1
|
He Q, Chen S, Hou T, Chen J. Juvenile hormone-induced microRNA miR-iab-8 regulates lipid homeostasis and metamorphosis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:792-805. [PMID: 39005109 DOI: 10.1111/imb.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Metamorphosis plays an important role in the evolutionary success of insects. Accumulating evidence indicated that microRNAs (miRNAs) are involved in the regulation of processes associated with insect metamorphosis. However, the miRNAs coordinated with juvenile hormone (JH)-regulated metamorphosis remain poorly reported. In the present study, using high-throughput miRNA sequencing combined with Drosophila genetic approaches, we demonstrated that miR-iab-8, which primarily targets homeotic genes to modulate haltere-wing transformation and sterility was up-regulated by JH and involved in JH-mediated metamorphosis. Overexpression of miR-iab-8 in the fat body resulted in delayed development and failure of larval-pupal transition. Furthermore, metabolomic analysis results revealed that overexpression of miR-iab-8 caused severe energy metabolism defects especially the lipid metabolism, resulting in significantly reduced triacylglycerol (TG) content and glycerophospholipids but enhanced accumulation of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). In line with this, Nile red staining demonstrated that during the third larval development, the TG content in the miR-iab-8 overexpression larvae was continuously decreased, which is opposite to the control. Additionally, the transcription levels of genes committed to TG synthesis and breakdown were found to be significantly increased and the expression of genes responsible for glycerophospholipids metabolism were also altered. Overall, we proposed that JH induced miR-iab-8 expression to perturb the lipid metabolism homeostasis especially the TG storage in the fat body, which in turn affected larval growth and metamorphosis.
Collapse
Affiliation(s)
- Qianyu He
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Shanshan Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tianlan Hou
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jinxia Chen
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
2
|
Pang S, Wang S, Asad M, Yu J, Lin G, Chen J, Sun C, Huang P, Chang Y, Wei H, Yang G. microRNA-8514-5p regulates adipokinetic hormone/corazonin-related peptide receptor to affect development and reproduction of Plutella xylostella. PEST MANAGEMENT SCIENCE 2024; 80:5377-5387. [PMID: 38924668 DOI: 10.1002/ps.8267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Dicer1 plays a crucial role in regulating the development and reproduction of insects. Knockout of Dicer1 causes pupal deformity, low eclosion and low fecundity in Plutella xylostella, but the mechanism behind this phenomenon is not clear. This study aims to identify differentially-expressed genes and miRNAs in the Dicer1-knockout strain (ΔPxDcr-1) and assess their impact on the reproduction and development of P. xylostella. RESULTS The knockout of Dicer1 affected the expression of genes including the adipokinetic hormone/corazonin-related peptide receptor (PxACPR). The expression of PxACPR was upregulated, and the expression of miR-8514-5p was downregulated in ΔPxDcr-1 of P. xylostella. The dual luciferase reporter assay and pull-down assay showed that miR-8514-5p bound to PxACPR in vitro and in vivo. The expression profiles demonstrated a negative correlation between PxACPR mRNA and miR-8514-5p in different developmental stages of the wild-type strain. Both the miR-8514-5p agomir and double-stranded RNA of ACPR (dsPxACPR) injected into the pre-pupae inhibited the mRNA level of PxACPR, causing high mortality and deformity of pupae, and low fecundity and hatching rate, which were consistent with the phenotype of ΔPxDcr-1. The injection of miR-8514-5p antagomir caused a similar phenotype to the injection of miR-8514-5p agomir. Additionally, the injection of miR-8514-5p antagomir significantly rescued the phenotype caused by dsPxACPR. CONCLUSION These results indicate that miR-8514-5p affects the development and reproduction of P. xylostella by regulating PxACPR, and the homeostasis of PxACPR expression is essential for the development and reproduction of P. xylostella. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Shuo Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jiajing Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Guifang Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Jinzhi Chen
- Southern Zhejiang Key Laboratory of Crop Breeding, Wenzhou Vocational College of Science and Technology (Wenzhou Academy of Agricultural Sciences), Wenzhou, Zhejiang, China
| | - Cuiying Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Pengrong Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Yanpeng Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| | - Hui Wei
- Institute of Plant Protection, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou, China
| |
Collapse
|
3
|
Huang DY, Qin JS, Dong RK, Liu SN, Chen N, Yuan DW, Li S, Wang Z, Xia X. Ben-JNK signaling is required for host mortality during Periplaneta fuliginosa densovirus infection. PEST MANAGEMENT SCIENCE 2024; 80:4495-4504. [PMID: 38676657 DOI: 10.1002/ps.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Cockroaches are widely acknowledged as significant vectors of pathogenic microorganisms. The Periplaneta fuliginosa densovirus (PfDNV) infects the smoky-brown cockroach P. fuliginosa and causes host mortality, which identifies the PfDNV as a species-specific and environmentally friendly biopesticide. However, although the biochemical characterization of PfDNV has been extensively studied, the immune response against PfDNV remains largely unclear. RESULTS Here, we investigated the replication of PfDNV and its associated pathological phenotype in the foregut and hindgut. Consequently, we dissected and performed transcriptome sequencing on the foregut, midgut, and hindgut separately. We revealed the up-regulation of immune response signaling pathway c-Jun N-terminal kinase (JNK) and apoptosis in response to viral infection. Furthermore, knockdown of the JNK upstream gene Ben resulted in a decrease in virus titer and delayed host mortality. CONCLUSION Taken together, our findings provide evidence that the Ben-JNK signaling plays a crucial role in PfDNV infection, leading to excessive apoptosis in intestinal tissues and ultimately resulting in the death of the host. Our results indicated that the host response to PfDNV fosters viral infection, thereby increasing host lethality. This underscores the potential of PfDNV as a viable, environmentally friendly biopesticide. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dan-Yan Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jia-Si Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ren-Ke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Su-Ning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Dong-Wei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Zhaowei Wang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Xiaoling Xia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
4
|
Reynolds JA. MicroRNAs in the developmental toolbox - a comparative approach to understanding their role in regulating insect development. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101256. [PMID: 39214418 DOI: 10.1016/j.cois.2024.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/10/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
MicroRNAs are ubiquitous in the genomes of metazoans. Since their discovery during the late 20th century, our understanding of these small, noncoding RNAs has grown rapidly. However, there are still many unknowns about the functional significance of miRNAs - especially in non-model insects. Here I discuss the accumulating evidence that microRNAs are part of gene regulatory networks that determine not only the developmental outcome but also mediate transitions between stages and alternative developmental pathways. During the last 20 years, researchers have published a multitude of profiling studies that describe changes in miRNAs that may be important for development and catalog potential targets. Proof-of-principle studies document phenotypic changes that occur when candidate genes and/or miRNAs are inhibited or overexpressed. Studies that use both of these approaches, along with methods for confirming miRNA-mRNA interaction, demonstrate the necessary roles for miRNAs within gene networks. Together, all of these types of studies provide essential clues for understanding the function of miRNAs in the developmental toolbox.
Collapse
Affiliation(s)
- Julie A Reynolds
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
5
|
Wang YP, Chen XY, Pu DQ, Yi CY, Liu CH, Zhang CC, Wei ZZ, Guo JW, Yu WJ, Chen S, Liu HL. Identification and Prediction of Differentially Expressed MicroRNAs Associated with Detoxification Pathways in Larvae of Spodoptera frugiperda. Genes (Basel) 2024; 15:1021. [PMID: 39202382 PMCID: PMC11353827 DOI: 10.3390/genes15081021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Spodoptera frugiperda poses a severe threat to crops, causing substantial economic losses. The increased use of chemical pesticides has led to resistance in S. frugiperda populations. Micro ribonucleic acids (MicroRNAs or miRNAs) are pivotal in insect growth and development. This study aims to identify miRNAs across different developmental stages of S. frugiperda to explore differential expression and predict target gene functions. High-throughput sequencing of miRNAs was conducted on eggs, 3rd instar larvae, pupae, and adults. Bioinformatics analyses identified differentially expressed miRNAs specifically in larvae, with candidate miRNAs screened to predict target genes, particularly those involved in detoxification pathways. A total of 184 known miRNAs and 209 novel miRNAs were identified across stages. Comparative analysis revealed 54, 15, and 18 miRNAs differentially expressed in larvae, compared to egg, pupa, and adult stages, respectively. Eight miRNAs showed significant differential expression across stages, validated by quantitative reverse transcription PCR (qRT-PCR). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses predicted target genes' functions, identifying eight differentially expressed miRNAs targeting 10 gene families associated with detoxification metabolism, including P450s, glutathione S-transferase (GSTs), ATP-binding cassette (ABC) transporters, and sodium channels. These findings elucidate the species-specific miRNA profiles and regulatory mechanisms of detoxification-related genes in S. frugiperda larvae, offering insights and strategies for effectively managing this pest.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Xing-Yu Chen
- Science and Technology Security Center, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China;
| | - De-Qiang Pu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Chun-Yan Yi
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Chang-Hua Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Cui-Cui Zhang
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Zhen-Zhen Wei
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Jing-Wei Guo
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Wen-Juan Yu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Song Chen
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| | - Hong-Ling Liu
- Key Laboratory of Integrated Pest Management of Southwest Crops, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (Y.-P.W.); (D.-Q.P.); (C.-Y.Y.); (C.-H.L.); (C.-C.Z.); (Z.-Z.W.); (J.-W.G.); (W.-J.Y.); (S.C.)
| |
Collapse
|
6
|
Geens B, Goossens S, Li J, Van de Peer Y, Vanden Broeck J. Untangling the gordian knot: The intertwining interactions between developmental hormone signaling and epigenetic mechanisms in insects. Mol Cell Endocrinol 2024; 585:112178. [PMID: 38342134 DOI: 10.1016/j.mce.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/30/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Hormones control developmental and physiological processes, often by regulating the expression of multiple genes simultaneously or sequentially. Crosstalk between hormones and epigenetics is pivotal to dynamically coordinate this process. Hormonal signals can guide the addition and removal of epigenetic marks, steering gene expression. Conversely, DNA methylation, histone modifications and non-coding RNAs can modulate regional chromatin structure and accessibility and regulate the expression of numerous (hormone-related) genes. Here, we provide a review of the interplay between the classical insect hormones, ecdysteroids and juvenile hormones, and epigenetics. We summarize the mode-of-action and roles of these hormones in post-embryonic development, and provide a general overview of epigenetic mechanisms. We then highlight recent advances on the interactions between these hormonal pathways and epigenetics, and their involvement in development. Furthermore, we give an overview of several 'omics techniques employed in the field. Finally, we discuss which questions remain unanswered and possible avenues for future research.
Collapse
Affiliation(s)
- Bart Geens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Stijn Goossens
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| | - Jia Li
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, VIB, Ghent, Belgium.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, KU Leuven, Naamsestraat 59 box 2465, B-3000 Leuven, Belgium.
| |
Collapse
|
7
|
Chen J, Guan Z, Ma Y, Shi Q, Chen T, Waris MI, Lyu L, Lu Y, Qi G. Juvenile hormone induces reproduction via miR-1175-3p in the red imported fire ant, Solenopsis invicta. INSECT SCIENCE 2024; 31:371-386. [PMID: 37933419 DOI: 10.1111/1744-7917.13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023]
Abstract
Juvenile hormone (JH) acts in the regulation of caste differentiation between queens and workers (i.e., with or without reproductive capacity) during vitellin synthesis and oogenesis in social insects. However, the regulatory mechanisms have not yet been elucidated. Here, we identified a highly expressed microRNA (miRNA), miR-1175-3p, in the red imported fire ant, Solenopsis invicta. We found that miR-1175-3p is prominently present in the fat bodies and ovaries of workers. Furthermore, miR-1175-3p interacts with its target gene, broad-complex core (Br-C), in the fat bodies. By utilizing miR-1175-3p agomir, we successfully suppressed the expression of the Br-C protein in queens, resulting in reduced vitellogenin expression, fewer eggs, and poorly developed ovaries. Conversely, decreasing miR-1175-3p levels led to the increased expression of Br-C and vitellogenin in workers, triggering the "re-development" of the ovaries. Moreover, when queens were fed with JH, the expression of miR-1175-3p decreased, whereas the expression of vitellogenin-2 and vitellogenin-3 increased. Notably, the suppression of fertility in queens caused by treatment with agomir miR-1175-3p was completely rescued by the increased vitellogenin expression induced by being fed with JH. These results suggest the critical role of miR-1175-3p in JH-regulated reproduction, shedding light on the molecular mechanism underlying miRNA-mediated fecundity in social insects and providing a novel strategy for managing S. invicta.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ziying Guan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yunjie Ma
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Muhammad Irfan Waris
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Lihua Lyu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| | - Yongyue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, China
| |
Collapse
|
8
|
Hussain M, Qi Z, Hedges LM, Nouzova M, Noriega FG, Asgari S. Investigating the role of aae-miR-34-5p in the regulation of juvenile hormone biosynthesis genes in the mosquito Aedes aegypti. Sci Rep 2023; 13:19023. [PMID: 37923767 PMCID: PMC10624809 DOI: 10.1038/s41598-023-46154-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023] Open
Abstract
Juvenile hormone (JH) controls the development and reproduction of insects. Therefore, a tight regulation of the expression of JH biosynthetic enzymes is critical. microRNAs (miRNAs) play significant roles in the post-transcriptional regulation of gene expression by interacting with complementary sequences in target genes. Previously, we reported that several miRNAs were differentially expressed during three developmental stages of Aedes aegypti mosquitoes with different JH levels (no JH, high JH, and low JH). One of these miRNAs was aae-miR-34-5p. In this study, we identified the presence of potential target sequences of aae-miR-34-5p in the transcripts of some genes encoding JH biosynthetic enzymes. We analysed the developmental expression patterns of aae-miR-34-5p and the predicted target genes involved in JH biogenesis. Increases in miRNA abundance were followed, with a delay, by decreases in transcript levels of target genes. Application of an inhibitor and a mimic of aae-miR-34-5p led respectively to increased and decreased levels of thiolase transcripts, which is one of the early genes of JH biosynthesis. Female adult mosquitoes injected with an aae-miR-34-5p inhibitor exhibited significantly increased transcript levels of three genes encoding JH biosynthetic enzymes, acetoacetyl-CoA thiolase (thiolase), farnesyl diphosphate phosphatase, and farnesal dehydrogenase. Overall, our results suggest a potential role of miRNAs in JH production by directly targeting genes involved in its biosynthesis.
Collapse
Affiliation(s)
- Mazhar Hussain
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Zhi Qi
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Lauren M Hedges
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Marcela Nouzova
- Institute of Parasitology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Fernando G Noriega
- Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
- Department of Parasitology, University of South Bohemia, České Budějovice, Czech Republic
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
9
|
Nath A, Bora U. RNAinsecta: A tool for prediction of precursor microRNA in insects and search for their target in the model organism Drosophila melanogaster. PLoS One 2023; 18:e0287323. [PMID: 37812647 PMCID: PMC10561860 DOI: 10.1371/journal.pone.0287323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/03/2023] [Indexed: 10/11/2023] Open
Abstract
INTRODUCTION AND BACKGROUND Pre-MicroRNAs are the hairpin loops from which microRNAs are produced that have been found to negatively regulate gene expression in several organisms. In insects, microRNAs participate in several biological processes including metamorphosis, reproduction, immune response, etc. Numerous tools have been designed in recent years to predict novel pre-microRNA using binary machine learning classifiers where prediction models are trained with true and pseudo pre-microRNA hairpin loops. Currently, there are no existing tool that is exclusively designed for insect pre-microRNA detection. AIM Application of machine learning algorithms to develop an open source tool for prediction of novel precursor microRNA in insects and search for their miRNA targets in the model insect organism, Drosophila melanogaster. METHODS Machine learning algorithms such as Random Forest, Support Vector Machine, Logistic Regression and K-Nearest Neighbours were used to train insect true and false pre-microRNA features with 10-fold Cross Validation on SMOTE and Near-Miss datasets. miRNA targets IDs were collected from miRTarbase and their corresponding transcripts were collected from FlyBase. We used miRanda algorithm for the target searching. RESULTS In our experiment, SMOTE performed significantly better than Near-Miss for which it was used for modelling. We kept the best performing parameters after obtaining initial mean accuracy scores >90% of Cross Validation. The trained models on Support Vector Machine achieved accuracy of 92.19% while the Random Forest attained an accuracy of 80.28% on our validation dataset. These models are hosted online as web application called RNAinsecta. Further, searching target for the predicted pre-microRNA in Drosophila melanogaster has been provided in RNAinsecta.
Collapse
Affiliation(s)
- Adhiraj Nath
- Department of BSBE, IIT Guwahati, North Guwahati, Assam, India
| | - Utpal Bora
- Department of BSBE, IIT Guwahati, North Guwahati, Assam, India
| |
Collapse
|
10
|
Wang N, Chen M, Zhou Y, Zhou WW, Zhu ZR. The microRNA pathway core genes are indispensable for development and reproduction in the brown planthopper, Nilaparvata lugens. INSECT MOLECULAR BIOLOGY 2023; 32:528-543. [PMID: 37162032 DOI: 10.1111/imb.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs involved in a variety of cellular events by regulating gene expression at the post-transcriptional level. Several core genes in miRNA biogenesis have been reported to participate in a wide range of physiological events, in some insect species. However, the functional significance of miRNA pathway core genes in Nilaparvata lugens remains unknown. In the present study, we conducted a systematic characterisation of five core genes involved in miRNA biogenesis. We first performed spatiotemporal expression analysis and found that miRNA core genes exhibited similar expression patterns, with high expression levels in eggs and relatively high transcriptional levels in the ovaries and fat bodies of females. RNA interference experiments showed that injecting third-instar nymphs with dsRNAs targeting the miRNA core genes, NlAgo1, NlDicer1, and NlDrosha resulted in high mortality rates and various degrees of body melanism, moulting defects, and wing deformities. Further investigations revealed that the suppression of miRNA core genes severely impaired ovarian development and oocyte maturation, resulting in significantly reduced fecundity and disruption of intercellular spaces between follicle cells. Moreover, the expression profiles of miR-34-5p, miR-275-3p, miR-317-3p, miR-14, Let-7-1, and miR-2a-3p were significantly altered in response to the knockdown of miRNA core genes mixture, suggesting that they play essential roles in regulating miRNA-mediated gene expression. Therefore, our results provide a solid theoretical basis for the miRNA pathway in N. lugens and suggest that the NlAgo1, NlDicer1, and NlDrosha-dependent miRNA core genes are essential for the development and reproduction of this agricultural pest.
Collapse
Affiliation(s)
- Ni Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Min Chen
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ying Zhou
- Hainan Institute, Zhejiang University, Sanya, China
| | - Wen-Wu Zhou
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| | - Zeng-Rong Zhu
- State Key Laboratory of Rice Biology, Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
11
|
Chen D, Yang X, Yang D, Liu Y, Wang Y, Luo X, Tang L, Yi M, Huang Y, Liu Y, Liu Z. The RNase III enzyme Dicer1 is essential for larval development in Bombyx mori. INSECT SCIENCE 2023; 30:1309-1324. [PMID: 36763354 DOI: 10.1111/1744-7917.13184] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/30/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are important regulators of nearly all aspects of biological processes in eukaryotes. During the biogenesis of miRNAs, the RNase III enzyme Dicer processes double-strand precursor miRNAs into mature miRNAs and promotes the assembly of RNA-induced silencing complexes (RISCs). Dicer has been reported to participate in a wide range of physiological processes, including development and immunity, in some insect species. However, the physiological roles of Dicer in lepidopterans remain poorly understood. In this study, we investigated the function of Bombyx mori Dicer1. We first performed sequence alignment and found that the sequence of functional domains of Dicer1 are varied among Lepidoptera, Diptera, Coleoptera, Blattaria, and Orthoptera. Using a binary clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9 genome editing approach, we showed that BmDicer1 mutants have arrested development from the 3rd instar into the 4th instar. RNA sequencing analysis indicated that the defects in BmDicer1 mutants are due to dysregulation of genes that encode proteins involved in metabolism, protein degradation, absorption, and renin-angiotensin pathways. Analysis using quantitative real-time polymerase chain reaction showed that mutation of BmDicer1 altered expression of miRNAs and their target genes. Therefore, our study demonstrates the critical roles of BmDicer1 in miRNA biogenesis and larval development in silkworm.
Collapse
Affiliation(s)
- Dongbin Chen
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Dehong Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yujia Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaohui Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Linmeng Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meiyan Yi
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Yanqun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, China
| | - Zulian Liu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
12
|
Chen J, Liu Q, Yuan L, Shen W, Shi Q, Qi G, Chen T, Zhang Z. Osa-miR162a Enhances the Resistance to the Brown Planthopper via α-Linolenic Acid Metabolism in Rice ( Oryza sativa). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11847-11859. [PMID: 37493591 DOI: 10.1021/acs.jafc.3c02637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The brown planthopper (BPH) is the most serious pest causing yield losses in rice. MicroRNAs (miRNAs) are emerging as key modulators of plant-pest interactions. In the study, we found that osa-miR162a is induced in response to BPH attack in the seedling stage and tunes rice resistance to the BPH via the α-linolenic acid metabolism pathway as indicated by gas chromatography/liquid chromatography-mass spectrometry analysis. Overexpression of osa-miR162a inhibited the development and growth of the BPH and simultaneously reduced the release of 3-hexenal and 3-hexen-1-ol to block host recognition in the BPH. Moreover, knockdown of OsDCL1, which is targeted by osa-miR162a, inhibited α-linolenic acid metabolism to enhance the resistance to the BPH, which was similar to that in miR162a-overexpressing plants. Our study revealed a novel defense mechanism mediated by plant miRNAs developed during the long-term evolution of plant-host interaction, provided new ideas for the identification of rice resistance resources, and promoted a better understanding of pest control.
Collapse
Affiliation(s)
- Jie Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qin Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Longyu Yuan
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Wenzhong Shen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (MARA), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research Institute, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Qingxing Shi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Guojun Qi
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Ting Chen
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| | - Zhenfei Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, Guangdong, China
| |
Collapse
|
13
|
Yao Z, Jin H, Li C, Ma W, Zhang W, Lin Y. Knockdown of Dcr1 and Dcr2 limits the lethal effect of C-factor in Chilo suppressalis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22004. [PMID: 36780173 DOI: 10.1002/arch.22004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Dicer is a highly conserved ribonuclease in evolution. It belongs to the RNase III family and can specifically recognize and cleave double-stranded RNA (dsRNA). In this study, the genome and transcriptome of Chilo suppressalis were analyzed, and it was found that there were two members in the Dicer family, named Dcr1 and Dcr2. The dsRNAs of Dcr1 and Dcr2 genes were synthesized and fed to C. suppressalis larvae. The C-factor of C. suppressalis was selected as the marker gene. The results showed that both Dcr1 and Dcr2 genes were significantly knocked down. The larval mortality was significantly reduced by 43.50% (p < 0.05) after feeding on dsC-factor and dsDcr1. The transcription levels of C-factor genes were significantly increased by 33.95% (p < 0.05) and 32.94% (p < 0.05) when the larvae fed with dsDcr2 + dsC-factor for 72 h and 96 h, respectively. Furthermore, the mortality was significantly decreased by 79% (p < 0.05) after feeding dsC-factor and dsDcr2. These findings imply that Dcr1 can decrease the lethal effect of C-factor gene but cannot affect its RNAi efficiency and Dcr2 can decrease the lethal effect of C-factor gene by inhibiting RNAi efficiency.
Collapse
Affiliation(s)
- Zhuotian Yao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huihui Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Changyan Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
14
|
Li C, Wu W, Tang J, Feng F, Chen P, Li B. Identification and Characterization of Development-Related microRNAs in the Red Flour Beetle, Tribolium castaneum. Int J Mol Sci 2023; 24:ijms24076685. [PMID: 37047657 PMCID: PMC10094939 DOI: 10.3390/ijms24076685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 04/07/2023] Open
Abstract
MicroRNAs (miRNAs) play important roles in insect growth and development, but they were poorly studied in insects. In this study, a total of 883 miRNAs were detected from the early embryo (EE), late larva (LL), early pupa (EP), late pupa (LP), and early adult (EA) of Tribolium castaneum by microarray assay. Further analysis identified 179 differentially expressed unique miRNAs (DEmiRNAs) during these developmental stages. Of the DEmiRNAs, 102 DEmiRNAs exhibited stage-specific expression patterns during development, including 53 specifically highly expressed miRNAs and 20 lowly expressed miRNAs in EE, 19 highly expressed miRNAs in LL, 5 weakly expressed miRNAs in EP, and 5 abundantly expressed miRNAs in EA. These miRNAs were predicted to target 747, 265, 472, 234, and 121 genes, respectively. GO enrichment analysis indicates that the targets were enriched by protein phosphorylation, calcium ion binding, sequence-specific DNA binding transcription factor activity, and cytoplasm. An RNA interference-mediated knockdown of the DEmiRNAs tca-miR-6-3p, tca-miR-9a-3p, tca-miR-9d-3p, tca-miR-11-3p, and tca-miR-13a-3p led to defects in metamorphosis and wing development of T. castaneum. This study has completed the identification and characterization of development-related miRNAs in T. castaneum, and will enable us to investigate their roles in the growth and development of insect.
Collapse
Affiliation(s)
- Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Wu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Peng Chen
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
15
|
Zeng Q, Long G, Yang H, Zhou C, Yang X, Wang Z, Jin D. SfDicer1 participates in the regulation of molting development and reproduction in the white-backed planthopper, Sogatella furcifera. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 191:105347. [PMID: 36963929 DOI: 10.1016/j.pestbp.2023.105347] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Dicer1 plays a vital role in the formation of mature miRNA and regulates the growth, development, and reproduction of insects. However, it remains to be clarified whether Dicer1 is involved in regulating the biological processes underlying molting and reproduction of Sogatella furcifera (Horváth). Herein, SfDicer1 expression fluctuated in all the developmental stages of S. furcifera and increased as molting progressed. SfDicer1 exhibited high expression in the integument, head, fat body, and ovary of the insects. SfDicer1 dsRNA injection into 1-day-old fourth instar nymphs of S. furcifera substantially decreased the survival rate and expression of the lethal phenotypes of wing malformation and molting defects and significantly inhibited the expression of four conserved miRNAs associated with molting development. Subsequently, following the knockdown of SfDicer1 in the newly emerged (1-12 h) females of S. furcifera, SfVg and SfVgR expression levels were decreased, thereby delaying ovarian development, decreasing the number of eggs, and considerably reducing the hatching rate compared with those of the control. Finally, after silencing SfDicer1 for 48 h, the comparative transcriptome analysis of differentially expressed genes revealed considerable enrichment of the Gene Ontology terms structural constituent of cuticle, structural molecule activity, chitin metabolic process, amino sugar metabolic process, and intracellular anatomical structure, indicating that SfDicer1 inhibition affects the transcription of genes associated with growth and development. Thus, our results suggest that SfDicer1 is essential in the molting, survival, ovarian development, and fecundity of S. furcifera and is a suitable target gene for developing an RNAi-based strategy targeting the most destructive rice insect pest.
Collapse
Affiliation(s)
- Qinghui Zeng
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Guiyun Long
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Hong Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China.
| | - Cao Zhou
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xibin Yang
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| | - Zhao Wang
- College of Environment and Life Sciences, Kaili University, Kaili 556011, China
| | - Daochao Jin
- Institute of Entomology, Guizhou University; Guizhou Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, and Scientific Observing and Experimental Station of Crop Pests in Guiyang, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Guiyang 550025, China
| |
Collapse
|
16
|
Liu F, Cui Y, Lu H, Chen X, Li Q, Ye Z, Chen W, Zhu S. Myofilaments promote wing expansion and maintain genitalia morphology in the American cockroach, Periplaneta americana. INSECT MOLECULAR BIOLOGY 2023; 32:46-55. [PMID: 36214335 DOI: 10.1111/imb.12812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Insects are the most widely distributed and successful animals on the planet. A large number of insects are capable of flight with functional wings. Wing expansion is an important process for insects to achieve functional wings after eclosion and healthy genital morphology is crucial for adult reproduction. Myofilaments are functional units that constitute sarcomeres and trigger muscle contraction. Here, we identified four myofilament proteins, including Myosin, Paramyosin, Tropomyosin and Troponin T, from the wing pads of nymphs in the American cockroach, Periplaneta americana. RNAi-mediated knockdown of Myosin, Paramyosin, Tropomyosin and Troponin T in the early stage of final instar nymphs caused a severely curly wing phenotype in the imaginal moult, especially in the Paramyosin and Troponin T knockdown groups, indicating that these myofilament proteins are involved in controlling wing expansion behaviours during the nymph-adult transition. In addition, the knockdown resulted in abnormal external genitalia, caused ovulation failure, and affected male accessory gland development. Interestingly, the expression of myofilament genes was induced by methoprene, a juvenile hormone (JH) analogue, and decreased by the depletion of the JH receptor gene Met. Altogether, we have determined that myofilament genes play an important role in promoting wing expansion and maintaining adult genitalia morphology, and their expression is induced by JH signalling. Our data reveal a novel mechanism by which wing expansion is regulated by myofilaments and the functions of myofilaments are involved in maintaining genitalia morphology.
Collapse
Affiliation(s)
- Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Yingying Cui
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Huna Lu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Xiaoyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Qin Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Ziqi Ye
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Wanyi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
| | - Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, People's Republic of China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, People's Republic of China
| |
Collapse
|
17
|
Li Z, Zhou C, Chen Y, Ma W, Cheng Y, Chen J, Bai Y, Luo W, Li N, Du E, Li S. Egfr signaling promotes juvenile hormone biosynthesis in the German cockroach. BMC Biol 2022; 20:278. [PMID: 36514097 PMCID: PMC9749228 DOI: 10.1186/s12915-022-01484-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND In insects, an interplay between the activities of distinct hormones, such as juvenile hormone (JH) and 20-hydroxyecdysone (20E), regulates the progression through numerous life history hallmarks. As a crucial endocrine factor, JH is mainly synthesized in the corpora allata (CA) to regulate multiple physiological and developmental processes, including molting, metamorphosis, and reproduction. During the last century, significant progress has been achieved in elucidating the JH signal transduction pathway, while less progress has been made in dissecting the regulatory mechanism of JH biosynthesis. Previous work has shown that receptor tyrosine kinase (RTK) signaling regulates hormone biosynthesis in both insects and mammals. Here, we performed a systematic RNA interference (RNAi) screening to identify RTKs involved in regulating JH biosynthesis in the CA of adult Blattella germanica females. RESULTS We found that the epidermal growth factor receptor (Egfr) is required for promoting JH biosynthesis in the CA of adult females. The Egf ligands Vein and Spitz activate Egfr, followed by Ras/Raf/ERK signaling, and finally activation of the downstream transcription factor Pointed (Pnt). Importantly, Pnt induces the transcriptional expression of two key enzyme-encoding genes in the JH biosynthesis pathway: juvenile hormone acid methyltransferase (JHAMT) and methyl farnesoate epoxidase (CYP15A1). Dual-luciferase reporter assay shows that Pnt is able to activate a promoter region of Jhamt. In addition, electrophoretic mobility shift assay confirms that Pnt directly binds to the - 941~ - 886 nt region of the Jhamt promoter. CONCLUSIONS This study reveals the detailed molecular mechanism of Egfr signaling in promoting JH biosynthesis in the German cockroach, shedding light on the intricate regulation of JH biosynthesis during insect development.
Collapse
Affiliation(s)
- Zhaoxin Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Caisheng Zhou
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yumei Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wentao Ma
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yunlong Cheng
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jinxin Chen
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yu Bai
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wei Luo
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China
| | - Na Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| | - Erxia Du
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sheng Li
- grid.263785.d0000 0004 0368 7397Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou, China ,grid.20561.300000 0000 9546 5767Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China ,grid.263785.d0000 0004 0368 7397Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, China
| |
Collapse
|
18
|
Bidari F, Fathipour Y, Asgari S, Mehrabadi M. Targeting the microRNA pathway core genes, Dicer 1 and Argonaute 1, negatively affects the survival and fecundity of Bemisia tabaci. PEST MANAGEMENT SCIENCE 2022; 78:4234-4239. [PMID: 35708473 DOI: 10.1002/ps.7041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are small regulatory non-coding RNAs that are involved in a variety of biological processes such as immunity, cell signaling and development by regulating gene expression. The whitefly Bemisia tabaci is a polyphagous vector that transmits many plant viruses causing economic damage to crops worldwide. In this study, we characterized and analyzed the expression of the miRNA core genes Argonaute-1 (Ago1) and Dicer-1 (Dcr1) in B. tabaci and explored the effect of their silencing on the insect's fitness. RESULTS Our results showed that Ago1 and Dcr1 are differentially expressed in different tissues and developmental stages of B. tabaci. To determine the function of the miRNA pathway in B. tabaci, we silenced Ago1 and Dcr1 using specific double-stranded RNAs to the genes. RNA interference (RNAi) of Ago1 and Dcr1 decreased the expression level of the core genes and reduced the abundance of Let-7 and miR-184 miRNAs. Silencing of the miRNA pathway core gene also negatively affected the biology of B. tabaci by reducing fertility, fecundity and survival of this insect pest. CONCLUSIONS Together, our results showed that silencing the miRNA pathway core genes reduced the miRNA levels followed by reduced fecundity and survival of B. tabaci, which highlighted the importance of the miRNA pathway in this insect. The miRNA core genes are attractive targets for developing an RNAi-based strategy for targeting this notorious insect pest. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farzad Bidari
- Department of Entomology, Tarbiat Modares University, Tehran, Iran
| | | | - Sassan Asgari
- School of Biological Sciences, The University of Queensland, Brisbane, Australia
| | | |
Collapse
|
19
|
Van den Brande S, Gijbels M, Wynant N, Peeters P, Gansemans Y, Van Nieuwerburgh F, Santos D, Vanden Broeck J. Identification and profiling of stable microRNAs in hemolymph of young and old Locusta migratoria fifth instars. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100041. [PMID: 36003267 PMCID: PMC9387440 DOI: 10.1016/j.cris.2022.100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Since the discovery of the first microRNA (miRNA) in the nematode Caenorhabditis elegans, numerous novel miRNAs have been identified which can regulate presumably every biological process in a wide range of metazoan species. In accordance, several insect miRNAs have been identified and functionally characterized. While regulatory RNA pathways are traditionally described at an intracellular level, studies reporting on the presence and potential role of extracellular (small) sRNAs have been emerging in the last decade, mainly in mammalian systems. Interestingly, evidence in several species indicates the functional transfer of extracellular RNAs between donor and recipient cells, illustrating RNA-based intercellular communication. In insects, however, reports on extracellular small RNAs are emerging but the number of detailed studies is still very limited. Here, we demonstrate the presence of stable sRNAs in the hemolymph of the migratory locust, Locusta migratoria. Moreover, the levels of several extracellular miRNAs (ex-miRNAs) present in locust hemolymph differed significantly between young and old fifth nymphal instars. In addition, we performed a 'proof of principle' experiment which suggested that extracellularly delivered miRNA molecules are capable of affecting the locusts' development.
Collapse
Affiliation(s)
- Stijn Van den Brande
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Marijke Gijbels
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Niels Wynant
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Paulien Peeters
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dulce Santos
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| | - Jozef Vanden Broeck
- Research group of Molecular Developmental Physiology and Signal Transduction, KU Leuven, Zoological Institute, Naamsestraat 59 box 2465, 3000 Leuven, Belgium
| |
Collapse
|
20
|
Zhu S, Liu Y, Liao M, Yang Y, Bai Y, Li N, Li S, Luan Y, Chen N. Evaluation of Reference Genes for Transcriptional Profiling in Two Cockroach Models. Genes (Basel) 2021; 12:genes12121880. [PMID: 34946836 PMCID: PMC8701133 DOI: 10.3390/genes12121880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/02/2023] Open
Abstract
The German cockroach, Blattella germanica, and the American cockroach, Periplaneta americana are the most common and synanthropic household pests of interest to public health. While they have increasingly served as model systems in hemimetabolous insects for studying many biological issues, there is still a lack of stable reference gene evaluation for reliable quantitative real-time PCR (qPCR) outputs and functional genomics. Here, we evaluated the expression variation of common insect reference genes, including the historically used actin, across various tissues and developmental stages, and also under experimental treatment conditions in these two species by using three individual algorithms (geNorm, BestKeeper, and NormFinder) and a comprehensive program (RefFinder). RPL32 in B. germanica and EF1α in P. americana showed the overall lowest variation among all examined samples. Based on the stability rankings by RefFinder, the optimal but varied reference genes under specific conditions were selected for qPCR normalization. In addition, the combination of RPL32 and EF1α was recommended for all the tested tissues and stages in B. germanica, whereas the combination of multiple reference genes was unfavorable in P. americana. This study provides a condition-specific resource of reference gene selection for accurate gene expression profiling and facilitating functional genomics in these two important cockroaches.
Collapse
Affiliation(s)
- Shen Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yongjun Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yang Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Yunxia Luan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; (S.Z.); (Y.L.); (M.L.); (Y.Y.); (Y.B.); (N.L.); (S.L.); (Y.L.)
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514000, China
- Correspondence:
| |
Collapse
|
21
|
Shen W, Cao S, Liu J, Zhang W, Chen J, Li JF. Overexpression of an Osa-miR162a Derivative in Rice Confers Cross-Kingdom RNA Interference-Mediated Brown Planthopper Resistance without Perturbing Host Development. Int J Mol Sci 2021; 22:ijms222312652. [PMID: 34884461 PMCID: PMC8657652 DOI: 10.3390/ijms222312652] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Rice is a main food crop for more than half of the global population. The brown planthopper (BPH, Nilaparvata lugens) is one of the most destructive insect pests of rice. Currently, repeated overuse of chemical insecticides represents a common practice in agriculture for BPH control, which can induce insect tolerance and provoke environmental concerns. This situation calls for innovative and widely applicable strategies for rice protection against BPH. Here we report that the rice osa-miR162a can mediate cross-kingdom RNA interference (RNAi) by targeting the NlTOR (Target of rapamycin) gene of BPH that regulates the reproduction process. Through artificial diet or injection, osa-miR162a mimics repressed the NlTOR expression and impaired the oviposition of BPH adults. Consistently, overproduced osa-miR162a in transgenic rice plants compromised the fecundity of BPH adults fed with these plants, but meanwhile perturbed root and grain development. To circumvent this issue, we generated osa-miR162a-m1, a sequence-optimized osa-miR162a, by decreasing base complementarity to rice endogenous target genes while increasing base complementarity to NlTOR. Transgenic overexpression of osa-miR162a-m1 conferred rice resistance to BPH without detectable developmental penalty. This work reveals the first cross-kingdom RNAi mechanism in rice-BPH interactions and inspires a potentially useful approach for improving rice resistance to BPH. We also introduce an effective strategy to uncouple unwanted host developmental perturbation from desirable cross-kingdom RNAi benefits for overexpressed plant miRNAs.
Collapse
Affiliation(s)
- Wenzhong Shen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Shanni Cao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Jinhui Liu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
| | - Jie Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Correspondence: (J.C.); (J.-F.L.); Tel./Fax: +86-20-39943513 (J.-F.L.)
| | - Jian-Feng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; (W.S.); (S.C.); (J.L.); (W.Z.)
- Correspondence: (J.C.); (J.-F.L.); Tel./Fax: +86-20-39943513 (J.-F.L.)
| |
Collapse
|
22
|
Soares MPM, Pinheiro DG, de Paula Freitas FC, Simões ZLP, Bitondi MMG. Transcriptome dynamics during metamorphosis of imaginal discs into wings and thoracic dorsum in Apis mellifera castes. BMC Genomics 2021; 22:756. [PMID: 34674639 PMCID: PMC8532292 DOI: 10.1186/s12864-021-08040-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Much of the complex anatomy of a holometabolous insect is built from disc-shaped epithelial structures found inside the larva, i.e., the imaginal discs, which undergo a rapid differentiation during metamorphosis. Imaginal discs-derived structures, like wings, are built through the action of genes under precise regulation. RESULTS We analyzed 30 honeybee transcriptomes in the search for the gene expression needed for wings and thoracic dorsum construction from the larval wing discs primordia. Analyses were carried out before, during, and after the metamorphic molt and using worker and queen castes. Our RNA-seq libraries revealed 13,202 genes, representing 86.2% of the honeybee annotated genes. Gene Ontology analysis revealed functional terms that were caste-specific or shared by workers and queens. Genes expressed in wing discs and descendant structures showed differential expression profiles dynamics in premetamorphic, metamorphic and postmetamorphic developmental phases, and also between castes. At the metamorphic molt, when ecdysteroids peak, the wing buds of workers showed maximal gene upregulation comparatively to queens, thus underscoring differences in gene expression between castes at the height of the larval-pupal transition. Analysis of small RNA libraries of wing buds allowed us to build miRNA-mRNA interaction networks to predict the regulation of genes expressed during wing discs development. CONCLUSION Together, these data reveal gene expression dynamics leading to wings and thoracic dorsum formation from the wing discs, besides highlighting caste-specific differences during wing discs metamorphosis.
Collapse
Affiliation(s)
- Michelle Prioli Miranda Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista Júlio de Mesquita Filho, Jaboticabal, SP, Brazil
| | | | - Zilá Luz Paulino Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcia Maria Gentile Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
23
|
Wang Z, Sun X, Zhang X, Dong B, Yu H. Development of a miRNA Sensor by an Inducible CRISPR-Cas9 Construct in Ciona Embryogenesis. Mol Biotechnol 2021; 63:613-620. [PMID: 33880702 DOI: 10.1007/s12033-021-00324-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) regulate multicellular processes and diverse signaling pathways in organisms. The detection of the spatiotemporal expression of miRNA in vivo is crucial for uncovering the function of miRNA. However, most of the current detecting techniques cannot reflect the dynamics of miRNA sensitively in vivo. Here, we constructed a miRNA-induced CRISPR-Cas9 platform (MICR) used in marine chordate Ciona. The key component of MICR is a pre-single guide RNA (sgRNA) flanked by miRNA-binding sites that can be released by RNA-induced silencing complex (RISC) cleavage to form functional sgRNA in the presence of complementary miRNA. By using the miRNA-inducible CRISPR-on system (MICR-ON), we successfully detected the dynamic expression of a miRNA csa-miR-4018a during development of Ciona embryo. The detected patterns were validated to be consistent with the results by in situ hybridization. It is worth noting that the expression of csa-miR-4018a was examined by MICR-ON to be present in additional tissues, where no obvious signaling was detected by in situ hybridization, suggesting that the MICR-ON might be a more sensitive approach to detect miRNA signal in living animal. Thus, MICR-ON was demonstrated to be a sensitive and highly efficient approach for monitoring the dynamics of expression of miRNA in vivo and will facilitate the exploration of miRNA functions in biological systems.
Collapse
Affiliation(s)
- Zhuqing Wang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xueping Sun
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiaoming Zhang
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Bo Dong
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Haiyan Yu
- Sars-Fang Centre, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.
| |
Collapse
|
24
|
Ma X, He K, Shi Z, Li M, Li F, Chen XX. Large-Scale Annotation and Evolution Analysis of MiRNA in Insects. Genome Biol Evol 2021; 13:6255746. [PMID: 33905491 PMCID: PMC8126727 DOI: 10.1093/gbe/evab083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Insects are among the most diverse and successful groups of animals and exhibit great morphological diversity and complexity. The innovation of wings and metamorphosis are some examples of the fascinating biological evolution of insects. Most microRNAs (miRNAs) contribute to canalization by conferring robustness to gene networks and thus increase the heritability of important phenotypes. Though previous studies have demonstrated how miRNAs regulate important phenotypes, little is still known about miRNA evolution in insects. Here, we used both small RNA-seq data and homology searching methods to annotate the miRNA repertoires of 152 arthropod species, including 135 insects and 17 noninsect arthropods. We identified 16,212 miRNA genes, and classified them into highly conserved (62), insect-conserved (90), and lineage-specific (354) miRNA families. The phylogenetic relationship of miRNA binary presence/absence dynamics implies that homoplastic loss of conserved miRNA families tends to occur in far-related morphologically simplified taxa, including scale insects (Coccoidea) and twisted-wing insects (Strepsiptera), leading to inconsistent phylogenetic tree reconstruction. The common ancestor of Insecta shares 62 conserved miRNA families, of which five were rapidly gained in the early winged-insects (Pterygota). We also detected extensive miRNA losses in Paraneoptera that are correlated with morphological reduction, and miRNA gains in early Endopterygota around the time holometabolous metamorphosis appeared. This was followed by abundant miRNA gains in Hymenoptera and Lepidoptera. In summary, we provide a comprehensive data set and a detailed evolutionary analysis of miRNAs in insects. These data will be important for future studies on miRNA functions associated with insect morphological innovation and trait biodiversity.
Collapse
Affiliation(s)
- Xingzhou Ma
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China.,College of Plant Protection, Nanjing Agricultural University, China
| | - Kang He
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhenmin Shi
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Meizhen Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Li
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xue-Xin Chen
- State Key Laboratory of Rice Biology & Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Chen X, Yang L, Huang R, Li S, Jia Q. Matrix metalloproteinases are involved in eclosion and wing expansion in the American cockroach, Periplaneta americana. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 131:103551. [PMID: 33556555 DOI: 10.1016/j.ibmb.2021.103551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Matrix metalloproteinases (MMPs) are the major proteinases that process or degrade numerous extracellular matrix (ECM) components and are evolutionarily conserved from nematodes to humans. During molting in insects, the old cuticle is removed and replaced by a new counterpart. Although the regulatory mechanisms of hormones and nutrients in molting have been well studied, very little is known about the roles of ECM-modifying enzymes in this process. Here, we found that MMPs are necessary for imaginal molting of the American cockroach, Periplaneta americana. Inhibition of Mmp activity via inhibitor treatment led to the failure of eclosion and wing expansion. Five Mmps genes were identified from the P. americana genome, and PaMmp2 played the dominant roles during molting. Further microscopic investigations showed that newly formed adult cuticles were attenuated and that then chitin content was reduced upon Mmp inhibition. Transcriptomic analysis of the integument demonstrated that multiple signaling and metabolic pathways were changed. Microscopic investigation of the wings showed that epithelial cells were restrained together because they were incapable of degrading the ECM upon Mmp inhibition. Transcriptomic analysis of the wing identified dozens of possible genes functioned in wing expansion. This is the first study to show the essential roles of Mmps in the nymph-adult transition of hemimetabolous insects.
Collapse
Affiliation(s)
- Xiaoxi Chen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Liu Yang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Run Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Qiangqiang Jia
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Science, South China Normal University, Guangzhou, Guangdong, 510631, China.
| |
Collapse
|
26
|
Tang CK, Tsai CH, Wu CP, Lin YH, Wei SC, Lu YH, Li CH, Wu YL. MicroRNAs from Snellenius manilae bracovirus regulate innate and cellular immune responses of its host Spodoptera litura. Commun Biol 2021; 4:52. [PMID: 33420334 PMCID: PMC7794284 DOI: 10.1038/s42003-020-01563-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 10/18/2020] [Indexed: 01/29/2023] Open
Abstract
To avoid inducing immune and physiological responses in insect hosts, parasitoid wasps have developed several mechanisms to inhibit them during parasitism, including the production of venom, specialized wasp cells, and symbioses with polydnaviruses (PDVs). These mechanisms alter the host physiology to give the wasp offspring a greater chance of survival. However, the molecular mechanisms for most of these alterations remain unclear. In the present study, we applied next-generation sequencing analysis and identified several miRNAs that were encoded in the genome of Snellenius manilae bracovirus (SmBV), and expressed in the host larvae, Spodoptera litura, during parasitism. Among these miRNAs, SmBV-miR-199b-5p and SmBV-miR-2989 were found to target domeless and toll-7 in the host, which are involved in the host innate immune responses. Microinjecting the inhibitors of these two miRNAs into parasitized S. litura larvae not only severely decreased the pupation rate of Snellenius manilae, but also restored the phagocytosis and encapsulation activity of the hemocytes. The results demonstrate that these two SmBV-encoded miRNAs play an important role in suppressing the immune responses of parasitized hosts. Overall, our study uncovers the functions of two SmBV-encoded miRNAs in regulating the host innate immune responses upon wasp parasitism.
Collapse
Affiliation(s)
- Cheng-Kang Tang
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Chih-Hsuan Tsai
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Carol-P Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yu-Hsien Lin
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Sung-Chan Wei
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Heng Lu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Cheng-Hsun Li
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan
| | - Yueh-Lung Wu
- Department of Entomology, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
27
|
Luo W, Huang LX, Qin SK, Zhang X, Feng QL, Gu J, Huang LH. Multiple microRNAs control ecdysone signaling in the midgut of Spodoptera litura. INSECT SCIENCE 2020; 27:1208-1223. [PMID: 31840397 DOI: 10.1111/1744-7917.12745] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Metamorphosis is one of the most important physiological processes in insects. It is regulated by a serial of ecdysone cascade genes. Recently, lots of microRNAs (miRNAs) were investigated in insects; however, their function in metamorphosis is largely unknown. In the present study, the dynamics of a small RNA population was investigated by RNA sequencing from the midgut of a lepidopteran pest Spodoptera litura during larval-pupal metamorphosis. A total of 101 miRNAs were identified, and 75 miRNAs were differentially expressed during the metamorphic process. The relationship between these differentially expressed miRNAs and 12 ecdysone cascade genes was analyzed by four classical software programs, and a multiple-to-multiple regulatory network was found to exist between these miRNAs and their targets. Among them, miR-14-3p and its two targets (EcR and E75) were chosen for further validation. MiR-14-3p had higher expression level in the 6th instar larvae as compared with either the prepupae or pupae, which was opposite to that of both EcR and E75, two ecdysone cascade genes. Luciferase reporter assay confirmed that both EcR and E75 were regulated by miR-14-3p. Interestingly, the 3' untranslated regions are nearly identical to each other among different transcript variants of the ecdysone cascade genes, including EcR, USP, E75, E74, E78, E93, Hr3, Hr4, Hr39, Krh1 and Ftzf1. Thus, different transcript variants of one ecdysone cascade gene could be regulated by the same miRNA. The above data suggest that the ecdysone signaling pathway is under the tight control of miRNA. These findings expand our understanding of the mechanism of insect metamorphosis and may also provide a novel possibility for the control of pest insects in the future.
Collapse
Affiliation(s)
- Wei Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Xia Huang
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Hubei Key Laboratory of Application of Plant-Cancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan, China
| | - Shuang-Kang Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xian Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qi-Li Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jun Gu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Li-Hua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
28
|
Zhu S, Liu F, Zeng H, Li N, Ren C, Su Y, Zhou S, Wang G, Palli SR, Wang J, Qin Y, Li S. Insulin/IGF signaling and TORC1 promote vitellogenesis via inducing juvenile hormone biosynthesis in the American cockroach. Development 2020; 147:147/20/dev188805. [PMID: 33097549 DOI: 10.1242/dev.188805] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/18/2020] [Indexed: 11/20/2022]
Abstract
Vitellogenesis, including vitellogenin (Vg) production in the fat body and Vg uptake by maturing oocytes, is of great importance for the successful reproduction of adult females. The endocrinal and nutritional regulation of vitellogenesis differs distinctly in insects. Here, the complex crosstalk between juvenile hormone (JH) and the two nutrient sensors insulin/IGF signaling (IIS) and target of rapamycin complex1 (TORC1), was investigated to elucidate the molecular mechanisms of vitellogenesis regulation in the American cockroach, Periplaneta americana Our data showed that a block of JH biosynthesis or JH action arrested vitellogenesis, in part by inhibiting the expression of doublesex (Dsx), a key transcription factor gene involved in the sex determination cascade. Depletion of IIS or TORC1 blocked both JH biosynthesis and vitellogenesis. Importantly, the JH analog methoprene, but not bovine insulin (to restore IIS) and amino acids (to restore TORC1 activity), restored vitellogenesis in the neck-ligated (IIS-, TORC1- and JH-deficient) and rapamycin-treated (TORC1- and JH-deficient) cockroaches. Combining classic physiology with modern molecular techniques, we have demonstrated that IIS and TORC1 promote vitellogenesis, mainly via inducing JH biosynthesis in the American cockroach.
Collapse
Affiliation(s)
- Shiming Zhu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Fangfang Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Huanchao Zeng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China.,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| | - Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yunlin Su
- Molecular Analysis and Genetic Improvement Center South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Guirong Wang
- Lingnan Guangdong Laboratory of Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
| | - Jian Wang
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Yiru Qin
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology and School of Life Sciences, South China Normal University, Guangzhou 510631, China .,Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China
| |
Collapse
|
29
|
Villagra C, Frías-Lasserre D. Epigenetic Molecular Mechanisms in Insects. NEOTROPICAL ENTOMOLOGY 2020; 49:615-642. [PMID: 32514997 DOI: 10.1007/s13744-020-00777-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Insects are the largest animal group on Earth both in biomass and diversity. Their outstanding success has inspired genetics and developmental research, allowing the discovery of dynamic process explaining extreme phenotypic plasticity and canalization. Epigenetic molecular mechanisms (EMMs) are vital for several housekeeping functions in multicellular organisms, regulating developmental, ontogenetic trajectories and environmental adaptations. In Insecta, EMMs are involved in the development of extreme phenotypic divergences such as polyphenisms and eusocial castes. Here, we review the history of this research field and how the main EMMs found in insects help to understand their biological processes and diversity. EMMs in insects confer them rapid response capacity allowing insect either to change with plastic divergence or to keep constant when facing different stressors or stimuli. EMMs function both at intra as well as transgenerational scales, playing important roles in insect ecology and evolution. We discuss on how EMMs pervasive influences in Insecta require not only the control of gene expression but also the dynamic interplay of EMMs with further regulatory levels, including genetic, physiological, behavioral, and environmental among others, as was earlier proposed by the Probabilistic Epigenesis model and Developmental System Theory.
Collapse
Affiliation(s)
- C Villagra
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile.
| | - D Frías-Lasserre
- Instituto de Entomología, Univ Metropolitana de Ciencias de la Educación, Santiago, Chile
| |
Collapse
|
30
|
Tsang SSK, Law STS, Li C, Qu Z, Bendena WG, Tobe SS, Hui JHL. Diversity of Insect Sesquiterpenoid Regulation. Front Genet 2020; 11:1027. [PMID: 33133135 PMCID: PMC7511761 DOI: 10.3389/fgene.2020.01027] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
Insects are arguably the most successful group of animals in the world in terms of both species numbers and diverse habitats. The sesquiterpenoids juvenile hormone, methyl farnesoate, and farnesoic acid are well known to regulate metamorphosis, reproduction, sexual dimorphism, eusociality, and defense in insects. Nevertheless, different insects have evolved with different sesquiterpenoid biosynthetic pathway as well as products. On the other hand, non-coding RNAs such as microRNAs have been implicated in regulation of many important biological processes, and have recently been explored in the regulation of sesquiterpenoid production. In this review, we summarize the latest findings on the diversity of sesquiterpenoids reported in different groups of insects, as well as the recent advancements in the understanding of regulation of sesquiterpenoid production by microRNAs.
Collapse
Affiliation(s)
- Stacey S K Tsang
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Sean T S Law
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Chade Li
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Qu
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Jerome H L Hui
- Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
31
|
Bendena WG, Hui JHL, Chin-Sang I, Tobe SS. Neuropeptide and microRNA regulators of juvenile hormone production. Gen Comp Endocrinol 2020; 295:113507. [PMID: 32413346 DOI: 10.1016/j.ygcen.2020.113507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/06/2020] [Accepted: 05/08/2020] [Indexed: 11/17/2022]
Abstract
The sesquiterpenoid juvenile hormone(s) (JHs) of insects are the primary regulators of growth, metamorphosis, and reproduction in most insect species. As a consequence, it is essential that JH production be precisely regulated so that it is present only during appropriate periods necessary for the control of these processes. The presence of JH at inappropriate times results in disruption to metamorphosis and development and, in some cases, to disturbances in female reproduction. Neuropeptides regulate the timing and production of JH by the corpora allata. Allatostatin and allatotropin were the names coined for neuropeptides that serve as inhibitors or stimulators of JH biosynthesis, respectively. Three different allatostatin neuropeptide families are capable of inhibiting juvenile hormone but only one family is utilized for that purpose dependent on the insect studied. The function of allatotropin also varies in different insects. These neuropeptides are pleiotropic in function acting on diverse physiological processes in different insects such as muscle contraction, sleep and neuromodulation. Genome projects and expression studies have assigned individual neuropeptide families to their respective receptors. An understanding of the localization of these receptors is providing clues as to how numerous peptide families might be integrated in regulating physiological functions. In recent years microRNAs have been identified that down-regulate enzymes and transcription factors that are involved in the biosynthesis and action of juvenile hormone.
Collapse
Affiliation(s)
- William G Bendena
- Department of Biology and Centre for Neuroscience, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Ian Chin-Sang
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6, Canada
| | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Ramsey-Wright Bldg., 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
32
|
Shen ZJ, Liu YJ, Zhu F, Cai LM, Liu XM, Tian ZQ, Cheng J, Li Z, Liu XX. MicroRNA-277 regulates dopa decarboxylase to control larval-pupal and pupal-adult metamorphosis of Helicoverpa armigera. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 122:103391. [PMID: 32360955 DOI: 10.1016/j.ibmb.2020.103391] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/28/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Insect metamorphosis is a complex process involving many metabolic pathways, such as juvenile hormones and molting hormones, bioamines, microRNAs (miRNAs), etc. However, relatively little is known about the biogenic amines and their miRNAs to regulate cotton bollworm metamorphosis. Here we show that one miRNA, miR-277 regulates larval-pupal and pupal-adult metamorphosis of cotton bollworm by targeting the 3'UTR of Dopa decarboxylase (DDC), a synthetic catalytic enzyme of dopamine. Injection of miR-277 agomir inhibited the expression of DDC at the mRNA and protein levels, leading to defects in the pupation and emergence of H. armigera that was consistent with the phenotype obtained by injection of DDC double-stranded RNA (dsRNA). Injection of miR-277 antagomir induced the mRNA and protein expression of DDC and rescued the phenotype of pupation failure caused by DDC gene silencing. Unexpectedly, miR-277 antagomir can also cause failure of emergence of H. armigera and both agomir and antagomir of miR-277 injection could cause abnormal phenotypes in wing veins. This study reveals that elaborate regulation of miRNA and its target gene expression is prerequisite for insect development, which provides a new insight to study the developmental mechanisms of insect wing veins.
Collapse
Affiliation(s)
- Zhong-Jian Shen
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Yan-Jun Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Li-Mei Cai
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Ming Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhi-Qiang Tian
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Cheng
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Zhen Li
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiao-Xia Liu
- Department of Entomology, MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
33
|
Abstract
20-Hydroxyecdysone (20-HE) plays essential roles in coordinating developmental transitions of insects through responsive protein-coding genes and microRNAs (miRNAs). The involvement of single miRNAs in the ecdysone-signalling pathways has been extensively explored, but the interplay between ecdysone and the majority of miRNAs still remains largely unknown. Here, by small RNA sequencing, we systematically investigated the genome-wide responses of miRNAs to 20-HE in the embryogenic cell lines of Bombyx mori and Drosophila melanogaster. Over 60 and 70 20-HE-responsive miRNAs were identified in the BmE cell line and S2 cell line, respectively. The response of miRNAs to ecdysone exhibited a time-dependent pattern, and the response intensity increased with extending exposure to 20-HE. The relationship between ecdysone and the miRNAs was further explored through knockdown of ecdysone-signalling pathway genes. Specifically, ecdysone regulated the cluster miR-275 and miR-305 through the coordination of BmEcR-B and downstream BmE75B, and the interaction between BmEcR and miR-275 cluster was strengthened by the feedback regulation of BmE75B. Ecdysone induced miR-275-3p and miR-305-5p through the ecdysone response effectors (EcREs) at the upstream of the pre-miR-275 cluster. Overall, the results might help us further understand the relationship between ecdysone signalling pathways and small RNAs in the development and metamorphosis of insects.
Collapse
Affiliation(s)
- Xiaoli Jin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Xiaoyan Wu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Lanting Zhou
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Ting He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Quan Yin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China.,College of Life Science, China West Normal University , Nanchong, PR China
| |
Collapse
|
34
|
Song J, Zhou S. Post-transcriptional regulation of insect metamorphosis and oogenesis. Cell Mol Life Sci 2020; 77:1893-1909. [PMID: 31724082 PMCID: PMC11105025 DOI: 10.1007/s00018-019-03361-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/18/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Metamorphic transformation from larvae to adults along with the high fecundity is key to insect success. Insect metamorphosis and reproduction are governed by two critical endocrines, juvenile hormone (JH), and 20-hydroxyecdysone (20E). Recent studies have established a crucial role of microRNA (miRNA) in insect metamorphosis and oogenesis. While miRNAs target genes involved in JH and 20E-signaling pathways, these two hormones reciprocally regulate miRNA expression, forming regulatory loops of miRNA with JH and 20E-signaling cascades. Insect metamorphosis and oogenesis rely on the coordination of hormones, cognate genes, and miRNAs for precise regulation. In addition, the alternative splicing of genes in JH and 20E-signaling pathways has distinct functions in insect metamorphosis and oogenesis. We, therefore, focus in this review on recent advances in post-transcriptional regulation, with the emphasis on the regulatory role of miRNA and alternative splicing, in insect metamorphosis and oogenesis. We will highlight important new findings of miRNA interactions with hormonal signaling and alternative splicing of JH receptor heterodimer gene Taiman.
Collapse
Affiliation(s)
- Jiasheng Song
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Shutang Zhou
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
35
|
Sato K, Miyata K, Ozawa S, Hasegawa K. Systemic RNAi of V-ATPase subunit B causes molting defect and developmental abnormalities in Periplaneta fuliginosa. INSECT SCIENCE 2019; 26:721-731. [PMID: 29285882 DOI: 10.1111/1744-7917.12565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 11/13/2017] [Accepted: 12/05/2017] [Indexed: 06/07/2023]
Abstract
The vacuolar (H+ )-ATPases (V-ATPases) are ATP-driven proton pumps with multiple functions in many organisms. In this study, we performed structural and functional analysis of vha55 gene that encodes V-ATPase subunit B in the smokybrown cockroach Periplaneta fuliginosa (Blattodea). We observed a high homology score of the deduced amino acid sequences between 10 species in seven orders. RNAi of the vha55 gene in P. fuliginosa caused nymphal/nymphal molting defects with incomplete shedding of old cuticles, growth inhibition, as well as bent and wrinkled cuticles of thoraxes and abdominal segments. Since growth inhibition caused by vha55 RNAi did not interfere in the commencement of cockroach molting, molting timing and body growth might be controlled by independent mechanism. Our study suggested V-ATPases might be a good candidate molecule for evolutionary and developmental studies of insect molting.
Collapse
Affiliation(s)
- Kazuki Sato
- Laboratory of Nematology, Department of Applied Biological Sciences, Saga University, Honjo 1, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, Japan
| | - Keita Miyata
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Kasugai, Aichi, Japan
| | - Sota Ozawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Koichi Hasegawa
- Department of Environmental Biology, College of Bioscience & Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
36
|
Rahimpour H, Moharramipour S, Asgari S, Mehrabadi M. The microRNA pathway core genes are differentially expressed during the development of Helicoverpa armigera and contribute in the insect's development. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 110:121-127. [PMID: 31121322 DOI: 10.1016/j.ibmb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (18-25 nt) that are produced by all animals and plants as well as some viruses. Their roles have been revealed in many physiological processes including development, cancer, immunity, apoptosis and, host-microbe interactions through post-transcriptional regulation of gene expression. In this study, we predicted, characterized and transcriptionally analyzed the core miRNA pathway genes in Helicoverpa armigera. Our results showed that the canonical miRNA biogenesis pathway genes including Pasha, Drosha, Loquacious, Exportin-5, Dicer-1 and Argonaute-1 are differentially expressed in different tissues and during the development of this insect. Considering the essential role of Dicer-1 in this pathway, we used RNA interference to silence the expression of this gene in H. armigera. Silencing of Dicer-1 decreased the levels of cellular miRNAs, let-7 and miR-184. Together, our results showed that the miRNA pathway functions during the development of H. armigera, and silencing of Dicer-1 resulted in the miRNA pathway blockage and depletion of the miRNA contents leading to mortalities in the immature stage and abnormalities in the mature stage. Blockage of this pathway can therefore be considered in future attempts for interrupting/suppressing populations of this important crop pest.
Collapse
Affiliation(s)
- Hamed Rahimpour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Saeid Moharramipour
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mohammad Mehrabadi
- Department of Entomology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
37
|
He K, Xiao H, Sun Y, Situ G, Xi Y, Li F. microRNA-14 as an efficient suppressor to switch off ecdysone production after ecdysis in insects. RNA Biol 2019; 16:1313-1325. [PMID: 31184522 DOI: 10.1080/15476286.2019.1629768] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The precise increase and decrease of hormone ecdysone are critical for accurate development in insects. Most previous works focus on transcriptional activation of ecdysone production; however, little is known about the mechanism of switching off ecdysone biosynthesis after ecdysis. Here, we showed that the precursor microRNA-14 (pre-miR-14) encodes two mature miRNAs in silkworm; both of these two mature miRNAs regulate various genes in the ecdysone-signalling pathway. Bmo-miR-14-5p targets on nine genes whereas Bmo-miR-14-3p targets on two genes in the same pathway. These two mature miRNAs increased immediately after the ecdysis, efficiently suppressing the 20-hydroxyecdysone (20E) biosynthesis, the upstream regulation, and the downstream response genes. Knocking down either of two mature miRNAs or both of them delays moult development, impairing development synchrony in antagomir-treated groups. In addition, overexpressing Bmo-miR-14-5p but not Bmo-miR-14-3p significantly affected the 20E titer and increased the moulting time variation, suggesting that Bmo-miR-14-5p, though it is less abundant, has more potent effects in development regulation than Bmo-miR-14-3p. In summary, we present evidence that a pre-miRNA encodes two mature miRNAs targeting on the same pathway, which significantly improves miRNA regulation efficiencies to programmatically switch off ecdysone biosynthesis.
Collapse
Affiliation(s)
- Kang He
- a Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou , China
| | - Huamei Xiao
- b College of Life Sciences and Resource Environment, Yichun University , Yichun , China.,c Department of Entomology, Nanjing Agricultural University , Nanjing , China
| | - Yang Sun
- c Department of Entomology, Nanjing Agricultural University , Nanjing , China.,d Institute of Plant Protection, Jiangxi Academy of Agricultural Science , Nanchang , China
| | - Gongming Situ
- c Department of Entomology, Nanjing Agricultural University , Nanjing , China
| | - Yu Xi
- e Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences , Shenzhen , China
| | - Fei Li
- a Ministry of Agriculture and Rural Affairs Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University , Hangzhou , China
| |
Collapse
|
38
|
The presence of extracellular microRNAs in the media of cultured Drosophila cells. Sci Rep 2018; 8:17312. [PMID: 30470777 PMCID: PMC6251921 DOI: 10.1038/s41598-018-35531-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
While regulatory RNA pathways, such as RNAi, have commonly been described at an intracellular level, studies investigating extracellular RNA species in insects are lacking. In the present study, we demonstrate the presence of extracellular microRNAs (miRNAs) in the cell-free conditioned media of two Drosophila cell lines. More specifically, by means of quantitative real-time PCR (qRT-PCR), we analysed the presence of twelve miRNAs in extracellular vesicles (EVs) and in extracellular Argonaute-1 containing immunoprecipitates, obtained from the cell-free conditioned media of S2 and Cl.8 cell cultures. Next-generation RNA-sequencing data confirmed our qRT-PCR results and provided evidence for selective miRNA secretion in EVs. To our knowledge, this is the first time that miRNAs have been identified in the extracellular medium of cultured cells derived from insects, the most speciose group of animals.
Collapse
|
39
|
Qu Z, Bendena WG, Tobe SS, Hui JHL. Juvenile hormone and sesquiterpenoids in arthropods: Biosynthesis, signaling, and role of MicroRNA. J Steroid Biochem Mol Biol 2018; 184:69-76. [PMID: 29355708 DOI: 10.1016/j.jsbmb.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/21/2022]
Abstract
Arthropod molting and reproduction are precisely controlled by the levels of sesquiterpenoids, a class of C15 hormones derived from three isoprene units. The two major functional arthropod sesquiterpenoids are juvenile hormone (JH) and methyl farnesoate (MF). In hemimetabolous insects (such as the aphids, bugs, and cockroaches) and holometabolous insects (such as beetles, bees, butterflies, and flies), dramatic decrease in the titers of JH and/or MF promote metamorphosis from larvae to adults either directly or through an intermediate pupal stage, respectively. JH is absent in crustaceans (lobster, shrimp, crab) and other arthropods (chelicerates such as ticks, mites, spiders, scorpions and myriapods such as millipede and centipedes). In some crustaceans, molting and reproduction is dependent on changing levels of MF. The regulation of sesquiterpenoid production is thus crucial in the life cycle of arthropods. Dynamic and complex mechanisms have evolved to regulate sesquiterpenoid production. Noncoding RNAs such as the microRNAs are primary regulators. This article provides an overview of microRNAs that are known to regulate sesquiterpenoid production in arthropods.
Collapse
Affiliation(s)
- Zhe Qu
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Stephen S Tobe
- Department of Cell and Systems Biology, University of Toronto, Canada.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
40
|
Rubio M, Maestro JL, Piulachs MD, Belles X. Conserved association of Argonaute 1 and 2 proteins with miRNA and siRNA pathways throughout insect evolution, from cockroaches to flies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:554-560. [PMID: 29656113 DOI: 10.1016/j.bbagrm.2018.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/21/2018] [Accepted: 04/08/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Mercedes Rubio
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Jose Luis Maestro
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Maria-Dolors Piulachs
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain
| | - Xavier Belles
- Institute of Evolutionary Biology (CSIC-UPF), Passeig Marítim 37, 08003 Barcelona, Spain.
| |
Collapse
|
41
|
The genomic and functional landscapes of developmental plasticity in the American cockroach. Nat Commun 2018; 9:1008. [PMID: 29559629 PMCID: PMC5861062 DOI: 10.1038/s41467-018-03281-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 02/02/2018] [Indexed: 11/08/2022] Open
Abstract
Many cockroach species have adapted to urban environments, and some have been serious pests of public health in the tropics and subtropics. Here, we present the 3.38-Gb genome and a consensus gene set of the American cockroach, Periplaneta americana. We report insights from both genomic and functional investigations into the underlying basis of its adaptation to urban environments and developmental plasticity. In comparison with other insects, expansions of gene families in P. americana exist for most core gene families likely associated with environmental adaptation, such as chemoreception and detoxification. Multiple pathways regulating metamorphic development are well conserved, and RNAi experiments inform on key roles of 20-hydroxyecdysone, juvenile hormone, insulin, and decapentaplegic signals in regulating plasticity. Our analyses reveal a high level of sequence identity in genes between the American cockroach and two termite species, advancing it as a valuable model to study the evolutionary relationships between cockroaches and termites.
Collapse
|
42
|
Zhang X, Liu X, Liu C, Wei J, Yu H, Dong B. Identification and characterization of microRNAs involved in ascidian larval metamorphosis. BMC Genomics 2018; 19:168. [PMID: 29490613 PMCID: PMC5831862 DOI: 10.1186/s12864-018-4566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/22/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Metamorphosis takes place within the life cycle of most marine invertebrates. The marine ascidian is a classical model to study complex cellular processes and underlying molecular mechanisms involved in its larval metamorphosis. The detailed molecular signaling pathways remain elusive, though extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinase (JNK) have been revealed to regulate cell migration, differentiation, and apoptosis in ascidian larval organ regression and juvenile organ development. MicroRNAs (miRNAs) are small non-coding RNAs that modulate gene expression at the post-transcriptional level. Large numbers of miRNAs have been demonstrated to be involved in many developmental and metamorphic processes. However, the identification of miRNAs in ascidian larval metamorphosis has not yet been investigated. RESULTS Totally, 106 known and 59 novel miRNAs were screened out through RNA-sequencing of three small RNA libraries from 18 to 21-h post-fertilization (hpf) tailbud embryos as well as from 42 hpf larvae (after tail regression) in Ciona savignyi. Expression profiling of miRNAs was confirmed by quantitative real-time PCR, showing that the expression levels of csa-miR-4040, csa-miR-4086, csa-miR-4055, csa-miR-4060, csa-miR-216a, csa-miR-216b, csa-miR-217, csa-miR-183, and csa-miR-92c were significantly higher in 42 hpf larvae, whereas those of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were higher in 18 and 21 hpf embryos; then, their expression in 42 hpf larvae became significantly low. For these 12 miRNAs, whose expression levels significantly changed, we predicted their target genes through the combination of miRanda and TargetScan. This prediction analysis revealed 332 miRNA-target gene pairs that were associated with the ERK, JNK, and transforming growth factor beta signaling pathways, suggesting that the identified miRNAs are involved in the regulation of C. savignyi larval metamorphosis via controlling the expression of their target genes. Furthermore, we validated the expression of five selected miRNAs by northern blotting. Among the selected miRNAs, the expression patterns of csa-miR-4018a, csa-miR-4018b, and csa-miR-4000f were further examined by whole-mount in situ hybridization. The results showed that all three miRNAs were specifically expressed in a cell population resembling mesenchymal cells at the head and trunk part in swimming larvae but not in metamorphic larvae. Utilizing the luciferase assay, we also confirmed that miR-4000f targeted Mapk1, suggesting that the csa-miR-4018a/csa-miR-4018b/csa-miR-4000f cluster regulates larval metamorphosis through the Mapk1-mediated signaling pathway. CONCLUSIONS Totally, 165 miRNAs, including 59 novel ones, were identified from the embryos and larvae of C. savignyi. Twelve of them showed significant changes in expression before and during metamorphosis. In situ hybridization and northern blotting results revealed that three miRNAs are potentially involved in the signaling regulatory network for the migration and differentiation of mesenchymal cells in larval metamorphosis. Furthermore, the luciferase reporter assay revealed that Mapk1 is a target of csa-miR-4000f. Our results not only present a list and profile of miRNAs involved in Ciona metamorphosis but also provide informative cues to further understand their function in ascidian larval metamorphosis.
Collapse
Affiliation(s)
- Xiaoming Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Xiaozhuo Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Chengzhang Liu
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071 China
| | - Jiankai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Haiyan Yu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, No. 5 Yushan Road, Qingdao, 266003 People’s Republic of China
| |
Collapse
|
43
|
Liu Z, Ling L, Xu J, Zeng B, Huang Y, Shang P, Tan A. MicroRNA-14 regulates larval development time in Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 93:57-65. [PMID: 29288754 DOI: 10.1016/j.ibmb.2017.12.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 12/06/2017] [Accepted: 12/21/2017] [Indexed: 06/07/2023]
Abstract
MicroRNAs (miRNA) regulate multiple physiological processes including development and metamorphosis in insects. In the current study, we demonstrate that a conserved invertebrate miRNA-14 (miR-14) plays an important role in ecdysteroid regulated development in the silkworm Bombyx mori, a lepidopteran model insect. Ubiquitous transgenic overexpression of miR-14 using the GAL4/UAS system resulted in delayed silkworm larval development and smaller body size of larva and pupa with decrease in ecdysteriod titers. On the contrary, miR-14 disruption using the transgenic CRISPR/Cas9 system led to a precocious wandering stage with increase in ecdysteriod titers. We identified that the hormone receptor E75 (E75) and the ecdysone receptor isoform B (ECR-B), which both serve as essential mediators in the ecdysone signaling pathway, as putative target genes of miR-14 by in silico target prediction. Dual-luciferase reporter assays confirmed the binding of miR-14 to the 3'UTRs of E75 and ECR-B in a mammalian HEK293T cell line. Furthermore, transcription levels of E75 and ECR-B were significantly affected in both miR-14 overexpression and knockout transgenic animals. Taken together, our data suggested that the canonical invertebrate miR-14 is a general regulator in maintaining ecdysone homeostasis for normal development and metamorphosis in B. mori.
Collapse
Affiliation(s)
- Zulian Liu
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lin Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Baosheng Zeng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongping Huang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Shang
- Faculty of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Anjiang Tan
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
44
|
He K, Sun Y, Xiao H, Ge C, Li F, Han Z. Multiple miRNAs jointly regulate the biosynthesis of ecdysteroid in the holometabolous insects, Chilo suppressalis. RNA (NEW YORK, N.Y.) 2017; 23:1817-1833. [PMID: 28860304 PMCID: PMC5689003 DOI: 10.1261/rna.061408.117] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/18/2017] [Indexed: 05/30/2023]
Abstract
The accurate rise and fall of active hormones is important for insect development. The ecdysteroids must be cleared in a timely manner. However, the mechanism of suppressing the ecdysteroid biosynthesis at the right time remains unclear. Here, we sequenced a small RNA library of Chilo suppressalis and identified 300 miRNAs in this notorious rice insect pest. Microarray analysis yielded 54 differentially expressed miRNAs during metamorphosis development. Target prediction and in vitro dual-luciferase assays confirmed that seven miRNAs (two conserved and five novel miRNAs) jointly targeted three Halloween genes in the ecdysteroid biosynthesis pathway. Overexpression of these seven miRNAs reduced the titer of 20-hydroxyecdysone (20E), induced mortality, and retarded development, which could be rescued by treatment with 20E. Comparative analysis indicated that the miRNA regulation of metamorphosis development is a conserved process but that the miRNAs involved are highly divergent. In all, we present evidence that both conserved and lineage-specific miRNAs have crucial roles in regulating development in insects by controlling ecdysteroid biosynthesis, which is important for ensuring developmental convergence and evolutionary diversity.
Collapse
Affiliation(s)
- Kang He
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yang Sun
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Plant Protection, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Huamei Xiao
- College of Life Sciences and Resource Environment, Yichun University, Yichun 336000, China
| | - Chang Ge
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhaojun Han
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
45
|
MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
46
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
47
|
Ma K, Li F, Liang P, Chen X, Liu Y, Tang Q, Gao X. RNA interference of Dicer-1 and Argonaute-1 increasing the sensitivity of Aphis gossypii Glover (Hemiptera: Aphididae) to plant allelochemical. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 138:71-75. [PMID: 28456307 DOI: 10.1016/j.pestbp.2017.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/04/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
Plant allelochemicals are a group of important defensive agents of plants, which have been documented to be deleterious to insect herbivores. In the present study, we found that the expression level of Dicer-1 was significantly increased when Aphis gossypii adults fed on plant allelochemicals (tannic acid and gossypol) incorporated artificial diets. Consider that miRNAs play great regulatory roles in various biological processes, this suggested that miRNAs may be related to the regulation of enzymes involved in metabolism of plant allelochemicals in A. gossypii. To further reveal the roles of miRNAs in the response of A. gossypii against plant allelochemicals, both Dicer-1 and Argonaute-1, an important component of the RNA-induced silencing complex (RISC) in miRNA pathway, were silenced using systemic RNA interference (RNAi). The results indicated that silence of Dicer-1 reduced the expression of miRNAs, and resulted in a high mortality of A. gossypii when fed on both tannic acid and gossypol. The silencing of Argonaute-1 resulted in the mortality of A. gossypii by the treatment of tannic acid significantly increased compared with control, however, the sensitivity of A. gossypii to gossypol was not significantly changed. It suggested that miRNAs play potential regulatory roles in the response of A. gossypii to plant allelochemicals. These results should be useful to understand the molecular mechanisms of the cotton aphid adaption to plant allelochemicals.
Collapse
Affiliation(s)
- Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Fen Li
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Xuewei Chen
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
48
|
Abstract
MicroRNAs (miRNAs) are involved in the regulation of a number of processes associated with metamorphosis, either in the less modified hemimetabolan mode or in the more modified holometabolan mode. The miR-100/let-7/miR-125 cluster has been studied extensively, especially in relation to wing morphogenesis in both hemimetabolan and holometabolan species. Other miRNAs also participate in wing morphogenesis, as well as in programmed cell and tissue death, neuromaturation, neuromuscular junction formation, and neuron cell fate determination, typically during the pupal stage of holometabolan species. A special case is the control of miR-2 over Kr-h1 transcripts, which determines adult morphogenesis in the hemimetabolan metamorphosis. This is an elegant example of how a single miRNA can control an entire process by acting on a crucial mediator; however, this is a quite exceptional mechanism that was apparently lost during the transition from hemimetaboly to holometaboly.
Collapse
Affiliation(s)
- Xavier Belles
- Institute of Evolutionary Biology, Spanish National Research Council (CSIC)-Pompeu Fabra University (UPF), 08002 Barcelona, Spain;
| |
Collapse
|
49
|
Abstract
Is there a correlation between miRNA diversity and levels of organismic complexity? Exhibiting extraordinary levels of morphological and developmental complexity, insects are the most diverse animal class on earth. Their evolutionary success was in particular shaped by the innovation of holometabolan metamorphosis in endopterygotes. Previously, miRNA evolution had been linked to morphological complexity, but astonishing variation in the currently available miRNA complements of insects made this link unclear. To address this issue, we sequenced the miRNA complement of the hemimetabolan Blattella germanica and reannotated that of two other hemimetabolan species, Locusta migratoria and Acyrthosiphon pisum, and of four holometabolan species, Apis mellifera, Tribolium castaneum, Bombyx mori and Drosophila melanogaster. Our analyses show that the variation of insect miRNAs is an artefact mainly resulting from poor sampling and inaccurate miRNA annotation, and that insects share a conserved microRNA toolkit of 65 families exhibiting very low variation. For example, the evolutionary shift toward a complete metamorphosis was accompanied only by the acquisition of three and the loss of one miRNA families.
Collapse
|
50
|
miR-71 and miR-263 Jointly Regulate Target Genes Chitin synthase and Chitinase to Control Locust Molting. PLoS Genet 2016; 12:e1006257. [PMID: 27532544 PMCID: PMC4988631 DOI: 10.1371/journal.pgen.1006257] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
Chitin synthase and chitinase play crucial roles in chitin biosynthesis and degradation during insect molting. Silencing of Dicer-1 results in reduced levels of mature miRNAs and severely blocks molting in the migratory locust. However, the regulatory mechanism of miRNAs in the molting process of locusts has remained elusive. In this study, we found that in chitin metabolism, two crucial enzymes, chitin synthase (CHS) and chitinase (CHT) were regulated by miR-71 and miR-263 during nymph molting. The coding sequence of CHS1 and the 3'-untranslated region of CHT10 contain functional binding sites for miR-71 and miR-263, respectively. miR-71/miR-263 displayed cellular co-localization with their target genes in epidermal cells and directly interacted with CHS1 and CHT10 in the locust integument, respectively. Injections of miR-71 and miR-263 agomirs suppressed the expression of CHS1 and CHT10, which consequently altered chitin production of new and old cuticles and resulted in a molting-defective phenotype in locusts. Unexpectedly, reduced expression of miR-71 and miR-263 increased CHS1 and CHT10 mRNA expression and led to molting defects similar to those induced by miRNA delivery. This study reveals a novel function and balancing modulation pattern of two miRNAs in chitin biosynthesis and degradation, and it provides insight into the underlying molecular mechanisms of the molting process in locusts.
Collapse
|