1
|
Zhong Y, He JW, Huang CX, Lai HZ, Li XK, Zheng C, Fu X, You FM, Ma Q. The NcRNA/Wnt axis in lung cancer: oncogenic mechanisms, remarkable indicators and therapeutic targets. J Transl Med 2025; 23:326. [PMID: 40087753 PMCID: PMC11907837 DOI: 10.1186/s12967-025-06326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025] Open
Abstract
Early diagnosis of lung cancer (LC) is challenging, treatment options are limited, and treatment resistance leads to poor prognosis and management in most patients. The Wnt/β-catenin signaling pathway plays a vital role in the occurrence, progression, and therapeutic response of LC. Recent studies indicate that non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) function as epigenetic regulators that can promote or inhibit Wnt/β-catenin signaling by interacting with Wnt proteins, receptors, signaling transducers, and transcriptional effectors, thereby affecting LC cell proliferation, metastasis, invasion, and treatment resistance. Deepening our understanding of the regulatory network between ncRNAs and the Wnt/β-catenin signaling pathway will help overcome the limitations of current LC diagnosis and treatment methods. This article comprehensively reviews the regulatory mechanisms related to the functions of ncRNAs and the Wnt/β-catenin pathway in LC, examining their potential as diagnostic and prognostic biomarkers and therapeutic targets, aiming to offer new promising perspectives for LC diagnosis and treatment.
Collapse
Affiliation(s)
- Yang Zhong
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Jia-Wei He
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chun-Xia Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Heng-Zhou Lai
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Xue-Ke Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Xi Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Feng-Ming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| | - Qiong Ma
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, 610072, China.
| |
Collapse
|
2
|
Tong Z, Xu X, Shen C, Yang D, Li Y, Li Q, Yang W, Xu F, Wu Z, Zhou L, Zhan C, Mao H. All-in-one multiple extracellular vesicle miRNA detection on a miniaturized digital microfluidic workstation. Biosens Bioelectron 2025; 270:116976. [PMID: 39591923 DOI: 10.1016/j.bios.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
Extracellular vesicles (EVs) and EV-derived microRNAs (EV-miRNAs) are emerging as promising circulating biomarkers for early detection of malignant tumors such as non-small cell lung cancer (NSCLC). However, utilization of the gold standard method of RNA detection, the reverse transcription - quantitative polymerase chain reaction (RT-qPCR), on EV-miRNAs is hindered by laborious sample purification requirements and time-consuming multi-step procedures. Herein, we propose and demonstrate a miniaturized digital microfluidic (DMF) workstation for all-in-one EV-miRNA detection based on RT-qPCR. In comparison with the previously reported DMF platform for EV isolation, the system further integrates parallel on-chip real-time PCR capability with a comparable detection sensitivity with in-vitro RT-qPCR (limit of detection = 2 copies/μL), realizing automated, miniaturized, and facile EV-miRNA detection. Meanwhile, major methodological improvements were made, including one-step stem-looped RT-qPCR for miRNAs with both high sensitivity and specificity, and a simplified DMF substrate rework strategy for cost-effectiveness. As a demonstration, the detection of NSCLC-related EV-miRNAs within 20 μL of plasma samples was implemented, indicating the potential applicability of the DMF workstation and its automated protocol on point-of-care diagnosis of a wide range of diseases.
Collapse
Affiliation(s)
- Zhaoduo Tong
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Chuanjie Shen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dawei Yang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yan Li
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| | - Qiushi Li
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Weidong Yang
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fangliang Xu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenhua Wu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Zhou
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Hongju Mao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Min KW, Choi KM, Mun H, Ko S, Lee JW, Sagum CA, Bedford MT, Kim YK, Delaney JR, Cho JH, Dawson TM, Dawson VL, Twal W, Kim DC, Panganiban CH, Lang H, Zhou X, Shin S, Hu J, Heise T, Kwon SH, Kim D, Kim YH, Kang SU, Kim K, Lewis S, Eroglu A, Ryu S, Kim D, Chang JH, Jung J, Yoon JH. Mature microRNA-binding protein QKI suppresses extracellular microRNA let-7b release. J Cell Sci 2024; 137:jcs261575. [PMID: 39308343 PMCID: PMC11574364 DOI: 10.1242/jcs.261575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Argonaute (AGO), a component of RNA-induced silencing complexes (RISCs), is a representative RNA-binding protein (RBP) known to bind with mature microRNAs (miRNAs) and is directly involved in post-transcriptional gene silencing. However, despite the biological significance of miRNAs, the roles of other miRNA-binding proteins (miRBPs) remain unclear in the regulation of miRNA loading, dissociation from RISCs and extracellular release. In this study, we performed protein arrays to profile miRBPs and identify 118 RBPs that directly bind to miRNAs. Among those proteins, the RBP quaking (QKI) inhibits extracellular release of the mature microRNA let-7b by controlling the loading of let-7b into extracellular vesicles via additional miRBPs such as AUF1 (also known as hnRNPD) and hnRNPK. The enhanced extracellular release of let-7b after QKI depletion activates Toll-like receptor 7 (TLR7) and promotes the production of proinflammatory cytokines in recipient cells, leading to brain inflammation in the mouse cortex. Thus, this study reveals the contribution of QKI to the inhibition of brain inflammation via regulation of extracellular let-7b release.
Collapse
Affiliation(s)
- Kyung-Won Min
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Kyoung-Min Choi
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Hyejin Mun
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seungbeom Ko
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ji Won Lee
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Republic of Korea
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jung-Hyun Cho
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Waleed Twal
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Dong-Chan Kim
- R&D center, NOSQUEST Inc., Seongnam, Gyeonggi 13494, Republic of Korea
| | - Clarisse H Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xin Zhou
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Seula Shin
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jian Hu
- Department of Cancer Biology, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tilman Heise
- Department for Pediatric Hematology, Oncology and Stem Cell Transplantation, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Dongsan Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Young Hwa Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Ung Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kyungmin Kim
- Department of Biology, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Sydney Lewis
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Ahmet Eroglu
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| | - Seonghyun Ryu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Oklahoma Health, Sciences Center, Oklahoma City, OK 73117, USA
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Junyang Jung
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Oncology Science, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Pathology, College of Medicine, University of Oklahoma, Oklahoma City, OK 73104, USA
| |
Collapse
|
4
|
Ren QL, Li XL, Tian T, Li S, Shi RY, Wang Q, Zhu Y, Wang M, Hu H, Liu JG. Application of Natural Medicinal Plants Active Ingredients in Oral Squamous Cell Carcinoma. Chin J Integr Med 2024; 30:852-864. [PMID: 38607612 DOI: 10.1007/s11655-024-3804-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 04/13/2024]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignant cancer of the head and neck, with high morbidity and mortality, ranking as the sixth most common cancer in the world. The treatment of OSCC is mainly radiotherapy, chemotherapy and surgery, however, the prognosis of patients is still poor and the recurrence rate is high. This paper reviews the range of effects of natural medicinal plant active ingredients (NMPAIs) on OSCC cancer, including the types of NMPAIs, anti-cancer mechanisms, involved signaling pathways, and clinical trials. The NMPAIs include terpenoids, phenols, flavonoids, glycosides, alkaloids, coumarins, and volatile oils. These active ingredients inhibit proliferation, induce apoptosis and autophagy, inhibit migration and invasion of OSCC cells, and regulate cancer immunity to exert anti-cancer effects. The mechanism involves signaling pathways such as mitogen-activated protein kinase, phosphatidylinositol 3 kinase/protein kinase B, nuclear factor kappa B, miR-22/WNT1/β-catenin and Nrf2/Keap1. Clinically, NMPAIs can inhibit the growth of OSCC, and the combined drug is more effective. Natural medicinal plants are promising candidates for the treatment of OSCC.
Collapse
Affiliation(s)
- Qun-Li Ren
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Tian Tian
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Shuang Li
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Rong-Yi Shi
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Yuan Zhu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Microbial Resources and Drug Development Key Laboratory of Guizhou Tertiary Institution, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
5
|
Lu Q, Yu A, Pu J, Chen D, Zhong Y, Bai D, Yang L. Post-stroke cognitive impairment: exploring molecular mechanisms and omics biomarkers for early identification and intervention. Front Mol Neurosci 2024; 17:1375973. [PMID: 38845616 PMCID: PMC11153683 DOI: 10.3389/fnmol.2024.1375973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Post-stroke cognitive impairment (PSCI) is a major stroke consequence that has a severe impact on patients' quality of life and survival rate. For this reason, it is especially crucial to identify and intervene early in high-risk groups during the acute phase of stroke. Currently, there are no reliable and efficient techniques for the early diagnosis, appropriate evaluation, or prognostication of PSCI. Instead, plenty of biomarkers in stroke patients have progressively been linked to cognitive impairment in recent years. High-throughput omics techniques that generate large amounts of data and process it to a high quality have been used to screen and identify biomarkers of PSCI in order to investigate the molecular mechanisms of the disease. These techniques include metabolomics, which explores dynamic changes in the organism, gut microbiomics, which studies host-microbe interactions, genomics, which elucidates deeper disease mechanisms, transcriptomics and proteomics, which describe gene expression and regulation. We looked through electronic databases like PubMed, the Cochrane Library, Embase, Web of Science, and common databases for each omics to find biomarkers that might be connected to the pathophysiology of PSCI. As all, we found 34 studies: 14 in the field of metabolomics, 5 in the field of gut microbiomics, 5 in the field of genomics, 4 in the field of transcriptomics, and 7 in the field of proteomics. We discovered that neuroinflammation, oxidative stress, and atherosclerosis may be the primary causes of PSCI development, and that metabolomics may play a role in the molecular mechanisms of PSCI. In this study, we summarized the existing issues across omics technologies and discuss the latest discoveries of PSCI biomarkers in the context of omics, with the goal of investigating the molecular causes of post-stroke cognitive impairment. We also discuss the potential therapeutic utility of omics platforms for PSCI mechanisms, diagnosis, and intervention in order to promote the area's advancement towards precision PSCI treatment.
Collapse
Affiliation(s)
- Qiuyi Lu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Anqi Yu
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dawei Chen
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Yujie Zhong
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Dingqun Bai
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| | - Lining Yang
- Department of Rehabilitation, The First Affiliated Hospital of Chongqing Medical University, Chonging, China
| |
Collapse
|
6
|
Alipoor SD, Elieh-Ali-Komi D. Significance of extracellular vesicles in orchestration of immune responses in Mycobacterium tuberculosis infection. Front Cell Infect Microbiol 2024; 14:1398077. [PMID: 38836056 PMCID: PMC11148335 DOI: 10.3389/fcimb.2024.1398077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of Tuberculosis, is an intracellular bacterium well known for its ability to subvert host energy and metabolic pathways to maintain its intracellular survival. For this purpose, the bacteria utilize various mechanisms of which extracellular vehicles (EVs) related mechanisms attracted more attention. EVs are nanosized particles that are released by almost all cell types containing active biomolecules from the cell of origin and can target bioactive pathways in the recipient cells upon uptake. It is hypothesized that M.tb dictates the processes of host EV biogenesis pathways, selectively incorporating its molecules into the host EV to direct immune responses in its favor. During infection with Mtb, both mycobacteria and host cells release EVs. The composition of these EVs varies over time, influenced by the physiological and nutritional state of the host environment. Additionally, different EV populations contribute differently to the pathogenesis of disease at various stages of illness participating in a complex interplay between host cells and pathogens. These interactions ultimately influence immune responses and disease outcomes. However, the precise mechanisms and roles of EVs in pathogenicity and disease outcomes remain to be fully elucidated. In this review, we explored the properties and function of EVs in the context of M.tb infection within the host microenvironment and discussed their capacity as a novel therapeutic strategy to combat tuberculosis.
Collapse
Affiliation(s)
- Shamila D. Alipoor
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Daniel Elieh-Ali-Komi
- Institute of Allergology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Immunology and Allergology, Berlin, Germany
| |
Collapse
|
7
|
Madadjim R, An T, Cui J. MicroRNAs in Pancreatic Cancer: Advances in Biomarker Discovery and Therapeutic Implications. Int J Mol Sci 2024; 25:3914. [PMID: 38612727 PMCID: PMC11011772 DOI: 10.3390/ijms25073914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Pancreatic cancer remains a formidable malignancy characterized by high mortality rates, primarily attributable to late-stage diagnosis and a dearth of effective therapeutic interventions. The identification of reliable biomarkers holds paramount importance in enhancing early detection, prognostic evaluation, and targeted treatment modalities. Small non-coding RNAs, particularly microRNAs, have emerged as promising candidates for pancreatic cancer biomarkers in recent years. In this review, we delve into the evolving role of cellular and circulating miRNAs, including exosomal miRNAs, in the diagnosis, prognosis, and therapeutic targeting of pancreatic cancer. Drawing upon the latest research advancements in omics data-driven biomarker discovery, we also perform a case study using public datasets and address commonly identified research discrepancies, challenges, and limitations. Lastly, we discuss analytical approaches that integrate multimodal analyses incorporating clinical and molecular features, presenting new insights into identifying robust miRNA-centric biomarkers.
Collapse
Affiliation(s)
| | | | - Juan Cui
- School of Computing, University of Nebraska—Lincoln, Lincoln, NE 68588, USA; (R.M.); (T.A.)
| |
Collapse
|
8
|
Feng X, Yang X, Zhong Y, Cheng X. The role of ncRNAs-mediated pyroptosis in diabetes and its vascular complications. Cell Biochem Funct 2024; 42:e3968. [PMID: 38439590 DOI: 10.1002/cbf.3968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Over the past decade, the prevalence of diabetes has increased significantly worldwide, leading to an increase in vascular complications of diabetes (VCD), such as diabetic cardiomyopathy (DCM), diabetic nephropathy (DN), and diabetic retinopathy (DR). Noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), long Noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), play a key role in cellular processes, including the pathophysiology of diabetes and VCD via pyroptosis. ncRNAs (e.g., miR-17, lnc-MEG3, and lnc-KCNQ1OT1) can regulate pyroptosis in pancreatic β cells. Some ncRNAs are involved in VCD progression. For example, miR-21, lnc-KCNQ1OT1, lnc-GAS5, and lnc-MALAT1 were reported in DN and DCM, and lnc-MIAT was identified in DCM and DR. Herein, this review aimed to summarize recent research findings related to ncRNAs-mediated pyroptosis at the onset and progression of diabetes and VCD.
Collapse
Affiliation(s)
- Xinyao Feng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xiaoxu Yang
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Yancheng Zhong
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Xihua Cheng
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
9
|
Luo S, Meng X, Xu LP, Zhang X. Intracellular MicroRNA Imaging and Specific Discrimination of Prostate Cancer Circulating Tumor Cells Using Multifunctional Gold Nanoprobe-Based Thermophoretic Assay. Anal Chem 2024; 96:2217-2226. [PMID: 38262909 DOI: 10.1021/acs.analchem.3c05287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Circulating tumor cells (CTCs) have emerged as powerful biomarkers for diagnosis of prostate cancer. However, the effective identification and concurrently accurate imaging of CTCs for early screening of prostate cancer have been rarely explored. Herein, we reported a multifunctional gold nanoprobe-based thermophoretic assay for simultaneous specific distinguishing of prostate cancer CTCs and sensitive imaging of intracellular microRNA (miR-21), achieving the rapid and precise detection of prostate cancer. The multifunctional gold nanoprobe (GNP-DNA/Ab) was modified by two types of prostate-specific antibodies, anti-PSMA and anti-EpCAM, which could effectively recognize the targeting CTCs, and meanwhile linked double-stranded DNA for further visually imaging intracellular miR-21. Upon the specific internalization of GNP-DNA/Ab by PC-3 cells, target aberrant miR-21 could displace the signal strand to recover the fluorescence signal for sensitive detection at the single-cell level, achieving single PC-3 cell imaging benefiting from the thermophoresis-mediated signal amplification procedure. Taking advantage of the sensitive miR-21 imaging performance, GNP-DNA/Ab could be employed to discriminate the PC-3 and Jurkat cells because of the different expression levels of miR-21. Notably, PC-3 cells were efficiently recognized from white blood cells, exhibiting promising potential for the early diagnosis of prostate cancer. Furthermore, GNP-DNA/Ab possessed good biocompatibility and stability. Therefore, this work provides a great tool for aberrant miRNA-related detection and specific discrimination of CTCs, achieving the early and accurate diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Shuiyou Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xiangdan Meng
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
| | - Xueji Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology Research Centre for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, P. R. China
- Marshall Laboratory of Biomedical Engineering, Precision Medicine and Health Research Institute, Shenzhen Key Laboratory for Nano-Biosensing Technology, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Guangdong 518060, P. R. China
| |
Collapse
|
10
|
Khairnar P, Kolipaka T, Pandey G, Phatale V, Shah S, Srinivasarao DA, Saraf S, Srivastava S. Nanosponge-mediated oligonucleotide delivery: A cutting-edge technology towards cancer management. J Drug Deliv Sci Technol 2024; 91:105226. [DOI: 10.1016/j.jddst.2023.105226] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Mohan S, Hakami MA, Dailah HG, Khalid A, Najmi A, Zoghebi K, Halawi MA. The emerging role of noncoding RNAs in the EGFR signaling pathway in lung cancer. Pathol Res Pract 2024; 253:155016. [PMID: 38070221 DOI: 10.1016/j.prp.2023.155016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/02/2023] [Accepted: 12/02/2023] [Indexed: 01/24/2024]
Abstract
Noncoding ribonucleic acids (ncRNAs) have surfaced as essential orchestrators within the intricate system of neoplastic biology. Specifically, the epidermal growth factor receptor (EGFR) signalling cascade shows a central role in the etiological underpinnings of pulmonary carcinoma. Pulmonary malignancy persists as a preeminent contributor to worldwide mortality attributable to malignant neoplasms, with non-small cell lung carcinoma (NSCLC) emerging as the most predominant histopathological subcategory. EGFR is a key driver of NSCLC, and its dysregulation is frequently associated with tumorigenesis, metastasis, and resistance to therapy. Over the past decade, researchers have unveiled a complex network of ncRNAs, encompassing microRNAs, long noncoding RNAs, and circular RNAs, which intricately regulate EGFR signalling. MicroRNAs, as versatile post-transcriptional regulators, have been shown to target various components of the EGFR pathway, influencing cancer cell proliferation, migration, and apoptosis. Additionally, ncRNAs have emerged as critical modulators of EGFR signalling, with their potential to act as scaffolds, decoys, or guides for EGFR-related proteins. Circular RNAs, a relatively recent addition to the ncRNA family, have also been implicated in EGFR signalling regulation. The clinical implications of ncRNAs in EGFR-driven lung cancer are substantial. These molecules exhibit diagnostic potential as robust biomarkers for early cancer detection and personalized treatment. Furthermore, their predictive value extends to predicting disease progression and therapeutic outcomes. Targeting ncRNAs in the EGFR pathway represents a novel therapeutic approach with promising results in preclinical and early clinical studies. This review explores the increasing evidence supporting the significant role of ncRNAs in modulating EGFR signalling in lung cancer, shedding light on their potential diagnostic, prognostic, and therapeutic implications.
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; School of Health Sciences, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India; Center for Global health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Hamad Ghaleb Dailah
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Maryam A Halawi
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
12
|
Wang Y, Wang D, Qi G, Hu P, Wang E, Jin Y. Glass Nanopipette-Based Plasmonic SERS Platform for Single-Cell MicroRNA-21 Sensing during Apoptosis. Anal Chem 2023; 95:16234-16242. [PMID: 37889218 DOI: 10.1021/acs.analchem.3c03042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
As one of the most widely distributed microRNAs, microRNA-21 (miRNA-21) significantly regulates target genes' expression levels and participates in many cellular and intercellular activities, and its abnormal expression is always related to some diseases, especially cancer. Hence, detecting miRNA-21, as a biomarker, at the single-cell level helps us to reveal cell heterogeneity and expression level variation during the state change of cells. In this study, we constructed a gold nanoparticles nanomembrane (AuNPs-NM)-modified plasmonic glass nanopipette (P-nanopipette) surface-enhanced Raman scattering (SERS) sensing platform to sensitively detect content variation of the intracellular miRNA-21 during the electrostimulus (ES)-induced apoptosis process. The cytoplasm-located miRNA-21 was first extracted by using the extraction DNA (HP1)-modified P-nanopipette through a hybridization chain reaction (HCR). The nanopipette was then incubated with a labeling DNA (HP2) and reporter 4-MBA-modified Raman tag. The Raman signal (collected from the tip area near the orifice within 1 μm) showed a good response to the content variation of intracellular miRNA-21 under ES, and the proposed single-cell SERS detection platform provides a simple way to study intracellular substance change and evaluate cancer treatment outcomes.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guohua Qi
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ping Hu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
13
|
Oyama S, Tomita M, Hata M, Mikame Y, Yamamoto T, Ashihara E, Yamayoshi A. Exosome-Hijacking Drug Delivery System with Branched Arginine Linker Effectively Deliver Antisense Oligonucleotides into Lung Adenocarcinoma Cells. Chem Pharm Bull (Tokyo) 2023; 71:819-823. [PMID: 37730339 DOI: 10.1248/cpb.c23-00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Exosomes are a type of extracellular vesicles that contain diverse molecules and are present in our body fluids. They play a crucial role in transporting materials and transmitting signals between cells. Currently, there have been numerous reports on the use of exosomes in drug delivery systems (DDS). However, most existing methods for utilizing exosomes in DDS require the isolation and purification of exosomes, which raises concerns about yield and potential damage to the exosomes. Recently, we have developed a novel DDS called "ExomiR-Tracker" that harnesses exosomes without the need for isolation and purification. This system aims to deliver nucleic acid drugs effectively. ExomiR-Tracker consists of an anti-exosome antibody equipped with nona-D-arginines (9 mer) and nucleic acid drugs which have complementary sequence of target microRNA (anti-miR). In this study, we modified ExomiR-Tracker by incorporating branched nona-D-arginines (9 + 9 mer) molecules (referred to as Branch ExomiR-Tracker) and evaluated its efficacy in lung adenocarcinoma cells (A549 cells). The improved complex formation ability and enhanced cellular uptake of anti-miR, demonstrated by our findings, highlight the advantages of incorporating branched oligoarginine peptides into the ExomiR-Tracker platform. These results represent significant progress in revealing the effectiveness of Branch ExomiR-Tracker against adhesive cancer cells, which has not been shown to be effective with the conventional Linear ExomiR-Tracker.
Collapse
Affiliation(s)
- Shota Oyama
- Graduate School of Biomedical Sciences, Nagasaki University
- Research Fellow of Japan Society for the Promotion of Science, Japan Society for the Promotion of Science
| | - Mao Tomita
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Moeka Hata
- Graduate School of Biomedical Sciences, Nagasaki University
| | - Yu Mikame
- Graduate School of Biomedical Sciences, Nagasaki University
| | | | - Eishi Ashihara
- Laboratory of Clinical and Translational Physiology, Kyoto Pharmaceutical University
| | | |
Collapse
|
14
|
Hamouz M, Hammouz RY, Bajwa MA, Alsayed AW, Orzechowska M, Bednarek AK. A Functional Genomics Review of Non-Small-Cell Lung Cancer in Never Smokers. Int J Mol Sci 2023; 24:13314. [PMID: 37686122 PMCID: PMC10488233 DOI: 10.3390/ijms241713314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
There is currently a dearth of information regarding lung cancer in never smokers (LCINS). Additionally, there is a difference in somatic mutations, tumour mutational burden, and chromosomal aberrations between smokers and never smokers (NS), insinuating a different disease entity in LCINS. A better understanding of actionable driver alterations prevalent in LCINS and the genomic landscape will contribute to identifying new molecular targets of relevance for NS that will drastically improve outcomes. Differences in treatment outcomes between NS and smokers, as well as sexes, with NSCLC suggest unique tumour characteristics. Epidermal growth factor receptor (EGFR) tyrosine kinase mutations and echinoderm microtubule-associated protein-like 4 anaplastic lymphoma kinase (EML4-ALK) gene rearrangements are more common in NS and have been associated with chemotherapy resistance. Moreover, NS are less likely to benefit from immune mediators including PD-L1. Unravelling the genomic and epigenomic underpinnings of LCINS will aid in the development of not only novel targeted therapies but also more refined approaches. This review encompasses driver genes and pathways involved in the pathogenesis of LCINS and a deeper exploration of the genomic landscape and tumour microenvironment. We highlight the dire need to define the genetic and environmental aspects entailing the development of lung cancer in NS.
Collapse
|
15
|
Song Y, Kelava L, Kiss I. MiRNAs in Lung Adenocarcinoma: Role, Diagnosis, Prognosis, and Therapy. Int J Mol Sci 2023; 24:13302. [PMID: 37686110 PMCID: PMC10487838 DOI: 10.3390/ijms241713302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Lung cancer has emerged as a significant public health challenge and remains the leading cause of cancer-related mortality worldwide. Among various types of lung malignancies, lung adenocarcinoma (LUAD) stands as the most prevalent form. MicroRNAs (miRNAs) play a crucial role in gene regulation, and their involvement in cancer has been extensively explored. While several reviews have been published on miRNAs and lung cancer, there remains a gap in the review regarding miRNAs specifically in LUAD. In this review, we not only highlight the potential diagnostic, prognostic, and therapeutic implications of miRNAs in LUAD, but also present an inclusive overview of the extensive research conducted on miRNAs in this particular context.
Collapse
Affiliation(s)
- Yongan Song
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| | - Leonardo Kelava
- Department of Thermophysiology, Institute for Translational Medicine, Medical School, University of Pécs, Szigeti Str. 12, 7624 Pécs, Hungary
| | - István Kiss
- Department of Public Health Medicine, University of Pécs Medical School, Szigeti Str. 12, 7624 Pécs, Hungary
| |
Collapse
|
16
|
Ho V, Baker JR, Willison KR, Barnes PJ, Donnelly LE, Klug DR. Single cell quantification of microRNA from small numbers of non-invasively sampled primary human cells. Commun Biol 2023; 6:458. [PMID: 37100999 PMCID: PMC10133449 DOI: 10.1038/s42003-023-04845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/17/2023] [Indexed: 04/28/2023] Open
Abstract
Expression levels of microRNAs (miRNAs) in single cells are low and conventional miRNA detection methods require amplification that can be complex, time-consuming, costly and may bias results. Single cell microfluidic platforms have been developed; however, current approaches are unable to absolutely quantify single miRNA molecules expressed in single cells. Herein, we present an amplification-free sandwich hybridisation assay to detect single miRNA molecules in single cells using a microfluidic platform that optically traps and lyses individual cells. Absolute quantification of miR-21 and miR-34a molecules was achieved at a single cell level in human cell lines and validated using real-time qPCR. The sensitivity of the assay was demonstrated by quantifying single miRNA molecules in nasal epithelial cells and CD3+ T-cells, as well as nasal fluid collected non-invasively from healthy individuals. This platform requires ~50 cells or ~30 µL biofluid and can be extended for other miRNA targets therefore it could monitor miRNA levels in disease progression or clinical studies.
Collapse
Affiliation(s)
- Vanessa Ho
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Jonathan R Baker
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Keith R Willison
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK
| | - Louise E Donnelly
- National Heart and Lung Institute, Imperial College London, Guy Scadding Building, Dovehouse Street, London, SW3 6LY, UK.
| | - David R Klug
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London, W12 0BZ, UK
| |
Collapse
|
17
|
Dong L, Jiang H, Kang Z, Guan M. Biomarkers for chemotherapy and drug resistance in the mismatch repair pathway. Clin Chim Acta 2023; 544:117338. [PMID: 37060988 DOI: 10.1016/j.cca.2023.117338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 04/09/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
Drugs targeting DNA repair have developed rapidly in cancer therapy, and numerous inhibitors have already been utilized in preclinical and clinical stages. To optimize the selection of patients for treatment, it is essential to discover biomarkers to anticipate chemotherapy response. The DNA mismatch repair (MMR) pathway is closely correlated with cancer susceptibility and plays an important role in the occurrence and development of cancers. Here, we give a concise introduction of the MMR genes and focus on the potential biomarkers of chemotherapeutic response and resistance. It has been clarified that the status of MMR may affect the outcome of chemotherapy. However, the specific underlying mechanisms as well as contradictory results continue to raise considerable controversy and concern. In this review, we summarize the current literature to provide a general overview.
Collapse
Affiliation(s)
- Liu Dong
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China
| | - Zhihua Kang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, USA.
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical School, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Hisakane K, Seike M, Sugano T, Matsuda K, Kashiwada T, Nakamichi S, Matsumoto M, Miyanaga A, Noro R, Kubota K, Gemma A. Serum-derived exosomal miR-125a-3p predicts the response to anti-programmed cell death-1/programmed cell death-ligand 1 monotherapy in patients with non-small cell lung cancer. Gene 2023; 857:147177. [PMID: 36623674 DOI: 10.1016/j.gene.2023.147177] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 12/19/2022] [Accepted: 01/04/2023] [Indexed: 01/08/2023]
Abstract
BACKGROUND Versatile biomarkers for immune checkpoint inhibitors (ICI) efficacy in patients with cancer remain to be identified. Liquid biopsy using serum-derived exosomal microRNAs (miRNAs) are widely investigated as diagnostic and therapeutic outcome predictors in patients with cancer. However, exosomal miRNAs linked to the response to ICI in patients with non-small cell lung cancer (NSCLC) remain elusive thus far. METHODS The value of serum-derived exosomal miRNAs in predicting the effect of anti-programmed cell death-1 (PD-1)/anti-programmed cell death-ligand 1 (PD-L1) monotherapy in 41 patients with advanced NSCLC was assessed. We performed functional analysis of candidate miRNAs using NSCLC cell lines. RESULTS Exosomal miR-125a-3p was associated with response to treatment with ICI. Exosomal miR-125a-3p was more useful in predicting response to ICI versus tumoral PD-L1 in patients with low PD-L1 expression <50 %). Moreover, high expression of miR-125a-3p was associated with worse progression-free and overall survival. In H1975 and H441 cells, induction of miR-125a-3p regulated PD-L1 expression via suppression of neuregulin 1 (NRG1). CONCLUSIONS Exosomal miR-125a-3p is a potential predictor of response to anti-PD-1/PD-L1 therapy in advanced NSCLC patients with low PD-L1 expression.
Collapse
Affiliation(s)
- Kakeru Hisakane
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | - Teppei Sugano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Takeru Kashiwada
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
19
|
Cen S, Jiang D, Lv D, Xu R, Hou J, Yang Z, Wu P, Xiong X, Gao X. Comprehensive analysis of the biological functions of endoplasmic reticulum stress in prostate cancer. Front Endocrinol (Lausanne) 2023; 14:1090277. [PMID: 36967783 PMCID: PMC10036859 DOI: 10.3389/fendo.2023.1090277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023] Open
Abstract
Introduction Endoplasmic reticulum stress (ERS) has sizeable affect on cancer proliferation, metastasis, immunotherapy and chemoradiotherapy resistance. However, the effect of ERS on the biochemical recurrence (BCR) of prostate cancer patients remains elusive. Here, we generated an ERS-related genes risk signature to evaluate the physiological function of ERS in PCa with BCR. Methods We collected the ERS-related genes from the GeneCards. The edgeR package was used to screen the differential ERS-related genes in PCa from TCGA datasets. ERS-related gene risk signature was then established using LASSO and multivariate Cox regression models and validated by GEO data sets. Nomogram was developed to assess BCR-free survival possibility. Meanwhile, the correlations between ERS-related signature, gene mutations, drug sensitivity and tumor microenvironment were also investigated. Results We obtained an ERS risk signature consisting of five genes (AFP, COL10A1, DNAJB1, EGF and PTGS2). Kaplan Meier survival analysis and ROC Curve analysis indicated that the high risk score of ERS-related gene signature was associated with poor BCR-free prognosis in PCa patients. Besides, immune cell infiltration and immune checkpoint expression levels differed between high- and low-risk scoring subgroups. Moreover, drug sensitivity analyzed indicated that high-risk score group may be involved in apoptosis pathway. Discussion This study comprehensively analyzed the characteristics of ERS related genes in PCa, and created a five-gene signature, which could effectively predict the BCR time of PCa patients. Targeting ERS related genes and pathways may provide potential guidance for the treatment of PCa.
Collapse
Affiliation(s)
- Shengren Cen
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Dongmei Jiang
- Department of Pathology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Daojun Lv
- Department of Urology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ran Xu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiamao Hou
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zixiang Yang
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Wu
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhao Xiong
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Gao
- Department of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Song XY, Liu XW, Wang J. Suberoylanilide hydroxamic acid (SAHA) attenuates memory impairment in the offspring of rats exposed to sevoflurane anesthesia. Biochem Biophys Res Commun 2023; 643:139-146. [PMID: 36609154 DOI: 10.1016/j.bbrc.2022.11.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/13/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND SAHA was reported to enhance the expression of miR-129-5p, which was predicted to bind to 3' UTR of CASP-6, a gene playing crucial roles in the pathogenesis of memory impairment. Whether SAHA/miR-129-5p/CASP-6 is involved in the pathogenesis of prenatal exposure to sevoflurane remains to be explored. METHODS Morris water maze test was performed to evaluate the functional parameters of learning and memory. Quantitative real-time qPCR was carried out to analyze the expression of miRNAs and CASP-6 mRNA under different conditions. RESULTS Sevoflurane exposure of pregnant rats and SAHA treatment of the offspring had no effect on the blood gases, litter size, survival rate and weight. SAHA administration remarkably reversed the learning and memory impairment in prenatal rats caused by sevoflurane exposure. Mechanistically, the abnormal expression of miR-129-5p and CASP-6 in the offspring of pregnant rats exposed to sevoflurane was effectively restored by SAHA treatment. The luciferase activity of CASP-6 vector was effectively inhibited by miR-129-5p in primary neuron cells of rats. Moreover, the expression of CASP-6 mRNA and protein was significantly suppressed by miR-129-5p and SAHA treatment in a dose-dependent manner. CONCLUSION Our work demonstrated that the administration of SAHA suppressed the expression of CASP-6 via modulating the expression of miR-129-5p, and SAHA may rescue the apoptosis of neurons caused by exposure to sevoflurane. The underlying mechanism might be the ability of SAHA to relieve learning and memory impairment in the offspring of the pregnant rats exposed to sevoflurane.
Collapse
Affiliation(s)
- Xiao-Yuan Song
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| | - Xiu-Wen Liu
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China.
| | - Jia Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi, 030012, China
| |
Collapse
|
21
|
Identification of Potential microRNA Panels for Male Non-Small Cell Lung Cancer Identification Using Microarray Datasets and Bioinformatics Methods. J Pers Med 2022; 12:jpm12122056. [PMID: 36556276 PMCID: PMC9780989 DOI: 10.3390/jpm12122056] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Background: Non-small cell lung cancer (NSCLC) is still one of the types of cancer with the highest death rates. MicroRNAs (miRNAs) play essential roles in NSCLC development. This study evaluates miRNA expression patterns and specific mechanisms in male patients with NSCLC. Methods: We report an integrated microarray analysis of miRNAs for eight matched samples of males with NSCLC compared to the study of public datasets of males with NSCLC from TCGA, followed by qRT-PCR validation. Results: For the TCGA dataset, we identified 385 overexpressed and 75 underexpressed miRNAs. Our cohort identified 54 overexpressed and 77 underexpressed miRNAs, considering a fold-change (FC) of ±1.5 and p < 0.05 as the cutoff value. The common miRNA signature consisted of eight overexpressed and nine underexpressed miRNAs. Validation was performed using qRT-PCR on the tissue samples for miR-183-3p and miR-34c-5p and on plasma samples for miR-34c-5p. We also created mRNA-miRNA regulatory networks to identify critical molecules, revealing NSCLC signaling pathways related to underexpressed and overexpressed transcripts. The genes targeted by these transcripts were correlated with overall survival. Conclusions: miRNAs and some of their target genes could play essential roles in investigating the mechanisms involved in NSCLC evolution and provide opportunities to identify potential therapeutic targets.
Collapse
|
22
|
Zhang WC, Skiados N, Aftab F, Moreno C, Silva L, Corbilla PJA, Asara JM, Hata AN, Slack FJ. MicroRNA-21 guide and passenger strand regulation of adenylosuccinate lyase-mediated purine metabolism promotes transition to an EGFR-TKI-tolerant persister state. Cancer Gene Ther 2022; 29:1878-1894. [PMID: 35840668 PMCID: PMC9750876 DOI: 10.1038/s41417-022-00504-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023]
Abstract
In EGFR-mutant lung cancer, drug-tolerant persister cells (DTPCs) show prolonged survival when receiving EGFR tyrosine kinase inhibitor (TKI) treatments. They are a likely source of drug resistance, but little is known about how these cells tolerate drugs. Ribonucleic acids (RNAs) molecules control cell growth and stress responses. Nucleic acid metabolism provides metabolites, such as purines, supporting RNA synthesis and downstream functions. Recently, noncoding RNAs (ncRNAs), such as microRNAs (miRNAs), have received attention due to their capacity to repress gene expression via inhibitory binding to downstream messenger RNAs (mRNAs). Here, our study links miRNA expression to purine metabolism and drug tolerance. MiR-21-5p (guide strand) is a commonly upregulated miRNA in disease states, including cancer and drug resistance. However, the expression and function of miR-21-3p (passenger strand) are not well understood. We found that upregulation of miR-21-5p and miR-21-3p tune purine metabolism leading to increased drug tolerance. Metabolomics data demonstrated that purine metabolism was the top pathway in the DTPCs compared with the parental cells. The changes in purine metabolites in the DTPCs were partially rescued by targeting miR-21. Analysis of protein levels in the DTPCs showed that reduced expression of adenylosuccinate lyase (ADSL) was reversed after the miR-21 knockdown. ADSL is an essential enzyme in the de novo purine biosynthesis pathway by converting succino-5-aminoimidazole-4-carboxamide riboside (succino-AICAR or SAICAR) to AICAR (or acadesine) as well as adenylosuccinate to adenosine monophosphate (AMP). In the DTPCs, miR-21-5p and miR-21-3p repress ADSL expression. The levels of top decreased metabolite in the DTPCs, AICAR was reversed when miR-21 was blocked. AICAR induced oxidative stress, evidenced by increased reactive oxygen species (ROS) and reduced expression of nuclear factor erythroid-2-related factor 2 (NRF2). Concurrently, miR-21 knockdown induced ROS generation. Therapeutically, a combination of AICAR and osimertinib increased ROS levels and decreased osimertinib-induced NRF2 expression. In a MIR21 knockout mouse model, MIR21 loss-of-function led to increased purine metabolites but reduced ROS scavenging capacity in lung tissues in physiological conditions. Our data has established a link between ncRNAs, purine metabolism, and the redox imbalance pathway. This discovery will increase knowledge of the complexity of the regulatory RNA network and potentially enable novel therapeutic options for drug-resistant patients.
Collapse
Affiliation(s)
- Wen Cai Zhang
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| | - Nicholas Skiados
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Fareesa Aftab
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Cerena Moreno
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Luis Silva
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Paul Joshua Anthony Corbilla
- Department of Cancer Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - John M Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Aaron N Hata
- Department of Medicine, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Frank J Slack
- Harvard Medical School Initiative for RNA Medicine, Department of Pathology, Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
23
|
Esmaeilzadeh AA, Yaseen MM, Khudaynazarov U, Al-Gazally ME, Catalan Opulencia MJ, Jalil AT, Mohammed RN. Recent advances on the electrochemical and optical biosensing strategies for monitoring microRNA-21: a review. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4449-4459. [PMID: 36330992 DOI: 10.1039/d2ay01384c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The small non-coding RNA, microRNA-21 (miR-21), is dysregulated in various cancers and can be considered an appropriate target for therapeutic approaches. Therefore, the detection of miR-21 concentration is important in the diagnosis of diseases. Low specificity and the cost of materials are two necessary limitations in the traditional diagnosis method such as RT-PCR, northern blotting and microarray analysis. Biosensor technology can play an effective role in improving the quality of human life due to its capacity of rapid diagnosis, monitoring different markers, suitable sensitivity, and specificity. Moreover, bioanalytical systems have an essential role in the detection of biomolecules or miRNAs due to their critical features, including easy usage, portability, low cost and real-time analysis. Electrochemical biosensors based on novel nanomaterials and oligonucleotides can hybridize with miR-21 in different ranges. Moreover, optical biosensors and piezoelectric devices have been developed for miR-21 detection. In this study, we have evaluated different materials used in bioanalytical systems for miR-21 detection as well as various nanomaterials that offer improved electrodes for its detection.
Collapse
Affiliation(s)
| | - Muna Mohammed Yaseen
- Basic Science Department, Dentistry of College, University of Anbar, Al-Anbar, Iraq
| | - Utkir Khudaynazarov
- Teaching Assistant, MD, Department of Surgical Diseases, Faculty of Pediatrics, Samarkand State Medical Institute, Amir Temur Street 18, Samarkand, Uzbekistan
| | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq.
| | - Rebar N Mohammed
- Medical Laboratory Analysis Department, College of Health Sciences, Cihlan university of Sulaimaniya, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaimaniyah, Iraq
| |
Collapse
|
24
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
25
|
Holani R, Rathnayaka C, Blyth GA, Babbar A, Lahiri P, Young D, Dufour A, Hollenberg MD, McKay DM, Cobo ER. Cathelicidins Induce Toll-Interacting Protein Synthesis to Prevent Apoptosis in Colonic Epithelium. J Innate Immun 2022; 15:204-221. [PMID: 36116427 PMCID: PMC10643900 DOI: 10.1159/000526121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/27/2022] [Indexed: 11/17/2023] Open
Abstract
Cathelicidin peptides secreted by leukocytes and epithelial cells are microbicidal but also regulate pathogen sensing via toll-like receptors (TLRs) in the colon by mechanisms that are not fully understood. Herein, analyses with the attaching/effacing pathogen Citrobacter rodentium model of colitis in cathelicidin-deficient (Camp-/-) mice, and colonic epithelia demonstrate that cathelicidins prevent apoptosis by sustaining post-transcriptional synthesis of a TLR adapter, toll-interacting protein (TOLLIP). Cathelicidins induced phosphorylation-activation of epidermal growth factor receptor (EGFR)-kinase, which phosphorylated-inactivated miRNA-activating enzyme Argonaute 2 (AGO2), thus reducing availability of the TOLLIP repressor miRNA-31. Cathelicidins promoted stability of TOLLIP protein via a proteosome-dependent pathway. This cathelicidin-induced TOLLIP upregulation prevented apoptosis in the colonic epithelium by reducing levels of caspase-3 and poly (ADP-ribose) polymerase (PARP)-1 in response to the proinflammatory cytokines, interferon-γ (IFNγ) and tumor necrosis factor-α (TNFα). Further, Camp-/- colonic epithelial cells were more susceptible to apoptosis during C. rodentium infection than wild-type cells. This antiapoptotic effect of cathelicidins, maintaining epithelial TOLLIP protein in the gut, provides insight into cathelicidin's ability to regulate TLR signaling and prevent exacerbated inflammation.
Collapse
Affiliation(s)
- Ravi Holani
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Chathurika Rathnayaka
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Graham A.D. Blyth
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anshu Babbar
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Priyoshi Lahiri
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Daniel Young
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Morley D. Hollenberg
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M. McKay
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eduardo R. Cobo
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Phoebe and Joan Snyder Institute for Chronic Disease, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
26
|
Matulić M, Gršković P, Petrović A, Begić V, Harabajsa S, Korać P. miRNA in Molecular Diagnostics. Bioengineering (Basel) 2022; 9:bioengineering9090459. [PMID: 36135005 PMCID: PMC9495386 DOI: 10.3390/bioengineering9090459] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
MicroRNAs are a class of small non-coding RNA molecules that regulate gene expression on post-transcriptional level. Their biogenesis consists of a complex series of sequential processes, and they regulate expression of many genes involved in all cellular processes. Their function is essential for maintaining the homeostasis of a single cell; therefore, their aberrant expression contributes to development and progression of many diseases, especially malignant tumors and viral infections. Moreover, they can be associated with certain states of a specific disease, obtained in the least invasive manner for patients and analyzed with basic molecular methods used in clinical laboratories. Because of this, they have a promising potential to become very useful biomarkers and potential tools in personalized medicine approaches. In this review, miRNAs biogenesis, significance in cancer and infectious diseases, and current available test and methods for their detection are summarized.
Collapse
Affiliation(s)
- Maja Matulić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Paula Gršković
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Andreja Petrović
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Institute of Clinical Pathology and Cytology, Merkur University Hospital, 10000 Zagreb, Croatia
| | - Valerija Begić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Primary School “Sesvetski Kraljevec”, 10361 Sesvetski Kraljevec, Croatia
| | - Suzana Harabajsa
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Department of Pathology and Cytology, Division of Pulmonary Cytology Jordanovac, University Hospital Centre Zagreb, 10000 Zagreb, Croatia
| | - Petra Korać
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
- Correspondence: ; Tel.: +385-1-4606-278
| |
Collapse
|
27
|
Rhim J, Baek W, Seo Y, Kim JH. From Molecular Mechanisms to Therapeutics: Understanding MicroRNA-21 in Cancer. Cells 2022; 11:cells11182791. [PMID: 36139366 PMCID: PMC9497241 DOI: 10.3390/cells11182791] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that play an important role in regulating gene expression at a posttranscriptional level. As one of the first discovered oncogenic miRNAs, microRNA-21 (miR-21) has been highlighted for its critical role in cancers, such as glioblastoma, pancreatic adenocarcinoma, non-small cell lung cancer, and many others. MiR-21 targets many vital components in a wide range of cancers and acts on various cellular processes ranging from cancer stemness to cell death. Expression of miR-21 is elevated within cancer tissues and circulating miR-21 is readily detectable in biofluids, making it valuable as a cancer biomarker with significant potential for use in diagnosis and prognosis. Advances in RNA-based therapeutics have revealed additional avenues by which miR-21 can be utilized as a promising target in cancer. The purpose of this review is to outline the roles of miR-21 as a key modulator in various cancers and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Jiho Rhim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Woosun Baek
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Yoona Seo
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
| | - Jong Heon Kim
- Cancer Molecular Biology Branch, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 10408, Korea
- Department of Cancer Biomedical Science, National Cancer Center, Graduate School of Cancer Science and Policy, Goyang 10408, Korea
- Correspondence: ; Tel.: +82-31-920-2204
| |
Collapse
|
28
|
Akhtarkhavari T, Bahrami AR, M Matin M. Downregulation of miR-21 as a promising strategy to overcome drug resistance in cancer. Eur J Pharmacol 2022; 932:175233. [PMID: 36038011 DOI: 10.1016/j.ejphar.2022.175233] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
Despite tremendous achievements in the field of targeted cancer therapy, chemotherapy is still the main treatment option, which is challenged by acquired drug resistance. Various microRNAs are involved in developing drug-resistant cells. miR-21 is one of the first identified miRNAs involved in this process. Here, we conducted a literature review to categorize different mechanisms employed by miR-21 to drive drug resistance. miR-21 targets various genes involved in many pathways that can justify chemoresistance. It alters cancer cell metabolism and facilitates adaptation to the new environment. It also enhances drug detoxification in cancerous cells and increases genomic instability. We also summarized various strategies applied for the inhibition of miR-21 in order to reverse cancer drug resistance. These strategies include the delivery of antagomiRs, miRZip knockdown vectors, inhibitory small molecules, CRISPR-Cas9 technology, catalytic nucleic acids, artificial DNA and RNA sponges, and nanostructures like mesoporous silica nanoparticles, dendrimers, and exosomes. Furthermore, current challenges and limitations in targeting miR-21 are discussed in this article. Although huge progress has been made in the downregulation of miR-21 in drug-resistant cancer cells, there are still many challenges to be resolved. More research is still required to find the best strategy and timeline for the downregulation of miR-21 and also the most feasible approach for the delivery of this system into the tumor cells. In conclusion, downregulation of miR-21 would be a promising strategy to reverse chemoresistance, but still, more studies are required to clarify the aforementioned issues.
Collapse
Affiliation(s)
- Tara Akhtarkhavari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam M Matin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran; Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran; Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.
| |
Collapse
|
29
|
MiRNAs in Lung Cancer: Diagnostic, Prognostic, and Therapeutic Potential. Diagnostics (Basel) 2022; 12:diagnostics12071610. [PMID: 35885514 PMCID: PMC9322918 DOI: 10.3390/diagnostics12071610] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 12/24/2022] Open
Abstract
Lung cancer is the dominant emerging factor in cancer-related mortality around the globe. Therapeutic interventions for lung cancer are not up to par, mainly due to reoccurrence/relapse, chemoresistance, and late diagnosis. People are currently interested in miRNAs, which are small double-stranded (20–24 ribonucleotides) structures that regulate molecular targets (tumor suppressors, oncogenes) involved in tumorigeneses such as cell proliferation, apoptosis, metastasis, and angiogenesis via post-transcriptional regulation of mRNA. Many studies suggest the emerging role of miRNAs in lung cancer diagnostics, prognostics, and therapeutics. Therefore, it is necessary to intensely explore the miRNOME expression of lung tumors and the development of anti-cancer strategies. The current review focuses on the therapeutic, diagnostic, and prognostic potential of numerous miRNAs in lung cancer.
Collapse
|
30
|
Poly(rC) binding protein 1 benefits coxsackievirus B3 infection via suppressing the translation of p62/SQSTM1. Virus Res 2022; 318:198851. [PMID: 35764193 DOI: 10.1016/j.virusres.2022.198851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
Abstract
Coxsackievirus B3 (CVB3) is a positive single-strand RNA virus causing myocarditis, pancreatitis and meningitis. During CVB3 infection, various host cellular components, including proteins and non-coding RNAs, interact with the virus and affect viral infection. Poly(rC) binding protein 1 (PCBP1) is a multifunctional RNA binding protein regulating transcription, translation and mRNA stability of a variety of genes. In this study, we observed a significant reduction of PCBP1 protein during CVB3 infection. By bioinformatic prediction and luciferase-assay verification, we confirmed that the expression of PCBP1 was directly inhibited by miR-21, a microRNA upregulated during CVB3 infection. Furthermore, we found that overexpression of PCBP1 promoted CVB3 infection and knocking down of PCBP1 inhibited it. In the subsequent mechanism study, our results revealed that PCBP1 blocked the translation of p62/SQSTM1 (sequestosome 1), an autophagy-receptor protein suppressing CVB3 replication, by interacting with the cis-element in the 5' untranslational region (5' UTR) of p62/SQSTM1. In summary, our studies have identified PCBP1 as a beneficial factor for CVB3 infection. These findings may deepen the understanding of host-virus interactions and provide a potential target for intervention of CVB3 infection.
Collapse
|
31
|
Omori M, Noro R, Seike M, Matsuda K, Hirao M, Fukuizumi A, Takano N, Miyanaga A, Gemma A. Inhibitors of ABCB1 and ABCG2 overcame resistance to topoisomerase inhibitors in small cell lung cancer. Thorac Cancer 2022; 13:2142-2151. [PMID: 35719112 PMCID: PMC9346178 DOI: 10.1111/1759-7714.14527] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/27/2022] Open
Abstract
Background Small cell lung cancer (SCLC) is a highly aggressive disease with a poor prognosis. Although most patients initially respond to topoisomerase inhibitors, resistance rapidly emerges. The aim, therefore, is to overcome resistance to topoisomerase I (irinotecan) or II (etoposide) inhibitors in SCLCs. Methods To identify key factors in the chemoresistance of SCLCs, we established four cell lines resistant to etoposide or an active metabolite of irinotecan, SN‐38, from SCLC cell lines and evaluated RNA profiles using parental and newly established cell lines. Results We found that the drug efflux protein, ATP‐binding cassette sub‐family B member 1 (ABCB1), was associated with resistance to etoposide, and ATP‐binding cassette sub‐family G member 2 (ABCG2) was associated with resistance to SN‐38 by RNA sequencing. The inhibition of ABCB1 or ABCG2 in each resistant cell line induced synergistic apoptotic activity and promoted drug sensitivity in resistant SCLC cells. The ABC transporter inhibitors, elacridar and tariquidar, restored sensitivity to etoposide or SN‐38 in in vitro and in vivo studies, and promoted apoptotic activity and G2‐M arrest in resistant SCLC cells. Conclusions ABC transporter inhibitors may be a promising therapeutic strategy for the purpose of overcoming resistance to topoisomerase inhibitors in patients with SCLC.
Collapse
Affiliation(s)
- Miwako Omori
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mariko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
32
|
Sheng S, Su W, Mao D, Li C, Hu X, Deng W, Yao Y, Ji Y. MicroRNA-21 induces cisplatin resistance in head and neck squamous cell carcinoma. PLoS One 2022; 17:e0267017. [PMID: 35421166 PMCID: PMC9009694 DOI: 10.1371/journal.pone.0267017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/31/2022] [Indexed: 01/05/2023] Open
Abstract
Drug resistance, either intrinsic or acquired, can impair treatment effects and result in increased cell motility and death. MicroRNA-21 (miR-21), a proto-oncogene, may facilitate the development or maintenance of drug resistance in cancer cells. Restoring drug sensitivity can improve therapeutic strategies, a possibility that requires functional evaluation and mechanistic exploration. For miR-21 detection, matched tissue samples from 30 head and neck squamous cell carcinoma (HNSCC) patients and 8 head and neck cancer (HNC) cell lines were obtained. Reverse transcription-PCR to detect expression, MTT and clonogenic assays to evaluate cell proliferation, apoptosis assays, resazurin cell viability assays, western blot and luciferase reporter assays to detect protein expression, and flow cytometry to analyse the cell cycle were adopted. Compared to the corresponding normal control (NC) tissues, 25 cancer tissues had miR-21 upregulation among the 30 matched pair tissues (25/30, 83.8%); furthermore, among the 8 HNC cell lines, miR-21 expression that was notably upregulated in three: UPCI-4B, UMSCC-1, and UPCI-15B. In both the UMSCC-1 and UPCI-4B cell lines, the miR-21 mimic enhanced cell proliferation with reduced apoptosis and increased viability, whereas the miR-21 inhibitor resulted in the opposite effects (all P<0.001); additionally, miR-21 directly targeted the tumour suppressor phosphatase and tensin homologue (PTEN) and inhibited PTEN expression. Furthermore, the miR-21 mimic induced cisplatin resistance, while the miR-21 inhibitor restored cisplatin sensitivity. Overexpression of miR-21 can enhance cell proliferation, reduce apoptosis, and induce drug resistance by inhibiting PTEN expression. Targeting miR-21 may facilitate cancer diagnosis, restore drug sensitivity, and improve therapeutic effects.
Collapse
Affiliation(s)
- Shuyan Sheng
- First Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Wenzhuo Su
- Second Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Deshen Mao
- First Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Conghan Li
- First Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Xinyang Hu
- First Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Wanyu Deng
- First Clinical Medical College, Anhui Medical University, Hefei, P. R China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei, P. R China
| | - Yongsheng Ji
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R China
- * E-mail:
| |
Collapse
|
33
|
Tulinsky L, Dzian A, Matakova T, Ihnat P. Overexpression of the miR-143/145 and reduced expression of the let-7 and miR-126 for early lung cancer diagnosis. J Appl Biomed 2022; 20:1-6. [PMID: 35302725 DOI: 10.32725/jab.2022.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Lung cancer is the leading cause of cancer-related deaths worldwide. For this reason, huge efforts are being invested in discovering suitable blood biomarkers that would allow early diagnosis and treatment. One of the possible promising candidates for this role are microRNA molecules (miRNAs). The aim of the study was to identify individual blood miRNAs that could be used as potential biomarkers for early diagnosis of lung cancer. METHODS This prospective study analyzed blood samples of 60 patients with early-stage lung cancer, and blood samples of 60 healthy individuals. All study patients with lung cancer had undergone radical pulmonary resection at the University Hospital Ostrava within the study period (2015-2017). Definitive diagnosis of lung cancer was confirmed by histopathology examination of the resected pulmonary specimen. We investigated relative expressions in selected 13 blood miRNAs; the examined miRNAs were miR-126, miR-155, miR-221, miR-21, miR-143, miR-145, miR-133a, let-7a, miR-146a, miR-31, miR-182, let-7g and miR-19b. RESULTS The outcome of this study showed that the levels of the majority of the tested circulating miRNA in lung cancer patients are significantly altered. The most significant serum miRNA biomarkers for the early detection of lung cancer are as follows: miR-143, let-7g, miR-126, let-7a, and miR-145 (miR-143 and miR-145 have oncogene functions, while miR-126, let-7g and let-7a have suppressor functions). CONCLUSIONS We have demonstrated the excellent diagnostic value of several miRNAs (miR-126, miR-143, miR-145, let-7a and let7g). These have an estimated sensitivity and specificity of 75-85% and 0.90-0.93 AUC. However, these individual miRNA biomarkers require further validation in larger prospective cohorts.
Collapse
Affiliation(s)
- Lubomir Tulinsky
- University Hospital Ostrava, Department of Surgery, Ostrava, Czech Republic
| | - Anton Dzian
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Department of Thoracic Surgery, Martin, Slovak Republic
| | - Tatiana Matakova
- Comenius University in Bratislava, Jessenius Faculty of Medicine in Martin, Biomedical Center Martin, Martin, Slovak Republic
| | - Peter Ihnat
- University Hospital Ostrava, Department of Surgery, Ostrava, Czech Republic
| |
Collapse
|
34
|
Roy S, Ganguly N, Banerjee S. Exploring clinical implications and role of non-coding RNAs in lung carcinogenesis. Mol Biol Rep 2022; 49:6871-6883. [PMID: 35076850 DOI: 10.1007/s11033-022-07159-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Lung cancer is the utmost familiar category of cancer with greatest fatality rate worldwide and several regulatory mechanisms exercise cellular control on critical oncogenic trails implicated in lung associated carcinogenesis. The non-coding RNAs (ncRNAs) are shown to play a variety of regulatory roles, including stimulating cell proliferation, inhibiting programmed cell death, enhancing cancer cell metastatic ability and acquiring resistance to drugs. Furthermore, ncRNAs exhibit tissue-specific expression as well as great stability in bodily fluids. As a consequence, they are strong contenders for cancer based theragnostics. microRNA (miRNA) alters gene expression primarily by either degrading or interfering with the translation of targeted mRNA and long non-coding RNAs (lncRNAs) can influence gene expression by targeting transcriptional activators or repressors, RNA polymers and even DNA-duplex. lncRNAs are typically found to be dysregulated in lung cancer and hence targeting ncRNAs could be a viable strategy for developing potential therapies as well as for overcoming chemoresistance in lung cancer. The purpose of this review is to elucidate the role of ncRNAs, revisiting the recent studies in lung cancer.
Collapse
Affiliation(s)
- Swagata Roy
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Neeldeep Ganguly
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India
| | - Satarupa Banerjee
- School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
35
|
Huang WC, Yadav VK, Cheng WH, Wang CH, Hsieh MS, Huang TY, Lin SF, Yeh CT, Kuo KT. The MEK/ERK/miR-21 Signaling Is Critical in Osimertinib Resistance in EGFR-Mutant Non-Small Cell Lung Cancer Cells. Cancers (Basel) 2021; 13:cancers13236005. [PMID: 34885115 PMCID: PMC8657072 DOI: 10.3390/cancers13236005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Our study provided data that the inhibition of MEK/ERK signaling could overcome Osimertinib resistance both in vitro and in vivo. Mechanistically, MEK inhibitor Trametinib suppressed the tumorigenic properties of NSCLC cells by reducing the generation of CAFs. The trametinib-mediated anti-cancer function was also associated with the significantly suppressed level of miR-21, of which primary targets included PDCD4, as shown in this study and MEK inhibitor Trametinib significantly suppressed Osimertinib-resistant NSCLC tumor growth by abolishing both processes. Abstract Background: The third-generation epidermal growth factor receptor (EGFR) inhibitor, Osimertinib, is used to treat non-small cell lung cancer (NSCLC) patients with tyrosine kinase inhibitor (TKI) resistance caused by acquired EGFR T790M mutation. However, patients eventually develop resistance against Osimertinib with mechanisms not yet fully clarified. Activated alternative survival pathways within the tumor cells and cancer-associated fibroblasts (CAFs) have been proposed to contribute to Osimertinib resistance. MET and MEK inhibitors may overcome EGFR-independent resistance. Another acquired resistance mechanism of EGFR-TKI is the up-regulation of the RAS/RAF/MEK/ERK signaling pathway, which is the key to cell survival and proliferation; this may occur downstream of various other signaling pathways. In this report, we reveal the possible regulatory mechanism and inhibitory effect of the MEK inhibitor trametinib applied to MEK/ERK/miR-21 axis and PDCD4 in Osimertinib resistance. We found a possible regulatory role of PDCD4 in ERK signaling. PDCD4 is a new type of tumor suppressor that has multiple functions of inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. Previous bioinformatics analysis has confirmed that PDCD4 contains the binding site of miR-21 and acts as a tumor suppressor in the regulation of various processes associated with the development of cancer, including cell proliferation, invasion, metastasis, and neoplastic transformation. Based on the above analysis, we hypothesized that the tumor suppressor PDCD4 is one of the effective inhibitory targets of miR-21-5p. Methods: The expression between EGFR and ERK2 in lung adenocarcinoma was evaluated from the TCGA database. Osimertinib-sensitive and resistant NSCLC cells obtained from patients were used to co-culture with human lung fibroblasts (HLFs) to generate CAF cells (termed CAF_R1 and CAF_S1), and the functional roles of these CAF cells plus the regulatory mechanisms were further explored. Then, MEK inhibitor Trametinib with or without Osimertinib was applied in xenograft model derived from patients to validate the effects on growth inhibition of Osimertinib-resistant NSCLC tumors. Result: ERK2 expression correlated with EGFR expression and higher ERK2 level was associated with worse prognosis of patients and Osimertinib resistance. CAFs derived from Osimertinib-resistant cells secreted more IL-6, IL-8, and hepatocyte growth factor (HGF), expressed stronger CAF markers including α-smooth muscle actin (α-SMA), fibroblast activation protein (FAP) plus platelet-derived growth factor receptor (PDGFR), and enhanced stemness and Osimertinib resistance in NSCLC cells. Meanwhile, increased MEK/ERK/miR-21 expressions were found in both CAFs and NSCLC cells. MEK inhibitor Trametinib significantly abrogated the abovementioned effects by modulating β-catenin, STAT3, and ERK. The xenograft model showed combining Osimertinib and Trametinib resulted in the most prominent growth inhibition of Osimertinib-resistant NSCLC tumors. Conclusions: Our results suggested that MEK/ERK/miR-21 signaling is critical in Osimertinib resistance and CAF transformation of NSCLC cells, and MEK inhibitor Trametinib significantly suppressed Osimertinib-resistant NSCLC tumor growth by abolishing both processes.
Collapse
Affiliation(s)
- Wen-Chien Huang
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan
- Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Vijesh Kumar Yadav
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Wei-Hong Cheng
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chun-Hua Wang
- Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, 231, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien 970, Taiwan
| | - Ming-Shou Hsieh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Ting-Yi Huang
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Shiou-Fu Lin
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research & Education, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| |
Collapse
|
36
|
Exploration of Redox-Related Molecular Patterns and the Redox Score for Prostate Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4548594. [PMID: 34804366 PMCID: PMC8601839 DOI: 10.1155/2021/4548594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/07/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022]
Abstract
Redox homeostasis is the key to cell survival, and its imbalance can promote the occurrence and progression of tumors. However, it remains unclear whether these redox-related genes (RRGs) have potential roles in the tumor microenvironment, immunotherapy, and drug sensitivity. Here, we performed a systematic and comprehensive analysis of 489 prostate cancer (PC) samples from The Cancer Genome Atlas database and 214 PC samples from 8 datasets in the Gene Expression Omnibus database to determine redox modification patterns and the redox scoring system for PC. We identified two modification patterns (Redox_A and Redox_B) in PC using unsupervised consensus clustering based on 1410 differential expression RRGs. We then compared the prognostic value, tumor microenvironment characteristics, immune cell infiltration, and molecular characteristics of the two patterns. The Redox_A pattern was significantly enriched in the carcinogenic activation signaling pathways and had a poor prognosis, while the Redox_B pattern was mainly enriched in a variety of metabolic and redox pathways and had a good prognosis. Next, redox-related characteristic genes were extracted from these two patterns, and a scoring system (Redox_score) was constructed to evaluate PC patients. Further analysis indicated that lower Redox_score patients had a better prognosis, while higher Redox_score patients had a higher tumor mutation burden, driver gene mutation rate, and immune checkpoint inhibitor gene expression. We also found that higher Redox_score patients were more responsive to anti-PD-1 immunotherapy. Moreover, Redox_score was determined to be significantly correlated with anticancer drug sensitivity and resistance. Our study provides a comprehensive analysis of redox modifications in PC and reveals new patterns of PC based on RRGs, which will provide insights into the complex mechanisms of PC and develop more effective individualized therapeutic strategies.
Collapse
|
37
|
Hassanein SS, Ibrahim SA, Abdel-Mawgood AL. Cell Behavior of Non-Small Cell Lung Cancer Is at EGFR and MicroRNAs Hands. Int J Mol Sci 2021; 22:12496. [PMID: 34830377 PMCID: PMC8621388 DOI: 10.3390/ijms222212496] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022] Open
Abstract
Lung cancer is a complex disease associated with gene mutations, particularly mutations of Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) and epidermal growth factor receptor (EGFR). Non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC) are the two major types of lung cancer. The former includes most lung cancers (85%) and are commonly associated with EGFR mutations. Several EGFR-tyrosine kinase inhibitors (EGFR-TKIs), including erlotinib, gefitinib, and osimertinib, are effective therapeutic agents in EGFR-mutated NSCLC. However, their effectiveness is limited by the development (acquired) or presence of intrinsic drug resistance. MicroRNAs (miRNAs) are key gene regulators that play a profound role in the development and outcomes for NSCLC via their role as oncogenes or oncosuppressors. The regulatory role of miRNA-dependent EGFR crosstalk depends on EGFR signaling pathway, including Rat Sarcoma/Rapidly Accelerated Fibrosarcoma/Mitogen-Activated Protein Kinase/Extracellular Signal-Regulated Kinase 1/2 (Ras/Raf/MEK/ERK1/2), Signal Transducer and Activator of Transcription (STAT), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-kB), phosphoinositide 3-kinase/protein kinase B (PI3K/AKT), Janus kinase 1 (JAK1), and growth factor receptor-bound protein 2 (GRB2). Dysregulated expression of miRNAs affects sensitivity to treatment with EGFR-TKIs. Thus, abnormalities in miRNA-dependent EGFR crosstalk can be used as diagnostic and prognostic markers, as well as therapeutic targets in NSCLC. In this review, we present an overview of miRNA-dependent EGFR expression regulation, which modulates the behavior and progression of NSCLC.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
- Department of Zoology, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | | | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt;
| |
Collapse
|
38
|
Surina S, Fontanella RA, Scisciola L, Marfella R, Paolisso G, Barbieri M. miR-21 in Human Cardiomyopathies. Front Cardiovasc Med 2021; 8:767064. [PMID: 34778418 PMCID: PMC8578278 DOI: 10.3389/fcvm.2021.767064] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022] Open
Abstract
miR-21 is a 22-nucleotide long microRNA that matches target mRNAs in a complementary base pairing fashion and regulates gene expression by repressing or degrading target mRNAs. miR-21 is involved in various cardiomyopathies, including heart failure, dilated cardiomyopathy, myocardial infarction, and diabetic cardiomyopathy. Expression levels of miR-21 notably change in both heart and circulation and provide cardiac protection after heart injury. In the meantime, miR-21 also tightly links to cardiac dysfunctions such as cardiac hypertrophy and fibrosis. This review focuses on the miR-21 expression pattern and its functions in diseased-heart and further discusses the feasibility of miR-21 as a biomarker and therapeutic target in cardiomyopathies.
Collapse
Affiliation(s)
- Surina Surina
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Napoli, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,Mediterrannea Cardiocentro, Napoli, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
39
|
Fukuizumi A, Noro R, Seike M, Miyanaga A, Minegishi Y, Omori M, Hirao M, Matsuda K, Kunugi S, Nishiwaki K, Morimoto M, Motohashi H, Ohwada H, Usuda J, Gemma A. CADM1 and SPC25 Gene Mutations in Lung Cancer Patients With Idiopathic Pulmonary Fibrosis. JTO Clin Res Rep 2021; 2:100232. [PMID: 34746885 PMCID: PMC8551854 DOI: 10.1016/j.jtocrr.2021.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/02/2021] [Accepted: 09/18/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction To investigate the genomic profiles of patients with lung cancer with idiopathic pulmonary fibrosis (IPF-LC), mechanism of carcinogenesis, and potential therapeutic targets. Methods We analyzed 29 matched, surgically resected, cancerous and noncancerous lung tissues (19 IPF-LC and 10 non–IPF-LC) by whole-exome sequencing and bioinformatics analysis and established a medical-engineering collaboration with the Department of Engineering of the Tokyo University of Science. Results In IPF-LC, CADM1 and SPC25 were mutated at a frequency of 47% (9 of 19) and 53% (10 of 19), respectively. Approximately one-third of the IPF-LC cases (7 of 19; 36%) had both mutations. Pathway analysis revealed that these two genes are involved in transforming growth factor-β1 signaling. CADM1 and SPC25 gene mutations decreased the expression of CADM1 and increased that of SPC25 revealing transforming growth factor-β1–induced epithelial-to-mesenchymal transition and cell proliferation in lung cancer cells. Furthermore, treatment with paclitaxel and DNMT1 inhibitor suppressed SPC25 expression. Conclusions CADM1 and SPC25 gene mutations may be novel diagnostic markers and therapeutic targets for IPF-LC.
Collapse
Affiliation(s)
- Aya Fukuizumi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Yuji Minegishi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Miwako Omori
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Mamiko Hirao
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shinobu Kunugi
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kazutaka Nishiwaki
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Masahiro Morimoto
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Haruka Motohashi
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Hayato Ohwada
- Department of Industrial Administration, Faculty of Science and Technology, Tokyo University of Science, Chiba, Japan
| | - Jitsuo Usuda
- Department of Thoracic Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
40
|
Verma AK, Goyal Y, Bhatt D, Dev K, Beg MMA. MicroRNA: Biogenesis and potential role as biomarkers in lung diseases. Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
41
|
Tang J, Li X, Cheng T, Wu J. miR-21-5p/SMAD7 axis promotes the progress of lung cancer. Thorac Cancer 2021; 12:2307-2313. [PMID: 34254453 PMCID: PMC8410517 DOI: 10.1111/1759-7714.14060] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
Background Lung cancer is one of the most common malignant tumors threatening human health. The aim of this study was to investigate the function of miR‐21‐5p in lung cancer progression. Methods We analyzed the expression levels of miR‐21‐5p in lung cancer tissues and cell lines. The qRT‐PCR and MTT assays were performed after transfection with miR‐21‐5p mimic, inhibitor and negative control into lung cancer cells. Results Luciferase reporter assays showed miR‐21‐5p directly target SMAD7. The miR‐21‐5p inhibitor significantly suppressed lung cancer cell proliferation, invasion and migration. We found that SMAD7 was upregulated in lung cancer tissue. In addition, we found that SMAD7 inhibited lung cancer cell proliferation and miR‐21‐5p mimic damaged the inhibitory effect of SMAD7. Conclusions miRNA‐21‐5p may promote cell proliferation, migration and invasion by spoiling SMAD7 expression in lung cancer cells.
Collapse
Affiliation(s)
- Jinming Tang
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Xu Li
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Tianli Cheng
- Department I of Thoracic Medicine, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| | - Jie Wu
- Department II of Thoracic Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha, China
| |
Collapse
|
42
|
Bejarano F, Chang CH, Sun K, Hagen JW, Deng WM, Lai EC. A comprehensive in vivo screen for anti-apoptotic miRNAs indicates broad capacities for oncogenic synergy. Dev Biol 2021; 475:10-20. [PMID: 33662357 PMCID: PMC8107139 DOI: 10.1016/j.ydbio.2021.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are ~21-22 nucleotide (nt) RNAs that mediate broad post-transcriptional regulatory networks. However, genetic analyses have shown that the phenotypic consequences of deleting individual miRNAs are generally far less overt compared to their misexpression. This suggests that miRNA deregulation may have broader phenotypic impacts during disease situations. We explored this concept in the Drosophila eye, by screening for miRNAs whose misexpression could modify the activity of pro-apoptotic factors. Via unbiased and comprehensive in vivo phenotypic assays, we identify an unexpectedly large set of miRNA hits that can suppress the action of pro-apoptotic genes hid and grim. We utilize secondary assays to validate that a subset of these miRNAs can inhibit irradiation-induced cell death. Since cancer cells might seek to evade apoptosis pathways, we modeled this situation by asking whether activation of anti-apoptotic miRNAs could serve as "second hits". Indeed, while clones of the lethal giant larvae (lgl) tumor suppressor are normally eliminated during larval development, we find that diverse anti-apoptotic miRNAs mediate the survival of lgl mutant clones in third instar larvae. Notably, while certain anti-apoptotic miRNAs can target apoptotic factors, most of our screen hits lack obvious targets in the core apoptosis machinery. These data highlight how a genetic approach can reveal distinct and powerful activities of miRNAs in vivo, including unexpected functional synergies during disease or cancer-relevant settings.
Collapse
Affiliation(s)
- Fernando Bejarano
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kailiang Sun
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joshua W Hagen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA; Tri-Institutional M.D.-Ph.D. Program, New York, NY, 10065, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
43
|
Dynamic Evaluation of Circulating miRNA Profile in EGFR-Mutated NSCLC Patients Treated with EGFR-TKIs. Cells 2021; 10:cells10061520. [PMID: 34208765 PMCID: PMC8235748 DOI: 10.3390/cells10061520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023] Open
Abstract
Background: Resistance to EGFR-TKIs constitutes a major challenge for the management of EGFR-mutated NSCLC, and recent evidence suggests that deregulation of specific microRNAs (miRNAs) may influence resistance to targeted agents. In this retrospective study, we explored the role of specific plasmatic miRNAs (miR-21, miR-27a and miR-181a) as a surrogate for predicting EGFR-TKI performance in EGFR-mutated NSCLC patients. Methods: Plasma samples of 39 advanced EGFR-mutated NSCLC patients treated with EGFR-TKIs were collected at different points in time and miRNA levels were assessed by RT-PCR. Results: Higher basal values of miR-21 were reported in patients who achieved a partial/complete response (PR/CR) compared to those with stability/progression of disease (SD/PD) (p = 0.011). Along the same line, patients who experienced a clinical benefit lasting at least six months displayed higher basal levels of circulating miR-21 (p = 0.039). However, dynamic evaluation of miRNA values after two months from the start of EGFR-TKI treatment showed that patients who experienced SD had an increase in miR-21 levels (Fold Change [FC] = 2.6) compared to patients achieving PR/CR (p = 0.029). The same tendency was observed for miR-27a (FC = 3.1) and miR-181a (FC = 2.0), although without reaching statistical significance. Remarkably, preclinical studies showed an increase in miR-21 levels in NSCLC cells that became resistant after exposure to EGFR-TKIs. Conclusions: Our study provides interesting insights on the role of circulating miRNAs, in particular miR-21, and their dynamic change over time in predicting EGFR-TKI response in EGFR-mutated NSCLC.
Collapse
|
44
|
Naeli P, Yousefi F, Ghasemi Y, Savardashtaki A, Mirzaei H. The Role of MicroRNAs in Lung Cancer: Implications for Diagnosis and Therapy. Curr Mol Med 2021; 20:90-101. [PMID: 31573883 DOI: 10.2174/1566524019666191001113511] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/15/2022]
Abstract
Lung cancer is the first cause of cancer death in the world due to its high prevalence, aggressiveness, late diagnosis, lack of effective treatment and poor prognosis. It also shows high rate of recurrence, metastasis and drug resistance. All these problems highlight the urgent needs for developing new strategies using noninvasive biomarkers for early detection, metastasis and recurrence of disease. MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression post-transcriptionally. These molecules found to be abnormally expressed in increasing number of human disease conditions including cancer. miRNAs could be detected in body fluids such as blood, serum, urine and sputum, which leads us towards the idea of using them as non-invasive biomarker for cancer detection and monitoring cancer treatment and recurrence. miRNAs are found to be deregulated in lung cancer initiation and progression and could regulate lung cancer cell proliferation and invasion. In this review, we summarized recent progress and discoveries in microRNAs regulatory role in lung cancer initiation and progression. In addition, the role of microRNAs in EGFR signaling pathway regulation is discussed briefly.
Collapse
Affiliation(s)
- Parisa Naeli
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Yousefi
- Department of Biological Sciences, Faculty of Genetics, Tarbiat Modares University, Tehran, Iran
| | - Younes Ghasemi
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
45
|
Nguyen HT, Kacimi SEO, Nguyen TL, Suman KH, Lemus-Martin R, Saleem H, Do DN. MiR-21 in the Cancers of the Digestive System and Its Potential Role as a Diagnostic, Predictive, and Therapeutic Biomarker. BIOLOGY 2021; 10:biology10050417. [PMID: 34066762 PMCID: PMC8151274 DOI: 10.3390/biology10050417] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs. They can regulate the expression of their target genes, and thus, their dysregulation significantly contributes to the development of cancer. Growing evidence suggests that miRNAs could be used as cancer biomarkers. As an oncogenic miRNA, the roles of miR-21 as a diagnostic and prognostic biomarker, and its therapeutic applications have been extensively studied. In this review, the roles of miR-21 are first demonstrated via its different molecular networks. Then, a comprehensive review on the potential targets and the current applications as a diagnostic and prognostic cancer biomarker and the therapeutic roles of miR-21 in six different cancers in the digestive system is provided. Lastly, a brief discussion on the challenges for the use of miR-21 as a therapeutic tool for these cancers is added.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam;
- Faculty of Medicine, Duy Tan University, Danang 550000, Vietnam
| | | | - Truc Ly Nguyen
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea;
| | - Kamrul Hassan Suman
- Department of Fisheries Biology & Aquatic Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | | | - Humaira Saleem
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N5E3, Canada
- Correspondence: ; Tel.: +1-819-571-5310
| |
Collapse
|
46
|
Hisakane K, Seike M, Sugano T, Yoshikawa A, Matsuda K, Takano N, Takahashi S, Noro R, Gemma A. Exosome-derived miR-210 involved in resistance to osimertinib and epithelial-mesenchymal transition in EGFR mutant non-small cell lung cancer cells. Thorac Cancer 2021; 12:1690-1698. [PMID: 33939301 PMCID: PMC8169289 DOI: 10.1111/1759-7714.13943] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osimertinib is a third‐generation epidermal growth factor receptor‐tyrosine kinase inhibitor (EGFR‐TKI) approved for the treatment of patients with EGFR‐mutant non‐small cell lung cancer (NSCLC). However, the mechanisms of acquired drug resistance to osimertinib have not as yet been clarified. Exosomes and microRNAs (miRNAs) are involved in carcinogenesis and drug resistance in human cancers. Methods We used previously established osimertinib‐resistant HCC827 (HCC827‐OR) and PC‐9 (PC‐9‐OR) cells. We evaluated the profiles of exosomal miRNA associated with resistance to osimertinib in EGFR‐mutant NSCLC cells. Results Epithelial–mesenchymal transition (EMT) phenomenon was observed in HCC827‐OR and PC‐9‐OR cells. Microarray and quantitative reverse transcription‐polymerase chain reaction analysis revealed that miR‐210‐3p was co‐upregulated in exosomes isolated from HCC827‐OR and PC‐9‐OR cells compared with those isolated from parental HCC827 and PC‐9 cells. HCC827‐OR cell‐derived exosomes induced EMT changes and resistance to osimertinib in HCC827 cells. Subsequently, the induction of miR‐210‐3p directly promoted the EMT phenomenon and resistance to osimertinib in HCC827 cells. Conclusions Exosomal miR‐210‐3p may play a crucial role in resistance to osimertinib in the tumor microenvironment of EGFR‐mutant NSCLC.
Collapse
Affiliation(s)
- Kakeru Hisakane
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Teppei Sugano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akiko Yoshikawa
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Kuniko Matsuda
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Natsuki Takano
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Satoshi Takahashi
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Gemma
- Department of Pulmonary Medicine and Oncology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
47
|
Li G, Yang Y, Xu S, He M, Zhang Z. mir-21-5p inhibits the progression of human chondrosarcoma by regulating CCR7/STAT3/NF-κB pathway. Connect Tissue Res 2021; 62:313-324. [PMID: 31813289 DOI: 10.1080/03008207.2019.1702650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Purpose: MicroRNAs (miRNAs or miRs) play an important role in the initiation and development of chondrosarcoma (CS). However, the role of miR-21-5p in CS progression and its underlying molecular mechanisms remains unclear.Materials and Methods: miR-21-5p expression was measured by qRT-PCR. Cell proliferation, migration, and invasion were detected by CCK-8 and Transwell assay. Dual-luciferase reporter assay was used to validate the target of miR-21-5p. Western blot was applied to explore the expressions of CCR7 and EMT biomarkers. Then, the xenograft model was established to confirm the effects of miR-21-5p.Results: miR-21-5p was significantly downregulated in CS tissues and cells and negatively correlated with grade, recurrence, and 5-year overall survival. In vitro, miR-21-5p caused G0/G1 cell cycle arrest and induced apoptosis by decreasing cyclin D1 expression and Bcl-2/Bax ratio. miR-21-5p suppressed cell migration and invasion of CS cells by inhibiting epithelial-mesenchymal transition (EMT). In vivo, miR-21-5p inhibited xenograft tumor formation of SW1353 cells. Mechanistically, miR-21-5p targeted the 3'-UTR of C-C chemokine receptor 7 (CCR7) mRNA to inhibit its expression. Overexpression of CCR7 reversed the inhibitory effects of miR-21-5p on CS cell behaviors. However, the silencing of CCR7 enhanced the inhibitory effects of miR-21-5p on CS cells. Besides, the overexpression of miR-21-5p or silencing of CCR7 obviously reduced the expression levels of p-STAT3, p-p56, and p-IκBα.Conclusion: miR-21-5p targeted CCR7 expression to inhibit the STAT3 and NF-κB signaling, thereby suppressing cell proliferation, migration, invasion, and EMT in CS cells, which might be a novel mechanistic study for CS therapy.Abbreviations: 3'-UTR: 3'-untranslated region; CCR7: C-C chemokine receptor type 7; CS: chondrosarcoma; DMEM: dulbecco's modified eagle's medium; EMT: epithelial-mesenchymal transition; HEK-293T: human embryonic kidney-293T; miR-21-5p: microRNA-21-5p; miR-NC: negative control miRNA; SD: standard deviation; si-CCR7: CCR7 siRNAs.
Collapse
Affiliation(s)
- Guosong Li
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Yanjun Yang
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Siliang Xu
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Mingtang He
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Ziqing Zhang
- Department of Orthopedics, Longgang Orthopedics Hospital of Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
48
|
Ding Y, Hou Y, Liu Y, Xie X, Cui Y, Nie H. Prospects for miR-21 as a Target in the Treatment of Lung Diseases. Curr Pharm Des 2021; 27:415-422. [PMID: 32867648 DOI: 10.2174/1381612826999200820160608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022]
Abstract
MicroRNA (miRNA/miR) is a class of small evolutionarily conserved non-coding RNA, which can inhibit the target gene expression at the post-transcriptional level and serve as significant roles in cell differentiation, proliferation, migration and apoptosis. Of note, the aberrant miR-21 has been involved in the generation and development of multiple lung diseases, and identified as a candidate of biomarker, therapeutic target, or indicator of prognosis. MiR-21 relieves acute lung injury via depressing the PTEN/Foxo1-TLR4/NF-κB signaling cascade, whereas promotes lung cancer cell growth, metastasis, and chemo/radio-resistance by decreasing the expression of PTEN and PDCD4 and promoting the PI3K/AKT transduction. The purpose of this review is to elucidate the potential mechanisms of miR-21 associated lung diseases, with an emphasis on its dual regulating effects, which will trigger novel paradigms in molecular therapy.
Collapse
Affiliation(s)
- Yan Ding
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yapeng Hou
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yanhong Liu
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Xiaoyong Xie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yong Cui
- Department of Anesthesiology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongguang Nie
- Department of Stem Cells and Regenerative Medicine, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
49
|
Elkashty OA, Tran SD. Sulforaphane as a Promising Natural Molecule for Cancer Prevention and Treatment. Curr Med Sci 2021; 41:250-269. [PMID: 33877541 DOI: 10.1007/s11596-021-2341-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
Tumorigenicity-inhibiting compounds have been identified in our daily diet. For example, isothiocyanates (ITCs) found in cruciferous vegetables were reported to have potent cancer-prevention activities. The best characterized ITC is sulforaphane (SF). SF can simultaneously modulate multiple cellular targets involved in carcinogenesis, including (1) modulating carcinogen-metabolizing enzymes and blocking the action of mutagens; (2) inhibition of cell proliferation and induction of apoptosis; and (3) inhibition of neo-angiogenesis and metastasis. SF targets cancer stem cells through modulation of nuclear factor kappa B (NF-κB), Sonic hedgehog (SHH), epithelial-mesenchymal transition, and Wnt/β-catenin pathways. Conventional chemotherapy/SF combination was tested in several studies and resulted in favorable outcomes. With its favorable toxicological profile, SF is a promising agent in cancer prevention and/or therapy. In this article, we discuss the human metabolism of SF and its effects on cancer prevention, treatment, and targeting cancer stem cells, as well as providing a brief review of recent human clinical trials on SF.
Collapse
Affiliation(s)
- Osama A Elkashty
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.,Department of Oral Pathology, Faculty of Dentistry, Mansoura University, Mansoura, 35516, Egypt
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, Montreal, H3A 0G4, Canada.
| |
Collapse
|
50
|
Zhou X, Cao H, Zeng Y. Microfluidic circulating reactor system for sensitive and automated duplex-specific nuclease-mediated microRNA detection. Talanta 2021; 232:122396. [PMID: 34074392 DOI: 10.1016/j.talanta.2021.122396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/27/2022]
Abstract
Duplex-specific nuclease signal amplification (DSNSA) is a promising microRNA (miRNA) quantification strategy. However, existing DSNSA based miRNA detection methods suffer from costly chemical consumptions and require laborious multi-step sample pretreatment that are prone to sample loss and contamination, including total RNA extraction and enrichment. To address these problems, herein we devised a pneumatically automated microfluidic reactor device that integrates both analyte extraction/enrichment and DSNSA-mediated miRNA detection in one streamlined analysis workflow. Two flow circulation strategies were investigated to determine the effects of flow conditions on the kinetics of on-chip DSNSA reaction in a bead-packed microreactor. With the optimized workflow, we demonstrated rapid, robust on-chip detection of miR-21 with a limit-of-detection of 35 amol, while greatly reducing the consumption of DSN enzyme to 0.1 U per assay. Therefore, this microfluidic system provides a useful tool for many applications, including clinical diagnosis.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Hongmei Cao
- Department of Chemistry, University of Kansas, Lawrence, KS, 66045, USA
| | - Yong Zeng
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA; University of Florida Health Cancer Center, Gainesville, FL, 32610, USA.
| |
Collapse
|