1
|
Hunsicker-Wang LM, Vogt MJ, Hoogstraten CG, Cosper NJ, Davenport AM, Hendon CH, Scott RA, Britt RD, DeRose VJ. Spectroscopic characterization of Mn2+ and Cd2+ coordination to phosphorothioates in the conserved A9 metal site of the hammerhead ribozyme. J Inorg Biochem 2022; 230:111754. [DOI: 10.1016/j.jinorgbio.2022.111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/04/2022] [Indexed: 11/25/2022]
|
2
|
Zeng D, Abzhanova A, Brown BP, Reiter NJ. Dissecting Monomer-Dimer Equilibrium of an RNase P Protein Provides Insight Into the Synergistic Flexibility of 5' Leader Pre-tRNA Recognition. Front Mol Biosci 2021; 8:730274. [PMID: 34540901 PMCID: PMC8447495 DOI: 10.3389/fmolb.2021.730274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 11/13/2022] Open
Abstract
Ribonuclease P (RNase P) is a universal RNA-protein endonuclease that catalyzes 5' precursor-tRNA (ptRNA) processing. The RNase P RNA plays the catalytic role in ptRNA processing; however, the RNase P protein is required for catalysis in vivo and interacts with the 5' leader sequence. A single P RNA and a P protein form the functional RNase P holoenzyme yet dimeric forms of bacterial RNase P can interact with non-tRNA substrates and influence bacterial cell growth. Oligomeric forms of the P protein can also occur in vitro and occlude the 5' leader ptRNA binding interface, presenting a challenge in accurately defining the substrate recognition properties. To overcome this, concentration and temperature dependent NMR studies were performed on a thermostable RNase P protein from Thermatoga maritima. NMR relaxation (R1, R2), heteronuclear NOE, and diffusion ordered spectroscopy (DOSY) experiments were analyzed, identifying a monomeric species through the determination of the diffusion coefficients (D) and rotational correlation times (τc). Experimental diffusion coefficients and τc values for the predominant monomer (2.17 ± 0.36 * 10-10 m2/s, τ c = 5.3 ns) or dimer (1.87 ± 0.40* 10-10 m2/s, τ c = 9.7 ns) protein assemblies at 45°C correlate well with calculated diffusion coefficients derived from the crystallographic P protein structure (PDB 1NZ0). The identification of a monomeric P protein conformer from relaxation data and chemical shift information enabled us to gain novel insight into the structure of the P protein, highlighting a lack of structural convergence of the N-terminus (residues 1-14) in solution. We propose that the N-terminus of the bacterial P protein is partially disordered and adopts a stable conformation in the presence of RNA. In addition, we have determined the location of the 5' leader RNA in solution and measured the affinity of the 5' leader RNA-P protein interaction. We show that the monomer P protein interacts with RNA at the 5' leader binding cleft that was previously identified using X-ray crystallography. Data support a model where N-terminal protein flexibility is stabilized by holoenzyme formation and helps to accommodate the 5' leader region of ptRNA. Taken together, local structural changes of the P protein and the 5' leader RNA provide a means to obtain optimal substrate alignment and activation of the RNase P holoenzyme.
Collapse
Affiliation(s)
- Danyun Zeng
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Ainur Abzhanova
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| | - Benjamin P. Brown
- Chemical and Physical Biology Program, Medical Scientist Training Program, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Nicholas J. Reiter
- Department of Chemistry, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
3
|
Wang Y, Song D, Zhou Y, Cheng C, Zhang Y, Pearce CI, Wang Z, Clark SB, Zhu J, Rosso KM, Zhu Z, Zhang X. Molecular Examination of Ion-Pair Competition in Alkaline Aluminate Solutions Using In Situ Liquid SIMS. Anal Chem 2020; 93:1068-1075. [DOI: 10.1021/acs.analchem.0c04070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yining Wang
- Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu
District, Nanjing 210094, China
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Duo Song
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Yadong Zhou
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Cuixia Cheng
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Yanyan Zhang
- Institute of Chemistry, Chinese Academy of Sciences, No. 2, North First Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Carolyn I. Pearce
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Zheming Wang
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Sue B. Clark
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Junwu Zhu
- Nanjing University of Science and Technology, 200 Xiaolingwei Street, Xuanwu
District, Nanjing 210094, China
| | - Kevin M. Rosso
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Zihua Zhu
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| | - Xin Zhang
- Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, Washington 99354, United States
| |
Collapse
|
4
|
X-Ray Absorption Spectroscopy Measurements of Cu-ProIAPP Complexes at Physiological Concentrations. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4010013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The amyloidogenic islet amyloid polypeptide (IAPP) and the associated pro-peptide ProIAPP1–48 are involved in cell death in type 2 diabetes mellitus. It has been observed that interactions of this peptide with metal ions have an impact on the cytotoxicity of the peptides as well as on their deposition in the form of amyloid fibrils. In particular, Cu(II) seems to inhibit amyloid fibril formation, thus suggesting that Cu homeostasis imbalance may be involved in the pathogenesis of type 2 diabetes mellitus. We performed X-ray Absorption Spectroscopy (XAS) measurements of Cu(II)-ProIAPP complexes under near-physiological (10 μM), equimolar concentrations of Cu(II) and peptide. Such low concentrations were made accessible to XAS measurements owing to the use of the High Energy Resolved Fluorescence Detection XAS facility recently installed at the ESRF beamline BM16 (FAME-UHD). Our preliminary data show that XAS measurements at micromolar concentrations are feasible and confirm that ProIAPP1–48-Cu(II) binding at near-physiological conditions can be detected.
Collapse
|
5
|
Lan P, Tan M, Zhang Y, Niu S, Chen J, Shi S, Qiu S, Wang X, Peng X, Cai G, Cheng H, Wu J, Li G, Lei M. Structural insight into precursor tRNA processing by yeast ribonuclease P. Science 2018; 362:science.aat6678. [PMID: 30262633 DOI: 10.1126/science.aat6678] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 09/18/2018] [Indexed: 11/02/2022]
Abstract
Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.
Collapse
Affiliation(s)
- Pengfei Lan
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Ming Tan
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China
| | - Yuebin Zhang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Shuangshuang Niu
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China.,University of Chinese Academy of Sciences, CAS, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Juan Chen
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shaohua Shi
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China
| | - Shuwan Qiu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xuejuan Wang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Xiangda Peng
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China
| | - Gang Cai
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Hong Cheng
- State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences (CAS), Shanghai 200031, China
| | - Jian Wu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China.
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, CAS, Dalian 116023, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200125, China. .,Key laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.,National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai, 201210, China.,Shanghai Science Research Center, CAS, Shanghai, 201204, China
| |
Collapse
|
6
|
Wang TP, Su YC, Chen Y, Severance S, Hwang CC, Liou YM, Lu CH, Lin KL, Zhu RJ, Wang EC. Corroboration of Zn( ii)–Mg( ii)-tertiary structure interplays essential for the optimal catalysis of a phosphorothiolate thiolesterase ribozyme. RSC Adv 2018; 8:32775-32793. [PMID: 35547718 PMCID: PMC9086351 DOI: 10.1039/c8ra05083j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 09/06/2018] [Indexed: 11/21/2022] Open
Abstract
The TW17 ribozyme, a catalytic RNA selected from a pool of artificial RNA, is specific for the Zn2+-dependent hydrolysis of a phosphorothiolate thiolester bond. Here, we describe the organic synthesis of both guanosine α-thio-monophosphate and the substrates required for selecting and characterizing the TW17 ribozyme, and for deciphering the catalytic mechanism of the ribozyme. By successively substituting the substrate originally conjugated to the RNA pool with structurally modified substrates, we demonstrated that the TW17 ribozyme specifically catalyzes phosphorothiolate thiolester hydrolysis. Metal titration studies of TW17 ribozyme catalysis in the presence of Zn2+ alone, Zn2+ and Mg2+, and Zn2+ and [Co(NH3)6]3+ supported our findings that Zn2+ is absolutely required for ribozyme catalysis, and indicated that optimal ribozyme catalysis involves the presence of outer-sphere and one inner-sphere Mg2+. A survey of the TW17 ribozyme activity at various pHs revealed that the activity of the ribozyme critically depends on the alkaline conditions. Moreover, a GNRA tetraloop-containing ribozyme constructed with active catalysis in trans provided catalysis and multiple substrate turnover efficiencies significantly higher than ribozymes lacking a GNRA tetraloop. This research supports the essential roles of Zn2+, Mg2+, and a GNRA tetraloop in modulating the TW17 ribozyme structure for optimal ribozyme catalysis, leading also to the formulation of a proposed reaction mechanism for TW17 ribozyme catalysis. Zn(ii) and Mg(ii) and GAGA tetraloop in the ion atmosphere of the TW17 ribozyme is critical to optimal ribozyme catalysis at alkaline pH.![]()
Collapse
Affiliation(s)
- Tzu-Pin Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
- Kaohsiung Medical University Hospital
| | - Yu-Chih Su
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi Chen
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Scott Severance
- Department of Molecular and Cellular Sciences
- Liberty University College of Osteopathic Medicine
- Lynchburg
- USA
| | - Chi-Ching Hwang
- Department of Biochemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Yi-Ming Liou
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Chia-Hui Lu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Kun-Liang Lin
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Rui Jing Zhu
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| | - Eng-Chi Wang
- Department of Medicinal and Applied Chemistry
- Kaohsiung Medical University
- Kaohsiung
- Taiwan
| |
Collapse
|
7
|
Liu X, Chen Y, Fierke CA. Inner-Sphere Coordination of Divalent Metal Ion with Nucleobase in Catalytic RNA. J Am Chem Soc 2017; 139:17457-17463. [PMID: 29116782 PMCID: PMC6020041 DOI: 10.1021/jacs.7b08755] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Identification of the function of metal ions and the RNA moieties, particularly nucleobases, that bind metal ions is important in RNA catalysis. Here we combine single-atom and abasic substitutions to probe functions of conserved nucleobases in ribonuclease P (RNase P). Structural and biophysical studies of bacterial RNase P propose direct coordination of metal ions by the nucleobases of conserved uridine and guanosine in helix P4 of the RNA subunit (P RNA). To biochemically probe the function of metal ion interactions, we substituted the universally conserved bulged uridine (U51) in the P4 helix of circularly permuted Bacillus subtilis P RNA with 4-thiouridine, 4-deoxyuridine, and abasic modifications and G378/379 with 2-aminopurine, N7-deazaguanosine, and 6-thioguanosine. The functional group modifications of U51 decrease RNase P-catalyzed phosphodiester bond cleavage 16- to 23-fold, as measured by the single-turnover cleavage rate constant. The activity of the 4-thiouridine RNase P is partially rescued by addition of Cd(II) or Mn(II) ions. This is the first time a metal-rescue experiment provides evidence for inner-sphere divalent metal ion coordination with a nucleobase. Modifications of G379 modestly decrease the cleavage activity of RNase P, suggesting outer-sphere coordination of O6 on G379 to a metal ion. These data provide biochemical evidence for catalytically important interactions of the P4 helix of P RNA with metal ions, demonstrating that the bulged uridine coordinates at least one catalytic metal ion through an inner-sphere interaction. The combination of single-atom and abasic nucleotide substitutions provides a powerful strategy to probe functions of conserved nucleobases in large RNAs.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Klemm BP, Wu N, Chen Y, Liu X, Kaitany KJ, Howard MJ, Fierke CA. The Diversity of Ribonuclease P: Protein and RNA Catalysts with Analogous Biological Functions. Biomolecules 2016; 6:biom6020027. [PMID: 27187488 PMCID: PMC4919922 DOI: 10.3390/biom6020027] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/30/2022] Open
Abstract
Ribonuclease P (RNase P) is an essential endonuclease responsible for catalyzing 5' end maturation in precursor transfer RNAs. Since its discovery in the 1970s, RNase P enzymes have been identified and studied throughout the three domains of life. Interestingly, RNase P is either RNA-based, with a catalytic RNA subunit, or a protein-only (PRORP) enzyme with differential evolutionary distribution. The available structural data, including the active site data, provides insight into catalysis and substrate recognition. The hydrolytic and kinetic mechanisms of the two forms of RNase P enzymes are similar, yet features unique to the RNA-based and PRORP enzymes are consistent with different evolutionary origins. The various RNase P enzymes, in addition to their primary role in tRNA 5' maturation, catalyze cleavage of a variety of alternative substrates, indicating a diversification of RNase P function in vivo. The review concludes with a discussion of recent advances and interesting research directions in the field.
Collapse
Affiliation(s)
- Bradley P Klemm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Nancy Wu
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Yu Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Xin Liu
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| | - Kipchumba J Kaitany
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Michael J Howard
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48103, USA.
| |
Collapse
|
9
|
Yan M, Lu Y, Gao Y, Benedetti MF, Korshin GV. In-Situ Investigation of Interactions between Magnesium Ion and Natural Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8323-8329. [PMID: 26090773 DOI: 10.1021/acs.est.5b00003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Natural organic matter (NOM) generated in all niches of the environment constitutes a large fraction of the global pool of organic carbon while magnesium is one of the most abundant elements that has multiple roles in both biotic and abiotic processes. Although interactions between Mg(2+) and NOM have been recognized to affect many environmental processes, little is understood about relevant mechanisms and equilibria. This study addressed this deficiency and quantified Mg(2+)-NOM interactions using differential absorbance spectroscopy (DAS) in combination with the NICA-Donnan speciation model. DAS data were obtained for varying total Mg concentrations, pHs from 5.0 to 11.0 and ionic strengths from 0.001 to 0.3 mol L(-1). DAS results demonstrated the existence of strong interactions between magnesium and NOM at all examined conditions and demonstrated that the binding of Mg(2+) by NOM was accompanied by the replacement of protons in the protonation-active phenolic and carboxylic groups. The slope of the log-transformed absorbance spectra of NOM in the range of wavelength 350-400 nm was found to be indicative of the extent of Mg(2+)-NOM binding. The differential and absolute values of the spectral slopes were strongly correlated with the amount of NOM-bound Mg(2+) ions and with the concentrations of NOM-bound protons.
Collapse
Affiliation(s)
- Mingquan Yan
- †Department of Environmental Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Yujuan Lu
- ‡College of Chemistry and Chemical Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yuan Gao
- §Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195-2700, United States
| | - Marc F Benedetti
- ∥Institut de Physique du Globe de Paris-Sorbonne Paris Cité-Université Paris-Diderot, UMR CNRS 7154, Paris, France
| | - Gregory V Korshin
- §Department of Civil and Environmental Engineering, University of Washington, Box 352700, Seattle, Washington 98195-2700, United States
| |
Collapse
|
10
|
Wu P, Yu Y, McGhee CE, Tan LH, Lu Y. Applications of synchrotron-based spectroscopic techniques in studying nucleic acids and nucleic acid-functionalized nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7849-72. [PMID: 25205057 PMCID: PMC4275547 DOI: 10.1002/adma.201304891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 06/02/2014] [Indexed: 05/22/2023]
Abstract
In this review, we summarize recent progress in the application of synchrotron-based spectroscopic techniques for nucleic acid research that takes advantage of high-flux and high-brilliance electromagnetic radiation from synchrotron sources. The first section of the review focuses on the characterization of the structure and folding processes of nucleic acids using different types of synchrotron-based spectroscopies, such as X-ray absorption spectroscopy, X-ray emission spectroscopy, X-ray photoelectron spectroscopy, synchrotron radiation circular dichroism, X-ray footprinting and small-angle X-ray scattering. In the second section, the characterization of nucleic acid-based nanostructures, nucleic acid-functionalized nanomaterials and nucleic acid-lipid interactions using these spectroscopic techniques is summarized. Insights gained from these studies are described and future directions of this field are also discussed.
Collapse
Affiliation(s)
- Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Yu
- Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Li Huey Tan
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yi Lu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Center of Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
11
|
Bowman JC, Lenz TK, Hud NV, Williams LD. Cations in charge: magnesium ions in RNA folding and catalysis. Curr Opin Struct Biol 2012; 22:262-72. [PMID: 22595008 DOI: 10.1016/j.sbi.2012.04.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 04/24/2012] [Accepted: 04/24/2012] [Indexed: 12/22/2022]
Affiliation(s)
- Jessica C Bowman
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Center for Ribosomal Origins and Evolution, Georgia Institute of Technology, Atlanta, GA 30332-0400, United States
| | | | | | | |
Collapse
|
12
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
13
|
Abstract
Metal ions are inextricably involved with nucleic acids due to their polyanionic nature. In order to understand the structure and function of RNAs and DNAs, one needs to have detailed pictures on the structural, thermodynamic, and kinetic properties of metal ion interactions with these biomacromolecules. In this review we first compile the physicochemical properties of metal ions found and used in combination with nucleic acids in solution. The main part then describes the various methods developed over the past decades to investigate metal ion binding by nucleic acids in solution. This includes for example hydrolytic and radical cleavage experiments, mutational approaches, as well as kinetic isotope effects. In addition, spectroscopic techniques like EPR, lanthanide(III) luminescence, IR and Raman as well as various NMR methods are summarized. Aside from gaining knowledge about the thermodynamic properties on the metal ion-nucleic acid interactions, especially NMR can be used to extract information on the kinetics of ligand exchange rates of the metal ions applied. The final section deals with the influence of anions, buffers, and the solvent permittivity on the binding equilibria between metal ions and nucleic acids. Little is known on some of these aspects, but it is clear that these three factors have a large influence on the interaction between metal ions and nucleic acids.
Collapse
Affiliation(s)
- Maria Pechlaner
- Institute of Inorganic Chemistry, University of Zürich, Zürich, Switzerland
| | | |
Collapse
|
14
|
Abstract
Nuclear ribonuclease (RNase) P is a ubiquitous essential ribonucleoprotein complex, one of only two known RNA-based enzymes found in all three domains of life. The RNA component is the catalytic moiety of RNases P across all phylogenetic domains; it contains a well-conserved core, whereas peripheral structural elements are diverse. RNA components of eukaryotic RNases P tend to be less complex than their bacterial counterparts, a simplification that is accompanied by a dramatic reduction of their catalytic ability in the absence of protein. The size and complexity of the protein moieties increase dramatically from bacterial to archaeal to eukaryotic enzymes, apparently reflecting the delegation of some structural functions from RNA to proteins and, perhaps, in response to the increased complexity of the cellular environment in the more evolutionarily advanced organisms; the reasons for the increased dependence on proteins are not clear. We review current information on RNase P and the closely related universal eukaryotic enzyme RNase MRP, focusing on their functions and structural organization.
Collapse
Affiliation(s)
- Olga Esakova
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | |
Collapse
|
15
|
Hammerhead ribozymes: true metal or nucleobase catalysis? Where is the catalytic power from? Molecules 2010; 15:5389-407. [PMID: 20714304 PMCID: PMC6257768 DOI: 10.3390/molecules15085389] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/29/2010] [Accepted: 08/04/2010] [Indexed: 11/17/2022] Open
Abstract
The hammerhead ribozyme was first considered as a metalloenzyme despite persistent inconsistencies between structural and functional data. In the last decade, metal ions were confirmed as catalysts in self-splicing ribozymes but displaced by nucleobases in self-cleaving ribozymes. However, a model of catalysis just relying on nucleobases as catalysts does not fully fit some recent data. Gathering and comparing data on metal ions in self-cleaving and self-splicing ribozymes, the roles of divalent metal ions and nucleobases are revisited. Hypothetical models based on cooperation between metal ions and nucleobases are proposed for the catalysis and evolution of this prototype in RNA catalysis.
Collapse
|
16
|
Abstract
"Oh, Jerusalem of gold, and of light, and of bronze..." goes the popular song. But it was another metal that towered above the Jerusalem landscape during the meeting of the International Society for Zinc Biology (ISZB; http://www.iszb.org/), held at Mishkenot Sha'ananim, a whisper away from the Old City walls. More than 100 scientists gathered on 1 to 5 December 2009 to discuss their research on the biology of this metal. Zinc is a double-edged sword. Zinc supplementation accelerates wound healing and growth and promotes an effective immune response. On the other hand, zinc deficiency leads to growth retardation and impaired learning and memory function, and has been linked to mood disorders. At the cellular level, however, uncontrolled increases in zinc concentrations can lead to neuronal cell death and may be involved in neurodegenerative disorders. Through regulation of various intracellular signaling pathways, zinc can accelerate cell growth and possibly contribute to cancer. However, despite the physiological and clinical importance of this metal, research on the molecular basis of these effects is still in its infancy. The 2009 ISZB meeting provided a venue for investigators working on various zinc-related issues to share their thoughts and ideas and to promote the growth of this field.
Collapse
Affiliation(s)
- Michal Hershfinkel
- Department of Morphology, Ben Gurion University, Beer Sheva, 84105, Israel
| | | | | | | |
Collapse
|
17
|
Hsieh J, Koutmou KS, Rueda D, Koutmos M, Walter NG, Fierke CA. A divalent cation stabilizes the active conformation of the B. subtilis RNase P x pre-tRNA complex: a role for an inner-sphere metal ion in RNase P. J Mol Biol 2010; 400:38-51. [PMID: 20434461 PMCID: PMC2939038 DOI: 10.1016/j.jmb.2010.04.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/22/2010] [Accepted: 04/24/2010] [Indexed: 01/25/2023]
Abstract
Metal ions interact with RNA to enhance folding, stabilize structure, and, in some cases, facilitate catalysis. Assigning functional roles to specifically bound metal ions presents a major challenge in analyzing the catalytic mechanisms of ribozymes. Bacillus subtilis ribonuclease P (RNase P), composed of a catalytically active RNA subunit (PRNA) and a small protein subunit (P protein), catalyzes the 5'-end maturation of precursor tRNAs (pre-tRNAs). Inner-sphere coordination of divalent metal ions to PRNA is essential for catalytic activity but not for the formation of the RNase P x pre-tRNA (enzyme-substrate, ES) complex. Previous studies have demonstrated that this ES complex undergoes an essential conformational change (to the ES* conformer) before the cleavage step. Here, we show that the ES* conformer is stabilized by a high-affinity divalent cation capable of inner-sphere coordination, such as Ca(II) or Mg(II). Additionally, a second, lower-affinity Mg(II) activates cleavage catalyzed by RNase P. Structural changes that occur upon binding Ca(II) to the ES complex were determined by time-resolved Förster resonance energy transfer measurements of the distances between donor-acceptor fluorophores introduced at specific locations on the P protein and pre-tRNA 5' leader. These data demonstrate that the 5' leader of pre-tRNA moves 4 to 6 A closer to the PRNA x P protein interface during the ES-to-ES* transition and suggest that the metal-dependent conformational change reorganizes the bound substrate in the active site to form a catalytically competent ES* complex.
Collapse
Affiliation(s)
- John Hsieh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | | | - David Rueda
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Markos Koutmos
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan
| | - Nils G. Walter
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
| | - Carol A. Fierke
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|