1
|
Pergel E, Tóth DJ, Baukál D, Veres I, Czirják G. The Ubiquitin Ligase Adaptor NDFIP1 Interacts with TRESK and Negatively Regulates the Background K + Current. Int J Mol Sci 2024; 25:8879. [PMID: 39201565 PMCID: PMC11355008 DOI: 10.3390/ijms25168879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The TRESK (K2P18.1, KCNK18) background potassium channel is expressed in primary sensory neurons and has been reported to contribute to the regulation of pain sensations. In the present study, we examined the interaction of TRESK with NDFIP1 (Nedd4 family-interacting protein 1) in the Xenopus oocyte expression system by two-electrode voltage clamp and biochemical methods. We showed that the coexpression of NDFIP1 abolished the TRESK current under the condition where the other K+ channels were not affected. Mutations in the three PPxY motifs of NDFIP1, which are responsible for the interaction with the Nedd4 ubiquitin ligase, prevented a reduction in the TRESK current. Furthermore, the overexpression of a dominant-negative Nedd4 construct in the oocytes coexpressing TRESK with NDFIP1 partially reversed the down-modulating effect of the adaptor protein on the K+ current. The biochemical data were also consistent with the functional results. An interaction between epitope-tagged versions of TRESK and NDFIP1 was verified by co-immunoprecipitation experiments. The coexpression of NDFIP1 with TRESK induced the ubiquitination of the channel protein. Altogether, the results suggest that TRESK is directly controlled by and highly sensitive to the activation of the NDFIP1-Nedd4 system. The NDFIP1-mediated reduction in the TRESK component may induce depolarization, increase excitability, and attenuate the calcium dependence of the membrane potential by reducing the calcineurin-activated fraction in the ensemble background K+ current.
Collapse
Affiliation(s)
- Enikő Pergel
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Dániel J. Tóth
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
- HUN-REN-SU Molecular Physiology Research Group, Hungarian Research Network and Semmelweis University, 1094 Budapest, Hungary
| | - Dóra Baukál
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Irén Veres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| | - Gábor Czirják
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (E.P.); (D.B.); (I.V.)
| |
Collapse
|
2
|
Poirson J, Cho H, Dhillon A, Haider S, Imrit AZ, Lam MHY, Alerasool N, Lacoste J, Mizan L, Wong C, Gingras AC, Schramek D, Taipale M. Proteome-scale discovery of protein degradation and stabilization effectors. Nature 2024; 628:878-886. [PMID: 38509365 DOI: 10.1038/s41586-024-07224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
Targeted protein degradation and stabilization are promising therapeutic modalities because of their potency, versatility and their potential to expand the druggable target space1,2. However, only a few of the hundreds of E3 ligases and deubiquitinases in the human proteome have been harnessed for this purpose, which substantially limits the potential of the approach. Moreover, there may be other protein classes that could be exploited for protein stabilization or degradation3-5, but there are currently no methods that can identify such effector proteins in a scalable and unbiased manner. Here we established a synthetic proteome-scale platform to functionally identify human proteins that can promote the degradation or stabilization of a target protein in a proximity-dependent manner. Our results reveal that the human proteome contains a large cache of effectors of protein stability. The approach further enabled us to comprehensively compare the activities of human E3 ligases and deubiquitinases, identify and characterize non-canonical protein degraders and stabilizers and establish that effectors have vastly different activities against diverse targets. Notably, the top degraders were more potent against multiple therapeutically relevant targets than the currently used E3 ligases cereblon and VHL. Our study provides a functional catalogue of stability effectors for targeted protein degradation and stabilization and highlights the potential of induced proximity screens for the discovery of new proximity-dependent protein modulators.
Collapse
Affiliation(s)
- Juline Poirson
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hanna Cho
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Akashdeep Dhillon
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shahan Haider
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ahmad Zoheyr Imrit
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Mandy Hiu Yi Lam
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Lacoste
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lamisa Mizan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Wong
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Daniel Schramek
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mikko Taipale
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Sullivan KG, Bashaw GJ. Commissureless acts as a substrate adapter in a conserved Nedd4 E3 ubiquitin ligase pathway to promote axon growth across the midline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562283. [PMID: 37905056 PMCID: PMC10614773 DOI: 10.1101/2023.10.13.562283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
In both vertebrates and invertebrates, commissural neurons prevent premature responsiveness to the midline repellant Slit by downregulating surface levels of its receptor Roundabout1 (Robo1). In Drosophila, Commissureless (Comm) plays a critical role in this process; however, there is conflicting data on the underlying molecular mechanism. Here, we demonstrate that the conserved PY motifs in the cytoplasmic domain of Comm are required allow the ubiquitination and lysosomal degradation of Robo1. Disruption of these motifs prevents Comm from localizing to Lamp1 positive late endosomes and to promote axon growth across the midline in vivo. In addition, we conclusively demonstrate a role for Nedd4 in midline crossing. Genetic analysis shows that nedd4 mutations result in midline crossing defects in the Drosophila embryonic nerve cord, which can be rescued by introduction of exogenous Nedd4. Biochemical evidence shows that Nedd4 incorporates into a three-member complex with Comm and Robo in a PY motif-dependent manner. Finally, we present genetic evidence that Nedd4 acts with Comm in the embryonic nerve cord to downregulate Robo1 levels. Taken together, these findings demonstrate that Comm promotes midline crossing in the nerve cord by facilitating Robo ubiquitination by Nedd4, ultimately leading to its degradation.
Collapse
Affiliation(s)
- Kelly G. Sullivan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| | - Greg J. Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, 415 Curie Blvd., Philadelphia, PA, 19104, USA
| |
Collapse
|
4
|
Marziali F, Song Y, Nguyen XN, Belmudes L, Burlaud-Gaillard J, Roingeard P, Couté Y, Cimarelli A. A Proteomics-Based Approach Identifies the NEDD4 Adaptor NDFIP2 as an Important Regulator of Ifitm3 Levels. Viruses 2023; 15:1993. [PMID: 37896772 PMCID: PMC10611234 DOI: 10.3390/v15101993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
IFITMs are a family of highly related interferon-induced transmembrane proteins that interfere with the processes of fusion between viral and cellular membranes and are thus endowed with broad antiviral properties. A number of studies have shown how the antiviral potency of IFITMs is highly dependent on their steady-state levels, their intracellular distribution and a complex pattern of post-translational modifications, parameters that are overall tributary of a number of cellular partners. In an effort to identify additional protein partners involved in the biology of IFITMs, we devised a proteomics-based approach based on the piggyback incorporation of IFITM3 partners into extracellular vesicles. MS analysis of the proteome of vesicles bearing or not bearing IFITM3 identified the NDFIP2 protein adaptor protein as an important regulator of IFITM3 levels. NDFIP2 is a membrane-anchored adaptor protein of the E3 ubiquitin ligases of the NEDD4 family that have already been found to be involved in IFITM3 regulation. We show here that NDFIP2 acts as a recruitment factor for both IFITM3 and NEDD4 and mediates their distribution in lysosomal vesicles. The genetic inactivation and overexpression of NDFIP2 drive, respectively, lower and higher levels of IFITM3 accumulation in the cell, overall suggesting that NDFIP2 locally competes with IFITM3 for NEDD4 binding. Given that NDFIP2 is itself tightly regulated and highly responsive to external cues, our study sheds light on a novel and likely dynamic layer of regulation of IFITM3.
Collapse
Affiliation(s)
- Federico Marziali
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Yuxin Song
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Xuan-Nhi Nguyen
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| | - Lucid Belmudes
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, 38000 Grenoble, France; (L.B.); (Y.C.)
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (J.B.-G.); (P.R.)
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université de Tours et CHU de Tours, 37000 Tours, France; (J.B.-G.); (P.R.)
- INSERM U1259, Université de Tours et CHU de Tours, 37000 Tours, France
| | - Yohann Couté
- Université Grenoble Alpes, INSERM, CEA, UA13 BGE, CNRS, CEA, 38000 Grenoble, France; (L.B.); (Y.C.)
| | - Andrea Cimarelli
- Centre International de Recherche en Infectiologie (CIRI), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, 69100 Lyon, France (X.-N.N.)
| |
Collapse
|
5
|
Song MS, Pandolfi PP. The HECT family of E3 ubiquitin ligases and PTEN. Semin Cancer Biol 2022; 85:43-51. [PMID: 34129913 PMCID: PMC8665946 DOI: 10.1016/j.semcancer.2021.06.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/22/2022]
Abstract
Members of the HECT family of E3 ubiquitin ligases have emerged as prominent regulators of PTEN function, subcellular localization and levels. In turn this unfolding regulatory network is allowing for the identification of genes directly involved in both tumorigenesis at large and cancer susceptibility syndromes. While the complexity of this regulatory network is still being unraveled, these new findings are paving the way for novel therapeutic modalities for cancer prevention and therapy as well as for other diseases. Here we will review the signal transduction and therapeutic implications of the cross-talk between HECT family members and PTEN.
Collapse
Affiliation(s)
- Min Sup Song
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX77030, USA.
| | - Pier Paolo Pandolfi
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV89502, USA.
| |
Collapse
|
6
|
Park J, Barahona‐Torres N, Jang S, Mok KY, Kim HJ, Han S, Cho K, Zhou X, Fu AKY, Ip NY, Seo J, Choi M, Jeong H, Hwang D, Lee DY, Byun MS, Yi D, Han JW, Mook‐Jung I, Hardy J. Multi-Omics-Based Autophagy-Related Untypical Subtypes in Patients with Cerebral Amyloid Pathology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201212. [PMID: 35694866 PMCID: PMC9376815 DOI: 10.1002/advs.202201212] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Indexed: 05/05/2023]
Abstract
Recent multi-omics analyses paved the way for a comprehensive understanding of pathological processes. However, only few studies have explored Alzheimer's disease (AD) despite the possibility of biological subtypes within these patients. For this study, unsupervised classification of four datasets (genetics, miRNA transcriptomics, proteomics, and blood-based biomarkers) using Multi-Omics Factor Analysis+ (MOFA+), along with systems-biological approaches following various downstream analyses are performed. New subgroups within 170 patients with cerebral amyloid pathology (Aβ+) are revealed and the features of them are identified based on the top-rated targets constructing multi-omics factors of both whole (M-TPAD) and immune-focused models (M-IPAD). The authors explored the characteristics of subtypes and possible key-drivers for AD pathogenesis. Further in-depth studies showed that these subtypes are associated with longitudinal brain changes and autophagy pathways are main contributors. The significance of autophagy or clustering tendency is validated in peripheral blood mononuclear cells (PBMCs; n = 120 including 30 Aβ- and 90 Aβ+), induced pluripotent stem cell-derived human brain organoids/microglia (n = 12 including 5 Aβ-, 5 Aβ+, and CRISPR-Cas9 apolipoprotein isogenic lines), and human brain transcriptome (n = 78). Collectively, this study provides a strategy for precision medicine therapy and drug development for AD using integrative multi-omics analysis and network modelling.
Collapse
Affiliation(s)
- Jong‐Chan Park
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Natalia Barahona‐Torres
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - So‐Yeong Jang
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Kin Y. Mok
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| | - Haeng Jun Kim
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Sun‐Ho Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Kwang‐Hyun Cho
- Department of Bio and Brain EngineeringKorea Advanced Institute of Science and TechnologyDaejeon34141Republic of Korea
| | - Xiaopu Zhou
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Amy K. Y. Fu
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Nancy Y. Ip
- Division of Life ScienceState Key Laboratory of Molecular NeuroscienceMolecular Neuroscience CenterThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
- Hong Kong Center for Neurodegenerative DiseasesHong Kong Science ParkHong Kong999077China
- Guangdong Provincial Key Laboratory of Brain ScienceDisease and Drug DevelopmentHKUST Shenzhen Research InstituteShenzhen‐Hong Kong Institute of Brain ScienceShenzhenGuangdong518057China
| | - Jieun Seo
- Department of Laboratory MedicineSeverance HospitalYonsei University College of MedicineSeoul03722Republic of Korea
| | - Murim Choi
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Hyobin Jeong
- European Molecular Biology LaboratoryGenome Biology UnitHeidelberg69117Germany
| | - Daehee Hwang
- Department of Biological SciencesSeoul National UniversitySeoul08826Republic of Korea
| | - Dong Young Lee
- Institute of Human Behavioral MedicineMedical Research CenterSeoul National UniversitySeoul03080Republic of Korea
- Department of PsychiatryCollege of medicineSeoul National UniversitySeoul03080Republic of Korea
- Department of NeuropsychiatrySeoul National University HospitalSeoul03080Republic of Korea
| | - Min Soo Byun
- Department of PsychiatryPusan National University Yangsan HospitalYangsan50612Republic of Korea
| | - Dahyun Yi
- Biomedical Research InstituteSeoul National University HospitalSeoul03082Republic of Korea
| | - Jong Won Han
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - Inhee Mook‐Jung
- Department of Biochemistry and Biomedical SciencesCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- Neuroscience Research InstituteMedical Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
- SNU Korea Dementia Research CenterCollege of MedicineSeoul National UniversitySeoul03080Republic of Korea
| | - John Hardy
- Department of Neurodegenerative DiseaseUCL Queen Square Institute of NeurologyUniversity College LondonLondonWC1N 3BGUK
| |
Collapse
|
7
|
WWP1 upregulation predicts poor prognosis and promotes tumor progression by regulating ubiquitination of NDFIP1 in intrahepatic cholangiocarcinoma. Cell Death Dis 2022; 8:107. [PMID: 35264565 PMCID: PMC8906119 DOI: 10.1038/s41420-022-00882-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/26/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
WW domain-containing E3 ubiquitin protein ligase1 (WWP1) is reported to be upregulated in many types of human cancers; however, its expression and function in intrahepatic cholangiocarcinoma (ICC) remain unknown. Here, in this study we investigated the expression pattern, clinical prognosis, tumor biological functions, and molecular mechanisms of WWP1 in ICC. The expression of WWP1 in patient tissues was detected by western blotting, immunohistochemistry (IHC), and immunofluorescence. CCK-8, colony formation, EdU, transwell, and xenograft models were used to explore the role of WWP1 in the proliferation and metastasis of ICC. Co-immunoprecipitation, mass spectrometry, chromatin immunoprecipitation, and immunofluorescence were performed to detect the potential mechanisms. Our study revealed that WWP1 was highly expressed in ICC, and high levels of WWP1 were associated with poor prognosis. Functionally, WWP1 overexpression enhanced the proliferation and metastasis of ICC cells and vice versa. Mechanistically, MYC could be enriched in the promoter region of WWP1 to facilitate its expression. Then, WWP1 targets Nedd4 family interacting protein1 (NDFIP1) and reduces NDFIP1 protein levels via ubiquitination. Downregulation of NDFIP1 in ICC cells rescued the effects of silenced WWP1 expression. WWP1 expression was also negatively correlated with the protein level of NDFIP1 in patient tissues. In conclusion, WWP1 upregulated by MYC promotes the progression of ICC via ubiquitination of NDFIP1, which reveals that WWP1 might be a potential therapeutic target for ICC.
Collapse
|
8
|
Ghosh S, Ataman M, Bak M, Börsch A, Schmidt A, Buczak K, Martin G, Dimitriades B, Herrmann CJ, Kanitz A, Zavolan M. CFIm-mediated alternative polyadenylation remodels cellular signaling and miRNA biogenesis. Nucleic Acids Res 2022; 50:3096-3114. [PMID: 35234914 PMCID: PMC8989530 DOI: 10.1093/nar/gkac114] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3′ UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.
Collapse
Affiliation(s)
- Souvik Ghosh
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Meric Ataman
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Maciej Bak
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Anastasiya Börsch
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Katarzyna Buczak
- Proteomics Core Facility, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Beatrice Dimitriades
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Christina J Herrmann
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Alexander Kanitz
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland.,Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Zou Y, Zhong C, Hu Z, Duan S. MiR-873-5p: A Potential Molecular Marker for Cancer Diagnosis and Prognosis. Front Oncol 2021; 11:743701. [PMID: 34676171 PMCID: PMC8523946 DOI: 10.3389/fonc.2021.743701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022] Open
Abstract
miR-873 is a microRNA located on chromosome 9p21.1. miR-873-5p and miR-873-3p are the two main members of the miR-873 family. Most studies focus on miR-873-5p, and there are a few studies on miR-873-3p. The expression level of miR-873-5p was down-regulated in 14 cancers and up-regulated in 4 cancers. miR-873-5p has many targeted genes, which have unique molecular functions such as catalytic activity, transcription regulation, and binding. miR-873-5p affects cancer development through the PIK3/AKT/mTOR, Wnt/β-Catenin, NF-κβ, and MEK/ERK signaling pathways. In addition, the target genes of miR-873-5p are closely related to the proliferation, apoptosis, migration, invasion, cell cycle, cell stemness, and glycolysis of cancer cells. The target genes of miR-873-5p are also related to the efficacy of several anti-cancer drugs. Currently, in cancer, the expression of miR-873-5p is regulated by a variety of epigenetic factors. This review summarizes the role and mechanism of miR-873-5p in human tumors shows the potential value of miR-873-5p as a molecular marker for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuhao Zou
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Chenming Zhong
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Zekai Hu
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
| | - Shiwei Duan
- Institute of Translational Medicine, Zhejiang University City College, Hangzhou, China
- Medical Genetics Center, Ningbo University School of Medicine, Ningbo, China
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
Zhou Y, Hu J, Liu L, Yan M, Zhang Q, Song X, Lin Y, Zhu D, Wei Y, Fu Z, Hu L, Chen Y, Li X. Gly-tRF enhances LCSC-like properties and promotes HCC cells migration by targeting NDFIP2. Cancer Cell Int 2021; 21:502. [PMID: 34537070 PMCID: PMC8449465 DOI: 10.1186/s12935-021-02102-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
Background Accumulating evidence demonstrates that tRFs (tRNA-derived small RNA fragments) and tiRNAs (tRNA-derived stress-induced RNA), an emerging category of regulatory RNA molecules derived from transfer RNAs (tRNAs), are dysregulated in in various human cancer types and play crucial roles. However, their roles and mechanisms in hepatocellular carcinoma (HCC) and liver cancer stem cells (LCSCs) are still unknown. Methods The expression of glycine tRNA-derived fragment (Gly-tRF) was measured by qRT-PCR. Flow cytometric analysis and sphere formation assays were used to determine the properties of LCSCs. Transwell assays and scratch wound assays were performed to detect HCC cell migration. Western blotting was conducted to evaluate the abundance change of Epithelial-mesenchymal transition (EMT)-related proteins. Dual luciferase reporter assays and signalling pathway analysis were performed to explore the underlying mechanism of Gly-tRF functions. Results Gly-tRF was highly expressed in HCC cell lines and tumour tissues. Gly-tRF mimic increased the LCSC subpopulation proportion and LCSC-like cell properties. Gly-tRF mimic promoted HCC cell migration and EMT. Loss of Gly-tRF inhibited HCC cell migration and EMT. Mechanistically, Gly-tRF decreased the level of NDFIP2 mRNA by binding to the NDFIP2 mRNA 3′ UTR. Importantly, overexpression of NDFIP2 weakened the promotive effects of Gly-tRF on LCSC-like cell sphere formation and HCC cell migration. Signalling pathway analysis showed that Gly-tRF increased the abundance of phosphorylated AKT. Conclusions Gly-tRF enhances LCSC-like cell properties and promotes EMT by targeting NDFIP2 and activating the AKT signalling pathway. Gly-tRF plays tumor-promoting role in HCC and may lead to a potential therapeutic target for HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02102-8.
Collapse
Affiliation(s)
- Yongqiang Zhou
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Jinjing Hu
- Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.,School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Lu Liu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Mengchao Yan
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Qiyu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Xiaojing Song
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China.,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| | - Yan Lin
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Dan Zhu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Yongjian Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zongli Fu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Liming Hu
- School of Life Science of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Yue Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China. .,Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, China. .,Gansu Province Key Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, 730000, China.
| |
Collapse
|
11
|
Adaptors as the regulators of HECT ubiquitin ligases. Cell Death Differ 2021; 28:455-472. [PMID: 33402750 DOI: 10.1038/s41418-020-00707-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
The HECT (homologous to E6AP C-terminus) ubiquitin ligases (E3s) are a small family of highly conserved enzymes involved in diverse cellular functions and pathological conditions. Characterised by a C-terminal HECT domain that accepts ubiquitin from E2 ubiquitin conjugating enzymes, these E3s regulate key signalling pathways. The activity and functional regulation of HECT E3s are controlled by several factors including post-translational modifications, inter- and intramolecular interactions and binding of co-activators and adaptor proteins. In this review, we focus on the regulation of HECT E3s by accessory proteins or adaptors and discuss various ways by which adaptors mediate their regulatory roles to affect physiological outcomes. We discuss common features that are conserved from yeast to mammals, regardless of the type of E3s as well as shed light on recent discoveries explaining some existing enigmas in the field.
Collapse
|
12
|
Xia Q, Ali S, Liu L, Li Y, Liu X, Zhang L, Dong L. Role of Ubiquitination in PTEN Cellular Homeostasis and Its Implications in GB Drug Resistance. Front Oncol 2020; 10:1569. [PMID: 32984016 PMCID: PMC7492558 DOI: 10.3389/fonc.2020.01569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/21/2020] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) is the most common and aggressive brain malignancy, characterized by heterogeneity and drug resistance. PTEN, a crucial tumor suppressor, exhibits phosphatase-dependent (PI3K-AKT-mTOR pathway)/independent (nucleus stability) activities to maintain the homeostatic regulation of numerous physiological processes. Premature and absolute loss of PTEN activity usually tends to cellular senescence. However, monoallelic loss of PTEN is frequently observed at tumor inception, and absolute loss of PTEN activity also occurs at the late stage of gliomagenesis. Consequently, aberrant PTEN homeostasis, mainly regulated at the post-translational level, renders cells susceptible to tumorigenesis and drug resistance. Ubiquitination-mediated degradation or deregulated intracellular localization of PTEN hijacks cell growth rheostat control for neoplastic remodeling. Functional inactivation of PTEN mediated by the overexpression of ubiquitin ligases (E3s) renders GB cells adaptive to PTEN loss, which confers resistance to EGFR tyrosine kinase inhibitors and immunotherapies. In this review, we discuss how glioma cells develop oncogenic addiction to the E3s-PTEN axis, promoting their growth and proliferation. Antitumor strategies involving PTEN-targeting E3 ligase inhibitors can restore the tumor-suppressive environment. E3 inhibitors collectively reactivate PTEN and may represent next-generation treatment against deadly malignancies such as GB.
Collapse
Affiliation(s)
- Qin Xia
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Sakhawat Ali
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Liqun Liu
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Yang Li
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| | - Xuefeng Liu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, China
| | - Lei Dong
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
13
|
Posttranslational Regulation and Conformational Plasticity of PTEN. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036095. [PMID: 31932468 DOI: 10.1101/cshperspect.a036095] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor that is frequently down-modulated in human cancer. PTEN inhibits the phosphatidylinositol 3-phosphate kinase (PI3K)/AKT pathway through its lipid phosphatase activity. Multiple PI3K/AKT-independent actions of PTEN, protein-phosphatase activities and functions within the nucleus have also been described. PTEN, therefore, regulates many cellular processes including cell proliferation, survival, genomic integrity, polarity, migration, and invasion. Even a modest decrease in the functional dose of PTEN may promote cancer development. Understanding the molecular and cellular mechanisms that regulate PTEN protein levels and function, and how these may go awry in cancer contexts, is, therefore, key to fully understanding the role of PTEN in tumorigenesis. Here, we discuss current knowledge on posttranslational control and conformational plasticity of PTEN, as well as therapeutic possibilities toward reestablishment of PTEN tumor-suppressor activity in cancer.
Collapse
|
14
|
The many substrates and functions of NEDD4-1. Cell Death Dis 2019; 10:904. [PMID: 31787758 PMCID: PMC6885513 DOI: 10.1038/s41419-019-2142-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
Tumorigenesis, tumor growth, and prognosis are highly related to gene alterations and post-translational modifications (PTMs). Ubiquitination is a critical PTM that governs practically all aspects of cellular function. An increasing number of studies show that E3 ubiquitin ligases (E3s) are important enzymes in the process of ubiquitination that primarily determine substrate specificity and thus need to be tightly controlled. Among E3s, neural precursor cell expressed developmentally downregulated 4-1 (NEDD4-1) has been shown to play a critical role in modulating the proliferation, migration, and invasion of cancer cells and the sensitivity of cancer cells to anticancer therapies via regulating multiple substrates. This review discusses some significant discoveries on NEDD4-1 substrates and the signaling pathways in which NEDD4-1 participates. In addition, we introduce the latest potential therapeutic strategies that inhibit or activate NEDD4-1 activity using small molecules. NEDD4-1 likely acts as a novel drug target or diagnostic marker in the battle against cancer.
Collapse
|
15
|
Zhang Y, Zhang C, Zhao Q, Wei W, Dong Z, Shao L, Li J, Wu W, Zhang H, Huang H, Liu F, Jin S. The miR-873/NDFIP1 axis promotes hepatocellular carcinoma growth and metastasis through the AKT/mTOR-mediated Warburg effect. Am J Cancer Res 2019; 9:927-944. [PMID: 31218102 PMCID: PMC6556606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/04/2019] [Indexed: 06/09/2023] Open
Abstract
Hepatocellular carcinoma (HCC) progression depends on cellular metabolic reprogramming as both direct and indirect consequence of oncogenic lesions. However, the underlying mechanisms are still understood poorly. Here, we report that miR-873 promotes Warburg effect in HCC cells by increasing glucose uptake, extracellular acidification rate (ECAR), lactate production, and ATP generation, and decreasing oxygen consumption rate (OCR) in HCC cells. Mechanistically, we show that miR-873 activates the key glycolytic proteins AKT/mTOR via targeting NDFIP1 which triggers metabolic shift. We further demonstrate that enhanced glycolysis is essential for the role of miR-873 to drive HCC progression. By using immunohistochemistry analysis, we show a link between the aberrant expression of miR-873, NDFIP1, and phospho-AKT in clinical HCC samples. We also found that miR-873 was up-regulated by HIF1α, a critical glycolysis-related transcription factor. However, BAY 87-2243, a HIF1α specific inhibitor, blocks miR-873 mediated tumor growth and metastasis in nude mice. Collectively, our data uncover a previously unappreciated function of miR-873 in HCC cell metabolism and tumorigenesis, suggesting that targeting miR-873/NDFIP1 axis could be a potential therapeutic strategy for the treatment of HCC patients.
Collapse
Affiliation(s)
- Yuyu Zhang
- NHC Key Laboratory of Radiobiology, Jilin UniversityChangchun, China
| | - Chengbin Zhang
- Department of Pathology, The First Bethune Hospital of Jilin UniversityChangchun, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Bethune Hospital of Jilin UniversityChangchun, China
| | - Wei Wei
- NHC Key Laboratory of Radiobiology, Jilin UniversityChangchun, China
| | - Zhuo Dong
- NHC Key Laboratory of Radiobiology, Jilin UniversityChangchun, China
| | - Lihong Shao
- Department of Radiation Oncology, The First Bethune Hospital of Jilin UniversityChangchun, China
| | - Jianbo Li
- Department of Histology and Embryology, Xiang Ya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - Wei Wu
- Department of General Surgery, Xiangya Hospital, Central South UniversityChangsha, Hunan, China
| | - Heng Zhang
- Department of Histology and Embryology, Xiang Ya School of Medicine, Central South UniversityChangsha, Hunan, China
| | - He Huang
- Department of Histology and Embryology, Xiang Ya School of Medicine, Central South UniversityChangsha, Hunan, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Preclinical Medicine, Xinjiang Medical UniversityUrumqi, Xinjiang, China
| | - Feng Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin UniversityChangchun, China
| | - Shunzi Jin
- NHC Key Laboratory of Radiobiology, Jilin UniversityChangchun, China
| |
Collapse
|
16
|
Weber J, Polo S, Maspero E. HECT E3 Ligases: A Tale With Multiple Facets. Front Physiol 2019; 10:370. [PMID: 31001145 PMCID: PMC6457168 DOI: 10.3389/fphys.2019.00370] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/18/2019] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination plays a pivotal role in several cellular processes and is critical for protein degradation and signaling. E3 ubiquitin ligases are the matchmakers in the ubiquitination cascade, responsible for substrate recognition. In order to achieve selectivity and specificity on their substrates, HECT E3 enzymes are tightly regulated and exert their function in a spatially and temporally controlled fashion in the cells. These characteristics made HECT E3s intriguing targets in drug discovery in the context of cancer biology.
Collapse
Affiliation(s)
- Janine Weber
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Simona Polo
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Elena Maspero
- Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
17
|
Gorla M, Santiago C, Chaudhari K, Layman AAK, Oliver PM, Bashaw GJ. Ndfip Proteins Target Robo Receptors for Degradation and Allow Commissural Axons to Cross the Midline in the Developing Spinal Cord. Cell Rep 2019; 26:3298-3312.e4. [PMID: 30893602 PMCID: PMC6913780 DOI: 10.1016/j.celrep.2019.02.080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/29/2019] [Accepted: 02/20/2019] [Indexed: 12/27/2022] Open
Abstract
Commissural axons initially respond to attractive signals at the midline, but once they cross, they become sensitive to repulsive cues. This switch prevents axons from re-entering the midline. In insects and mammals, negative regulation of Roundabout (Robo) receptors prevents premature response to the midline repellant Slit. In Drosophila, the endosomal protein Commissureless (Comm) prevents Robo1 surface expression before midline crossing by diverting Robo1 into late endosomes. Notably, Comm is not conserved in vertebrates. We identified two Nedd-4-interacting proteins, Ndfip1 and Ndfip2, that act analogously to Comm to localize Robo1 to endosomes. Ndfip proteins recruit Nedd4 E3 ubiquitin ligases to promote Robo1 ubiquitylation and degradation. Ndfip proteins are expressed in commissural axons in the developing spinal cord and removal of Ndfip proteins results in increased Robo1 expression and reduced midline crossing. Our results define a conserved Robo1 intracellular sorting mechanism between flies and mammals to avoid premature responsiveness to Slit.
Collapse
Affiliation(s)
- Madhavi Gorla
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karina Chaudhari
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Awo Akosua Kesewa Layman
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Paula M Oliver
- The Children's Hospital of Philadelphia, Division of Protective Immunity, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Building 421, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Álvarez-Garcia V, Tawil Y, Wise HM, Leslie NR. Mechanisms of PTEN loss in cancer: It's all about diversity. Semin Cancer Biol 2019; 59:66-79. [PMID: 30738865 DOI: 10.1016/j.semcancer.2019.02.001] [Citation(s) in RCA: 210] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 01/04/2023]
Abstract
PTEN is a phosphatase which metabolises PIP3, the lipid product of PI 3-Kinase, directly opposing the activation of the oncogenic PI3K/AKT/mTOR signalling network. Accordingly, loss of function of the PTEN tumour suppressor is one of the most common events observed in many types of cancer. Although the mechanisms by which PTEN function is disrupted are diverse, the most frequently observed events are deletion of a single gene copy of PTEN and gene silencing, usually observed in tumours with little or no PTEN protein detectable by immunohistochemistry. Accordingly, with the exceptions of glioblastoma and endometrial cancer, mutations of the PTEN coding sequence are uncommon (<10%) in most types of cancer. Here we review the data relating to PTEN loss in seven common tumour types and discuss mechanisms of PTEN regulation, some of which appear to contribute to reduced PTEN protein levels in cancers.
Collapse
Affiliation(s)
- Virginia Álvarez-Garcia
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Yasmine Tawil
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Helen M Wise
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Nicholas R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK.
| |
Collapse
|
19
|
Mejlvang J, Olsvik H, Svenning S, Bruun JA, Abudu YP, Larsen KB, Brech A, Hansen TE, Brenne H, Hansen T, Stenmark H, Johansen T. Starvation induces rapid degradation of selective autophagy receptors by endosomal microautophagy. J Cell Biol 2018; 217:3640-3655. [PMID: 30018090 PMCID: PMC6168274 DOI: 10.1083/jcb.201711002] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/20/2018] [Accepted: 06/27/2018] [Indexed: 01/02/2023] Open
Abstract
Mejlvang et al. show that amino acid starvation of human fibroblasts and a lung cancer cell line induces a rapid and selective degradation of a subset of proteins, including autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4, that is independent from mTOR and canonical macroautophagy but dependent on endosomal microautophagy. It is not clear to what extent starvation-induced autophagy affects the proteome on a global scale and whether it is selective. In this study, we report based on quantitative proteomics that cells during the first 4 h of acute starvation elicit lysosomal degradation of up to 2–3% of the proteome. The most significant changes are caused by an immediate autophagic response elicited by shortage of amino acids but executed independently of mechanistic target of rapamycin and macroautophagy. Intriguingly, the autophagy receptors p62/SQSTM1, NBR1, TAX1BP1, NDP52, and NCOA4 are among the most efficiently degraded substrates. Already 1 h after induction of starvation, they are rapidly degraded by a process that selectively delivers autophagy receptors to vesicles inside late endosomes/multivesicular bodies depending on the endosomal sorting complex required for transport III (ESCRT-III). Our data support a model in which amino acid deprivation elicits endocytosis of specific membrane receptors, induction of macroautophagy, and rapid degradation of autophagy receptors by endosomal microautophagy.
Collapse
Affiliation(s)
- Jakob Mejlvang
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hallvard Olsvik
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Steingrim Svenning
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Jack-Ansgar Bruun
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Yakubu Princely Abudu
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Kenneth Bowitz Larsen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Andreas Brech
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom E Hansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Hanne Brenne
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Terkel Hansen
- Department of Pharmacy, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| | - Harald Stenmark
- Department of Biochemistry, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Terje Johansen
- Molecular Cancer Research Group, Department of Medical Biology, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
20
|
Manning JA, Kumar S. Physiological Functions of Nedd4-2: Lessons from Knockout Mouse Models. Trends Biochem Sci 2018; 43:635-647. [PMID: 30056838 DOI: 10.1016/j.tibs.2018.06.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/11/2018] [Accepted: 06/04/2018] [Indexed: 01/10/2023]
Abstract
Protein modification by ubiquitination plays a key evolutionarily conserved role in regulating membrane proteins. Nedd4-2, a ubiquitin ligase, targets membrane proteins such as ion channels and transporters for ubiquitination. This Nedd4-2-mediated ubiquitination provides a crucial step in controlling the membrane availability of these proteins, thus affecting their signaling and physiological outcomes. In one well-studied example, Nedd4-2 fine-tunes the physiological function of the epithelial sodium channel (ENaC), thus modulating Na+ reabsorption by epithelia to maintain whole-body Na+ homeostasis. This review summarizes the key signaling pathways regulated by Nedd4-2 and the possible implications of such regulation in various pathologies.
Collapse
Affiliation(s)
- Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, GPO Box 2471, Adelaide, SA 5001, Australia.
| |
Collapse
|
21
|
Murray SS, Wong AW, Yang J, Li Y, Putz U, Tan SS, Howitt J. Ubiquitin Regulation of Trk Receptor Trafficking and Degradation. Mol Neurobiol 2018; 56:1628-1636. [PMID: 29911254 DOI: 10.1007/s12035-018-1179-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022]
Abstract
The regulation of Trk receptors is critical for orchestrating multiple signalling pathways required for developing and maintaining neuronal networks. Activation of Trk receptors results in signalling, internalisation and subsequent degradation of the protein. Although ubiquitination of TrkA by Nedd4-2 has been identified as an important degradation pathway, much less is known about the pathways regulating the degradation of TrkB and TrkC. Critical to the interaction between TrkA and Nedd4-2 is a PPxY motif present within TrkA but absent in TrkB and TrkC. Given the absence of this interaction motif, it remains to be determined how TrkB and TrkC are ubiquitinated. Here we report that the adaptor protein Ndfip1 can interact with all three Trk receptors and show for TrkB the recruitment of Nedd4-2 through PPxY motifs present in Ndfip1. Ndfip1 mediates the ubiquitination of TrkB, resulting in receptor trafficking predominantly on Rab7 containing late endosomes, highlighting a pathway for TrkB degradation at the lysosome. In vitro, overexpression of Ndfip1 increased TrkB ubiquitination and decreased viability of BDNF-dependent primary neurons. In vivo, conditional genetic deletion of Ndfip1 increased TrkB in the brain and resulted in enlargement of the granular cell layer of the dentate gyrus.
Collapse
Affiliation(s)
- S S Murray
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - A W Wong
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Australia
| | - J Yang
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Y Li
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - U Putz
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - S-S Tan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - J Howitt
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia. .,Department of Health and Medical Sciences, Iverson Health Innovation Institute, Swinburne University of Technology, Hawthorn, Australia.
| |
Collapse
|
22
|
A genome scan for quantitative trait loci affecting average daily gain and Kleiber ratio in Baluchi Sheep. J Genet 2018. [DOI: 10.1007/s12041-018-0941-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Lee YR, Chen M, Pandolfi PP. The functions and regulation of the PTEN tumour suppressor: new modes and prospects. Nat Rev Mol Cell Biol 2018; 19:547-562. [DOI: 10.1038/s41580-018-0015-0] [Citation(s) in RCA: 399] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Pasandideh M, Rahimi-Mianji G, Gholizadeh M. A genome scan for quantitative trait loci affecting average daily gain and Kleiber ratio in Baluchi Sheep. J Genet 2018; 97:493-503. [PMID: 29932070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Genomewide association study (GWAS) is an efficient tool for the detection of SNPs and candidate genes in quantitative traits. Growth rate is an important trait for increasing the meat production in sheep. A total of 96 Baluchi sheep were genotyped using Illumina Ovine SNP50 BeadChip to run a GWAS for an average daily gain (ADG) and Kleiber ratio (KR) traits in different periods of age in sheep. Traits included were average daily gain from birth to three months (ADG0-3), from three months to six months (ADG3-6), from six months to nine months (ADG6-9), from nine months to yearling (ADG9-12), from birth to six months (ADG0-6), from three months to nine months (ADG3-9), from three months to yearling (ADG3-12) and corresponding Kleiber ratios (KR0-3, KR3-6, KR6-9, KR9-12, KR0-6, KR3-9 and KR3-12, respectively). A total of 42,243 SNPs passed the quality-control filters and were analysed by PLINK software in a linear mixed model. Two SNPs were identified on two chromosomes at the 5% genomewide significance level for KR(3-9) and KR(6-9). Two candidate genes, namely MAGI1 and ZNF770, were identified correspondingly harbouring and close to these QTL. Also, a total of 21 SNPs were found on chromosomes 2, 3, 5, 6, 7, 10, 17, 19, 20 and 25 at the 5% chromosomewide significance level for ADG and KR traits. Thus, we suggest more studies to discover the causative variants for growth traits in sheep.
Collapse
Affiliation(s)
- Majid Pasandideh
- Laboratory for Molecular Genetics and Animal Biotechnology, Faculty of Animal and Aquatic Science, Sari Agricultural Sciences and Natural Resources University, P.O. Box 578, Sari, Iran.
| | | | | |
Collapse
|
25
|
Uddin R, Singh SM. Gene Network Construction from Microarray Data Identifies a Key Network Module and Several Candidate Hub Genes in Age-Associated Spatial Learning Impairment. Front Syst Neurosci 2017; 11:75. [PMID: 29066959 PMCID: PMC5641338 DOI: 10.3389/fnsys.2017.00075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/22/2017] [Indexed: 01/06/2023] Open
Abstract
As humans age many suffer from a decrease in normal brain functions including spatial learning impairments. This study aimed to better understand the molecular mechanisms in age-associated spatial learning impairment (ASLI). We used a mathematical modeling approach implemented in Weighted Gene Co-expression Network Analysis (WGCNA) to create and compare gene network models of young (learning unimpaired) and aged (predominantly learning impaired) brains from a set of exploratory datasets in rats in the context of ASLI. The major goal was to overcome some of the limitations previously observed in the traditional meta- and pathway analysis using these data, and identify novel ASLI related genes and their networks based on co-expression relationship of genes. This analysis identified a set of network modules in the young, each of which is highly enriched with genes functioning in broad but distinct GO functional categories or biological pathways. Interestingly, the analysis pointed to a single module that was highly enriched with genes functioning in “learning and memory” related functions and pathways. Subsequent differential network analysis of this “learning and memory” module in the aged (predominantly learning impaired) rats compared to the young learning unimpaired rats allowed us to identify a set of novel ASLI candidate hub genes. Some of these genes show significant repeatability in networks generated from independent young and aged validation datasets. These hub genes are highly co-expressed with other genes in the network, which not only show differential expression but also differential co-expression and differential connectivity across age and learning impairment. The known function of these hub genes indicate that they play key roles in critical pathways, including kinase and phosphatase signaling, in functions related to various ion channels, and in maintaining neuronal integrity relating to synaptic plasticity and memory formation. Taken together, they provide a new insight and generate new hypotheses into the molecular mechanisms responsible for age associated learning impairment, including spatial learning.
Collapse
Affiliation(s)
- Raihan Uddin
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Shiva M Singh
- Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
26
|
Trimpert C, Wesche D, de Groot T, Pimentel Rodriguez MM, Wong V, van den Berg DTM, Cheval L, Ariza CA, Doucet A, Stagljar I, Deen PMT. NDFIP allows NEDD4/NEDD4L-induced AQP2 ubiquitination and degradation. PLoS One 2017; 12:e0183774. [PMID: 28931009 PMCID: PMC5606929 DOI: 10.1371/journal.pone.0183774] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
Regulation of our water homeostasis is fine-tuned by dynamic translocation of Aquaporin-2 (AQP2)-bearing vesicles to and from the plasma membrane of renal principal cells. Whereas binding of vasopressin to its type-2 receptor initiates a cAMP-protein kinase A cascade and AQP2 translocation to the apical membrane, this is counteracted by protein kinase C-activating hormones, resulting in ubiquitination-dependent internalization of AQP2. The proteins targeting AQP2 for ubiquitin-mediated degradation are unknown. In collecting duct mpkCCD cells, siRNA knockdown of NEDD4 and NEDD4L E3 ligases yielded increased AQP2 abundance, but they did not bind AQP2. Membrane Yeast Two-Hybrid assays using full-length AQP2 as bait, identified NEDD4 family interacting protein 2 (NDFIP2) to bind AQP2. NDFIP2 and its homologue NDFIP1 have PY motifs by which they bind NEDD4 family members and bring them close to target proteins. In HEK293 cells, NDFIP1 and NDFIP2 bound AQP2 and were essential for NEDD4/NEDD4L-mediated ubiquitination and degradation of AQP2, an effect not observed with PY-lacking NDFIP1/2 proteins. In mpkCCD cells, downregulation of NDFIP1, NEDD4 and NEDD4L, but not NDFIP2, increased AQP2 abundance. In mouse kidney, Ndfip1 and Ndfip2 mRNA distribution was similar and high in proximal tubules and collecting ducts, which was also found for NDFIP1 proteins. Our results reveal that NEDD4/NEDD4L mediate ubiquitination and degradation of AQP2, but that NDFIP proteins are needed to connect NEDD4/NEDD4L to AQP2. As NDFIP1/2 bind many NEDD4 family E3 ligases, which are implicated in several cellular processes, NDFIP1/2 may be the missing link for AQP2 ubiquitination and degradation from different subcellular locations.
Collapse
Affiliation(s)
- Christiane Trimpert
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Daniel Wesche
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Theun de Groot
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martha M. Pimentel Rodriguez
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Victoria Wong
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Lydie Cheval
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, CNRS, Centre de Recherche des Cordeliers, Paris, France
| | - Carolina A. Ariza
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alain Doucet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris Descartes, Sorbonne Paris Cité, CNRS, Centre de Recherche des Cordeliers, Paris, France
| | - Igor Stagljar
- Donnelly Centre for Cellular and Biomolecular Research, Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Peter M. T. Deen
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Zhou Z, Kawabe H, Suzuki A, Shinmyozu K, Saga Y. NEDD4 controls spermatogonial stem cell homeostasis and stress response by regulating messenger ribonucleoprotein complexes. Nat Commun 2017; 8:15662. [PMID: 28585553 PMCID: PMC5494183 DOI: 10.1038/ncomms15662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 04/19/2017] [Indexed: 12/26/2022] Open
Abstract
P bodies (PBs) and stress granules (SGs) are conserved cytoplasmic aggregates of cellular messenger ribonucleoprotein complexes (mRNPs) that are implicated in mRNA metabolism and play crucial roles in adult stem cell homeostasis and stress responses. However, the mechanisms underlying the dynamics of mRNP granules are poorly understood. Here, we report NEDD4, an E3 ubiquitin ligase, as a key regulator of mRNP dynamics that controls the size of the spermatogonial progenitor cell (SPC) pool. We find that NEDD4 targets an RNA-binding protein, NANOS2, in spermatogonia to destabilize it, leading to cell differentiation. In addition, NEDD4 is required for SG clearance. NEDD4 targets SGs and facilitates their rapid clearance through the endosomal–lysosomal pathway during the recovery period. Therefore, NEDD4 controls the turnover of mRNP components and inhibits pathological SG accumulation. Accordingly, we propose that a NEDD4-mediated mechanism regulates mRNP dynamics, and facilitates SPC homeostasis and viability under normal and stress conditions. Stress granules (SG) comprise aggregates of cellular messenger ribonucleoproteins (mRNPs) but how they form is unclear. Here, the authors identify NEDD4, an E3 ubiquitin ligase, as regulating the RNA binding protein NANOS2 and turnover of mRNP components, and so SG disassembly in spermatogonial stem cells.
Collapse
Affiliation(s)
- Zhi Zhou
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein Strasse 3D, 37075 Göttingen, Germany
| | - Atsushi Suzuki
- Faculty of Engineering, Division of Materials Science and Chemical Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Kaori Shinmyozu
- National Cerebral and Cardiovascular Center, 5-7-1 Fujishiro-dai, Suita, Osaka 565-8565, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
28
|
O'Leary CE, Riling CR, Spruce LA, Ding H, Kumar S, Deng G, Liu Y, Seeholzer SH, Oliver PM. Ndfip-mediated degradation of Jak1 tunes cytokine signalling to limit expansion of CD4+ effector T cells. Nat Commun 2016; 7:11226. [PMID: 27088444 PMCID: PMC4837450 DOI: 10.1038/ncomms11226] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 02/29/2016] [Indexed: 12/02/2022] Open
Abstract
Nedd4 family E3 ubiquitin ligases have been shown to restrict T-cell function and impact T-cell differentiation. We show here that Ndfip1 and Ndfip2, activators of Nedd4 family ligases, together limit accumulation and function of effector CD4+ T cells. Using a three-part proteomics approach in primary T cells, we identify stabilization of Jak1 in Ndfip1/2-deficient T cells stimulated through the TCR. Jak1 degradation is aborted in activated T cells that lack Ndfips. In wild-type cells, Jak1 degradation lessens CD4+ cell sensitivity to cytokines during TCR stimulation, while in Ndfip-deficient cells cytokine responsiveness persists, promoting increased expansion and survival of pathogenic effector T cells. Thus, Ndfip1/Ndfip2 regulate the cross talk between the T-cell receptor and cytokine signalling pathways to limit inappropriate T-cell responses. Ndfip1 is an activator of Itch E3 ubiquitin ligase that limits T cell activation. Here the authors identify Jak1 in a proteomic screen for Ndfip dependent substrates, and show that Ndfip1/2 double-deficient T cells have reduced degradation of Jak1 and as a result are hyper-responsive to cytokine stimulation.
Collapse
Affiliation(s)
- Claire E O'Leary
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher R Riling
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lynn A Spruce
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Hua Ding
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | - Guoping Deng
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Yuhong Liu
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Steven H Seeholzer
- Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Paula M Oliver
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Department of Pathology and Laboratory Medicine, Cell Pathology Division, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
29
|
Tung YT, Lu YL, Peng KC, Yen YP, Chang M, Li J, Jung H, Thams S, Huang YP, Hung JH, Chen JA. Mir-17∼92 Governs Motor Neuron Subtype Survival by Mediating Nuclear PTEN. Cell Rep 2016; 11:1305-18. [PMID: 26004179 DOI: 10.1016/j.celrep.2015.04.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/17/2015] [Accepted: 04/22/2015] [Indexed: 01/07/2023] Open
Abstract
Motor neurons (MNs) are unique because they project their axons outside of the CNS to innervate the peripheral muscles. Limb-innervating lateral motor column MNs (LMC-MNs) travel substantially to innervate distal limb mesenchyme. How LMC-MNs fine-tune the balance between survival and apoptosis while wiring the sensorimotor circuit en route remains unclear. Here, we show that the mir-17∼92 cluster is enriched in embryonic stem cell (ESC)-derived LMC-MNs and that conditional mir-17∼92 deletion in MNs results in the death of LMC-MNs in vitro and in vivo. mir-17∼92 overexpression rescues MNs from apoptosis, which occurs spontaneously during embryonic development. PTEN is a primary target of mir-17∼92 responsible for LMC-MN degeneration. Additionally, mir-17∼92 directly targets components of E3 ubiquitin ligases, affecting PTEN subcellular localization through monoubiquitination. This miRNA-mediated regulation modulates both target expression and target subcellular localization, providing LMC-MNs with an intricate defensive mechanism that controls their survival.
Collapse
|
30
|
Chapter Five - Ubiquitination of Ion Channels and Transporters. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 141:161-223. [DOI: 10.1016/bs.pmbts.2016.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Poreau B, Lin S, Bosson C, Dieterich K, Satre V, Devillard F, Guigue V, Ronin C, Brouillet S, Barbier C, Jouk PS, Coutton C. 13q31.1 microdeletion: A prenatal case report with macrocephaly and macroglossia. Eur J Med Genet 2015; 58:526-30. [DOI: 10.1016/j.ejmg.2015.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
|
32
|
Meenu S, Thiagarajan S, Ramalingam S, Michael A, Ramalingam S. Modulation of host ubiquitin system genes in human endometrial cell line infected with Mycobacterium tuberculosis. Med Microbiol Immunol 2015; 205:163-71. [PMID: 26403675 DOI: 10.1007/s00430-015-0432-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/14/2015] [Indexed: 12/18/2022]
Abstract
Endometrium is one of the most commonly affected sites in genital tuberculosis. The understanding of its interaction with the tubercle bacilli is of paramount importance for studying the pathogenesis of this disease. The main objective of this work was to study the interplay between Mycobacterium tuberculosis and host endometrial epithelial cell lines (Ishikawa cell lines), and to identify the differentially expressed genes upon tuberculosis infection. To study this, suppression subtractive hybridization library was constructed using M. tuberculosis H37Rv-infected Ishikawa cell line harvested 24 h post-infection. The subtracted cDNA library was screened, and 105 differentially expressed genes were identified and grouped based on their functions. Since ubiquitination process has gained importance in targeting M. tuberculosis to xenophagy, ubiquitin system genes obtained in the library were selected, and time course analysis of their gene expression was performed. We observed an upregulation of mkrn1 and cops5 and downregulation of zfp91, ndfip2, ube2f, rnft1, psmb6, and psmd13 at 24 h post-infection. From the results obtained, we surmise that ubiquitination pathway genes may have roles in combating tuberculosis which are yet uncharted.
Collapse
Affiliation(s)
- S Meenu
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, 641 004, India
- PSG College of Arts and Science, Coimbatore, Tamil Nadu, 641 004, India
| | - S Thiagarajan
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, 641 004, India
| | - Sudha Ramalingam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, 641 004, India
| | - A Michael
- PSG College of Arts and Science, Coimbatore, Tamil Nadu, 641 004, India
| | - Sankaran Ramalingam
- PSG Center for Molecular Medicine and Therapeutics, PSG Institute of Medical Sciences and Research, Coimbatore, Tamil Nadu, 641 004, India.
| |
Collapse
|
33
|
Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods 2015; 77-78:112-8. [DOI: 10.1016/j.ymeth.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
|
34
|
Abstract
The plasma membrane (PM) and endocytic protein quality control (QC) in conjunction with the endosomal sorting machinery either repairs or targets conformationally damaged membrane proteins for lysosomal/vacuolar degradation. Here, we provide an overview of emerging aspects of the underlying mechanisms of PM QC that fulfill a critical role in preserving cellular protein homeostasis in health and diseases.
Collapse
Affiliation(s)
- Pirjo M Apaja
- Department of Physiology and Research Group Focused on Protein Structure (GRASP), McGill University, Montreal, Quebec, Canada; and
| | - Gergely L Lukacs
- Department of Physiology and Research Group Focused on Protein Structure (GRASP), McGill University, Montreal, Quebec, Canada; and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
35
|
Howitt J, Low LH, Putz U, Doan A, Lackovic J, Goh CP, Gunnersen J, Silke J, Tan SS. Ndfip1 represses cell proliferation by controlling Pten localization and signaling specificity. J Mol Cell Biol 2015; 7:119-31. [PMID: 25801959 DOI: 10.1093/jmcb/mjv020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/28/2014] [Indexed: 01/16/2023] Open
Abstract
Pten controls a signaling axis that is implicated to regulate cell proliferation, growth, survival, migration, and metabolism. The molecular mechanisms underlying the specificity of Pten responses to such diverse cellular functions are currently poorly understood. Here we report the control of Pten activity and signaling specificity during the cell cycle by Ndfip1 regulation of Pten spatial distribution. Genetic deletion of Ndfip1 resulted in a loss of Pten nuclear compartmentalization and increased cell proliferation, despite cytoplasmic Pten remaining active in regulating PI3K/Akt signaling. Cells lacking nuclear Pten were found to have dysregulated levels of Plk1 and cyclin D1 that could drive cell proliferation. In vivo, transgene expression of Ndfip1 in the developing brain increased nuclear Pten and lengthened the cell cycle of neuronal progenitors, resulting in microencephaly. Our results show that local partitioning of Pten from the cytoplasm to the nucleus represents a key mechanism contributing to the specificity of Pten signaling during cell proliferation.
Collapse
Affiliation(s)
- Jason Howitt
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ulrich Putz
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anh Doan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Lackovic
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Choo-Peng Goh
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jenny Gunnersen
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - John Silke
- Cell Signalling and Cell Death Laboratory, Walter and Eliza Hall Institute, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Seong-Seng Tan
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
36
|
De Melo J, Lin X, He L, Wei F, Major P, Tang D. SIPL1-facilitated PTEN ubiquitination contributes to its association with PTEN. Cell Signal 2014; 26:2749-56. [DOI: 10.1016/j.cellsig.2014.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 08/17/2014] [Indexed: 11/16/2022]
|
37
|
Sekulic A, Liang WS, Tembe W, Izatt T, Kruglyak S, Kiefer JA, Cuyugan L, Zismann V, Legendre C, Pittelkow MR, Gohmann JJ, De Castro FR, Trent J, Carpten J, Craig DW, McDaniel TK. Personalized treatment of Sézary syndrome by targeting a novel CTLA4:CD28 fusion. Mol Genet Genomic Med 2014; 3:130-6. [PMID: 25802883 PMCID: PMC4367085 DOI: 10.1002/mgg3.121] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/21/2014] [Accepted: 10/09/2014] [Indexed: 01/13/2023] Open
Abstract
Matching molecularly targeted therapies with cancer subtype-specific gene mutations is revolutionizing oncology care. However, for rare cancers this approach is problematic due to the often poor understanding of the disease's natural history and phenotypic heterogeneity, making treatment of these cancers a particularly unmet medical need in clinical oncology. Advanced Sézary syndrome (SS), an aggressive, exceedingly rare variant of cutaneous T-cell lymphoma (CTCL) is a prototypical example of a rare cancer. Through whole genome and RNA sequencing (RNA-seq) of a SS patient's tumor we discovered a highly expressed gene fusion between CTLA4 (cytotoxic T lymphocyte antigen 4) and CD28 (cluster of differentiation 28), predicting a novel stimulatory molecule on the surface of tumor T cells. Treatment with the CTLA4 inhibitor ipilimumab resulted in a rapid clinical response. Our findings suggest a novel driver mechanism for SS, and cancer in general, and exemplify an emerging model of cancer treatment using exploratory genomic analysis to identify a personally targeted treatment option when conventional therapies are exhausted.
Collapse
Affiliation(s)
- Aleksandar Sekulic
- Mayo Clinic Scottsdale, Arizona ; Translational Genomics Research Institute Phoenix, Arizona
| | - Winnie S Liang
- Translational Genomics Research Institute Phoenix, Arizona
| | - Waibhav Tembe
- Translational Genomics Research Institute Phoenix, Arizona
| | - Tyler Izatt
- Translational Genomics Research Institute Phoenix, Arizona
| | | | | | - Lori Cuyugan
- Translational Genomics Research Institute Phoenix, Arizona
| | | | | | | | | | | | - Jeffrey Trent
- Translational Genomics Research Institute Phoenix, Arizona
| | - John Carpten
- Translational Genomics Research Institute Phoenix, Arizona
| | - David W Craig
- Translational Genomics Research Institute Phoenix, Arizona
| | | |
Collapse
|
38
|
Goel P, Manning JA, Kumar S. NEDD4-2 (NEDD4L): the ubiquitin ligase for multiple membrane proteins. Gene 2014; 557:1-10. [PMID: 25433090 DOI: 10.1016/j.gene.2014.11.051] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/14/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
NEDD4-2 (also known as NEDD4L, neural precursor cell expressed developmentally down-regulated 4-like) is a ubiquitin protein ligase of the Nedd4 family which is known to bind and regulate a number of membrane proteins to aid in their internalization and turnover. Several of the NEDD4-2 substrates include ion channels, such as the epithelial and voltage-gated sodium channels. Given the critical function of NEDD4-2 in regulating membrane proteins, this ligase is essential for the maintenance of cellular homeostasis. In this article we review the biology and function of this important ubiquitin-protein ligase and discuss its pathophysiological significance.
Collapse
Affiliation(s)
- Pranay Goel
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia; Department of Medicine, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
39
|
Aronchik I, Kundu A, Quirit JG, Firestone GL. The antiproliferative response of indole-3-carbinol in human melanoma cells is triggered by an interaction with NEDD4-1 and disruption of wild-type PTEN degradation. Mol Cancer Res 2014; 12:1621-1634. [PMID: 25009292 DOI: 10.1158/1541-7786.mcr-14-0018] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED Human melanoma cells displaying distinct PTEN genotypes were used to assess the cellular role of this important tumor-suppressor protein in the antiproliferative response induced by the chemopreventative agent indole-3-carbinol (I3C), a natural indolecarbinol compound derived from the breakdown of glucobrassicin produced in cruciferous vegetables such as broccoli and Brussels sprouts. I3C induced a G1-phase cell-cycle arrest and apoptosis by stabilization of PTEN in human melanoma cells that express wild-type PTEN, but not in cells with mutant or null PTEN genotypes. Importantly, normal human epidermal melanocytes were unaffected by I3C treatment. In wild-type PTEN-expressing melanoma xenografts, formed in athymic mice, I3C inhibited the in vivo tumor growth rate and increased PTEN protein levels in the residual tumors. Mechanistically, I3C disrupted the ubiquitination of PTEN by NEDD4-1 (NEDD4), which prevented the proteasome-mediated degradation of PTEN without altering its transcript levels. RNAi-mediated knockdown of PTEN prevented the I3C-induced apoptotic response, whereas knockdown of NEDD4-1 mimicked the I3C apoptotic response, stabilized PTEN protein levels, and downregulated phosphorylated AKT-1 levels. Co-knockdown of PTEN and NEDD4-1 revealed that I3C-regulated apoptotic signaling through NEDD4-1 requires the presence of the wild-type PTEN protein. Finally, in silico structural modeling, in combination with isothermal titration calorimetry analysis, demonstrated that I3C directly interacts with purified NEDD4-1 protein. IMPLICATIONS This study identifies NEDD4-1 as a new I3C target protein, and that the I3C disruption of NEDD4-1 ubiquitination activity triggers the stabilization of the wild-type PTEN tumor suppressor to induce an antiproliferative response in melanoma. Mol Cancer Res; 12(11); 1621-34. ©2014 AACR.
Collapse
Affiliation(s)
- Ida Aronchik
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, Univ. of California at Berkeley, Berkeley, CA 94720-3200
| | - Aishwarya Kundu
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, Univ. of California at Berkeley, Berkeley, CA 94720-3200
| | - Jeanne G Quirit
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, Univ. of California at Berkeley, Berkeley, CA 94720-3200
| | - Gary L Firestone
- Department of Molecular and Cell Biology and The Cancer Research Laboratory, Univ. of California at Berkeley, Berkeley, CA 94720-3200
| |
Collapse
|
40
|
Li Y, Low LH, Putz U, Goh CP, Tan SS, Howitt J. Rab5 and Ndfip1 are involved in Pten ubiquitination and nuclear trafficking. Traffic 2014; 15:749-61. [PMID: 24798731 DOI: 10.1111/tra.12175] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/18/2022]
Abstract
The spatial regulation of Pten is critical for its role as a tumour suppressor with both nuclear and cytoplasmic locations being implicated with distinct functions. In the cytoplasm, Pten plays a central role in opposing PI3K/Akt cell signalling, whereas in the nucleus, Pten is important for maintaining genome stability and enhancing the tumour suppressor activity of APC-CDH1. Despite this diversity in protein function at different subcellular locations, there is limited knowledge on how Pten is able to find different cellular niches. Here, we report that Rab5 GTPase is required for efficient trafficking and ubiquitination of Pten on endosomes inside the cytosol. Using bimolecular fluorescence complementation (BiFC) for imaging protein interactions, we observed that ubiquitinated Pten is localized to peri-nuclear and nuclear regions of the cell. Nuclear trafficking of Pten required both Rab5 as well as the E3 ligase adaptor protein Ndfip1. Rab5 colocalization with Pten was observed on endosomes and expression of a dominant negative form of Rab5 significantly reduced Pten ubiquitination and nuclear trafficking. Genomic deletion of Ndfip1 abrogated nuclear trafficking of ubiquitinated Pten, even in the presence of Rab5. Our findings show that endosomal trafficking and ubiquitination are important mechanisms for the subcellular distribution of Pten.
Collapse
Affiliation(s)
- Yijia Li
- Brain Development and Regeneration Division, Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Shi Y, Wang J, Chandarlapaty S, Cross J, Thompson C, Rosen N, Jiang X. PTEN is a protein tyrosine phosphatase for IRS1. Nat Struct Mol Biol 2014; 21:522-7. [PMID: 24814346 DOI: 10.1038/nsmb.2828] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 04/12/2014] [Indexed: 02/05/2023]
Abstract
The biological function of the PTEN tumor suppressor is mainly attributed to its lipid phosphatase activity. This study demonstrates that mammalian PTEN is a protein tyrosine phosphatase that selectively dephosphorylates insulin receptor substrate-1 (IRS1), a mediator of insulin and IGF signals. IGF signaling was defective in cells lacking NEDD4, a PTEN ubiquitin ligase, whereas AKT activation triggered by EGF or serum was unimpaired. Defective IGF signaling caused by NEDD4 deletion, including phosphorylation of IRS1 and AKT, was rescued by PTEN ablation. We demonstrate the nature of PTEN as an IRS1 phosphatase by direct biochemical analysis and cellular reconstitution, showing that NEDD4 supports insulin-mediated glucose metabolism and is required for the proliferation of IGF1 receptor-dependent but not EGF receptor-dependent tumor cells. Thus, PTEN is a protein phosphatase for IRS1, and its antagonism by NEDD4 promotes signaling by IGF and insulin.
Collapse
Affiliation(s)
- Yuji Shi
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Junru Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Justin Cross
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Craig Thompson
- Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Neal Rosen
- Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
42
|
Kreis P, Leondaritis G, Lieberam I, Eickholt BJ. Subcellular targeting and dynamic regulation of PTEN: implications for neuronal cells and neurological disorders. Front Mol Neurosci 2014; 7:23. [PMID: 24744697 PMCID: PMC3978343 DOI: 10.3389/fnmol.2014.00023] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/12/2014] [Indexed: 01/13/2023] Open
Abstract
PTEN is a lipid and protein phosphatase that regulates a diverse range of cellular mechanisms. PTEN is mainly present in the cytosol and transiently associates with the plasma membrane to dephosphorylate PI(3,4,5)P3, thereby antagonizing the PI3-Kinase signaling pathway. Recently, PTEN has been shown to associate also with organelles such as the endoplasmic reticulum (ER), the mitochondria, or the nucleus, and to be secreted outside of the cell. In addition, PTEN dynamically localizes to specialized sub-cellular compartments such as the neuronal growth cone or dendritic spines. The diverse localizations of PTEN imply a tight temporal and spatial regulation, orchestrated by mechanisms such as posttranslational modifications, formation of distinct protein–protein interactions, or the activation/recruitment of PTEN downstream of external cues. The regulation of PTEN function is thus not only important at the enzymatic activity level, but is also associated to its spatial distribution. In this review we will summarize (i) recent findings that highlight mechanisms controlling PTEN movement and sub-cellular localization, and (ii) current understanding of how PTEN localization is achieved by mechanisms controlling posttranslational modification, by association with binding partners and by PTEN structural or activity requirements. Finally, we will discuss the possible roles of compartmentalized PTEN in developing and mature neurons in health and disease.
Collapse
Affiliation(s)
- Patricia Kreis
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - George Leondaritis
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| | - Ivo Lieberam
- MRC Centre for Developmental Neurobiology, King's College London London, UK
| | - Britta J Eickholt
- MRC Centre for Developmental Neurobiology, King's College London London, UK ; Institute of Biochemistry, Charité - Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
43
|
Hopkins BD, Hodakoski C, Barrows D, Mense SM, Parsons RE. PTEN function: the long and the short of it. Trends Biochem Sci 2014; 39:183-90. [PMID: 24656806 DOI: 10.1016/j.tibs.2014.02.006] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome ten (PTEN) is a phosphatase that is frequently altered in cancer. PTEN has phosphatase-dependent and -independent roles, and genetic alterations in PTEN lead to deregulation of protein synthesis, the cell cycle, migration, growth, DNA repair, and survival signaling. PTEN localization, stability, conformation, and phosphatase activity are controlled by an array of protein-protein interactions and post-translational modifications. Thus, PTEN-interacting and -modifying proteins have profound effects on the tumor suppressive functions of PTEN. Moreover, recent studies identified mechanisms by which PTEN can exit cells, via either exosomal export or secretion, and act on neighboring cells. This review focuses on modes of PTEN protein regulation and ways in which perturbations in this regulation may lead to disease.
Collapse
Affiliation(s)
- Benjamin D Hopkins
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Cindy Hodakoski
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Douglas Barrows
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Sarah M Mense
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA
| | - Ramon E Parsons
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
44
|
Ramachandran H, Schäfer T, Kim Y, Herfurth K, Hoff S, Lienkamp SS, Kramer-Zucker A, Walz G. Interaction with the Bardet-Biedl gene product TRIM32/BBS11 modifies the half-life and localization of Glis2/NPHP7. J Biol Chem 2014; 289:8390-401. [PMID: 24500717 DOI: 10.1074/jbc.m113.534024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although the two ciliopathies Bardet-Biedl syndrome and nephronophthisis share multiple clinical manifestations, the molecular basis for this overlap remains largely unknown. Both BBS11 and NPHP7 are unusual members of their respective gene families. Although BBS11/TRIM32 represents a RING finger E3 ubiquitin ligase also involved in hereditary forms of muscular dystrophy, NPHP7/Glis2 is a Gli-like transcriptional repressor that localizes to the nucleus, deviating from the ciliary localization of most other ciliopathy-associated gene products. We found that BBS11/TRIM32 and NPHP7/Glis2 can physically interact with each other, suggesting that both proteins form a functionally relevant protein complex in vivo. This hypothesis was further supported by the genetic interaction and synergist cyst formation in the zebrafish pronephros model. However, contrary to our expectation, the E3 ubiquitin ligase BBS11/TRIM32 was not responsible for the short half-life of NPHP7/Glis2 but instead promoted the accumulation of mixed Lys(48)/Lys(63)-polyubiquitylated NPHP7/Glis2 species. This modification not only prolonged the half-life of NPHP7/Glis2, but also altered the subnuclear localization and the transcriptional activity of NPHP7/Glis2. Thus, physical and functional interactions between NPHP and Bardet-Biedl syndrome gene products, demonstrated for Glis2 and TRIM32, may help to explain the phenotypic similarities between these two syndromes.
Collapse
Affiliation(s)
- Haribaskar Ramachandran
- From the Department of Medicine, Renal Division, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Howitt J, Gysbers AM, Ayton S, Carew-Jones F, Putz U, Finkelstein DI, Halliday GM, Tan SS. Increased Ndfip1 in the substantia nigra of Parkinsonian brains is associated with elevated iron levels. PLoS One 2014; 9:e87119. [PMID: 24475238 PMCID: PMC3901732 DOI: 10.1371/journal.pone.0087119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/19/2013] [Indexed: 12/04/2022] Open
Abstract
Iron misregulation is a central component in the neuropathology of Parkinson's disease. The iron transport protein DMT1 is known to be increased in Parkinson's brains linking functional transport mechanisms with iron accumulation. The regulation of DMT1 is therefore critical to the management of iron uptake in the disease setting. We previously identified post-translational control of DMT1 levels through a ubiquitin-mediated pathway led by Ndfip1, an adaptor for Nedd4 family of E3 ligases. Here we show that loss of Ndfip1 from mouse dopaminergic neurons resulted in misregulation of DMT1 levels and increased susceptibility to iron induced death. We report that in human Parkinson's brains increased iron concentrations in the substantia nigra are associated with upregulated levels of Ndfip1 in dopaminergic neurons containing α-synuclein deposits. Additionally, Ndfip1 was also found to be misexpressed in astrocytes, a cell type normally devoid of this protein. We suggest that in Parkinson's disease, increased iron levels are associated with increased Ndfip1 expression for the regulation of DMT1, including abnormal Ndfip1 activation in non-neuronal cell types such as astrocytes.
Collapse
Affiliation(s)
- Jason Howitt
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Amanda M. Gysbers
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Scott Ayton
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Francine Carew-Jones
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Ulrich Putz
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - David I. Finkelstein
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Glenda M. Halliday
- Neuroscience Research Australia and the University of New South Wales, Sydney, Australia
| | - Seong-Seng Tan
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
- * E-mail:
| |
Collapse
|
46
|
Goh CP, Putz U, Howitt J, Low LH, Gunnersen J, Bye N, Morganti-Kossmann C, Tan SS. Nuclear trafficking of Pten after brain injury leads to neuron survival not death. Exp Neurol 2013; 252:37-46. [PMID: 24275527 DOI: 10.1016/j.expneurol.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/29/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
There is controversy whether accumulation of the tumor suppressor PTEN protein in the cell nucleus under stress conditions such as trauma and stroke causes cell death. A number of in vitro studies have reported enhanced apoptosis in neurons possessing nuclear PTEN, with the interpretation that its nuclear phosphatase activity leads to reduction of the survival protein phospho-Akt. However, there have been no in vivo studies to show that nuclear PTEN in neurons under stress is detrimental. Using a mouse model of injury, we demonstrate here that brain trauma altered the nucleo-cytoplasmic distribution of Pten, resulting in increased nuclear Pten but only in surviving neurons near the lesion. This event was driven by Ndfip1, an adaptor and activator of protein ubiquitination by Nedd4 E3 ligases. Neurons next to the lesion with nuclear PTEN were invariably negative for TUNEL, a marker for cell death. These neurons also showed increased Ndfip1 which we previously showed to be associated with neuron survival. Biochemical assays revealed that overall levels of Pten in the affected cortex were unchanged after trauma, suggesting that Pten abundance globally had not increased but rather Pten subcellular location in affected neurons had changed. Following experimental injury, the number of neurons with nuclear Pten was reduced in heterozygous mice (Ndfip1(+/-)) although lesion volumes were increased. We conclude that nuclear trafficking of Pten following injury leads to neuron survival not death.
Collapse
Affiliation(s)
- Choo-Peng Goh
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ulrich Putz
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Jason Howitt
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Ley-Hian Low
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Jenny Gunnersen
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia
| | - Nicole Bye
- National Trauma Research Institute, Alfred Hospital, Monash University, Australia
| | | | - Seong-Seng Tan
- Brain Development and Regeneration Laboratory, The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.
| |
Collapse
|
47
|
Jacobs JL, Coyne CB. Mechanisms of MAVS regulation at the mitochondrial membrane. J Mol Biol 2013; 425:5009-19. [PMID: 24120683 DOI: 10.1016/j.jmb.2013.10.007] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/02/2013] [Accepted: 10/02/2013] [Indexed: 12/24/2022]
Abstract
Mitochondria have emerged as critical platforms for antiviral innate immune signaling. This is due in large part to the mitochondrial localization of the innate immune signaling adaptor MAVS (mitochondrial antiviral signaling protein), which coordinates signals received from two independent cytosolic pathogen recognition receptors (PRRs) to induce antiviral genes. The existence of a shared adaptor for two central PRRs presents an ideal target by which the host cell can prevent cellular damage induced by uncontrolled inflammation through alteration of MAVS expression and/or signaling. In this review, we focus on the MAVS regulome and review the cellular factors that regulate MAVS by (1) protein-protein interactions, (2) alterations in mitochondrial dynamics, and/or (3) post-translational modifications.
Collapse
Affiliation(s)
- Jana L Jacobs
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | |
Collapse
|
48
|
Ramos-Hernández N, Ramon HE, Beal AM, Laroche A, Dekleva EA, Oliver PM. Ndfip1 enforces a requirement for CD28 costimulation by limiting IL-2 production. THE JOURNAL OF IMMUNOLOGY 2013; 191:1536-46. [PMID: 23851689 DOI: 10.4049/jimmunol.1203571] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Although the pathways that permit IL-2 production and the full activation of T cells upon Ag encounter are fairly well defined, the negative regulatory circuits that limit these pathways are poorly understood. In this study, we show that the E3 ubiquitin ligase adaptor Ndfip1 directs one such negative regulatory circuit. T cells lacking Ndfip1 produce IL-2, upregulate IL-2Rα, and proliferate, in the absence of CD28 costimulation. Furthermore, T cells in mice lacking both Ndfip1 and CD28 become activated, produce IL-4, and drive inflammation at barrier surfaces. Ndfip1 constrains T cell activation by limiting the duration of IL-2 mRNA expression after TCR stimulation. Ndfip1 and IL-2 have a similar expression pattern, and, following TCR stimulation, expression of both Ndfip1 and IL-2 requires the activity of NFAT and Erk. Taken together, these data support a negative regulatory circuit in which factors that induce IL-2 expression downstream of TCR engagement also induce the expression of Ndfip1 to limit the extent of IL-2 production and, thus, dampen T cell activation.
Collapse
|
49
|
Affiliation(s)
- Yuji Shi
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | |
Collapse
|
50
|
Wang Y, Tong X, Ye X. Ndfip1 negatively regulates RIG-I-dependent immune signaling by enhancing E3 ligase Smurf1-mediated MAVS degradation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5304-13. [PMID: 23087404 DOI: 10.4049/jimmunol.1201445] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ndfip1 functions as both a recruiter and an activator of multiple HECT domain E3 ubiquitin ligases of the Nedd4 family. In this study, we demonstrate that Ndfip1 is involved in the ubiquitin-mediated degradation of mitochondrial antiviral signaling (MAVS), which is a key adaptor protein in RIG-I-like receptor-mediated immune signaling. We found that overexpression of Ndfip1 severely impaired MAVS and Sendai virus-mediated activation of IFN-stimulated response element, NF-κB, IFN-β promoter, and polyinosinic-polycytidylic acid or influenza virus RNA-stimulated IRF-3 phosphorylation, as well as the transcription of IFN-β. This functional interaction was confirmed by knockdown of Ndfip1, which facilitated MAVS-mediated downstream signaling and elevated MAVS protein levels. Further analysis indicated that Ndfip1 enhances both self-ubiquitination of HECT domain-containing E3 ubiquitin ligase Smurf1 and its interaction with MAVS, and eventually promotes MAVS degradation. In addition, the activation of IFN-β by MAVS, influenza virus RNA, polyinosinic-polycytidylic acid, and Sendai virus was enhanced in Ndfip1 knockdown cells. These results reveal that Ndfip1 is a potent inhibitor of MAVS-mediated antiviral response.
Collapse
Affiliation(s)
- Yetao Wang
- Center for Molecular Immunology, Chinese Academy of Sciences Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | |
Collapse
|