsychotics (SGAs) are widely prescribed to treat various disorders, most notably schizophrenia and bipolar disorder; however, SGAs can cause abnormal glucose metabolism that can lead to insulin-resistance and type 2 diabetes mellitus side-effects by largely unknown mechanisms. This review explores the potential candidature of the acetylcholine (ACh) muscarinic M3 receptor (M3R) as a prime mechanistic and possible therapeutic target of interest in SGA-induced insulin dysregulation. Studies have identified that SGA binding affinity to the M3R is a predictor of diabetes risk; indeed, olanzapine and clozapine, SGAs with the highest clinical incidence of diabetes side-effects, are potent M3R antagonists. Pancreatic M3Rs regulate the glucose-stimulated cholinergic pathway of insulin secretion; their activation on β-cells stimulates insulin secretion, while M3R blockade decreases insulin secretion. Genetic modification of M3Rs causes robust alterations in insulin levels and glucose tolerance in mice. Olanzapine alters M3R density in discrete nuclei of the hypothalamus and caudal brainstem, regions that regulate glucose homeostasis and insulin secretion through vagal innervation of the pancreas. Furthermore, studies have demonstrated a dynamic sensitivity of hypothalamic and brainstem M3Rs to altered glucometabolic status of the body. Therefore, the M3R is in a prime position to influence glucose homeostasis through direct effects on pancreatic β-cells and by potentially altering signalling in the hypothalamus and brainstem. SGA-induced insulin dysregulation may be partly due to blockade of central and peripheral M3Rs, causing an initial disruption to insulin secretion and glucose homeostasis that can progressively lead to insulin resistance and diabetes during chronic treatment.
Collapse
|
17
|
Kruse AC, Li J, Hu J, Kobilka BK, Wess J. Novel insights into M3 muscarinic acetylcholine receptor physiology and structure. J Mol Neurosci 2013; 53:316-23. [PMID: 24068573 DOI: 10.1007/s12031-013-0127-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/16/2013] [Indexed: 01/01/2023]
Abstract
Recent studies with M3 muscarinic acetylcholine receptor (M3R) mutant mice suggest that drugs selectively targeting this receptor subtype may prove useful for the treatment of various pathophysiological conditions. Moreover, the use of M3R-based designer G protein-coupled receptors (GPCRs) has provided novel insights into how Gq-coupled GPCRs can modulate whole-body glucose homeostasis by acting on specific peripheral cell types. More recently, we succeeded in using X-ray crystallography to determine the structure of the M3R bound to the bronchodilating drug tiotropium, a muscarinic antagonist (inverse agonist). This new structural information should facilitate the development of orthosteric or allosteric M3R-selective drugs that are predicted to have considerable therapeutic potential.
Collapse
Affiliation(s)
- Andrew C Kruse
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | | | | | | | | |
Collapse
|
18
|
Benes J, Mravec B, Kvetnansky R, Myslivecek J. The restructuring of muscarinic receptor subtype gene transcripts in c-fos knock-out mice. Brain Res Bull 2013; 94:30-9. [PMID: 23395867 DOI: 10.1016/j.brainresbull.2013.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Although c-Fos plays a key role in intracellular signalling, the disruption of the c-fos gene has only minor consequences on the central nervous system (CNS) function. As muscarinic receptors (MR) play important roles in many CNS functions (attention, arousal, and cognition), the c-fos knock-out might be compensated through MR changes. The aim of this study was to evaluate changes in the M1-M5 MR mRNA in selected CNS areas: frontal, parietal, temporal and occipital cortex, striatum, hippocampus, hypothalamus and cerebellum (FC, PC, TC, OC, stria, hip, hypo, and crbl, respectively). Knocking out the c-fos gene changed the expression of MR in FC (reduced M1R, M4R and M5R expression), TC (increased M4R expression), OC (decreased M2R and M3R expression) and hippocampus (reduced M3R expression). Moreover, gender differences were observed in WT mice: increased expression of all M1-M5R in the FC in males and M1-M4R in the striatum in females. A detailed analysis of MR transcripts showed pre-existing correlations in the amount of MR-mRNA between specific regions. WT mice showed three major types of cortico-cortical correlations: fronto-occipital, temporo-parietal and parieto-occipital. The cortico-subcortical correlations involved associations between the FC, PC, TC and striatum. In KO mice, a substantial rearrangement of the correlation pattern was observed: only a temporo-parietal correlation and correlations between the FC and striatum remained, and a new correlation between the hypothalamus and cerebellum appeared. Thus, in addition to the previously described dopamine receptor restructuring, the restructuring of MR mRNA correlations reveals an additional mechanism for adaptation to the c-fos gene knockout.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Abstract
Food is important to any animal, and a large part of the behavioral repertoire is concerned with ensuring adequate nutrition. Two main nutritional sensations, hunger and satiety, produce opposite behaviors. Hungry animals seek food, increase exploratory behavior and continue feeding once they encounter food. Satiated animals decrease exploratory behavior, take rest, and stop feeding. The signals of hunger or satiety and their effects on physiology and behavior will depend not only on the animal's current nutritional status but also on its experience and the environment in which the animal evolved. In our novel, nutritionally rich environment, improper control of appetite contributes to diseases from anorexia to the current epidemic of obesity. Despite extraordinary recent advances, genetic contribution to appetite control is still poorly understood partly due to lack of simple genetic model systems. In this review, we will discuss current understanding of molecular and cellular mechanisms by which animals regulate food intake depending on their nutritional status. Then, focusing on relatively less known muscarinic and cGMP signals, we will discuss how the molecular and behavioral aspects of hunger and satiety are conserved in a simple invertebrate model system, C. elegans so as for us to use it to understand the genetics of appetite control.
Collapse
Affiliation(s)
- Young-Jai You
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, Virginia
| | | |
Collapse
|
20
|
Abstract
Muscarinic acetylcholine (ACh) receptors (mAChRs; M₁-M₅) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10-15 years, studies with whole-body M₁-M₅ mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M₃ mAChRs in certain tissues or cells only, as well as a novel M₃ mAChR knockin mouse strain deficient in agonist-induced M₃ mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson's disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.
Collapse
|
21
|
Abstract
The physiological role of muscarinic receptors is highly complex and, although not completely understood, has become clearer over the last decade. Recent pharmacological evidence with novel compounds, together with data from transgenic mice, suggests that all five subtypes have defined functions in the nervous system as well as mediating the non neuronal, hormonal actions of acetylcholine. Numerous novel agonists, allosteric regulators, and antagonists have now been identified with authentic subtype specificity in vitro and in vivo. These compounds provide additional pharmacological opportunities for selective subtype modulation as well as a new generation of muscarinic receptor-based therapeutics.
Collapse
Affiliation(s)
- Richard M Eglen
- Corning Life Sciences, 900 Chelmsford St., MA 01851, Lowell, USA.
| |
Collapse
|
22
|
Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 2012; 482:552-6. [PMID: 22358844 PMCID: PMC3529910 DOI: 10.1038/nature10867] [Citation(s) in RCA: 606] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 01/18/2012] [Indexed: 12/12/2022]
Abstract
Acetylcholine (ACh), the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G protein-coupled receptors (GPCRs) known as muscarinic ACh receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G protein coupling preference and the physiological responses they mediate.2–4 Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences.5–6 We describe here the structure of the Gq/11-coupled M3 mAChR bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor, offers new possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows the first structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and raise additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer new insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
Collapse
|
23
|
Hahn M, Chintoh A, Giacca A, Xu L, Lam L, Mann S, Fletcher P, Guenette M, Cohn T, Wolever T, Arenovich T, Remington G. Atypical antipsychotics and effects of muscarinic, serotonergic, dopaminergic and histaminergic receptor binding on insulin secretion in vivo: an animal model. Schizophr Res 2011; 131:90-5. [PMID: 21696923 DOI: 10.1016/j.schres.2011.06.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 10/25/2022]
Abstract
The atypical antipsychotics (AAPs) have been associated with increased risk of type-2 diabetes. Evidence suggests direct, drug-related effects independent of weight gain and although mechanisms underlying this phenomenon are unclear, it has been suggested that the heterogeneous receptor binding profile of the AAPs may influence receptors implicated in glucose metabolism. This study aimed to clarify weight gain-independent mechanisms of AAP-induced changes in insulin secretion by deconstructing their binding profile with representative antagonists. Healthy rats were pretreated with a single subcutaneous dose of darifenacin 6 mg/kg (n=10), a selective M(3) muscarinic antagonist; ketanserin 2mg/kg (n=10), a 5HT(2A) antagonist; raclopride 0.3mg/kg (n=11) a selective D(2)/D(3) antagonist; terfenadine 20mg/kg (n=9) a selective H(1) antagonist; or, vehicle (n=11). Hyperglycemic clamps were employed following injection, providing an index of secretory capacity of pancreatic β-cells. Acute treatment with darifenacin and ketanserin significantly decreased insulin response to glucose challenge as compared to controls, which was confirmed in the darifenacin group by reduced C-peptide levels. Treatment with raclopride resulted in an increased insulin response and a strong tendency to increased C-peptide levels. H(1) blockade did not result in effects on insulin or C-peptide. Results suggest that the effects of antipsychotics on glucose dysregulation may be related to direct inhibitory effects of muscarinic (M(3)) and serotonergic (5HT(2)) antagonism on insulin secretion. Based on the expression of D(2)-like receptors in β-cells, which mediate inhibition of insulin secretion, we propose that prolonged D(2) blockade with antipsychotics may predispose to depletion of insulin stores and an eventual defect in pancreatic compensation.
Collapse
Affiliation(s)
- Margaret Hahn
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
McMillin SM, Heusel M, Liu T, Costanzi S, Wess J. Structural basis of M3 muscarinic receptor dimer/oligomer formation. J Biol Chem 2011; 286:28584-98. [PMID: 21685385 PMCID: PMC3151100 DOI: 10.1074/jbc.m111.259788] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Indexed: 01/03/2023] Open
Abstract
Class A G protein-coupled receptors (GPCRs) are known to form dimers and/or oligomeric arrays in vitro and in vivo. These complexes are thought to play important roles in modulating class A GPCR function. Many studies suggest that residues located on the "outer" (lipid-facing) surface of the transmembrane (TM) receptor core are critically involved in the formation of class A receptor dimers (oligomers). However, no clear consensus has emerged regarding the identity of the TM helices or TM subsegments involved in this process. To shed light on this issue, we have used the M(3) muscarinic acetylcholine receptor (M3R), a prototypic class A GPCR, as a model system. Using a comprehensive and unbiased approach, we subjected all outward-facing residues (70 amino acids total) of the TM helical bundle (TM1-7) of the M3R to systematic alanine substitution mutagenesis. We then characterized the resulting mutant receptors in radioligand binding and functional studies and determined their ability to form dimers (oligomers) in bioluminescence resonance energy transfer saturation assays. We found that M3R/M3R interactions are not dependent on the presence of one specific structural motif but involve the outer surfaces of multiple TM subsegments (TM1-5 and -7) located within the central and endofacial portions of the TM receptor core. Moreover, we demonstrated that the outward-facing surfaces of most TM helices play critical roles in proper receptor folding and/or function. Guided by the bioluminescence resonance energy transfer data, molecular modeling studies suggested the existence of multiple dimeric/oligomeric M3R arrangements, which may exist in a dynamic equilibrium. Given the high structural homology found among all class A GPCRs, our results should be of considerable general relevance.
Collapse
Affiliation(s)
| | | | - Tong Liu
- From the Laboratory of Bioorganic Chemistry and
| | - Stefano Costanzi
- Laboratory of Biological Modeling, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Jürgen Wess
- From the Laboratory of Bioorganic Chemistry and
| |
Collapse
|
25
|
Mullis PE. Genetics of GHRH, GHRH-receptor, GH and GH-receptor: its impact on pharmacogenetics. Best Pract Res Clin Endocrinol Metab 2011; 25:25-41. [PMID: 21396573 DOI: 10.1016/j.beem.2010.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required and, appropriate consideration should be given to genetic defects causing GH deficiency (GHD). Because Insulin-like-Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GHRH-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH-gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency they may present initially as GHD. These defects are discussed in various different chapters within this book, whereas, the impact of alterations of the GHRH-, GHRH-receptor- --as well as the GH-receptor (GHR) gene--will be discussed here.
Collapse
Affiliation(s)
- Primus-E Mullis
- Division of Paediatric Endocrinology, Diabetology & Metabolism, University Children's Hospital, Inselspital, Bern, Switzerland.
| |
Collapse
|
26
|
Rosemond E, Rossi M, McMillin SM, Scarselli M, Donaldson JG, Wess J. Regulation of M₃ muscarinic receptor expression and function by transmembrane protein 147. Mol Pharmacol 2010; 79:251-61. [PMID: 21056967 DOI: 10.1124/mol.110.067363] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The M₃ muscarinic acetylcholine receptor (M3R) regulates many fundamental physiological functions. To identify novel M3R-interacting proteins, we used a recently developed yeast two-hybrid screen (split ubiquitin method) to detect interactions among membrane proteins. This screen led to the identification of many novel M3R-associated proteins, including the putative membrane protein transmembrane protein 147 (Tmem147). The amino acid sequence of Tmem147 is highly conserved among mammals, but its physiological roles are unknown at present. We initially demonstrated that Tmem147 could be coimmunoprecipitated with M3Rs in cotransfected mammalian cells (COS-7 cells). Confocal imaging studies showed that Tmem147 was localized to endoplasmic reticulum (ER) membranes and that the Tmem147/M3R interaction occurred in the ER of cotransfected COS-7 cells, resulting in impaired trafficking of the M3R to the cell surface. To study the role of Tmem147 in modulating M3R function in a more physiologically relevant setting, we carried out studies with H508 human colon cancer cells that endogenously express M3Rs and Tmem147. Treatment of H508 cells with carbachol, a hydrolytically stable acetylcholine analog, promoted H508 cell proliferation and activation of the mitogenic kinase, p90RSK. Small interfering RNA-mediated knockdown of Tmem147 expression significantly augmented the stimulatory effects of carbachol on H508 cell proliferation and p90RSK activation. These effects were associated with an increase in the density of cell surface M3Rs. Our data clearly indicate that Tmem147 represents a potent negative regulator of M3R function, most likely by interacting with M3Rs in an intracellular compartment (ER). These findings may lead to new strategies aimed at modulating M3R activity for therapeutic purposes.
Collapse
Affiliation(s)
- Erica Rosemond
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | | | | | | | | | | |
Collapse
|
27
|
E. Mullis P. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol 2010; 2:52-62. [PMID: 21274339 PMCID: PMC3014602 DOI: 10.4274/jcrpe.v2i2.52] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 05/04/2010] [Indexed: 12/31/2022] Open
Abstract
When a child is not following the normal, predicted growth curve, an evaluation for underlying illnesses and central nervous system abnormalities is required, and appropriate consideration should be given to genetic defects causing growth hormone (GH) deficiency (GHD). Because Insulin-like Growth Factor-I (IGF-I) plays a pivotal role, GHD could also be considered as a form of IGF-I deficiency (IGFD). Although IGFD can develop at any level of the GH-releasing hormone (GHRH)-GH-IGF axis, a differentiation should be made between GHD (absent to low GH in circulation) and IGFD (normal to high GH in circulation). The main focus of this review is on the GH gene, the various gene alterations and their possible impact on the pituitary gland. However, although transcription factors regulating the pituitary gland development may cause multiple pituitary hormone deficiency, they may present initially as GHD.
Collapse
Affiliation(s)
- Primus E. Mullis
- Inselspital, Division of Paediatric Endocrinology, Diabetology&Metabolism, University Children’s Hospital, Bern, Switzerland
| |
Collapse
|
28
|
Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G. Signaling through the M(3) muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 2010; 11:231-8. [PMID: 20197056 PMCID: PMC2832931 DOI: 10.1016/j.cmet.2010.01.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Revised: 11/16/2009] [Accepted: 01/12/2010] [Indexed: 01/09/2023]
Abstract
Bone remodeling is regulated by various neuronal inputs, including sympathetic tone, which is known to inhibit bone mass accrual. This aspect of sympathetic nervous system function raises the prospect that the other arm of the autonomic nervous system, the parasympathetic nervous system, may also affect bone remodeling. Here, we use various mutant mouse strains, each lacking one of the muscarinic receptors that mediate parasympathetic activity, to show that the parasympathetic nervous system acting through the M(3) muscarinic receptor is a positive regulator of bone mass accrual, increasing bone formation and decreasing bone resorption. Gene expression studies, cell-specific gene deletion experiments, and analysis of compound mutant mice showed that the parasympathetic nervous system favors bone mass accrual by acting centrally and by decreasing the sympathetic tone. By showing that both arms of the autonomic nervous system affect bone remodeling, this study further underscores the importance of neuronal regulation of bone.
Collapse
Affiliation(s)
- Yu Shi
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Franck Oury
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Vijay K. Yadav
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - X. Sherry Liu
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Monzur Murshed
- Division of Biomedical Sciences, Faculty of Dentistry, McGill University, Montreal, Quebec H3A 2B2, Canada
| | - Gerard Karsenty
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Corresponding author: Gerard Karsenty, M.D., Ph.D., Address: 701 West 168th Street, New York, NY 10032, Phone: 212-305-4011, Fax: 212-923-2090,
| |
Collapse
|
29
|
Mohamadi A, Martari M, Holladay CD, Phillips JA, Mullis PE, Salvatori R. Mutation analysis of the muscarinic cholinergic receptor genes in isolated growth hormone deficiency type IB. J Clin Endocrinol Metab 2009; 94:2565-70. [PMID: 19417035 PMCID: PMC2708943 DOI: 10.1210/jc.2009-0512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. OBJECTIVE We hypothesized that mAchR mutations may cause a subset of familial IGHD. PATIENTS/METHODS After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. RESULTS In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. CONCLUSION mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.
Collapse
Affiliation(s)
- Ali Mohamadi
- Division of Endocrinology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | | | |
Collapse
|