1
|
González SA, Affranchino JL. The life cycle of feline immunodeficiency virus. Virology 2025; 601:110304. [PMID: 39561619 DOI: 10.1016/j.virol.2024.110304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Feline immunodeficiency virus (FIV) is a retrovirus of worldwide distribution that can cause an acquired immunodeficiency disease in domestic cats. FIV and the primate lentiviruses, human and simian immunodeficiency viruses (HIV and SIV, respectively) share structural and biological features but also exhibit important differences, which reflect both their evolutionary relationship and divergence. Given that FIV is not only an important cat pathogen but also a useful model for certain aspects of HIV-1 infections in humans, the study of FIV biology is highly relevant. In this review we provide an updated description of the molecular mechanisms involved in each stage of the FIV life cycle.
Collapse
Affiliation(s)
- Silvia A González
- Laboratorio de Virología, Facultad de Ciencias Exactas y Naturales, Universidad de Belgrano (UB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - José L Affranchino
- Centro de Virología Humana y Animal (CEVHAN), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Abierta Interamericana (UAI), Buenos Aires, Argentina
| |
Collapse
|
2
|
de Souza Cardoso R, Ono A. The Effects of Viral Structural Proteins on Acidic Phospholipids in Host Membranes. Viruses 2024; 16:1714. [PMID: 39599829 PMCID: PMC11599007 DOI: 10.3390/v16111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Enveloped viruses rely on host membranes for trafficking and assembly. A substantial body of literature published over the years supports the involvement of cellular membrane lipids in the enveloped virus assembly processes. In particular, the knowledge regarding the relationship between viral structural proteins and acidic phospholipids has been steadily increasing in recent years. In this review, we will briefly review the cellular functions of plasma membrane-associated acidic phospholipids and the mechanisms that regulate their local distribution within this membrane. We will then explore the interplay between viruses and the plasma membrane acidic phospholipids in the context of the assembly process for two enveloped viruses, the influenza A virus (IAV) and the human immunodeficiency virus type 1 (HIV-1). Among the proteins encoded by these viruses, three viral structural proteins, IAV hemagglutinin (HA), IAV matrix protein-1 (M1), and HIV-1 Gag protein, are known to interact with acidic phospholipids, phosphatidylserine and/or phosphatidylinositol (4,5)-bisphosphate. These interactions regulate the localization of the viral proteins to and/or within the plasma membrane and likely facilitate the clustering of the proteins. On the other hand, these viral proteins, via their ability to multimerize, can also alter the distribution of the lipids and may induce acidic-lipid-enriched membrane domains. We will discuss the potential significance of these interactions in the virus assembly process and the property of the progeny virions. Finally, we will outline key outstanding questions that need to be answered for a better understanding of the relationships between enveloped virus assembly and acidic phospholipids.
Collapse
Affiliation(s)
| | - Akira Ono
- Department of Microbiology and Immunology, The University of Michigan, Ann Arbor, MI 48109, USA;
| |
Collapse
|
3
|
Herrmann D, Meng S, Yang H, Mansky LM, Saad JS. The Assembly of HTLV-1-How Does It Differ from HIV-1? Viruses 2024; 16:1528. [PMID: 39459862 PMCID: PMC11512237 DOI: 10.3390/v16101528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Retroviral assembly is a highly coordinated step in the replication cycle. The process is initiated when the newly synthesized Gag and Gag-Pol polyproteins are directed to the inner leaflet of the plasma membrane (PM), where they facilitate the budding and release of immature viral particles. Extensive research over the years has provided crucial insights into the molecular determinants of this assembly step. It is established that Gag targeting and binding to the PM is mediated by interactions of the matrix (MA) domain and acidic phospholipids such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). This binding event, along with binding to viral RNA, initiates oligomerization of Gag on the PM, a process mediated by the capsid (CA) domain. Much of the previous studies have focused on human immunodeficiency virus type 1 (HIV-1). Although the general steps of retroviral replication are consistent across different retroviruses, comparative studies revealed notable differences in the structure and function of viral components. In this review, we present recent findings on the assembly mechanisms of Human T-cell leukemia virus type 1 and highlight key differences from HIV-1, focusing particularly on the molecular determinants of Gag-PM interactions and CA assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Shuyu Meng
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Huixin Yang
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
| | - Louis M. Mansky
- Institute for Molecular Virology, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA; (S.M.); (H.Y.); (L.M.M.)
- Molecular Pharmacology and Therapeutics Graduate Program, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota–Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
4
|
Denieva ZG, Sokolov VS, Batishchev OV. HIV-1 Gag Polyprotein Affinity to the Lipid Membrane Is Independent of Its Surface Charge. Biomolecules 2024; 14:1086. [PMID: 39334852 PMCID: PMC11429625 DOI: 10.3390/biom14091086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
The binding of the HIV-1 Gag polyprotein to the plasma membrane is a critical step in viral replication. The association with membranes depends on the lipid composition, but its mechanisms remain unclear. Here, we report the binding of non-myristoylated Gag to lipid membranes of different lipid compositions to dissect the influence of each component. We tested the contribution of phosphatidylserine, PI(4,5)P2, and cholesterol to membrane charge density and Gag affinity to membranes. Taking into account the influence of the membrane surface potential, we quantitatively characterized the adsorption of the protein onto model lipid membranes. The obtained Gag binding constants appeared to be the same regardless of the membrane charge. Furthermore, Gag adsorbed on uncharged membranes, suggesting a contribution of hydrophobic forces to the protein-lipid interaction. Charge-charge interactions resulted in an increase in protein concentration near the membrane surface. Lipid-specific interactions were observed in the presence of cholesterol, resulting in a two-fold increase in binding constants. The combination of cholesterol with PI(4,5)P2 showed cooperative effects on protein adsorption. Thus, we suggest that the affinity of Gag to lipid membranes results from a combination of electrostatic attraction to acidic lipids, providing different protein concentrations near the membrane surface, and specific hydrophobic interactions.
Collapse
Affiliation(s)
| | | | - Oleg V. Batishchev
- Laboratory of Bioelectrochemistry, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia; (Z.G.D.); (V.S.S.)
| |
Collapse
|
5
|
Zeiger M, Pires M, Didier P, Vauchelles R, Mély Y, Boutant E, Real E. HIV-1 Gag Compact form Stabilized by Intramolecular Interactions is Crucial for Infectious Particle Production. J Mol Biol 2024; 436:168639. [PMID: 38838849 DOI: 10.1016/j.jmb.2024.168639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
HIV-1 Gag polyprotein plays a pivotal role in assembly and budding of new particles, by specifically packaging two copies of viral gRNA in the host cell cytoplasm and selecting the cell plasma membrane for budding. Both gRNA and membrane selections are thought to be mediated by the compact form of Gag. This compact form binds to gRNA through both its matrix (MA) and nucleocapsid (NC) domains in the cytoplasm. At the plasma membrane, the membrane competes with gRNA for Gag binding, resulting in a transition to the extended form of Gag found in immature particles with MA bound to membrane lipids and NC to gRNA. The Gag compact form was previously evidenced in vitro. Here, we demonstrated the compact form of Gag in cells by confocal microscopy, using a bimolecular fluorescence complementation approach with a split-GFP bipartite system. Using wild-type Gag and Gag mutants, we showed that the compact form is highly dependent on the binding of MA and NC domains to RNA, as well as on interactions between MA and CA domains. In contrast, Gag multimerization appears to be less critical for the accumulation of the compact form. Finally, mutations altering the formation of Gag compact form led to a strong reduction in viral particle production and infectivity, revealing its key role in the production of infectious viral particles.
Collapse
Affiliation(s)
- Manon Zeiger
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Manuel Pires
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Pascal Didier
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Romain Vauchelles
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | - Yves Mély
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Emmanuel Boutant
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| | - Eléonore Real
- UMR 7021, CNRS, Laboratoire de Bioimagerie et Pathologies - LBP, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France.
| |
Collapse
|
6
|
Duchon A, Hu WS. HIV-1 RNA genome packaging: it's G-rated. mBio 2024; 15:e0086123. [PMID: 38411060 PMCID: PMC11005445 DOI: 10.1128/mbio.00861-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
A member of the Retroviridae, human immunodeficiency virus type 1 (HIV-1), uses the RNA genome packaged into nascent virions to transfer genetic information to its progeny. The genome packaging step is a highly regulated and extremely efficient process as a vast majority of virus particles contain two copies of full-length unspliced HIV-1 RNA that form a dimer. Thus, during virus assembly HIV-1 can identify and selectively encapsidate HIV-1 unspliced RNA from an abundant pool of cellular RNAs and various spliced HIV-1 RNAs. Several "G" features facilitate the packaging of a dimeric RNA genome. The viral polyprotein Gag orchestrates virus assembly and mediates RNA genome packaging. During this process, Gag preferentially binds unpaired guanosines within the highly structured 5' untranslated region (UTR) of HIV-1 RNA. In addition, the HIV-1 unspliced RNA provides a scaffold that promotes Gag:Gag interactions and virus assembly, thereby ensuring its packaging. Intriguingly, recent studies have shown that the use of different guanosines at the junction of U3 and R as transcription start sites results in HIV-1 unspliced RNA species with 99.9% identical sequences but dramatically distinct 5' UTR conformations. Consequently, one species of unspliced RNA is preferentially packaged over other nearly identical RNAs. These studies reveal how conformations affect the functions of HIV-1 RNA elements and the complex regulation of HIV-1 replication. In this review, we summarize cis- and trans-acting elements critical for HIV-1 RNA packaging, locations of Gag:RNA interactions that mediate genome encapsidation, and the effects of transcription start sites on the structure and packaging of HIV-1 RNA.
Collapse
Affiliation(s)
- Alice Duchon
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| | - Wei-Shau Hu
- Viral Recombination Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
7
|
Sumner C, Ono A. The "basics" of HIV-1 assembly. PLoS Pathog 2024; 20:e1011937. [PMID: 38300900 PMCID: PMC10833515 DOI: 10.1371/journal.ppat.1011937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Affiliation(s)
- Christopher Sumner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
8
|
Tateishi H, Chinen T, Fukuda R, Radwan MO, Shimagaki K, Koga R, Masuda T, Okamoto Y, Sakamoto A, Misumi S, Otsuka M, Fujita M, Anraku K. HIV-1 Gag MA domain binds to cardiolipin in a binding mode distinct from virus assemble mediator PI(4,5)P 2. Chem Biol Drug Des 2024; 103:e14401. [PMID: 37985015 DOI: 10.1111/cbdd.14401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/16/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag protein is responsible for facilitating HIV-1 virion assembly and budding. Our study demonstrates that cardiolipin (CL), a component found in the inner mitochondrial membrane, exhibits the highest binding affinity to the N-terminal MA domain of the HIV-1 Gag protein within the lipid group of host cells. To assess this binding interaction, we synthesized short acyl chain derivatives of CL and employed surface plasmon resonance (SPR) analysis to determine the dissociation constants (Kd) for CL and the MA domain. Simultaneously, we examined the Kd of D-myo-phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2 ) derivatives, known to play a crucial role in virion formation. Among all the derivatives, Tetra-C7 -CL exhibited the lowest Kd value (Kd = 30.8 ± 6.9 μM) for MA binding on the CL analog-immobilized sensorchip, indicating a higher affinity. Similarly, the Kd value of Di-C7 -PIP2 (Kd = 36.6 ± 4.7 μM) was the lowest on the PI(4,5)P2 analog-immobilized sensorchip. Thus, Tetra-C7 -CL binds to the MA domain using a distinct binding mode while displaying a comparable binding affinity to Di-C7 -PIP2. This discovery holds significant implications for comprehending the virological importance of CL-MA domain binding, such as its subcellular distribution, including mitochondrial translocation, and involvement in viral particle formation in concert with PI(4,5)P2 . Furthermore, this study has the potential to contribute to the development of drugs in the future.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takuma Chinen
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryota Fukuda
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed O Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Cairo, Egypt
| | - Kazunori Shimagaki
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Ryoko Koga
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Masuda
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshinari Okamoto
- Department of Instrumental Analysis, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Arisa Sakamoto
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| | - Shogo Misumi
- Department of Environmental and Molecular Health Sciences, Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
- Science Farm Ltd., Kumamoto, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kensaku Anraku
- Department of Medical Technology, Kumamoto Health Science University, Kumamoto, Japan
| |
Collapse
|
9
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 Genomic RNA on the Formation of Gag Biomolecular Condensates. J Mol Biol 2023; 435:168190. [PMID: 37385580 PMCID: PMC10838171 DOI: 10.1016/j.jmb.2023.168190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that the pan-retroviral nucleocapsid (NC) and HIV-1 pr55Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yields self-assembling BMCs that have HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs, and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4+ T cell nuclear lysates led to the formation of larger BMCs compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggest that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Meijuan Niu
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Rebecca Kaddis Maldonado
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Jordan Chang
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Gregory S Lambert
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - John M Flanagan
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alan Cochrane
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leslie J Parent
- Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States; Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| | - Andrew J Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, Québec H3T 1E2, Canada; Department of Medicine, McGill University, Montréal, Québec H4A 3J1, Canada.
| |
Collapse
|
10
|
Socas L, Ambroggio E. HIV-1 Gag specificity for PIP2 is regulated by macromolecular electric properties of both protein and membrane local environments. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2023; 1865:184157. [PMID: 37028700 DOI: 10.1016/j.bbamem.2023.184157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.
Collapse
|
11
|
Monette A, Niu M, Maldonado RK, Chang J, Lambert GS, Flanagan JM, Cochrane A, Parent LJ, Mouland AJ. Influence of HIV-1 genomic RNA on the formation of Gag biomolecular condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.23.529585. [PMID: 36865181 PMCID: PMC9980109 DOI: 10.1101/2023.02.23.529585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Biomolecular condensates (BMCs) play an important role in the replication of a growing number of viruses, but many important mechanistic details remain to be elucidated. Previously, we demonstrated that pan-retroviral nucleocapsid (NC) and the HIV-1 pr55 Gag (Gag) proteins phase separate into condensates, and that HIV-1 protease (PR)-mediated maturation of Gag and Gag-Pol precursor proteins yield self-assembling BMCs having HIV-1 core architecture. Using biochemical and imaging techniques, we aimed to further characterize the phase separation of HIV-1 Gag by determining which of its intrinsically disordered regions (IDRs) influence the formation of BMCs and how the HIV-1 viral genomic RNA (gRNA) could influence BMC abundance and size. We found that mutations in the Gag matrix (MA) domain or the NC zinc finger motifs altered condensate number and size in a salt-dependent manner. Gag BMCs were also bimodally influenced by the gRNA, with a condensate-promoting regime at lower protein concentrations and a gel dissolution at higher protein concentrations. Interestingly, incubation of Gag with CD4 + T cell nuclear lysates led to the formation of larger BMCs as compared to much smaller ones observed in the presence of cytoplasmic lysates. These findings suggests that the composition and properties of Gag-containing BMCs may be altered by differential association of host factors in nuclear and cytosolic compartments during virus assembly. This study significantly advances our understanding of HIV-1 Gag BMC formation and provides a foundation for future therapeutic targeting of virion assembly.
Collapse
|
12
|
Jin D, Zhu Y, Schubert HL, Goff SP, Musier-Forsyth K. HIV-1 Gag Binds the Multi-Aminoacyl-tRNA Synthetase Complex via the EPRS Subunit. Viruses 2023; 15:474. [PMID: 36851687 PMCID: PMC9967848 DOI: 10.3390/v15020474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Host factor tRNAs facilitate the replication of retroviruses such as human immunodeficiency virus type 1 (HIV-1). HIV-1 uses human tRNALys3 as the primer for reverse transcription, and the assembly of HIV-1 structural protein Gag at the plasma membrane (PM) is regulated by matrix (MA) domain-tRNA interactions. A large, dynamic multi-aminoacyl-tRNA synthetase complex (MSC) exists in the cytosol and consists of eight aminoacyl-tRNA synthetases (ARSs) and three other cellular proteins. Proteomic studies to identify HIV-host interactions have identified the MSC as part of the HIV-1 Gag and MA interactomes. Here, we confirmed that the MA domain of HIV-1 Gag forms a stable complex with the MSC, mapped the primary interaction site to the linker domain of bi-functional human glutamyl-prolyl-tRNA synthetase (EPRS), and showed that the MA-EPRS interaction was RNA dependent. MA mutations that significantly reduced the EPRS interaction reduced viral infectivity and mapped to MA residues that also interact with phosphatidylinositol-(4,5)-bisphosphate. Overexpression of EPRS or EPRS fragments did not affect susceptibility to HIV-1 infection, and knockdown of EPRS reduced both a control reporter gene and HIV-1 protein translation. EPRS knockdown resulted in decreased progeny virion production, but the decrease could not be attributed to selective effects on virus gene expression, and the specific infectivity of the virions remained unchanged. While the precise function of the Gag-EPRS interaction remains uncertain, we discuss possible effects of the interaction on either virus or host activities.
Collapse
Affiliation(s)
- Danni Jin
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yiping Zhu
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Heidi L. Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT 841122, USA
| | - Stephen P. Goff
- Departments of Biochemistry and Molecular Biophysics, and Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry, Center for Retrovirus Research, Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Chameettachal A, Mustafa F, Rizvi TA. Understanding Retroviral Life Cycle and its Genomic RNA Packaging. J Mol Biol 2023; 435:167924. [PMID: 36535429 DOI: 10.1016/j.jmb.2022.167924] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Members of the family Retroviridae are important animal and human pathogens. Being obligate parasites, their replication involves a series of steps during which the virus hijacks the cellular machinery. Additionally, many of the steps of retrovirus replication are unique among viruses, including reverse transcription, integration, and specific packaging of their genomic RNA (gRNA) as a dimer. Progress in retrovirology has helped identify several molecular mechanisms involved in each of these steps, but many are still unknown or remain controversial. This review summarizes our present understanding of the molecular mechanisms involved in various stages of retrovirus replication. Furthermore, it provides a comprehensive analysis of our current understanding of how different retroviruses package their gRNA into the assembling virions. RNA packaging in retroviruses holds a special interest because of the uniqueness of packaging a dimeric genome. Dimerization and packaging are highly regulated and interlinked events, critical for the virus to decide whether its unspliced RNA will be packaged as a "genome" or translated into proteins. Finally, some of the outstanding areas of exploration in the field of RNA packaging are highlighted, such as the role of epitranscriptomics, heterogeneity of transcript start sites, and the necessity of functional polyA sequences. An in-depth knowledge of mechanisms that interplay between viral and cellular factors during virus replication is critical in understanding not only the virus life cycle, but also its pathogenesis, and development of new antiretroviral compounds, vaccines, as well as retroviral-based vectors for human gene therapy.
Collapse
Affiliation(s)
- Akhil Chameettachal
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates. https://twitter.com/chameettachal
| | - Farah Mustafa
- Department of Biochemistry, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| | - Tahir A Rizvi
- Department of Microbiology & Immunology, College of Medicine and Health Sciences (CMHS), United Arab Emirates University, Al Ain, United Arab Emirates; Zayed bin Sultan Center for Health Sciences (ZCHS), United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
14
|
Quantifying membrane binding and diffusion with fluorescence correlation spectroscopy diffusion laws. Biophys J 2023:S0006-3495(23)00006-1. [PMID: 36632034 DOI: 10.1016/j.bpj.2023.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/05/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Many transient processes in cells arise from the binding of cytosolic proteins to membranes. Quantifying this membrane binding and its associated diffusion in the living cell is therefore of primary importance. Dynamic photonic microscopies, e.g., single/multiple particle tracking, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy (FCS), enable non-invasive measurement of molecular mobility in living cells and their plasma membranes. However, FCS with a single beam waist is of limited applicability with complex, non-Brownian, motions. Recently, the development of FCS diffusion laws methods has given access to the characterization of these complex motions, although none of them is applicable to the membrane binding case at the moment. In this study, we combined computer simulations and FCS experiments to propose an FCS diffusion law for membrane binding. First, we generated computer simulations of spot-variation FCS (svFCS) measurements for a membrane binding process combined to 2D and 3D diffusion at the membrane and in the bulk/cytosol, respectively. Then, using these simulations as a learning set, we derived an empirical diffusion law with three free parameters: the apparent binding constant KD, the diffusion coefficient on the membrane D2D, and the diffusion coefficient in the cytosol, D3D. Finally, we monitored, using svFCS, the dynamics of retroviral Gag proteins and associated mutants during their binding to supported lipid bilayers of different lipid composition or at plasma membranes of living cells, and we quantified KD and D2D in these conditions using our empirical diffusion law. Based on these experiments and numerical simulations, we conclude that this new approach enables correct estimation of membrane partitioning and membrane diffusion properties (KD and D2D) for peripheral membrane molecules.
Collapse
|
15
|
Kwee Y, Zhou Y, Fahmi MZ, Sharon M, Kristanti AN. Progress on Applying Carbon Dots for Inhibition of RNA Virus Infection. Nanotheranostics 2022; 6:436-450. [PMID: 36051856 PMCID: PMC9428922 DOI: 10.7150/ntno.73918] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a globally leading health issue. Annually, new lethal RNA viruses unexpectedly emerged and mutated threatening health and safety. Meanwhile, it is urgent to explore novel antiviral agents, which, however, takes years to be clinically available. Nonetheless, the development of carbon dots (CDs) in the past 20 years has exhibited their vast application potentials and revealed their promising capacity as future antiviral agents considering their versatile properties and significant antiviral responses. Thus, CDs have been widely investigated as an alternative of traditional chemotherapy for inhibiting viral infection and replication in vitro. Meanwhile, attempts to apply CDs to in vivo systems are in high demand. In this review, recent developments of CDs-based antiviral therapies are systematically summarized. Furthermore, the role of CDs in photodynamic inactivation to kill viruses or bacteria is briefly discussed.
Collapse
Affiliation(s)
- Yaung Kwee
- Department of Chemistry, Pakokku University, Myaing Road, Pakokku 90401, Myanmar
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Mochamad Zakki Fahmi
- Department of Chemistry, Universitas Airlangga, Surabaya 60115, Indonesia.,Supramodification Nano-micro Engineering Research Group, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Madhuri Sharon
- Research Director at Walchand Center for Research in Nanotechnology and Bionanotechnology, Walchand College of Arts and Science, W. H. Road, Ashok Chowk, Solapur 413006, India
| | | |
Collapse
|
16
|
Angert I, Karuka SR, Mansky LM, Mueller JD. Partitioning of ribonucleoprotein complexes from the cellular actin cortex. SCIENCE ADVANCES 2022; 8:eabj3236. [PMID: 35984883 PMCID: PMC9390997 DOI: 10.1126/sciadv.abj3236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The cell cortex plays a crucial role in cell mechanics, signaling, and development. However, little is known about the influence of the cortical meshwork on the spatial distribution of cytoplasmic biomolecules. Here, we describe a fluorescence microscopy method with the capacity to infer the intracellular distribution of labeled biomolecules with subresolution accuracy. Unexpectedly, we find that RNA binding proteins are partially excluded from the cytoplasmic volume adjacent to the plasma membrane that corresponds to the actin cortex. Complementary diffusion measurements of RNA-protein complexes suggest that a rudimentary model based on excluded volume interactions can explain this partitioning effect. Our results suggest the actin cortex meshwork may play a role in regulating the biomolecular content of the volume immediately adjacent to the plasma membrane.
Collapse
Affiliation(s)
- Isaac Angert
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Siddarth Reddy Karuka
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Louis M. Mansky
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Basic Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joachim D. Mueller
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Wang SF, Hung YH, Tsao CH, Chiang CY, Teoh PG, Chiang ML, Lin WH, Hsu DK, Jan HM, Lin HC, Lin CH, Liu FT, Chen HY. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022; 32:760-777. [PMID: 35789267 DOI: 10.1093/glycob/cwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Galectin-3 (GAL3) is a β-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsien Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
| | - Cho-Ying Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pak-Guan Teoh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis, California, USA
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| |
Collapse
|
18
|
HIV-1 mutants expressing B cell clonogenic matrix protein p17 variants are increasing their prevalence worldwide. Proc Natl Acad Sci U S A 2022; 119:e2122050119. [PMID: 35763571 PMCID: PMC9271197 DOI: 10.1073/pnas.2122050119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In the combined antiretroviral therapy era, lymphomas still represent the most frequent cause of death in HIV-1-infected patients. We expand previous observations dealing with the prevalence of HIV-1 matrix protein p17 variants (vp17s), characterized by peculiar amino acid insertions and endowed of B cell clonogenic activity, in HIV-1 patients with lymphoma as compared with patients without lymphoma. We show that the prevalence of HIV-1 mutants expressing vp17s is increasing worldwide over time. Moreover, we describe a cluster of HIV-1 mutants expressing a B cell clonogenic vp17 and highlight that insertions can be fixed and that viruses displaying clonogenic vp17s are actively spreading. This knowledge advocates for an extensive genomic surveillance program to monitor the evolution of such mutant virions worldwide. AIDS-defining cancers declined after combined antiretroviral therapy (cART) introduction, but lymphomas are still elevated in HIV type 1 (HIV-1)–infected patients. In particular, non-Hodgkin’s lymphomas (NHLs) represent the majority of all AIDS-defining cancers and are the most frequent cause of death in these patients. We have recently demonstrated that amino acid (aa) insertions at the HIV-1 matrix protein p17 COOH-terminal region cause protein destabilization, leading to conformational changes. Misfolded p17 variants (vp17s) strongly impact clonogenic B cell growth properties that may contribute to B cell lymphomagenesis as suggested by the significantly higher frequency of detection of vp17s with COOH-terminal aa insertions in plasma of HIV-1–infected patients with NHL. Here, we expand our previous observations by assessing the prevalence of vp17s in large retrospective cohorts of patients with and without lymphoma. We confirm the significantly higher prevalence of vp17s in lymphoma patients than in HIV-1–infected individuals without lymphoma. Analysis of 3,990 sequences deposited between 1985 and 2017 allowed us to highlight a worldwide increasing prevalence of HIV-1 mutants expressing vp17s over time. Since genomic surveillance uncovered a cluster of HIV-1 expressing a B cell clonogenic vp17 dated from 2011 to 2019, we conclude that aa insertions can be fixed in HIV-1 and that mutant viruses displaying B cell clonogenic vp17s are actively spreading.
Collapse
|
19
|
Atomic view of the HIV-1 matrix lattice; implications on virus assembly and envelope incorporation. Proc Natl Acad Sci U S A 2022; 119:e2200794119. [PMID: 35658080 PMCID: PMC9191676 DOI: 10.1073/pnas.2200794119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe assembly of immature HIV-1 particles is initiated by targeting of the Gag polyproteins to the plasma membrane (PM). Gag binding to the PM is mediated by the N-terminally myristoylated matrix (myrMA) domain. Formation of a Gag lattice on the PM is obligatory for the assembly of immature HIV-1 and envelope (Env) incorporation. The structure of the myrMA lattice presented here provided insights on the molecular factors that stabilize the lattice and hence favor Env incorporation. Our data support a mechanism for Gag binding to the PM during the assembly of immature particles and upon maturation. These findings advance our understanding of a critical step in HIV-1 assembly.
Collapse
|
20
|
Deciphering the Assembly of Enveloped Viruses Using Model Lipid Membranes. MEMBRANES 2022; 12:membranes12050441. [PMID: 35629766 PMCID: PMC9142974 DOI: 10.3390/membranes12050441] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/01/2022] [Accepted: 04/09/2022] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane is mainly composed of phospholipids, cholesterol and embedded proteins, presenting a complex interface with the environment. It maintains a barrier to control matter fluxes between the cell cytosol and its outer environment. Enveloped viruses are also surrounded by a lipidic membrane derived from the host-cell membrane and acquired while exiting the host cell during the assembly and budding steps of their viral cycle. Thus, model membranes composed of selected lipid mixtures mimicking plasma membrane properties are the tools of choice and were used to decipher the first step in the assembly of enveloped viruses. Amongst these viruses, we choose to report the three most frequently studied viruses responsible for lethal human diseases, i.e., Human Immunodeficiency Type 1 (HIV-1), Influenza A Virus (IAV) and Ebola Virus (EBOV), which assemble at the host-cell plasma membrane. Here, we review how model membranes such as Langmuir monolayers, bicelles, large and small unilamellar vesicles (LUVs and SUVs), supported lipid bilayers (SLBs), tethered-bilayer lipid membranes (tBLM) and giant unilamellar vesicles (GUVs) contribute to the understanding of viral assembly mechanisms and dynamics using biophysical approaches.
Collapse
|
21
|
Sumner C, Ono A. Relationship between HIV-1 Gag Multimerization and Membrane Binding. Viruses 2022; 14:v14030622. [PMID: 35337029 PMCID: PMC8949992 DOI: 10.3390/v14030622] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
HIV-1 viral particle assembly occurs specifically at the plasma membrane and is driven primarily by the viral polyprotein Gag. Selective association of Gag with the plasma membrane is a key step in the viral assembly pathway, which is traditionally attributed to the MA domain. MA regulates specific plasma membrane binding through two primary mechanisms including: (1) specific interaction of the MA highly basic region (HBR) with the plasma membrane phospholipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2], and (2) tRNA binding to the MA HBR, which prevents Gag association with non-PI(4,5)P2 containing membranes. Gag multimerization, driven by both CA–CA inter-protein interactions and NC-RNA binding, also plays an essential role in viral particle assembly, mediating the establishment and growth of the immature Gag lattice on the plasma membrane. In addition to these functions, the multimerization of HIV-1 Gag has also been demonstrated to enhance its membrane binding activity through the MA domain. This review provides an overview of the mechanisms regulating Gag membrane binding through the MA domain and multimerization through the CA and NC domains, and examines how these two functions are intertwined, allowing for multimerization mediated enhancement of Gag membrane binding.
Collapse
|
22
|
Lerner G, Weaver N, Anokhin B, Spearman P. Advances in HIV-1 Assembly. Viruses 2022; 14:v14030478. [PMID: 35336885 PMCID: PMC8952333 DOI: 10.3390/v14030478] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/10/2022] Open
Abstract
The assembly of HIV-1 particles is a concerted and dynamic process that takes place on the plasma membrane of infected cells. An abundance of recent discoveries has advanced our understanding of the complex sequence of events leading to HIV-1 particle assembly, budding, and release. Structural studies have illuminated key features of assembly and maturation, including the dramatic structural transition that occurs between the immature Gag lattice and the formation of the mature viral capsid core. The critical role of inositol hexakisphosphate (IP6) in the assembly of both the immature and mature Gag lattice has been elucidated. The structural basis for selective packaging of genomic RNA into virions has been revealed. This review will provide an overview of the HIV-1 assembly process, with a focus on recent advances in the field, and will point out areas where questions remain that can benefit from future investigation.
Collapse
|
23
|
Bernacchi S. Visualization of Retroviral Gag-Genomic RNA Cellular Interactions Leading to Genome Encapsidation and Viral Assembly: An Overview. Viruses 2022; 14:324. [PMID: 35215917 PMCID: PMC8876502 DOI: 10.3390/v14020324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/25/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
Retroviruses must selectively recognize their unspliced RNA genome (gRNA) among abundant cellular and spliced viral RNAs to assemble into newly formed viral particles. Retroviral gRNA packaging is governed by Gag precursors that also orchestrate all the aspects of viral assembly. Retroviral life cycles, and especially the HIV-1 one, have been previously extensively analyzed by several methods, most of them based on molecular biology and biochemistry approaches. Despite these efforts, the spatio-temporal mechanisms leading to gRNA packaging and viral assembly are only partially understood. Nevertheless, in these last decades, progress in novel bioimaging microscopic approaches (as FFS, FRAP, TIRF, and wide-field microscopy) have allowed for the tracking of retroviral Gag and gRNA in living cells, thus providing important insights at high spatial and temporal resolution of the events regulating the late phases of the retroviral life cycle. Here, the implementation of these recent bioimaging tools based on highly performing strategies to label fluorescent macromolecules is described. This report also summarizes recent gains in the current understanding of the mechanisms employed by retroviral Gag polyproteins to regulate molecular mechanisms enabling gRNA packaging and the formation of retroviral particles, highlighting variations and similarities among the different retroviruses.
Collapse
Affiliation(s)
- Serena Bernacchi
- Architecture et Réactivité de l'ARN-UPR 9002, IBMC, CNRS, Université de Strasbourg, F-67000 Strasbourg, France
| |
Collapse
|
24
|
Sumner C, Kotani O, Liu S, Musier-Forsyth K, Sato H, Ono A. Molecular Determinants in tRNA D-arm Required for Inhibition of HIV-1 Gag Membrane Binding. J Mol Biol 2022; 434:167390. [PMID: 34883117 PMCID: PMC8752508 DOI: 10.1016/j.jmb.2021.167390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 02/01/2023]
Abstract
Plasma-membrane-specific localization of Gag, an essential step in HIV-1 particle assembly, is regulated by the interaction of the Gag MA domain with PI(4,5)P2 and tRNA-mediated inhibition of non-specific or premature membrane binding. Different tRNAs inhibit PI(4,5)P2-independent membrane binding to varying degrees in vitro; however, the structural determinants for this difference remain unknown. Here we demonstrate that membrane binding of full-length Gag synthesized in vitro using reticulocyte lysates is inhibited when RNAs that contain the anticodon arm of tRNAPro, but not that of tRNALys3, are added exogenously. In contrast, in the context of a liposome binding assay in which the effects of tRNAs on purified MA were tested, full-length tRNALys3 showed greater inhibition of MA membrane binding than full-length tRNAPro. While transplantation of the D loop sequence of tRNALys3 into tRNAPro resulted in a modest increase in the inhibitory effect relative to WT tRNAPro, replacing the entire D arm sequence with that of tRNALys3 was necessary to confer the full inhibitory effects upon tRNAPro. Together, these results demonstrate that the D arm of tRNALys3 is a major determinant of strong inhibition of MA membrane binding and that this inhibitory effect requires not only the D loop, which was recently reported to contact the MA highly basic region, but the loop sequence in the context of the D arm structure.
Collapse
Affiliation(s)
- Christopher Sumner
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| | - Osamu Kotani
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shuohui Liu
- Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Karin Musier-Forsyth
- Dept. of Chemistry and Biochemistry, Center for Retrovirus Research, and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Hironori Sato
- Center for Pathogen Genomics, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Ono
- Dept. of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
25
|
Murakami T, Ono A. Roles of Virion-Incorporated CD162 (PSGL-1), CD43, and CD44 in HIV-1 Infection of T Cells. Viruses 2021; 13:v13101935. [PMID: 34696365 PMCID: PMC8541244 DOI: 10.3390/v13101935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
Nascent HIV-1 particles incorporate the viral envelope glycoprotein and multiple host transmembrane proteins during assembly at the plasma membrane. At least some of these host transmembrane proteins on the surface of virions are reported as pro-viral factors that enhance virus attachment to target cells or facilitate trans-infection of CD4+ T cells via interactions with non-T cells. In addition to the pro-viral factors, anti-viral transmembrane proteins are incorporated into progeny virions. These virion-incorporated transmembrane proteins inhibit HIV-1 entry at the point of attachment and fusion. In infected polarized CD4+ T cells, HIV-1 Gag localizes to a rear-end protrusion known as the uropod. Regardless of cell polarization, Gag colocalizes with and promotes the virion incorporation of a subset of uropod-directed host transmembrane proteins, including CD162, CD43, and CD44. Until recently, the functions of these virion-incorporated proteins had not been clear. Here, we review the recent findings about the roles played by virion-incorporated CD162, CD43, and CD44 in HIV-1 spread to CD4+ T cells.
Collapse
|
26
|
Bou-Nader C, Muecksch F, Brown JB, Gordon JM, York A, Peng C, Ghirlando R, Summers MF, Bieniasz PD, Zhang J. HIV-1 matrix-tRNA complex structure reveals basis for host control of Gag localization. Cell Host Microbe 2021; 29:1421-1436.e7. [PMID: 34384537 PMCID: PMC8650744 DOI: 10.1016/j.chom.2021.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/24/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Abstract
The HIV-1 virion structural polyprotein, Gag, is directed to particle assembly sites at the plasma membrane by its N-terminal matrix (MA) domain. MA also binds to host tRNAs. To understand the molecular basis of MA-tRNA interaction and its potential function, we present a co-crystal structure of HIV-1 MA-tRNALys3 complex. The structure reveals a specialized group of MA basic and aromatic residues preconfigured to recognize the distinctive structure of the tRNA elbow. Mutational, cross-linking, fluorescence, and NMR analyses show that the crystallographically defined interface drives MA-tRNA binding in solution and living cells. The structure indicates that MA is unlikely to bind tRNA and membrane simultaneously. Accordingly, single-amino-acid substitutions that abolish MA-tRNA binding caused striking redistribution of Gag to the plasma membrane and reduced HIV-1 replication. Thus, HIV-1 exploits host tRNAs to occlude a membrane localization signal and control the subcellular distribution of its major structural protein.
Collapse
Affiliation(s)
- Charles Bou-Nader
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Frauke Muecksch
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Janae B Brown
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Jackson M Gordon
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ashley York
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Chen Peng
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Michael F Summers
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA; Howard Hughes Medical Institute, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
27
|
Subtype Differences in the Interaction of HIV-1 Matrix with Calmodulin: Implications for Biological Functions. Biomolecules 2021; 11:biom11091294. [PMID: 34572507 PMCID: PMC8464830 DOI: 10.3390/biom11091294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/28/2021] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Gag polyprotein plays essential roles during the late stage of the HIV-1 replication cycle, and has recently been identified as a promising therapeutic target. The N-terminal portion of the HIV-1 Gag polyprotein encodes the myristoylated matrix (MA) protein, which functions in the trafficking of the structural proteins to the plasma membrane (PM) and facilitation of envelope incorporation into budding virus. Numerous host cell proteins interact with the MA portion of the Gag polyprotein during this process. One such factor is the ubiquitous calcium-binding protein calmodulin (CaM), which interacts preferentially with myristoylated proteins, thereby regulating cell physiology. The exact role of this interaction is poorly understood to date. Atomic resolution structures revealed the nature of the CaM-MA interaction for clade B isolates. In this study, we expanded our knowledge and characterized biophysically and computationally the CaM interaction with MA from other HIV-1 clades and discovered differences in the CaM recognition as compared to the prototypical clade B MA, with significant alterations in the interaction with the MA protein from clade C. Structural investigation and in silico mutational analysis revealed that HIV-1 MA protein from clade C, which is responsible for the majority of global HIV-1 infections, interacts with lower affinity and altered kinetics as compared to the canonical clade B. This finding may have implications for additional altered interaction networks as compared to the well-studied clade B. Our analysis highlights the importance of expanding investigations of virus-host cell factor interaction networks to other HIV-1 clades.
Collapse
|
28
|
Qu K, Ke Z, Zila V, Anders-Össwein M, Glass B, Mücksch F, Müller R, Schultz C, Müller B, Kräusslich HG, Briggs JAG. Maturation of the matrix and viral membrane of HIV-1. Science 2021; 373:700-704. [PMID: 34353956 DOI: 10.1126/science.abe6821] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/24/2021] [Indexed: 12/22/2022]
Abstract
Gag, the primary structural protein of HIV-1, is recruited to the plasma membrane for virus assembly by its matrix (MA) domain. Gag is subsequently cleaved into its component domains, causing structural maturation to repurpose the virion for cell entry. We determined the structure and arrangement of MA within immature and mature HIV-1 through cryo-electron tomography. We found that MA rearranges between two different hexameric lattices upon maturation. In mature HIV-1, a lipid extends out of the membrane to bind with a pocket in MA. Our data suggest that proteolytic maturation of HIV-1 not only assembles the viral capsid surrounding the genome but also repurposes the membrane-bound MA lattice for an entry or postentry function and results in the partial removal of up to 2500 lipids from the viral membrane.
Collapse
Affiliation(s)
- Kun Qu
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| | - Zunlong Ke
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Vojtech Zila
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Bärbel Glass
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Frauke Mücksch
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Rainer Müller
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Carsten Schultz
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Barbara Müller
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany.,German Center for Infection Research, Heidelberg, Germany
| | - John A G Briggs
- Department of Infectious Diseases, Virology, Universitätsklinikum Heidelberg, 69120 Heidelberg, Germany. .,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany.,Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, CB2 0QH Cambridge, UK.,Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.,Molecular Medicine Partnership Unit, European Molecular Biology Laboratory and Universitätsklinikum Heidelberg, 69117 Heidelberg, Germany
| |
Collapse
|
29
|
Bugatti A, Caccuri F, Filippini F, Ravelli C, Caruso A. Binding to PI(4,5)P 2 is indispensable for secretion of B-cell clonogenic HIV-1 matrix protein p17 variants. J Biol Chem 2021; 297:100934. [PMID: 34273353 PMCID: PMC8350382 DOI: 10.1016/j.jbc.2021.100934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 matrix protein p17 variants (vp17s) derived from non-Hodgkin's lymphoma (NHL) tissues of HIV-1-seropositive (HIV+) patients promote B-cell growth by activating the Akt signaling pathway. It is fundamental to understand the role played by vp17s in producing a microenvironment that fosters lymphoma development and progression. Therefore, we asked whether vp17s could be secreted from infected cells in their biologically active form. In this study, we show that two B-cell growth-promoting vp17s, NHL-a101 and NHL-a102, characterized by amino acid insertions at position 117 to 118 (Ala-Ala) or 125 to 126 (Gly-Asn), respectively, are secreted from HIV-1-infected Jurkat T cells during the active phase of viral replication. Secretion of biologically active vp17s also occurred in HeLa cells nucleofected with a plasmid expressing the entire Gag gene, following proteolytic cleavage of the Gag precursor polyprotein (Pr55Gag) by cellular aspartyl proteases. Binding of Pr55Gag to phosphatidylinositol-(4,5)-bisphosphate was indispensable for allowing the unconventional secretion of both wildtype p17 and vp17s. Indeed, here we demonstrate that inhibition of Pr55Gag binding to phosphatidylinositol-(4,5)-bisphosphate by using neomycin, or its enzymatic depletion achieved by overexpression of 5ptaseIV, significantly impair the secretion of p17s. We also demonstrated that heparan sulfate proteoglycans were involved in tethering p17s at the cell surface. This finding opens up an interesting way for investigating whether tethered p17s on the surface of HIV-1 reservoirs may represent a likely target for immune-mediated killing.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Cosetta Ravelli
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia Medical School, Brescia, Italy.
| |
Collapse
|
30
|
Herrmann D, Zhou LW, Hanson HM, Willkomm NA, Mansky LM, Saad JS. Structural Insights into the Mechanism of Human T-cell Leukemia Virus Type 1 Gag Targeting to the Plasma Membrane for Assembly. J Mol Biol 2021; 433:167161. [PMID: 34298060 PMCID: PMC8453114 DOI: 10.1016/j.jmb.2021.167161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/10/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023]
Abstract
Retroviral Gag targeting to the plasma membrane (PM) for assembly is mediated by the N-terminal matrix (MA) domain. For many retroviruses, Gag-PM interaction is dependent on phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, it has been shown that for human T-cell leukemia virus type 1 (HTLV-1), Gag binding to membranes is less dependent on PI(4,5)P2 than HIV-1, suggesting that other factors may modulate Gag assembly. To elucidate the mechanism by which HTLV-1 Gag binds to the PM, we employed NMR techniques to determine the structure of unmyristoylated MA (myr(-)MA) and to characterize its interactions with lipids and liposomes. The MA structure consists of four α-helices and unstructured N- and C-termini. We show that myr(-)MA binds to PI(4,5)P2 via the polar head and that binding to inositol phosphates (IPs) is significantly enhanced by increasing the number of phosphate groups on the inositol ring, indicating that the MA-IP binding is governed by charge-charge interactions. The IP binding site was mapped to a well-defined basic patch formed by lysine and arginine residues. Using an NMR-based liposome binding assay, we show that PI(4,5)P2and phosphatidylserine enhance myr(-)MA binding in a synergistic fashion. Confocal microscopy data revealed formation of puncta on the PM of Gag expressing cells. However, G2A-Gag mutant, lacking myristoylation, is diffuse and cytoplasmic. These results suggest that although myr(-)MA binds to membranes, myristoylation appears to be key for formation of HTLV-1 Gag puncta on the PM. Altogether, these findings advance our understanding of a key mechanism in retroviral assembly.
Collapse
Affiliation(s)
- Dominik Herrmann
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lynne W Zhou
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Heather M Hanson
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Nora A Willkomm
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
31
|
Deng Y, Hammond JA, Pauszek R, Ozog S, Chai I, Rabuck-Gibbons J, Lamichhane R, Henderson SC, Millar DP, Torbett BE, Williamson JR. Discrimination between Functional and Non-functional Cellular Gag Complexes involved in HIV-1 Assembly. J Mol Biol 2021; 433:166842. [PMID: 33539875 DOI: 10.1016/j.jmb.2021.166842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
HIV-1 Gag and Gag-Pol are responsible for viral assembly and maturation and represent a major paradigm for enveloped virus assembly. Numerous intracellular Gag-containing complexes (GCCs) have been identified in cellular lysates using sucrose gradient ultracentrifugation. While these complexes are universally present in Gag-expressing cells, their roles in virus assembly are not well understood. Here we demonstrate that most GCC species are predominantly comprised of monomeric or dimeric Gag molecules bound to ribosomal complexes, and as such, are not on-pathway intermediates in HIV assembly. Rather, these GCCs represent a population of Gag that is not yet functionally committed for incorporation into a viable virion precursor. We hypothesize that these complexes act as a reservoir of monomeric Gag that can incorporate into assembling viruses, and serve to mitigate non-specific intracellular Gag oligomerization. We have identified a subset of large GCC complexes, comprising more than 20 Gag molecules, that may be equivalent to membrane-associated puncta previously shown to be bona fide assembling-virus intermediates. This work provides a clear rationale for the existence of diverse GCCs, and serves as the foundation for characterizing on-pathway intermediates early in virus assembly.
Collapse
Affiliation(s)
- Yisong Deng
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - John A Hammond
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Raymond Pauszek
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Stosh Ozog
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ilean Chai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Jessica Rabuck-Gibbons
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Rajan Lamichhane
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Scott C Henderson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - David P Millar
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, United States; Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, United States; The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
32
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
33
|
The Interplay between ESCRT and Viral Factors in the Enveloped Virus Life Cycle. Viruses 2021; 13:v13020324. [PMID: 33672541 PMCID: PMC7923801 DOI: 10.3390/v13020324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Viruses are obligate parasites that rely on host cellular factors to replicate and spread. The endosomal sorting complexes required for transport (ESCRT) system, which is classically associated with sorting and downgrading surface proteins, is one of the host machineries hijacked by viruses across diverse families. Knowledge gained from research into ESCRT and viruses has, in turn, greatly advanced our understanding of many other cellular functions in which the ESCRT pathway is involved, e.g., cytokinesis. This review highlights the interplay between the ESCRT pathway and the viral factors of enveloped viruses with a special emphasis on retroviruses.
Collapse
|
34
|
Eastep GN, Ghanam RH, Green TJ, Saad JS. Structural characterization of HIV-1 matrix mutants implicated in envelope incorporation. J Biol Chem 2021; 296:100321. [PMID: 33485964 PMCID: PMC7952133 DOI: 10.1016/j.jbc.2021.100321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/05/2021] [Accepted: 01/20/2021] [Indexed: 11/28/2022] Open
Abstract
During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, X-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer–trimer equilibrium. The high-resolution X-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of adjacent Arg-63 and Ser-67 on neighboring MA molecules, providing the first structural evidence for an additional intermolecular interaction in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.
Collapse
Affiliation(s)
- Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Todd J Green
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
35
|
Abstract
Enveloped viruses exit producer cells and acquire their external lipid envelopes by budding through limiting cellular membranes. Most viruses encode multifunctional structural proteins that coordinate the processes of virion assembly, membrane envelopment, budding, and maturation. In many cases, the cellular ESCRT pathway is recruited to facilitate the membrane fission step of budding, but alternative strategies are also employed. Recently, many viruses previously considered to be non-enveloped have been shown to exit cells non-lytically within vesicles, adding further complexity to the intricacies of virus budding and egress.
Collapse
|
36
|
Meusser B, Purfuerst B, Luft FC. HIV-1 Gag release from yeast reveals ESCRT interaction with the Gag N-terminal protein region. J Biol Chem 2020; 295:17950-17972. [PMID: 32994219 PMCID: PMC7939435 DOI: 10.1074/jbc.ra120.014710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/25/2020] [Indexed: 11/30/2022] Open
Abstract
The HIV-1 protein Gag assembles at the plasma membrane and drives virion budding, assisted by the cellular endosomal complex required for transport (ESCRT) proteins. Two ESCRT proteins, TSG101 and ALIX, bind to the Gag C-terminal p6 peptide. TSG101 binding is important for efficient HIV-1 release, but how ESCRTs contribute to the budding process and how their activity is coordinated with Gag assembly is poorly understood. Yeast, allowing genetic manipulation that is not easily available in human cells, has been used to characterize the cellular ESCRT function. Previous work reported Gag budding from yeast spheroplasts, but Gag release was ESCRT-independent. We developed a yeast model for ESCRT-dependent Gag release. We combined yeast genetics and Gag mutational analysis with Gag-ESCRT binding studies and the characterization of Gag-plasma membrane binding and Gag release. With our system, we identified a previously unknown interaction between ESCRT proteins and the Gag N-terminal protein region. Mutations in the Gag-plasma membrane-binding matrix domain that reduced Gag-ESCRT binding increased Gag-plasma membrane binding and Gag release. ESCRT knockout mutants showed that the release enhancement was an ESCRT-dependent effect. Similarly, matrix mutation enhanced Gag release from human HEK293 cells. Release enhancement partly depended on ALIX binding to p6, although binding site mutation did not impair WT Gag release. Accordingly, the relative affinity for matrix compared with p6 in GST-pulldown experiments was higher for ALIX than for TSG101. We suggest that a transient matrix-ESCRT interaction is replaced when Gag binds to the plasma membrane. This step may activate ESCRT proteins and thereby coordinate ESCRT function with virion assembly.
Collapse
Affiliation(s)
- Birgit Meusser
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | | | - Friedrich C Luft
- Charité Medical Faculty, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, Berlin, Germany.
| |
Collapse
|
37
|
Beziau A, Brand D, Piver E. The Role of Phosphatidylinositol Phosphate Kinases during Viral Infection. Viruses 2020; 12:v12101124. [PMID: 33022924 PMCID: PMC7599803 DOI: 10.3390/v12101124] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Phosphoinositides account for only a small proportion of cellular phospholipids, but have long been known to play an important role in diverse cellular processes, such as cell signaling, the establishment of organelle identity, and the regulation of cytoskeleton and membrane dynamics. As expected, given their pleiotropic regulatory functions, they have key functions in viral replication. The spatial restriction and steady-state levels of each phosphoinositide depend primarily on the concerted action of specific phosphoinositide kinases and phosphatases. This review focuses on a number of remarkable examples of viral strategies involving phosphoinositide kinases to ensure effective viral replication.
Collapse
Affiliation(s)
- Anne Beziau
- INSERM U1259, University of Tours, 37000 Tours, France
| | - Denys Brand
- INSERM U1259, University of Tours, 37000 Tours, France
- Virology Laboratory, Tours University Hospital, 3700 Tours, France
| | - Eric Piver
- INSERM U1259, University of Tours, 37000 Tours, France
- Biochemistry and Molecular Biology, Tours University Hospital, 3700 Tours, France
| |
Collapse
|
38
|
Boyd PS, Brown JB, Brown JD, Catazaro J, Chaudry I, Ding P, Dong X, Marchant J, O’Hern CT, Singh K, Swanson C, Summers MF, Yasin S. NMR Studies of Retroviral Genome Packaging. Viruses 2020; 12:v12101115. [PMID: 33008123 PMCID: PMC7599994 DOI: 10.3390/v12101115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/03/2022] Open
Abstract
Nearly all retroviruses selectively package two copies of their unspliced RNA genomes from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Over the past four decades, combinations of genetic experiments, phylogenetic analyses, nucleotide accessibility mapping, in silico RNA structure predictions, and biophysical experiments were employed to understand how retroviral genomes are selected for packaging. Genetic studies provided early clues regarding the protein and RNA elements required for packaging, and nucleotide accessibility mapping experiments provided insights into the secondary structures of functionally important elements in the genome. Three-dimensional structural determinants of packaging were primarily derived by nuclear magnetic resonance (NMR) spectroscopy. A key advantage of NMR, relative to other methods for determining biomolecular structure (such as X-ray crystallography), is that it is well suited for studies of conformationally dynamic and heterogeneous systems—a hallmark of the retrovirus packaging machinery. Here, we review advances in understanding of the structures, dynamics, and interactions of the proteins and RNA elements involved in retroviral genome selection and packaging that are facilitated by NMR.
Collapse
|
39
|
Karnib H, Nadeem MF, Humbert N, Sharma KK, Grytsyk N, Tisné C, Boutant E, Lequeu T, Réal E, Boudier C, de Rocquigny H, Mély Y. The nucleic acid chaperone activity of the HIV-1 Gag polyprotein is boosted by its cellular partner RPL7: a kinetic study. Nucleic Acids Res 2020; 48:9218-9234. [PMID: 32797159 PMCID: PMC7498347 DOI: 10.1093/nar/gkaa659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 07/20/2020] [Accepted: 07/29/2020] [Indexed: 01/10/2023] Open
Abstract
The HIV-1 Gag protein playing a key role in HIV-1 viral assembly has recently been shown to interact through its nucleocapsid domain with the ribosomal protein L7 (RPL7) that acts as a cellular co-factor promoting Gag's nucleic acid (NA) chaperone activity. To further understand how the two proteins act together, we examined their mechanism individually and in concert to promote the annealing between dTAR, the DNA version of the viral transactivation element and its complementary cTAR sequence, taken as model HIV-1 sequences. Gag alone or complexed with RPL7 was found to act as a NA chaperone that destabilizes cTAR stem-loop and promotes its annealing with dTAR through the stem ends via a two-step pathway. In contrast, RPL7 alone acts as a NA annealer that through its NA aggregating properties promotes cTAR/dTAR annealing via two parallel pathways. Remarkably, in contrast to the isolated proteins, their complex promoted efficiently the annealing of cTAR with highly stable dTAR mutants. This was confirmed by the RPL7-promoted boost of the physiologically relevant Gag-chaperoned annealing of (+)PBS RNA to the highly stable tRNALys3 primer, favoring the notion that Gag recruits RPL7 to overcome major roadblocks in viral assembly.
Collapse
Affiliation(s)
- Hassan Karnib
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Muhammad F Nadeem
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Nicolas Humbert
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Kamal K Sharma
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Natalia Grytsyk
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Carine Tisné
- Expression génétique microbienne, UMR 8261, CNRS, Université de Paris, Institut de biologie physico-chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Emmanuel Boutant
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Thiebault Lequeu
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Eleonore Réal
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Christian Boudier
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| | - Hugues de Rocquigny
- Inserm – U1259 Morphogenesis and Antigenicity of HIV and Hepatitis Viruses (MAVIVH), 10 boulevard Tonnellé, BP 3223, 37032 Tours Cedex 1, France
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies (LBP), UMR 7021, Faculty of pharmacy, University of Strasbourg, 67400 Illkirch, France
| |
Collapse
|
40
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
41
|
Sarni S, Biswas B, Liu S, Olson ED, Kitzrow JP, Rein A, Wysocki VH, Musier-Forsyth K. HIV-1 Gag protein with or without p6 specifically dimerizes on the viral RNA packaging signal. J Biol Chem 2020; 295:14391-14401. [PMID: 32817318 DOI: 10.1074/jbc.ra120.014835] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Indexed: 02/04/2023] Open
Abstract
The HIV-1 Gag protein is responsible for genomic RNA (gRNA) packaging and immature viral particle assembly. Although the presence of gRNA in virions is required for viral infectivity, in its absence, Gag can assemble around cellular RNAs and form particles resembling gRNA-containing particles. When gRNA is expressed, it is selectively packaged despite the presence of excess host RNA, but how it is selectively packaged is not understood. Specific recognition of a gRNA packaging signal (Psi) has been proposed to stimulate the efficient nucleation of viral assembly. However, the heterogeneity of Gag-RNA interactions renders capturing this transient nucleation complex using traditional structural biology approaches challenging. Here, we used native MS to investigate RNA binding of wild-type (WT) Gag and Gag lacking the p6 domain (GagΔp6). Both proteins bind to Psi RNA primarily as dimers, but to a control RNA primarily as monomers. The dimeric complexes on Psi RNA require an intact dimer interface within Gag. GagΔp6 binds to Psi RNA with high specificity in vitro and also selectively packages gRNA in particles produced in mammalian cells. These studies provide direct support for the idea that Gag binding to Psi specifically promotes nucleation of Gag-Gag interactions at the early stages of immature viral particle assembly in a p6-independent manner.
Collapse
Affiliation(s)
- Samantha Sarni
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA
| | - Banhi Biswas
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Shuohui Liu
- Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Erik D Olson
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Kitzrow
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| | - Alan Rein
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Vicki H Wysocki
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA .,Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio, USA.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Karin Musier-Forsyth
- Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio, USA .,Center for RNA Biology, The Ohio State University, Columbus, Ohio, USA.,Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA.,Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
42
|
Rendezvous at Plasma Membrane: Cellular Lipids and tRNA Set up Sites of HIV-1 Particle Assembly and Incorporation of Host Transmembrane Proteins. Viruses 2020; 12:v12080842. [PMID: 32752131 PMCID: PMC7472227 DOI: 10.3390/v12080842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022] Open
Abstract
The HIV-1 structural polyprotein Gag drives the virus particle assembly specifically at the plasma membrane (PM). During this process, the nascent virion incorporates specific subsets of cellular lipids and host membrane proteins, in addition to viral glycoproteins and viral genomic RNA. Gag binding to the PM is regulated by cellular factors, including PM-specific phospholipid PI(4,5)P2 and tRNAs, both of which bind the highly basic region in the matrix domain of Gag. In this article, we review our current understanding of the roles played by cellular lipids and tRNAs in specific localization of HIV-1 Gag to the PM. Furthermore, we examine the effects of PM-bound Gag on the organization of the PM bilayer and discuss how the reorganization of the PM at the virus assembly site potentially contributes to the enrichment of host transmembrane proteins in the HIV-1 particle. Since some of these host transmembrane proteins alter release, attachment, or infectivity of the nascent virions, the mechanism of Gag targeting to the PM and the nature of virus assembly sites have major implications in virus spread.
Collapse
|
43
|
Wen Y, Feigenson GW, Vogt VM, Dick RA. Mechanisms of PI(4,5)P2 Enrichment in HIV-1 Viral Membranes. J Mol Biol 2020; 432:5343-5364. [PMID: 32739462 PMCID: PMC8262684 DOI: 10.1016/j.jmb.2020.07.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/12/2020] [Accepted: 07/26/2020] [Indexed: 01/10/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2) is critical for HIV-1 virus assembly. The viral membrane is enriched in PIP2, suggesting that the virus assembles at PIP2-rich microdomains. We showed previously that in model membranes PIP2 can form nanoscopic clusters bridged by multivalent cations. Here, using purified proteins we quantitated the binding of HIV-1 Gag-related proteins to giant unilamellar vesicles containing either clustered or free PIP2. Myristoylated MA strongly preferred binding to clustered PIP2. By contrast, unmyristoylated HIV-1 MA, RSV MA, and a PH domain all preferred to interact with free PIP2. We also found that HIV-1 Gag multimerization promotes PIP2 clustering. Truncated Gag proteins comprising the MA, CA, and SP domains (MACASP) or the MA and CA domains (MACA) induced self-quenching of acyl chain-labeled fluorescent PIP2 in liposomes, implying clustering. However, HIV-1 MA itself did not induce PIP2 clustering. A CA inter-hexamer dimer interface mutation led to a loss of induced PIP2 clustering in MACA, indicating the importance of protein multimerization. Cryo-electron tomography of liposomes with bound MACA showed an amorphous protein layer on the membrane surface. Thus, it appears that while protein–protein interactions are required for PIP2 clustering, formation of a regular lattice is not. Protein-induced PIP2 clustering and multivalent cation-induced PIP2 clustering are additive. Taken together, these results provide the first evidence that HIV-1 Gag can selectively target pre-existing PIP2-enriched domains of the plasma membrane for viral assembly, and that Gag multimerization can further enrich PIP2 at assembly sites. These effects could explain the observed PIP2 enrichment in HIV-1.
Collapse
Affiliation(s)
- Yi Wen
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Gerald W Feigenson
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Volker M Vogt
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Robert A Dick
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
44
|
Pérez Socas LB, Ambroggio EE. The influence of myristoylation, liposome surface charge and nucleic acid interaction in the partition properties of HIV-1 Gag-N-terminal peptides to membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183421. [PMID: 32710855 DOI: 10.1016/j.bbamem.2020.183421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/07/2020] [Indexed: 01/10/2023]
Abstract
The group-specific antigen (GAG) polyprotein of HIV-1 is the main coordinator of the virus assembly process at the plasma membrane (PM) and is directed by its N-terminal matrix domain (MA). MA is myristoylated and possess a highly basic region (HBR) responsible for the interaction with the negative lipids of the PM, especially with PIP2. In addition, MA binds RNA molecules proposed as a regulatory step of the assembly process. Here we study the interaction of a synthetic peptide (N-terminal 21 amino acids of MA) and liposomes of different compositions using a variety of biophysical techniques. Particularly, we use the fluorescence properties of the single tryptophan of the peptide to analyze its partition to membranes, where we harness for first time the analytical ability of spectral phasors method to study this interaction. We found that electrostatic interactions play an important role for peptide partition to membranes and myristoylation reduces the free energy of the process. Interestingly, we observe that while the presence of PIP2 does not cause measurable changes on the peptide-membrane interaction, the interaction is favored by cholesterol. Additionally, we found that the partition process goes through a transition state involving peptide disaggregation and changes in the peptide secondary structure. On the other hand, we found that the presence of oligonucleotides competes with the interaction with lipids by increasing peptide solubility. In summary, we think that our results, in context of the current knowledge of the role of HIV-1 MA, contribute to a better molecular understanding of the membrane association process.
Collapse
Affiliation(s)
- Luis Benito Pérez Socas
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica-Ranwel Caputto, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina
| | - Ernesto Esteban Ambroggio
- Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Departamento de Química Biológica-Ranwel Caputto, Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina; CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Haya de la Torre y Medina Allende s/n, Córdoba X5000HUA, Argentina.
| |
Collapse
|
45
|
Murphy RE, Saad JS. The Interplay between HIV-1 Gag Binding to the Plasma Membrane and Env Incorporation. Viruses 2020; 12:E548. [PMID: 32429351 PMCID: PMC7291237 DOI: 10.3390/v12050548] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Advancement in drug therapies and patient care have drastically improved the mortality rates of HIV-1 infected individuals. Many of these therapies were developed or improved upon by using structure-based techniques, which underscore the importance of understanding essential mechanisms in the replication cycle of HIV-1 at the structural level. One such process which remains poorly understood is the incorporation of the envelope glycoprotein (Env) into budding virus particles. Assembly of HIV particles is initiated by targeting of the Gag polyproteins to the inner leaflet of the plasma membrane (PM), a process mediated by the N-terminally myristoylated matrix (MA) domain and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). There is strong evidence that formation of the Gag lattice on the PM is a prerequisite for the incorporation of Env into budding particles. It is also suggested that Env incorporation is mediated by an interaction between its cytoplasmic tail (gp41CT) and the MA domain of Gag. In this review, we highlight the latest developments and current efforts to understand the interplay between gp41CT, MA, and the membrane during assembly. Elucidation of the molecular determinants of Gag-Env-membrane interactions may help in the development of new antiviral therapeutic agents that inhibit particle assembly, Env incorporation and ultimately virus production.
Collapse
Affiliation(s)
| | - Jamil S. Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
46
|
Junková P, Pleskot R, Prchal J, Sýs J, Ruml T. Differences and commonalities in plasma membrane recruitment of the two morphogenetically distinct retroviruses HIV-1 and MMTV. J Biol Chem 2020; 295:8819-8833. [PMID: 32385109 DOI: 10.1074/jbc.ra119.011991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/05/2020] [Indexed: 11/06/2022] Open
Abstract
Retroviral Gag polyproteins are targeted to the inner leaflet of the plasma membrane through their N-terminal matrix (MA) domain. Because retroviruses of different morphogenetic types assemble their immature particles in distinct regions of the host cell, the mechanism of MA-mediated plasma membrane targeting differs among distinct retroviral morphogenetic types. Here, we focused on possible mechanistic differences of the MA-mediated plasma membrane targeting of the B-type mouse mammary tumor virus (MMTV) and C-type HIV-1, which assemble in the cytoplasm and at the plasma membrane, respectively. Molecular dynamics simulations, together with surface mapping, indicated that, similarly to HIV-1, MMTV uses a myristic switch to anchor the MA to the membrane and electrostatically interacts with phosphatidylinositol 4,5-bisphosphate to stabilize MA orientation. We observed that the affinity of MMTV MA to the membrane is lower than that of HIV-1 MA, possibly related to their different topologies and the number of basic residues in the highly basic MA region. The latter probably reflects the requirement of C-type retroviruses for tighter membrane binding, essential for assembly, unlike for D/B-type retroviruses, which assemble in the cytoplasm. A comparison of the membrane topology of the HIV-1 MA, using the surface-mapping method and molecular dynamics simulations, revealed that the residues at the HIV-1 MA C terminus help stabilize protein-protein interactions within the HIV-1 MA lattice at the plasma membrane. In summary, HIV-1 and MMTV share common features such as membrane binding of the MA via hydrophobic interactions and exhibit several differences, including lower membrane affinity of MMTV MA.
Collapse
Affiliation(s)
- Petra Junková
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jakub Sýs
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
47
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
48
|
Distinct Contributions of Different Domains within the HIV-1 Gag Polyprotein to Specific and Nonspecific Interactions with RNA. Viruses 2020; 12:v12040394. [PMID: 32252233 PMCID: PMC7232488 DOI: 10.3390/v12040394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 11/17/2022] Open
Abstract
Viral genomic RNA is packaged into virions with high specificity and selectivity. However, in vitro the Gag specificity towards viral RNA is obscured when measured in buffers containing physiological salt. Interestingly, when the binding is challenged by increased salt concentration, the addition of competing RNAs, or introducing mutations to Gag protein, the specificity towards viral RNA becomes detectable. The objective of this work was to examine the contributions of the individual HIV-1 Gag polyprotein domains to nonspecific and specific RNA binding and stability of the initial protein-RNA complexes. Using a panel of Gag proteins with mutations disabling different Gag-Gag or Gag-RNA interfaces, we investigated the distinct contributions of individual domains which distinguish the binding to viral and nonviral RNA by measuring the binding of the proteins to RNAs. We measured the binding affinity in near-physiological salt concentration, and then challenged the binding by increasing the ionic strength to suppress the electrostatic interactions and reveal the contribution of specific Gag–RNA and Gag–Gag interactions. Surprisingly, we observed that Gag dimerization and the highly basic region in the matrix domain contribute significantly to the specificity of viral RNA binding.
Collapse
|
49
|
Biochemical Reconstitution of HIV-1 Assembly and Maturation. J Virol 2020; 94:JVI.01844-19. [PMID: 31801870 DOI: 10.1128/jvi.01844-19] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/28/2019] [Indexed: 12/18/2022] Open
Abstract
The assembly of an orthoretrovirus such as HIV-1 requires the coordinated functioning of multiple biochemical activities of the viral Gag protein. These activities include membrane targeting, lattice formation, packaging of the RNA genome, and recruitment of cellular cofactors that modulate assembly. In most previous studies, these Gag activities have been investigated individually, which provided somewhat limited insight into how they functionally integrate during the assembly process. Here, we report the development of a biochemical reconstitution system that allowed us to investigate how Gag lattice formation, RNA binding, and the assembly cofactor inositol hexakisphosphate (IP6) synergize to generate immature virus particles in vitro The results identify an important rate-limiting step in assembly and reveal new insights into how RNA and IP6 promote immature Gag lattice formation. The immature virus-like particles can be converted into mature capsid-like particles by the simple addition of viral protease, suggesting that it is possible in principle to fully biochemically reconstitute the sequential processes of HIV-1 assembly and maturation from purified components.IMPORTANCE Assembly and maturation are essential steps in the replication of orthoretroviruses such as HIV-1 and are proven therapeutic targets. These processes require the coordinated functioning of the viral Gag protein's multiple biochemical activities. We describe here the development of an experimental system that allows an integrative analysis of how Gag's multiple functionalities cooperate to generate a retrovirus particle. Our current studies help to illuminate how Gag synergizes the formation of the virus compartment with RNA binding and how these activities are modulated by the small molecule IP6. Further development and use of this system should lead to a more comprehensive understanding of the molecular mechanisms of HIV-1 assembly and maturation and may provide new insights for the development of antiretroviral drugs.
Collapse
|
50
|
Quantification of phosphoinositides reveals strong enrichment of PIP 2 in HIV-1 compared to producer cell membranes. Sci Rep 2019; 9:17661. [PMID: 31776383 PMCID: PMC6881329 DOI: 10.1038/s41598-019-53939-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/09/2019] [Indexed: 02/06/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) acquires its lipid envelope during budding from the plasma membrane of the host cell. Various studies indicated that HIV-1 membranes differ from producer cell plasma membranes, suggesting budding from specialized membrane microdomains. The phosphoinositide PI(4,5)P2 has been of particular interest since PI(4,5)P2 is needed to recruit the viral structural polyprotein Gag to the plasma membrane and thus facilitates viral morphogenesis. While there is evidence for an enrichment of PIP2 in HIV-1, fully quantitative analysis of all phosphoinositides remains technically challenging and therefore has not been reported, yet. Here, we present a comprehensive analysis of the lipid content of HIV-1 and of plasma membranes from infected and non-infected producer cells, resulting in a total of 478 quantified lipid compounds, including molecular species distribution of 25 different lipid classes. Quantitative analyses of phosphoinositides revealed strong enrichment of PIP2, but also of PIP3, in the viral compared to the producer cell plasma membrane. We calculated an average of ca. 8,000 PIP2 molecules per HIV-1 particle, three times more than Gag. We speculate that the high density of PIP2 at the HIV-1 assembly site is mediated by transient interactions with viral Gag polyproteins, facilitating PIP2 concentration in this microdomain. These results are consistent with our previous observation that PIP2 is not only required for recruiting, but also for stably maintaining Gag at the plasma membrane. We believe that this quantitative analysis of the molecular anatomy of the HIV-1 lipid envelope may serve as standard reference for future investigations.
Collapse
|