1
|
Casado P, Marfa S, Hadi MM, Gerdes H, Martin-Guerrero SM, Miraki-Moud F, Rajeeve V, Cutillas PR. Phosphoproteomics identifies determinants of PAK inhibitor sensitivity in leukaemia cells. Cell Commun Signal 2025; 23:135. [PMID: 40082888 PMCID: PMC11907924 DOI: 10.1186/s12964-025-02107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The P21 activated kinases (PAK) are frequently dysregulated in cancer and have central roles in oncogenic signalling, prompting the development of PAK inhibitors (PAKi) as anticancer agents. However, such compounds have not reached clinical use because, at least partially, there is a limited mechanistic understanding of their mode of action. Here, we aimed to characterize functional and molecular responses to PAKi (PF-3758309, FRAX-486 and IPA-3) in multiple acute myeloid leukaemia (AML) models to gain insights on the biochemical pathways affected by these inhibitors in this disease and identify determinants of response in patient samples. METHODS We mined phosphoproteomic datasets of primary AML, and used proteomics and phosphoproteomics to profile PAKi impact in immortalized (P31/Fuj and MV4-11), and primary AML cells from 8 AML patients. These omics datasets were integrated with gene dependency data to identify which proteins targeted by PAKi are necessary for the proliferation of AML. We studied the effect PAKi on cell cycle progression, proliferation, differentiation and apoptosis. Finally, we used phosphoproteomics data as input for machine learning models that predicted ex vivo response in two independent datasets of primary AML cells (with 36 and 50 cases, respectively) to PF-3758309 and identify markers of response. RESULTS We found that PAK1 activation- measured from phosphoproteomics data- was predictive of poor prognosis in primary AML cases. PF-3758309 was the most effective PAKi in reducing proliferation and inducing apoptosis in AML cell lines. In cell lines and primary cells, PF-3758309 inhibited PAK, AMPK and PKCA activities, reduced c-MYC transcriptional activity and the expression of ribosomal proteins, and targeted the FLT3 pathway in FLT3-ITD mutated cells. In primary cells, PF-3758309 reduced STAT5 phosphorylation at Tyr699. Functionally, PF-3758309 reduced cell-growth, induced apoptosis, blocked cell cycle progression and promoted differentiation in a model-dependent manner. ML modelling accurately classified primary AML samples as sensitive or resistant to PF-3758309 ex vivo treatment, and highlighted PHF2 phosphorylation at Ser705 as a robust response biomarker. CONCLUSIONS In summary, our data define the proteomic, molecular and functional responses of primary and immortalised AML cells to PF-3758309 and suggest a route to personalise AML treatments based on PAK inhibitors.
Collapse
Affiliation(s)
- Pedro Casado
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK.
| | - Santiago Marfa
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Marym M Hadi
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Henry Gerdes
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Sandra M Martin-Guerrero
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Farideh Miraki-Moud
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Vinothini Rajeeve
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK
| | - Pedro R Cutillas
- Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, EC1M6BQ, UK.
| |
Collapse
|
2
|
Gunathilaka TL, Kumarasinghe HS, Bandaranayake UE, Athapaththu M, Samarakoon KW, Ranasinghe P, Peiris LDC. Integration of In Vitro and In-Silico Analysis of Gracilaria edulis on Anti-Cancer Potential and Apoptotic Signaling Pathway Activity. Cell Biochem Biophys 2025:10.1007/s12013-025-01685-7. [PMID: 39939528 DOI: 10.1007/s12013-025-01685-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2025] [Indexed: 02/14/2025]
Abstract
Breast cancer, the most common malignancy in females, and rhabdomyosarcoma (RMS), the most prevalent soft tissue sarcoma in children, remain significant clinical challenges. This study evaluated the anticancer potential and apoptotic signaling pathways of Gracilaria edulis extracts and identified their mechanisms of action against RMS and breast adenocarcinoma (MCF-7) cell lines. Cytotoxicity was assessed using MTT assays, while apoptotic potential was evaluated through phase contrast and fluorescence microscopy, caspase 3/7 activity, DNA fragmentation, and gene expression analysis of apoptosis regulatory genes. In silico analysis was also performed to examine the molecular interactions of bioactive compounds present in Gracilaria edulis with cancer-related proteins involved in apoptotic signaling. The methanol extract was fractionated into hexane, chloroform, and ethyl acetate, with the hexane fraction demonstrating the strongest cytotoxicity (IC50RMS: 32.52 ± 2.15 μg/mL; IC50MCF-7:29.84 ± 0.65 μg/mL) in MTT assays. Apoptotic features, including chromatin condensation, membrane blebbing, cellular shrinkage, and DNA fragmentation, were observed, particularly in RMS cells. The hexane fraction significantly activated caspase 3/7 in RMS cells, while lower activation was noted in MCF-7 cells, possibly due to the partial deletion of the CASP-3 gene. Real-time PCR analysis revealed differential gene expression, with p21 showing dominant upregulation in RMS cells and p53 being more prominently expressed in MCF-7 cells. These findings reflect their distinct roles in apoptotic signaling pathways. A significant increase in the Bax/Bcl-2 ratio in RMS cells (8.45) and MCF-7 cells (29.69) indicated a pro-apoptotic shift. GC-MS analysis identified key bioactive compounds, including 9-octadecenoic acid methyl ester, hexadecenoic acid methyl ester, and 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester. In silico docking revealed that 1,2-benzenedicarboxylic acid mono(2-ethylhexyl) ester demonstrated the most promising binding interactions, particularly with BCL-2, while 9-octadecenoic acid methyl ester exhibited weaker binding affinities across all targets (p53, p21, and BCL-2), suggesting limited therapeutic relevance without structural optimization. However, the hexane fraction of G. edulis and its bioactive compounds remain promising as potential anticancer agents, warranting further in vitro and in vivo validation and molecular optimization.
Collapse
Affiliation(s)
- Thilina Lakmini Gunathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
- Department of Basic Science and Social Science for Nursing, Faculty of Nursing, University of Colombo, Colombo, Sri Lanka.
| | - Hiruni S Kumarasinghe
- Department of Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju-si, South Korea
| | - U E Bandaranayake
- ECU Sri Lanka campus, Sri Jayewardenepura Mawatha, Rajagiriya, Sri Lanka
| | | | - Kalpa W Samarakoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defence University, Ratmalana, 10390, Sri Lanka
| | | | - L Dinithi C Peiris
- Department of Zoology/Genetics & Molecular Biology Unit, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, 10250, Sri Lanka.
| |
Collapse
|
3
|
Chen XP, Yang ZT, Yang SX, Li EM, Xie L. PAK2 as a therapeutic target in cancer: Mechanisms, challenges, and future perspectives. Biochim Biophys Acta Rev Cancer 2025; 1880:189246. [PMID: 39694422 DOI: 10.1016/j.bbcan.2024.189246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
P21-activated kinases (PAKs) are crucial regulators within cellular signaling pathways and have been implicated in a range of human diseases, including cancer. Among the PAK family, PAK2 is widely expressed across various tissues and has emerged as a significant driver of cancer progression. However, systematic studies on PAK2 remain limited. This review provides a comprehensive overview of PAK2's role in cancer, focusing on its involvement in processes such as angiogenesis, metastasis, cell survival, metabolism, immune response, and drug resistance. We also explore its function in key cancer signaling pathways and the potential of small-molecule inhibitors targeting PAK2 for therapeutic purposes. Despite promising preclinical data, no PAK2 inhibitors have reached clinical practice, underscoring challenges related to their specificity and therapeutic application. This review highlights the biological significance of PAK2 in cancer and its interactions with critical signaling pathways, offering valuable insights for future research. We also discuss the major obstacles in developing PAK inhibitors and propose strategies to overcome these barriers, paving the way for their clinical translation.
Collapse
Affiliation(s)
- Xin-Pan Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Zi-Tao Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shang-Xin Yang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - En-Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China; The Laboratory for Cancer Molecular Biology, Shantou Academy Medical Sciences, Shantou 515041, Guangdong, China; Chaoshan Branch of State Key Laboratory for Esophageal Cancer Prevention and Treatment, Shantou 515041, Guangdong, China.
| | - Lei Xie
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
4
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
5
|
Zhang X, Zhang M, Li Y, Deng P. Identification of Potential Selective PAK4 Inhibitors Through Shape and Protein Conformation Ensemble Screening and Electrostatic-Surface-Matching Optimization. Curr Issues Mol Biol 2025; 47:29. [PMID: 39852144 PMCID: PMC11764389 DOI: 10.3390/cimb47010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/26/2025] Open
Abstract
P21-activated kinase 4 (PAK4) plays a crucial role in the proliferation and metastasis of various cancers. However, developing selective PAK4 inhibitors remains challenging due to the high homology within the PAK family. Therefore, developing highly selective PAK4 inhibitors is critical to overcoming the limitations of existing inhibitors. We analyzed the structural differences in the binding pockets of PAK1 and PAK4 by combining cross-docking and molecular dynamics simulations to identify key binding regions and unique structural features of PAK4. We then performed screening using shape and protein conformation ensembles, followed by a re-evaluation of the docking results with deep-learning-driven GNINA to identify the candidate molecule, STOCK7S-56165. Based on this, we applied a fragment-replacement strategy under electrostatic-surface-matching conditions to obtain Compd 26. This optimization significantly improved electrostatic interactions and reduced binding energy, highlighting its potential for selectivity. Our findings provide a novel approach for developing selective PAK4 inhibitors and lay the theoretical foundation for future anticancer drug design.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Meile Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Yihao Li
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
| | - Ping Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China; (X.Z.); (M.Z.); (Y.L.)
- Chongqing Research Center for Pharmaceutical Engineering, Chongqing 400016, China
- Chongqing Key Research Laboratory for Quality Evaluation and Safety Research of APIs, Chongqing 400016, China
| |
Collapse
|
6
|
Hao S, Hou L, Wang JH, Yan JH, Niu YF, Cai ZH, Li F, Meng FH. Design, synthesis and biological evaluation of novel benzimidazole-derived p21-activited kinase 4 (PAK4) inhibitors bearing a 4-(4-methylpiperazin-1-yl)phenyl scaffold as potential antitumor agents. Eur J Med Chem 2024; 280:116971. [PMID: 39427518 DOI: 10.1016/j.ejmech.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
A series of novel 6-(4-(4-methylpiperazin-1-yl)phenyl)-1H-benzo[d]imidazole-based p21-activited kinase 4 (PAK4) inhibitors were designed and synthesized based on the structure of lead compound GNE-2861 and that of anticancer inhibitors reported in our previous studies. All target compounds so designed were preliminarily screened in vitro for anti-tumor potency through kinase inhibitory assays and MTT assays, which revealed that most compounds exhibited significant inhibitory effects on PAK4 enzyme as well as prominent antiproliferative activities against four cancer cell models (A549, NCI-H1975, MDA-MB-231 and SK-BR-3) and low damage to healthy cells. In particular, the hit compound 12i was identified as the most effective and rather selective compound both at the enzyme and cellular level. Meanwhile, molecular docking and dynamic studies disclosed that compound 12i could bind to PAK4 stably via multiple interactions applied between the compound and the enzyme. Further mechanism studies indicated that compound 12i could inhibit the proliferation and suppress the migratory potential of MDA-MB-231 cells by inhibiting the phosphorylation of PAK4 and LIMK1, arresting cell cycle in the G0/G1 phase, inducing apoptosis and promoting ROS production. Notably, compound 12i could effectively inhibit triple-negative breast cancer (TNBC) growth with little toxicity in the MDA-MB-231 cell xenograft model. Taken together, in vitro and in vivo results demonstrated that compound 12i possessed high drug potential as an inhibitor of PAK4 to inhibit the growth and metastasis of TNBC.
Collapse
Affiliation(s)
- Shuang Hao
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Liang Hou
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jia-Hui Wang
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Jing-Han Yan
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Yi-Fan Niu
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Zheng-Hao Cai
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China
| | - Feng Li
- Department of Cell Biology, Key Laboratory of Cell Biology of Ministry of Public Health, and Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang 110122, PR China.
| | - Fan-Hao Meng
- School of Pharmacy, Key Laboratory of Research and Development of Small Molecule Targeted Antitumor Drugs, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
7
|
He H, Dumesny C, Carrall JA, Dillon CT, de Roo KI, Eutick M, Dong L, Baldwin GS, Nikfarjam M. A Tumor Homing Peptide-Linked Arsenic Compound Inhibits Pancreatic Cancer Growth and Enhances the Inhibitory Effect of Gemcitabine. Int J Mol Sci 2024; 25:11366. [PMID: 39518921 PMCID: PMC11546692 DOI: 10.3390/ijms252111366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Arsenic trioxide (ATO) has been shown to inhibit pancreatic cancer (PC) cell growth in vitro and to promote the inhibitory effects of gemcitabine (Gem) on PC in vivo. However, the high toxicity of ATO associated with the required high doses and indiscriminate targeting has limited its clinical application. This study aimed to determine whether coupling arsenic to a tumor homing peptide would increase the inhibitory potency against PC cells. The effects of this peptide-linked arsenic compound (PhAs-LHP), the analogous non-targeting arsenic compound (phenylarsine oxide, PAO), and marketed ATO on PC growth were tested in vitro and in a mouse model. The data demonstrated that PhAs-LHP inhibited PC cell growth in vitro more potently, with IC50 values 10 times lower than ATO. Like ATO, PhAs-LHP induced cell death and cell cycle arrest. This cytotoxic effect of PhAs-LHP was mediated via a macropinocytosis-linked uptake pathway as amiloride (a macropinocytosis inhibitor) reduced the inhibitory effect of PhAs-LHP. More importantly, PhAs-LHP inhibited PC growth in mice and enhanced the inhibitory effect of Gem on PC growth at 2 times lower molar concentration than PAO. These results indicate that PhAs-LHP inhibited PC more potently than ATO/PAO and suggest a potential clinical use for the combination of Gem with the peptide-linked arsenic compound for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Hong He
- Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia; (C.D.); (L.D.); (G.S.B.); (M.N.)
| | - Chelsea Dumesny
- Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia; (C.D.); (L.D.); (G.S.B.); (M.N.)
| | - Judith A. Carrall
- School of Chemistry and Molecular Bioscience, University of Wollongong, Sydney, NSW 2522, Australia; (J.A.C.); (C.T.D.); (K.I.d.R.)
| | - Carolyn T. Dillon
- School of Chemistry and Molecular Bioscience, University of Wollongong, Sydney, NSW 2522, Australia; (J.A.C.); (C.T.D.); (K.I.d.R.)
| | - Katja I. de Roo
- School of Chemistry and Molecular Bioscience, University of Wollongong, Sydney, NSW 2522, Australia; (J.A.C.); (C.T.D.); (K.I.d.R.)
| | - Mal Eutick
- Phebra Pty. Ltd., Lane Cove West, Sydney, NSW 2066, Australia;
| | - Li Dong
- Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia; (C.D.); (L.D.); (G.S.B.); (M.N.)
| | - Graham S. Baldwin
- Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia; (C.D.); (L.D.); (G.S.B.); (M.N.)
| | - Mehrdad Nikfarjam
- Department of Surgery, University of Melbourne, Studley Road, Heidelberg, VIC 3084, Australia; (C.D.); (L.D.); (G.S.B.); (M.N.)
| |
Collapse
|
8
|
Vatsa N, Brynildsen JK, Goralski TM, Kurgat K, Meyerdirk L, Breton L, DeWeerd D, Brasseur L, Turner L, Becker K, Gallik KL, Bassett DS, Henderson MX. Network analysis of α-synuclein pathology progression reveals p21-activated kinases as regulators of vulnerability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619411. [PMID: 39484617 PMCID: PMC11526907 DOI: 10.1101/2024.10.22.619411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
α-Synuclein misfolding and progressive accumulation drives a pathogenic process in Parkinson's disease. To understand cellular and network vulnerability to α-synuclein pathology, we developed a framework to quantify network-level vulnerability and identify new therapeutic targets at the cellular level. Full brain α-synuclein pathology was mapped in mice over 9 months. Empirical pathology data was compared to theoretical pathology estimates from a diffusion model of pathology progression along anatomical connections. Unexplained variance in the model enabled us to derive regional vulnerability that we compared to regional gene expression. We identified gene expression patterns that relate to regional vulnerability, including 12 kinases that were enriched in vulnerable regions. Among these, an inhibitor of group II PAKs demonstrated protection from neuron death and α-synuclein pathology, even after delayed compound treatment. This study provides a framework for the derivation of cellular vulnerability from network-based studies and identifies a promising therapeutic pathway for Parkinson's disease.
Collapse
Affiliation(s)
- Naman Vatsa
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Julia K. Brynildsen
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas M. Goralski
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Kevin Kurgat
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Libby Breton
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Daniella DeWeerd
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Laura Brasseur
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | | | | | | | - Dani S. Bassett
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Michael X. Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Lead Contact
| |
Collapse
|
9
|
Du Y, Chen X, Chen W, Chen G, Cheng X, Wang H, Guo L, Li C, Yao D. Design, synthesis and biological evaluation of a novel PAK1 degrader for the treatment of triple negative breast cancer. Bioorg Med Chem 2024; 112:117896. [PMID: 39214014 DOI: 10.1016/j.bmc.2024.117896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Triple-negative breast cancer is one of the most malignant subtypes in clinical practice, and it is urgent to find new therapies. The p21-activated kinase I (PAK1) has been considered to be an attractive therapeutic target for TNBC. In this study, we designed and synthesized a series of novel PROTAC PAK1 degraders by conjugating VHL or CRBN ligase ligands to PAK1 inhibitors which are connected by alkyl chains or PEG chains. The most promising compound, 19s, can significantly degrade PAK1 protein at concentrations as low as 0.1 μM, and achieves potent anti-proliferative activity with an IC50 value of 1.27 μM in MDA-MB-231 cells. Additionally, 19s exhibits potent anti-migration activity in vitro and induces rapid tumor regression in vivo. Collectively, these findings document that 19s is a potent and novel PAK1 degrader with promising potential for TNBC treatment.
Collapse
Affiliation(s)
- Yi Du
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Weiji Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Gang Chen
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Xiaoling Cheng
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Hailing Wang
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China
| | - Ling Guo
- Department of Science and Research, The Affiliated Anning First People's Hospital of Kunming University of Science and Technology, Kunming, 650302, Yunnan Province, China
| | - Chenyang Li
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Guangdong Key Laboratory for Genome Stability & Human Disease Prevention, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518060, China.
| |
Collapse
|
10
|
Schneider C, Hilbert J, Genevaux F, Höfer S, Krauß L, Schicktanz F, Contreras CT, Jansari S, Papargyriou A, Richter T, Alfayomy AM, Falcomatà C, Schneeweis C, Orben F, Öllinger R, Wegwitz F, Boshnakovska A, Rehling P, Müller D, Ströbel P, Ellenrieder V, Conradi L, Hessmann E, Ghadimi M, Grade M, Wirth M, Steiger K, Rad R, Kuster B, Sippl W, Reichert M, Saur D, Schneider G. A Novel AMPK Inhibitor Sensitizes Pancreatic Cancer Cells to Ferroptosis Induction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307695. [PMID: 38885414 PMCID: PMC11336956 DOI: 10.1002/advs.202307695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/12/2024] [Indexed: 06/20/2024]
Abstract
Cancer cells must develop strategies to adapt to the dynamically changing stresses caused by intrinsic or extrinsic processes, or therapeutic agents. Metabolic adaptability is crucial to mitigate such challenges. Considering metabolism as a central node of adaptability, it is focused on an energy sensor, the AMP-activated protein kinase (AMPK). In a subtype of pancreatic ductal adenocarcinoma (PDAC) elevated AMPK expression and phosphorylation is identified. Using drug repurposing that combined screening experiments and chemoproteomic affinity profiling, it is identified and characterized PF-3758309, initially developed as an inhibitor of PAK4, as an AMPK inhibitor. PF-3758309 shows activity in pre-clinical PDAC models, including primary patient-derived organoids. Genetic loss-of-function experiments showed that AMPK limits the induction of ferroptosis, and consequently, PF-3758309 treatment restores the sensitivity toward ferroptosis inducers. The work established a chemical scaffold for the development of specific AMPK-targeting compounds and deciphered the framework for the development of AMPK inhibitor-based combination therapies tailored for PDAC.
Collapse
Affiliation(s)
- Carolin Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Jorina Hilbert
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Franziska Genevaux
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Stefanie Höfer
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
| | - Lukas Krauß
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Felix Schicktanz
- Institute of PathologyTechnical University of Munich81675MunichGermany
| | - Constanza Tapia Contreras
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Shaishavi Jansari
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Aristeidis Papargyriou
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Institute of Stem Cell ResearchHelmholtz Zentrum MuenchenD‐85764NeuherbergGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
| | - Thorsten Richter
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
| | - Abdallah M. Alfayomy
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
- Department of Pharmaceutical ChemistryAl‐Azhar UniversityAssiut71524Egypt
| | - Chiara Falcomatà
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Precision Immunology InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Christian Schneeweis
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
| | - Felix Orben
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
| | - Ruppert Öllinger
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
| | - Florian Wegwitz
- Department of Gynecology and ObstetricsUniversity Medical Center GöttingenGöttingenGermany
| | - Angela Boshnakovska
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
| | - Peter Rehling
- Department of Cellular BiochemistryUniversity Medical Center37073GöttingenGermany
- Max Planck Institute for Biophysical Chemistry37077GöttingenGermany
| | - Denise Müller
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
| | - Philipp Ströbel
- Institute of PathologyUniversity Medical Center37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Volker Ellenrieder
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Lena Conradi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Elisabeth Hessmann
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medical Center Göttingen37075GöttingenGermany
| | - Michael Ghadimi
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Marian Grade
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| | - Matthias Wirth
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Department of HematologyOncology and Cancer ImmunologyCampus Benjamin FranklinCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu Berlin12203BerlinGermany
| | - Katja Steiger
- Institute of PathologyTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Roland Rad
- Institute of Molecular Oncology and Functional GenomicsTUM School of MedicineTechnical University of Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Bernhard Kuster
- Proteomics and BioanalyticsDepartment of Molecular Life SciencesSchool of Life SciencesTechnical University of Munich85354FreisingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Wolfgang Sippl
- Department of Medicinal ChemistryInstitute of PharmacyMartin‐Luther University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Maximilian Reichert
- Medical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Translational Pancreatic Research Cancer CenterMedical Clinic and Polyclinic IIKlinikum rechts der IsarTechnical University of Munich81675MunichGermany
- Center for Organoid Systems (COS)Technical University of Munich85747GarchingGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
- Center for Protein Assemblies (CPA)Technical University of Munich85747GarchingGermany
| | - Dieter Saur
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- German Cancer Consortium (DKTK)partner site Municha partnership between DKFZ and University Hospital Klinikum rechts der Isar81675MünchenGermany
| | - Günter Schneider
- Department of General, Visceral and Pediatric SurgeryUniversity Medical Center Göttingen37075GöttingenGermany
- Institute for Translational Cancer Research and Experimental Cancer TherapyTechnical University Munich81675MunichGermany
- Clinical Research Unit 5002KFO5002University Medical Center Göttingen37075GöttingenGermany
- CCC‐N (Comprehensive Cancer Center Lower Saxony)37075GöttingenGermany
| |
Collapse
|
11
|
Karaman M, Ulusu NN. Editorial: The culprit behind some diseases: overexpression/hyperactivity of G6PD. Front Pharmacol 2024; 15:1459741. [PMID: 39139648 PMCID: PMC11319280 DOI: 10.3389/fphar.2024.1459741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 07/12/2024] [Indexed: 08/15/2024] Open
Affiliation(s)
- Muhammet Karaman
- Department of Molecular Biology and Genetics, Kilis 7 Aralik University, Kilis, Türkiye
| | - N. Nuray Ulusu
- School of Medicine, Department of Medical Biochemistry, Koc University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Istanbul, Türkiye
| |
Collapse
|
12
|
Xu S, Ma B, Jian Y, Yao C, Wang Z, Fan Y, Ma J, Chen Y, Feng X, An J, Chen J, Wang K, Xie H, Gao Y, Li L. Development of a PAK4-targeting PROTAC for renal carcinoma therapy: concurrent inhibition of cancer cell proliferation and enhancement of immune cell response. EBioMedicine 2024; 104:105162. [PMID: 38810561 PMCID: PMC11154127 DOI: 10.1016/j.ebiom.2024.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Finding the oncogene, which was able to inhibit tumor cells intrinsically and improve the immune answers, will be the future direction for renal cancer combined treatment. Following patient sample analysis and signaling pathway examination, we propose p21-activated kinase 4 (PAK4) as a potential target drug for kidney cancer. PAK4 exhibits high expression levels in patient samples and plays a regulatory role in the immune microenvironment. METHODS Utilizing AI software for peptide drug design, we have engineered a specialized peptide proteolysis targeting chimera (PROTAC) drug with selectivity for PAK4. To address challenges related to drug delivery, we developed a nano-selenium delivery system for efficient transport of the peptide PROTAC drug, termed PpD (PAK4 peptide degrader). FINDINGS We successfully designed a peptide PROTAC drug targeting PAK4. PpD effectively degraded PAK4 with high selectivity, avoiding interference with other homologous proteins. PpD significantly attenuated renal carcinoma proliferation in vitro and in vivo. Notably, PpD demonstrated a significant inhibitory effect on tumor proliferation in a fully immunocompetent mouse model, concomitantly enhancing the immune cell response. Moreover, PpD demonstrated promising tumor growth inhibitory effects in mini-PDX and PDO models, further underscoring its potential for clinical application. INTERPRETATION This PAK4-targeting peptide PROTAC drug not only curtails renal cancer cell proliferation but also improves the immune microenvironment and enhances immune response. Our study paves the way for innovative targeted therapies in the management of renal cancer. FUNDING This work is supported by Research grants from non-profit organizations, as stated in the Acknowledgments.
Collapse
Affiliation(s)
- Shan Xu
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Chen Yao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jian Ma
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yule Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Xiaoyu Feng
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiale An
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Jiani Chen
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Ke Wang
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Hongjun Xie
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital, Xi'an Jiaotong University, #277 Yanta West Road, Xi'an, China.
| |
Collapse
|
13
|
Shen C, Oh HR, Park YR, Chen JH, Park BH, Park JH. Interaction between p21-activated kinase 4 and β-catenin as a novel pathway for PTH-dependent osteoblast activation. J Cell Physiol 2024; 239:e31245. [PMID: 38497504 DOI: 10.1002/jcp.31245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/19/2024]
Abstract
Parathyroid hormone (PTH) serves dual roles in bone metabolism, exhibiting both anabolic and catabolic effects. The anabolic properties of PTH have been utilized in the treatment of osteoporosis with proven efficacy in preventing fractures. Despite these benefits, PTH can be administered therapeutically for up to 2 years, and its use in patients with underlying malignancies remains a subject of ongoing debate. These considerations underscore the need for a more comprehensive understanding of the underlying mechanisms. p21-activated kinase 4 (PAK4) is involved in bone resorption and cancer-associated osteolysis; however, its role in osteoblast function and PTH action remains unknown. Therefore, in this study, we aimed to clarify the role of PAK4 in osteoblast function and its effects on PTH-induced anabolic activity. PAK4 enhanced MC3T3-E1 osteoblast viability and proliferation and upregulated cyclin D1 expression. PAK4 also augmented osteoblast differentiation, as indicated by increased mineralization found by alkaline phosphatase and Alizarin Red staining. Treatment with PTH (1-34), an active PTH fragment, stimulated PAK4 expression and phosphorylation in a protein kinase A-dependent manner. In addition, bone morphogenetic protein-2 (which is known to promote bone formation) increased phosphorylated PAK4 (p-PAK4) and PAK4 levels. PAK4 regulated the expression of both phosphorylated and total β-catenin, which are critical for osteoblast proliferation and differentiation. Moreover, p-PAK4 directly interacted with β-catenin, and disruption of β-catenin's binding to T-cell factor impaired PAK4- and PTH-induced osteoblast differentiation. Our findings elucidate the effect of PAK4 on enhancing bone formation in osteoblasts and its pivotal role in the anabolic activity of PTH mediated through its interaction with β-catenin. These insights improve the understanding of the mechanisms underlying PTH activity and should inform the development of more effective and safer osteoporosis treatments.
Collapse
Affiliation(s)
- Chen Shen
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Ha Ram Oh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Young Ran Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| | - Jin Hong Chen
- Department of Endocrinology, Affiliated Hospital of Nantong University, China
| | - Byung-Hyun Park
- Department of Biochemistry, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Ji Hyun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jeonbuk National University Medical School, Jeonju, Republic of Korea
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
14
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
15
|
Wen F, Gui G, Wang X, Ye L, Qin A, Zhou C, Zha X. Drug discovery targeting nicotinamide phosphoribosyltransferase (NAMPT): Updated progress and perspectives. Bioorg Med Chem 2024; 99:117595. [PMID: 38244254 DOI: 10.1016/j.bmc.2024.117595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a key rate-limiting enzyme in the nicotinamide adenine dinucleotide (NAD+) salvage pathway, primarily catalyzing the synthesis of nicotinamide mononucleotide (NMN) from nicotinamide (NAM), phosphoribosyl pyrophosphate (PRPP), and adenosine triphosphate (ATP). Metabolic diseases, aging-related diseases, inflammation, and cancers can lead to abnormal expression levels of NAMPT due to the pivotal role of NAD+ in redox metabolism, aging, the immune system, and DNA repair. In addition, NAMPT can be secreted by cells as a cytokine that binds to cell membrane receptors to regulate intracellular signaling pathways. Furthermore, NAMPT is able to reduce therapeutic efficacy by enhancing acquired resistance to chemotherapeutic agents. Recently, a few novel activators and inhibitors of NAMPT for neuroprotection and anti-tumor have been reported, respectively. However, NAMPT activators are still in preclinical studies, and only five NAMPT inhibitors have entered the clinical stage, unfortunately, three of which were terminated or withdrawn due to safety concerns. Novel drug design strategies such as proteolytic targeting chimera (PROTAC), antibody-drug conjugate (ADC), and dual-targeted inhibitors also provide new directions for the development of NAMPT inhibitors. In this perspective, we mainly discuss the structure, biological function, and role of NAMPT in diseases and the currently discovered activators and inhibitors. It is our hope that this work will provide some guidance for the future design and optimization of NAMPT activators and inhibitors.
Collapse
Affiliation(s)
- Fei Wen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Gang Gui
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Xiaoyu Wang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Li Ye
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Anqi Qin
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Chen Zhou
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | - Xiaoming Zha
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
16
|
Khan HY, Nagasaka M, Aboukameel A, Alkhalili O, Uddin MH, Bannoura SF, Mzannar Y, Azar I, Beal EW, Tobon ME, Kim SH, Beydoun R, Baloglu E, Senapedis W, El-Rayes BF, Philip PA, Mohammad RM, Shields AF, Al Hallak MN, Azmi AS. Anticancer Efficacy of KRASG12C Inhibitors Is Potentiated by PAK4 Inhibitor KPT9274 in Preclinical Models of KRASG12C-Mutant Pancreatic and Lung Cancers. Mol Cancer Ther 2023; 22:1422-1433. [PMID: 37703579 PMCID: PMC10690049 DOI: 10.1158/1535-7163.mct-23-0251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
KRASG12C inhibitors, such as sotorasib and adagrasib, have revolutionized cancer treatment for patients with KRASG12C-mutant tumors. However, patients receiving these agents as monotherapy often develop drug resistance. To address this issue, we evaluated the combination of the PAK4 inhibitor KPT9274 and KRASG12C inhibitors in preclinical models of pancreatic ductal adenocarcinoma (PDAC) and non-small cell lung cancer (NSCLC). PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We found that cancer cells resistant to KRASG12C inhibitor were sensitive to KPT9274-induced growth inhibition. Furthermore, KPT9274 synergized with sotorasib and adagrasib to inhibit the growth of KRASG12C-mutant cancer cells and reduce their clonogenic potential. Mechanistically, this combination suppressed cell growth signaling and downregulated cell-cycle markers. In a PDAC cell line-derived xenograft (CDX) model, the combination of a suboptimal dose of KPT9274 with sotorasib significantly reduced the tumor burden (P= 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model, in which KPT9274, given as maintenance therapy, prevented tumor relapse following the discontinuation of sotorasib treatment (P= 0.0001). Moreover, the combination of KPT9274 and sotorasib enhances survival. In conclusion, this is the first study to demonstrate that KRASG12C inhibitors can synergize with the PAK4 inhibitor KPT9274 and combining KRASG12C inhibitors with KPT9274 can lead to remarkably enhanced antitumor activity and survival benefits, providing a novel combination therapy for patients with cancer who do not respond or develop resistance to KRASG12C inhibitor treatment.
Collapse
Affiliation(s)
- Husain Yar Khan
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Misako Nagasaka
- University of California Irvine School of Medicine, Orange, California; Chao Family Comprehensive Cancer Center, Orange, California
- Division of Neurology, Department of Internal Medicine, St. Marianna University, Kawasaki, Japan
| | - Amro Aboukameel
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Osama Alkhalili
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Md. Hafiz Uddin
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Sahar F. Bannoura
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Yousef Mzannar
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Ibrahim Azar
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Eliza W. Beal
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Miguel E. Tobon
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Steve H. Kim
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Rafic Beydoun
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | - Philip A. Philip
- Henry Ford Health, Detroit, Michigan
- Department of Pharmacology, Wayne State University, Detroit, Michigan
| | - Ramzi M. Mohammad
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Anthony F. Shields
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Mohammed Najeeb Al Hallak
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| | - Asfar S. Azmi
- Department of Oncology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
17
|
Han W, Yang Y, Yu F, Li Q, Liu A, Xu W, Li J, Xue X. Design, synthesis and anticancer activity evaluation of 4-(3-1H-indazolyl)amino quinazoline derivatives as PAK4 inhibitors. Bioorg Med Chem 2023; 95:117501. [PMID: 37864885 DOI: 10.1016/j.bmc.2023.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023]
Abstract
A novel series of 4-(3-1H-indazolyl)amino quinazoline derivatives were developed as PAK4 inhibitors based on a scaffold hopping strategy. Compounds 27e, 27g, 27i and 27j were found to exhibit potent inhibitory activity against PAK4 (IC50 = 10, 13, 11 and 9 nM, respectively). Subsequent cellular assay demonstrated that compound 27e possessed the strongest antiproliferative activity against A549 cells with an IC50 value of 0.61 μM, a little bit better than PF-3758309. Further anticancer mechanistic investigation revealed that compound 27e significantly induced apoptosis of A549 cells in a concentration-dependent manner and blocked the cell cycle at phase G0/G1. A docking model between compound 27e and PAK4 was proposed to elucidate its possible binding modes. As a promising PAK4 inhibitor, compound 27e may serve as a candidate for the development of novel PAK4-targeted anticancer drug.
Collapse
Affiliation(s)
- Wei Han
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yusang Yang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Fan Yu
- The Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing 211198, China
| | - Qianqian Li
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Anyao Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Wenbo Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Jiabin Li
- School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaowen Xue
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
18
|
Zhang J, Chen X, Chen G, Wang H, Jia L, Hao Y, Yao D. Identification of a novel PAK1/HDAC6 dual inhibitor ZMF-23 that triggers tubulin-stathmin regulated cell death in triple negative breast cancer. Int J Biol Macromol 2023; 251:126348. [PMID: 37586623 DOI: 10.1016/j.ijbiomac.2023.126348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 08/18/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most poorly treated subtype of breast cancer, and targeting the heterogeneity of TNBC has emerged as a fascinating therapeutic strategy. In this study, we propose for the first time that dual-targeting PAK1 and HDAC6 is a promising novel strategy for TNBC treatment due to their essential roles in the regulation of energy metabolism and epigenetic modification. We discovered a novel dual-targeting PAK1/HDAC6 inhibitor, 6 - (2-(cyclopropylamino) - 6 - (2,4-dichlorophenyl) - 7 - oxopyrido [2,3-d] pyrimidin - 8 (7H) -yl) - N-hydroxyhexanamide (ZMF-23), which presented profound inhibitory activity against PAK1 and HDAC6 and robust antiproliferative potency in MDA-MB-231 cells. In addition, SPR and CETSA assay demonstrated the targeted binding of ZMF-23 with PAK1/HDAC6. Mechanically, ZMF-23 strongly inhibited the cellular PAK1 and HDAC6 activity, impeded PAK1 and HDAC6 regulated aerobic glycolysis and migration. By RNA-seq analysis, ZMF-23 was found to induce TNF-α-regulated necroptosis, which further enhanced apoptosis. Additionally, ZMF-23 triggered PAK1-tubulin/HDAC6-Stathmin regulated microtubule structure changes, which further induced the G2/M cycle arrest. Moreover, prominent anti-proliferative effect of ZMF-23 was confirmed in the TNBC xenograft zebrafish and mouse model via PAK1 and HDAC6 inhibition. Collectively, ZMF-23 is a novel dual PAK1/HDAC6 inhibitor with TNBC treatment potential.
Collapse
Affiliation(s)
- Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xiya Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Gang Chen
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Hailing Wang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Lin Jia
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| | - Yue Hao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Dahong Yao
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China; College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
19
|
Martin HL, Turner AL, Higgins J, Tang AA, Tiede C, Taylor T, Siripanthong S, Adams TL, Manfield IW, Bell SM, Morrison EE, Bond J, Trinh CH, Hurst CD, Knowles MA, Bayliss RW, Tomlinson DC. Affimer-mediated locking of p21-activated kinase 5 in an intermediate activation state results in kinase inhibition. Cell Rep 2023; 42:113184. [PMID: 37776520 DOI: 10.1016/j.celrep.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie Higgins
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sitthinon Siripanthong
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Adams
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sandra M Bell
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jacquelyn Bond
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Richard W Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
20
|
Li CF, Chan TC, Fang FM, Yu SC, Huang HY. PAK1 overexpression promotes myxofibrosarcoma angiogenesis through STAT5B-mediated CSF2 transactivation: clinical and therapeutic relevance of amplification and nuclear entry. Int J Biol Sci 2023; 19:3920-3936. [PMID: 37564209 PMCID: PMC10411477 DOI: 10.7150/ijbs.83467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Myxofibrosarcoma is genetically complex without established nonsurgical therapies. In public datasets, PAK1 was recurrently gained with mRNA upregulation. Using myxofibrosarcoma cells, we explored the oncogenic underpinning of PAK1 with genetic manipulation and a pan-PAK inhibitor (PF3758309). Myxofibrosarcoma specimens were analyzed for the levels of PAK1, phospho-PAKT423, CSF2 and microvascular density (MVD) and those of PAK1 gene and mRNA. PAK1-expressing xenografts were assessed for the effects of PF3758309 and CSF2 silencing. Besides pro-proliferative and pro-migrator/pro-invasive attributes, PAK1 strongly enhanced angiogenesis in vitro, which, not phenocopied by PAK2-4, was identified as CSF2-mediated using antibody arrays. PAK1 underwent phosphorylation at tyrosines153,201,285 and threonine423 to facilitate nuclear entry, whereby nuclear PAK1 bound STAT5B to co-transactivate the CSF2 promoter, increasing CSF2 secretion needed for angiogenesis. Angiogenesis driven by PAK1-upregulated CSF2 was negated by CSF2 silencing, anti-CSF2, and PF3758309. Clinically, overexpressed whole-cell phospho-PAKT423, related to PAK1 amplification, was associated with increased grades, stages, and PAK1 mRNA, higher MVD, and CSF2 overexpression. Overexpressed whole-cell phospho-PAKT423 and CSF2 independently portended shorter metastasis-free survival and disease-specific survival, respectively. In vivo, both CSF2 silencing and PF3758309 suppressed PAK1-driven tumor proliferation and angiogenesis. Conclusively, the nuclear entry of overexpressed/activated PAK1 endows myxofibrosarcomas with pro-angiogenic function, highlighting the vulnerable PAK1/STAT5B/CSF2 regulatory axis.
Collapse
Affiliation(s)
- Chien-Feng Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
- National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Fu-Min Fang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shih-Chen Yu
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsuan-Ying Huang
- Department of Anatomic Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Zhao S, Wang R, Song S, Hao D, Han G, Song X, Zhang J, Pizzi MP, Shanbhag N, Futreal A, Badgwell B, Harada K, Calin G, Vykoukal J, Yu CY, Katayama H, Hanash SM, Wang L, Ajani JA. Proteogenomic landscape of gastric adenocarcinoma peritoneal metastases. iScience 2023; 26:106913. [PMID: 37305699 PMCID: PMC10251128 DOI: 10.1016/j.isci.2023.106913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/01/2022] [Accepted: 05/12/2023] [Indexed: 06/13/2023] Open
Abstract
Advanced gastric adenocarcinoma (GAC) often leads to peritoneal carcinomatosis (PC) and is associated with very poor outcome. Here we report the comprehensive proteogenomic study of ascites derived cells from a prospective GAC cohort (n = 26 patients with peritoneal carcinomatosis, PC). A total of 16,449 proteins were detected from whole cell extracts (TCEs). Unsupervised hierarchical clustering resulted in three distinct groups that reflected extent of enrichment in tumor cells. Integrated analysis revealed enriched biological pathways and notably, some druggable targets (cancer-testis antigens, kinases, and receptors) that could be exploited to develop effective therapies and/or tumor stratifications. Systematic comparison of expression levels of proteins and mRNAs revealed special expression patterns of key therapeutics target notably high mRNA and low protein expression of HAVCR2 (TIM-3), and low mRNA but high protein expression of cancer-testis antigens CTAGE1 and CTNNA2. These results inform strategies to target GAC vulnerabilities.
Collapse
Affiliation(s)
- Shuangtao Zhao
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruiping Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shumei Song
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dapeng Hao
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guangchun Han
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xingzhi Song
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melissa Pool Pizzi
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Namita Shanbhag
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andrew Futreal
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brian Badgwell
- Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kazuto Harada
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Calin
- Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody Vykoukal
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chuan-Yih Yu
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M. Hanash
- Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaffer A. Ajani
- GI Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
22
|
Belli S, Esposito D, Allotta A, Servetto A, Ciciola P, Pesapane A, Ascione CM, Napolitano F, Di Mauro C, Vigliar E, Iaccarino A, De Angelis C, Bianco R, Formisano L. Pak1 pathway hyper-activation mediates resistance to endocrine therapy and CDK4/6 inhibitors in ER+ breast cancer. NPJ Breast Cancer 2023; 9:48. [PMID: 37258566 DOI: 10.1038/s41523-023-00556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/23/2023] [Indexed: 06/02/2023] Open
Abstract
Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6i) have been approved in combination with endocrine therapy (ET) to treat estrogen receptor-positive (ER+) metastatic breast cancer (BC). However, drug resistance represents the leading cause of breast cancer patients mortality. This study aimed to identify novel resistance mechanisms to ER antagonists in combination with CDK4/6 inhibitors. We generated two ER+ BC cell lines, T47D and MCF7, resistant to the combination of the ER antagonist fulvestrant and CDK4/6i abemaciclib, named T47D-FAR and MCF7-FAR. Transcriptomic analysis revealed common up-regulation of genes involved in MAPK and epithelial to mesenchymal transition (EMT) pathways in FAR cells, sustaining their hyper-invasive phenotype and increased anchorage-independent growth, compared to sensitive cells. FAR cells showed higher p21-activated kinase 1 (Pak1) expression and phosphorylation levels than parental cells. PAK1 knockdown by siRNAs hampered cell proliferation, reduced anchorage-independent growth and invasive properties of T47D-FAR and MCF7-FAR, re-sensitizing them to fulvestrant and abemaciclib. Conversely, over-expression of PAK1 in MCF7 and T47D cells increased tumor spheroids' growth and invasion and reduced sensitivity to fulvestrant and abemaciclib, confirming its role in inducing drug resistance. Finally, treatment with Pak1 inhibitors, PF-3758309 (PF309) and NVS-PAK1-1, restored cell sensitivity to fulvestrant and abemaciclib of MCF7-FAR and T47D-FAR cells, both in vitro and in vivo. In conclusion, our data suggested a pivotal role for Pak1 in resistance to ET and CDK4/6i in ER+ breast cancers. These data might promote the rationale for the development of novel Pak1 inhibitors for treatment of patients with ER+ BC progressing on ET plus CDK4/6i.
Collapse
Affiliation(s)
- Stefania Belli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Daniela Esposito
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alessandra Allotta
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Alberto Servetto
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Paola Ciciola
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Ada Pesapane
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Claudia M Ascione
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Fabiana Napolitano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Concetta Di Mauro
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Elena Vigliar
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Antonino Iaccarino
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberto Bianco
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| | - Luigi Formisano
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
23
|
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers (Basel) 2023; 15:2236. [PMID: 37190165 PMCID: PMC10137274 DOI: 10.3390/cancers15082236] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 05/17/2023] Open
Abstract
Metastatic prostate cancer (mPCa) has limited therapeutic options and a high mortality rate. The p21-activated kinase (PAK) family of proteins is important in cell survival, proliferation, and motility in physiology, and pathologies such as infectious, inflammatory, vascular, and neurological diseases as well as cancers. Group-I PAKs (PAK1, PAK2, and PAK3) are involved in the regulation of actin dynamics and thus are integral for cell morphology, adhesion to the extracellular matrix, and cell motility. They also play prominent roles in cell survival and proliferation. These properties make group-I PAKs a potentially important target for cancer therapy. In contrast to normal prostate and prostatic epithelial cells, group-I PAKs are highly expressed in mPCA and PCa tissue. Importantly, the expression of group-I PAKs is proportional to the Gleason score of the patients. While several compounds have been identified that target group-I PAKs and these are active in cells and mice, and while some inhibitors have entered human trials, as of yet, none have been FDA-approved. Probable reasons for this lack of translation include issues related to selectivity, specificity, stability, and efficacy resulting in side effects and/or lack of efficacy. In the current review, we describe the pathophysiology and current treatment guidelines of PCa, present group-I PAKs as a potential druggable target to treat mPCa patients, and discuss the various ATP-competitive and allosteric inhibitors of PAKs. We also discuss the development and testing of a nanotechnology-based therapeutic formulation of group-I PAK inhibitors and its significant potential advantages as a novel, selective, stable, and efficacious mPCa therapeutic over other PCa therapeutics in the pipeline.
Collapse
Affiliation(s)
- Payaningal R. Somanath
- Department of Clinical & Administrative Pharmacy, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA
- MetasTx LLC, Basking Ridge, NJ 07920, USA
| | - Jonathan Chernoff
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Brian S. Cummings
- MetasTx LLC, Basking Ridge, NJ 07920, USA
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Sandip M. Prasad
- Morristown Medical Center, Atlantic Health System, Morristown, NJ 07960, USA
| | | |
Collapse
|
24
|
Li Q, Wang SJ, Wang WJ, Ye YC, Ling YQ, Dai YF. PAK4-relevant proliferation reduced by cell autophagy via p53/mTOR/p-AKT signaling. Transl Cancer Res 2023; 12:461-472. [PMID: 37033362 PMCID: PMC10080326 DOI: 10.21037/tcr-22-2272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/19/2023] [Indexed: 03/29/2023]
Abstract
Background P21-activated kinase 4 (PAK4) involves in cell proliferation in cancer and mutually regulates with p53, a molecule is demonstrated to control cell autophagy by mammalian target of rapamycin (mTOR)/protein kinase B (AKT) signaling. Since the signaling exhibits an association with PAK family members in cell autophagy, it implies that PAK4-relevant proliferation may be impacted by autophagy via p53 with a lack of evidence in cancer cells. Methods In this research, transient and stable PAK4-knockdown human hepatocarcinoma cell lines (HepG2) were constructed by transfection of PAK4-RNA interference (RNAi) plasmid and lentivirus containing PAK4-RNAi plasmid, respectively. We investigated cell proliferation using methyl thiazolyl tetrazolium (MTT) and Cell Counting Kit 8 (CCK8) assays, cell cycle by flow cytometry (FCM) and cell autophagy by monodansylcadaverine (MDC) staining and autophagic biomarker's expression, and detected the expressions of p53, mTOR, phosphorylated-AKT (p-AKT) and AKT by immunofluorescence and western blot to explore the mechanism. Results We successfully constructed transient and stable PAK4-knockdown HepG2 cell lines, and detected dysfunction of the cells' proliferation. An increased expression of p53, as a molecule of cell-cycle-surveillance on G1/S phase, was demonstrated in the cells although the cell cycle blocked at G2/M. And then, we detected increased autophagosome and autophagic biomarker LC3-II, and decreased expressions in p-AKT and mTOR. Conclusions The proliferation is reduced in PAK4-knockdown HepG2 cells, which is relative to not only cell cycle arrest but also cell autophagy, and p53/mTOR/p-AKT signaling involves in the cell progress. The findings provide a new mechanism on PAK4 block in cancer therapy.
Collapse
Affiliation(s)
- Qing Li
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Su-Jie Wang
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Wen-Jia Wang
- Clinical Laboratory, Gansu Provincial Maternity and Child-care Hospital, Lanzhou, China
| | - Yu-Cai Ye
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Ya-Qin Ling
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, China
| | - Ya-Fei Dai
- Institute of Pathophysiology, College of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Khan HY, Nagasaka M, Aboukameel A, Alkhalili O, Uddin MH, Bannoura S, Mzannar Y, Azar I, Beal E, Tobon M, Kim S, Beydoun R, Baloglu E, Senapedis W, El-Rayes B, Philip PA, Mohammad RM, Shields AF, Al-Hallak MN, Azmi AS. Anticancer efficacy of KRASG12C inhibitors is potentiated by PAK4 inhibitor KPT9274 in preclinical models of KRASG12C mutant pancreatic and lung cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.27.534309. [PMID: 37034616 PMCID: PMC10081231 DOI: 10.1101/2023.03.27.534309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
KRASG12C inhibitors have revolutionized the treatment landscape for cancer patients harboring the G12C mutant isoform of KRAS. With the recent FDA approval of sotorasib and adagrasib, patients now have access to more promising treatment options. However, patients who receive these agents as a monotherapy usually develop drug resistance. Thus, there is a need to develop logical combination strategies that can delay or prevent the onset of resistance and simultaneously enhance the antitumor effectiveness of the treatment regimen. In this study, we aimed at pharmacologically targeting PAK4 by KPT9274 in combination with KRASG12C inhibitors in KRASG12C mutant pancreatic ductal adenocarcinoma (PDAC) and nonâ€"small cell lung cancer (NSCLC) preclinical models. PAK4 is a hub molecule that links several major signaling pathways and is known for its tumorigenic role in mutant Ras-driven cancers. We assessed the cytotoxicity of PAK4 and KRASG12C inhibitors combination in KRASG12C mutant 2D and 3D cellular models. KPT9274 synergized with both sotorasib and adagrasib in inhibiting the growth of KRASG12C mutant cancer cells. The combination was able to reduce the clonogenic potential of KRASG12C mutant PDAC cells. We also evaluated the antitumor activity of the combination in a KRASG12C mutant PDAC cell line-derived xenograft (CDX) model. Oral administration of a sub-optimal dose of KPT9274 in combination with sotorasib (at one-fourth of MTD) demonstrated significant inhibition of the tumor burden ( p = 0.002). Similarly, potent antitumor efficacy was observed in an NSCLC CDX model where KPT9274, acting as an adjuvant, prevented tumor relapse following the discontinuation of sotorasib treatment ( p = 0.0001). KPT9274 and sotorasib combination also resulted in enhanced survival. This is the first study showing that KRASG12C inhibitors can synergize with PAK4 inhibitor KPT9274 both in vitro and in vivo resulting in remarkably enhanced antitumor activity and survival outcomes. Significance KRASG12C inhibitors demonstrate limited durable response in patients with KRASG12C mutations. In this study, combining PAK4 inhibitor KPT9274 with KRASG12C inhibitors has resulted in potent antitumor effects in preclinical cancer models of PDAC and NSCLC. Our results bring forward a novel combination therapy for cancer patients that do not respond or develop resistance to KRASG12C inhibitor treatment.
Collapse
|
26
|
Su S, You S, Wang Y, Tamukong P, Quist MJ, Grasso CS, Kim HL. PAK4 inhibition improves PD1 blockade immunotherapy in prostate cancer by increasing immune infiltration. Cancer Lett 2023; 555:216034. [PMID: 36509363 DOI: 10.1016/j.canlet.2022.216034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Antitumor immunity requires lymphocytes to localize to the tumor. Prostate cancers (PCs) are immunologically cold and tend to lack T-cell infiltration. Most advanced PCs are insensitive to PD1 blockade therapies. Using syngeneic RM1 prostate tumors, p21-activated kinase-4 (PAK4) knockdown (KD) and pharmacological inhibition was assessed in C57BL/6J mice treated with PD1 antibodies (αPD1). RNASeq was used to characterize the immune response in the tumor. Immunohistochemistry, flow cytometry, and in vivo blocking studies confirmed the role of cell surface proteins in the generation of immune responses. In The Cancer Genome Atlas, PAK4 expression was inversely correlated with immune cell infiltration. PAK4 expression was controlled by the androgen receptor and its pioneering factor, FOXA1. PAK4 KD increased CD8+ T-cell infiltration and expression of IFNγ response genes. PAK4 KD also upregulated angiogenesis and endothelial cell adhesion molecules in the tumor microenvironment, contributing to CD8+ lymphocyte recruitment. Pharmacological inhibition of PAK4 made PC more responsive to immunotherapy with αPD1. A decrease in PAK4 activity increases immune activation and vascularity, which increases CD8+ lymphocyte infiltration into the tumor. Therefore, targeting PAK4 may improve the response of human PC to immunotherapy.
Collapse
Affiliation(s)
- Shengchen Su
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Yanping Wang
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Patrick Tamukong
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Michael J Quist
- Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Catherine S Grasso
- Cedars-Sinai Medical Center, Los Angeles, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| | - Hyung L Kim
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA, 90048, USA.
| |
Collapse
|
27
|
Dukel M, Fiskin K. Combination of PAKs inhibitors IPA-3 and PF-3758309 effectively suppresses colon carcinoma cell growth by perturbing DNA damage response. Int J Radiat Biol 2023; 99:340-354. [PMID: 35939342 DOI: 10.1080/09553002.2022.2110326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE PAKs proteins are speculated as new promising targets for cancer therapy due to their central role in many oncogenic pathways. Because PAKs proteins are very significant during carcinogenesis, we aimed to investigate the hypothesis that inhibition of PAKs with IPA-3 and PF-3758309 treatment could synergistically reduce colon carcinoma cell growth. MATERIALS AND METHODS The cytotoxic effects of both drugs were determined by a cell viability assay. Cell cycle and apoptosis were analyzed by flow cytometry. The effects of inhibitor drugs on marker genes of apoptosis, autophagy, cell cycle, and DNA damage were tested via immunoblotting. RESULTS AND CONCLUSIONS We found out the synergistic effect of these drugs in pair on five colon cancer cell lines. Combined treatment with IPA-3+PF-3758309 in SW620 and Colo 205 cells markedly suppressed colon formation and induced apoptosis, cell cycle arrest, and autophagy compared with treatment with each drug alone. Additionally, this combination sensitized colon cancer cells to ionizing radiation that resulted in inhibition of cell growth. SIGNIFICANCE Collectively, our findings show for the first time that cotreatment of IPA-3 with PF-3758309 exhibits superior inhibitory effects on colon carcinoma cell growth via inducing DNA damage-related cell death and also enforces a cell cycle arrest.
Collapse
Affiliation(s)
- Muzaffer Dukel
- Molecular Biology and Genetics Department, Faculty of Art and Science, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Kayahan Fiskin
- Biology Department, Faculty of Science, Akdeniz University, Antalya, Turkey
| |
Collapse
|
28
|
Santos JC, Profitós-Pelejà N, Sánchez-Vinces S, Roué G. RHOA Therapeutic Targeting in Hematological Cancers. Cells 2023; 12:cells12030433. [PMID: 36766776 PMCID: PMC9914237 DOI: 10.3390/cells12030433] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Primarily identified as an important regulator of cytoskeletal dynamics, the small GTPase Ras homolog gene family member A (RHOA) has been implicated in the transduction of signals regulating a broad range of cellular functions such as cell survival, migration, adhesion and proliferation. Deregulated activity of RHOA has been linked to the growth, progression and metastasis of various cancer types. Recent cancer genome-wide sequencing studies have unveiled both RHOA gain and loss-of-function mutations in primary leukemia/lymphoma, suggesting that this GTPase may exert tumor-promoting or tumor-suppressive functions depending on the cellular context. Based on these observations, RHOA signaling represents an attractive therapeutic target for the development of selective anticancer strategies. In this review, we will summarize the molecular mechanisms underlying RHOA GTPase functions in immune regulation and in the development of hematological neoplasms and will discuss the current strategies aimed at modulating RHOA functions in these diseases.
Collapse
Affiliation(s)
- Juliana Carvalho Santos
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Núria Profitós-Pelejà
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
| | - Salvador Sánchez-Vinces
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista 01246-100, São Paulo, Brazil
| | - Gaël Roué
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute (IJC), 08916 Badalona, Spain
- Correspondence: ; Tel.: +34-935572835
| |
Collapse
|
29
|
Vargas B, Boslett J, Yates N, Sluis-Cremer N. Mechanism by Which PF-3758309, a Pan Isoform Inhibitor of p21-Activated Kinases, Blocks Reactivation of HIV-1 Latency. Biomolecules 2023; 13:100. [PMID: 36671485 PMCID: PMC9855626 DOI: 10.3390/biom13010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/28/2022] [Accepted: 01/01/2023] [Indexed: 01/06/2023] Open
Abstract
The "block and lock" strategy is one approach that might elicit a sterilizing cure for HIV-1 infection. The "block" refers to a compound's ability to inhibit latent HIV-1 proviral transcription, while the "lock" refers to its capacity to induce permanent proviral silencing. We previously identified PF-3758309, a pan-isoform inhibitor of p21-activated kinases (PAKs), as a potent inhibitor of HIV-1 latency reversal. The goal of this study was to define the mechanism(s) involved. We found that both 24ST1NLESG cells (a cell line model of HIV-1 latency) and purified CD4+ naïve and central memory T cells express high levels of PAK2 and lower levels of PAK1 and PAK4. Knockdown of PAK1 or PAK2, but not PAK4, in 24ST1NLESG cells resulted in a modest, but statistically significant, decrease in the magnitude of HIV-1 latency reversal. Overexpression of PAK1 significantly increased the magnitude of latency reversal. A phospho-protein array analysis revealed that PF-3758309 down-regulates the NF-κB signaling pathway, which provides the most likely mechanism by which PF-3758309 inhibits latency reversal. Finally, we used cellular thermal shift assays combined with liquid chromatography and mass spectrometry to ascertain whether PF-3758309 off-target binding contributed to its activity. In 24ST1NLESG cells and in peripheral blood mononuclear cells, PF-3758309 bound to mitogen-activated protein kinase 1 and protein kinase A; however, knockdown of either of these kinases did not impact HIV-1 latency reversal. Collectively, our study suggests that PAK1 and PAK2 play a key role in the maintenance of HIV-1 latency.
Collapse
Affiliation(s)
- Benni Vargas
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - James Boslett
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Nathan Yates
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Chemistry, University of Pittsburgh School of Medicine; Pittsburgh, PA 15260, USA
| | - Nicolas Sluis-Cremer
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
30
|
The Inhibitory Mechanism of 7 H-Pyrrolo[2,3-d]pyrimidine Derivatives as Inhibitors of P21-Activated Kinase 4 through Molecular Dynamics Simulation. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010413. [PMID: 36615619 PMCID: PMC9823812 DOI: 10.3390/molecules28010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
The overexpression of p21-activated kinase 4 (PAK4) is associated with a variety of cancers. In this paper, the binding modes and inhibitory mechanisms of four 7H-pyrrolo[2,3-d]pyrimidine competitive inhibitors of PAK4 were investigated at the molecular level, mainly using molecular dynamics simulations and binding free energy calculations. The results show that the inhibitors had strong interactions with the hinge region, the β-sheets, and the residues with charged side chains around the 4-substituent. The terminal amino group of the inhibitor 5n was different from the other three, which could cause the enhancement of hydrogen bonds or electrostatic interactions formed with the surrounding residues. Thus, inhibitor 5n had the strongest inhibition capacity. The different halogen atoms on the 2-substituents of the inhibitors 5h, 5g, and 5e caused differences in the positions of the 2-benzene rings and affected the interactions of the hinge region. It also affected to some extent the orientations of the 4-imino groups and consequently their affinities for the surrounding charged residues. The combined results lead to the weakest inhibitory capacity of inhibitor 5e.
Collapse
|
31
|
Chow HY, Karchugina S, Groendyke BJ, Toenjes S, Hatcher J, Donovan KA, Fischer ES, Abalakov G, Faezov B, Dunbrack R, Gray NS, Chernoff J. Development and Utility of a PAK1-Selective Degrader. J Med Chem 2022; 65:15627-15641. [PMID: 36416208 PMCID: PMC10029980 DOI: 10.1021/acs.jmedchem.2c00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Overexpression of PAK1, a druggable kinase, is common in several malignancies, and inhibition of PAK1 by small molecules has been shown to impede the growth and survival of such cells. Potent inhibitors of PAKs 1-3 have been described, but clinical development has been hindered by recent findings that PAK2 function is required for normal cardiovascular function in adult mice. A unique allosteric PAK1-selective inhibitor, NVS-PAK1-1, provides a potential path forward, but has modest potency. Here, we report the development of BJG-05-039, a PAK1-selective degrader consisting of NVS-PAK1-1 conjugated to lenalidomide, a recruiter of the E3 ubiquitin ligase substrate adaptor Cereblon. BJG-05-039 induced selective degradation of PAK1 and displayed enhanced anti-proliferative effects relative to its parent compound in PAK1-dependent, but not PAK2-dependent, cell lines. Our findings suggest that selective PAK1 degradation may confer more potent pharmacological effects compared with catalytic inhibition and highlight the potential advantages of PAK1-targeted degradation.
Collapse
Affiliation(s)
- Hoi-Yee Chow
- Fox Chase Cancer Center, Philadelphia, PA 19111
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, China 610041
| | | | - Brian J. Groendyke
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Current address: Blueprint Medicines, Cambridge, MA 02139
| | - Sean Toenjes
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | - John Hatcher
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
| | - Katherine A. Donovan
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | - Eric S. Fischer
- Department of Cancer Biology; Dana Farber Cancer Institute, Boston, MA 02215
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02215
| | | | - Bulat Faezov
- Fox Chase Cancer Center, Philadelphia, PA 19111
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation, 420008
| | | | - Nathanael S. Gray
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305
| | | |
Collapse
|
32
|
Mao Y, Lee E, Yang X, Bae EJ, Jeon R, Park BH. Targeting p21-activated kinase 4 (PAK4) with pyrazolo[3,4- d]pyrimidine derivative SPA7012 attenuates hepatic ischaemia-reperfusion injury in mice. J Enzyme Inhib Med Chem 2022; 37:2133-2146. [PMID: 35920284 PMCID: PMC9354638 DOI: 10.1080/14756366.2022.2106478] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
p21-Activated kinase 4 (PAK4), one of the serine/threonine kinases activated by Rho-family GTPases, has been widely studied as an oncogenic protein that is overexpressed in many types of cancers. In our recent study, PAK4 upregulation was observed in mice exhibiting hepatic ischaemia-reperfusion (I/R) and in liver transplantation patients. Liver I/R injury was also attenuated in Pak4 KO mice. Herein, we report a novel series of pyrazolo[3,4-d]pyrimidine derivatives of type I ½ PAK4 inhibitors. The most potent compound SPA7012 was evaluated to determine the pharmacological potential of PAK4 inhibitor in I/R injury in mice. Mice with I/R injury showed typical patterns of liver damage, as demonstrated by increases in serum levels of aminotransferases and proinflammatory cytokines, hepatocellular necrosis and apoptosis, and inflammatory cell infiltration, relative to sham mice. Conversely, intraperitoneal administration of SPA7012 dramatically attenuated biochemical and histopathologic changes. Mechanistically, stabilisation of nuclear factor-erythroid 2-related factor 2 (Nrf2), a master regulator of anti-oxidative response, was observed following SPA7012 treatment. SPA7012 treatment in primary hepatocytes also attenuated hypoxia-reoxygenation-induced apoptotic cell death and inflammation. Together, these results provide experimental evidence supporting the use of PAK4 inhibitors for alleviation of I/R-induced liver damage.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Eun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Xiaohui Yang
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Raok Jeon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Research Institute for Endocrine Sciences, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
33
|
Chetty AK, Ha BH, Boggon TJ. Rho family GTPase signaling through type II p21-activated kinases. Cell Mol Life Sci 2022; 79:598. [PMID: 36401658 PMCID: PMC10105373 DOI: 10.1007/s00018-022-04618-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/28/2022] [Indexed: 11/21/2022]
Abstract
Signaling from the Rho family small GTPases controls a wide range of signaling outcomes. Key among the downstream effectors for many of the Rho GTPases are the p21-activated kinases, or PAK group. The PAK family comprises two types, the type I PAKs (PAK1, 2 and 3) and the type II PAKs (PAK4, 5 and 6), which have distinct structures and mechanisms of regulation. In this review, we discuss signal transduction from Rho GTPases with a focus on the type II PAKs. We discuss the role of PAKs in signal transduction pathways and selectivity of Rho GTPases for PAK family members. We consider the less well studied of the Rho GTPases and their PAK-related signaling. We then discuss the molecular basis for kinase domain recognition of substrates and for regulation of signaling. We conclude with a discussion of the role of PAKs in cross talk between Rho family small GTPases and the roles of PAKs in disease.
Collapse
Affiliation(s)
- Ashwin K Chetty
- Yale College, New Haven, CT, 06520, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Byung Hak Ha
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Department of Pharmacology, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale University, 333 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
34
|
Inka2, a novel Pak4 inhibitor, regulates actin dynamics in neuronal development. PLoS Genet 2022; 18:e1010438. [PMID: 36301793 PMCID: PMC9612522 DOI: 10.1371/journal.pgen.1010438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/21/2022] [Indexed: 11/05/2022] Open
Abstract
The actin filament is a fundamental part of the cytoskeleton defining cell morphology and regulating various physiological processes, including filopodia formation and dendritic spinogenesis of neurons. Serine/threonine-protein kinase Pak4, an essential effector, links Rho GTPases to control actin polymerization. Previously, we identified the Inka2 gene, a novel mammalian protein exhibiting sequence similarity to Inka1, which serves as a possible inhibitor for Pak4. Although Inka2 is dominantly expressed in the nervous system and involved in focal-adhesion dynamics, its molecular role remains unclear. Here, we found that Inka2-iBox directly binds to Pak4 catalytic domain to suppress actin polymerization. Inka2 promoted actin depolymerization and inhibited the formation of cellular protrusion caused by Pak4 activation. We further generated the conditional knockout mice of the Inka2 gene. The beta-galactosidase reporter indicated the preferential Inka2 expression in the dorsal forebrain neurons. Cortical pyramidal neurons of Inka2-/- mice exhibited decreased density and aberrant morphology of dendritic spines with marked activation/phosphorylation of downstream molecules of Pak4 signal cascade, including LIMK and Cofilin. These results uncovered the unexpected function of endogenous Pak4 inhibitor in neurons. Unlike Inka1, Inka2 is a critical mediator for actin reorganization required for dendritic spine development. Actin filaments are an essential part of the cytoskeleton defining cell morphology and regulating various cellular processes, such as cell migration and synapse formation in the brain. Actin polymerization is controlled by the kinase activity of the Pak4 signaling cascade, including LIMK and Cofilin. Previously, we identified the Inka2 gene, which is strongly expressed in the mammalian central nervous system and a similar sequence as Inka1. Inka1 was reported to serve as a Pak4 inhibitor in cancer cell lines; however, the physiological function of Inka2 is unclear. In this study, we found that (i) Inka2 overexpression inhibits the formation of cell-protrusion caused by Pak4 activation; (ii) Inka2 directly binds to the catalytic domain of Pak4 to inhibit intracellular actin polymerization; (iii) Inka2 is specifically expressed in neurons in the forebrain region, including the cerebral cortex and hippocampus that are known to be essential for brain plasticity, such as learning and memory; and (iv) cortical neurons of Inka2-deficient mice showed decreased synapse formation and abnormal spine morphology, probably due to the marked phosphorylation of LIMK and Cofilin. These results indicate that Inka2 is an endogenous Pak4 inhibitor in neurons required for normal synapse formation through the modulation of actin reorganization.
Collapse
|
35
|
Abril-Rodriguez G, Torrejon DY, Karin D, Campbell KM, Medina E, Saco JD, Galvez M, Champhekar AS, Perez-Garcilazo I, Baselga-Carretero I, Singh J, Comin-Anduix B, Puig-Saus C, Ribas A. Remodeling of the tumor microenvironment through PAK4 inhibition sensitizes tumors to immune checkpoint blockade. CANCER RESEARCH COMMUNICATIONS 2022; 2:1214-1228. [PMID: 36588582 PMCID: PMC9799984 DOI: 10.1158/2767-9764.crc-21-0133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/14/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
PAK4 inhibition can sensitize tumors to immune checkpoint blockade (ICB) therapy, however, the underlying mechanisms remain unclear. We report that PAK4 inhibition reverses immune cell exclusion by increasing the infiltration of CD8 T cells and CD103+ dendritic cells (DCs), a specific type of DCs that excel at cross-presenting tumor antigens and constitute a source of CXCL10. Interestingly, in melanoma clinical datasets, PAK4 expression levels negatively correlate with the presence of CCL21, the ligand for CCR7 expressed in CD103+ DCs. Furthermore, we extensively characterized the transcriptome of PAK4 knock out (KO) tumors, in vitro and in vivo, and established the importance of PAK4 expression in the regulation of the extracellular matrix, which can facilitate immune cell infiltration. Comparison between PAK4 wild type (WT) and KO anti-PD-1 treated tumors revealed how PAK4 deletion sensitizes tumors to ICB from a transcriptomic perspective. In addition, we validated genetically and pharmacologically that inhibition of PAK4 kinase activity is sufficient to improve anti-tumor efficacy of anti-PD-1 blockade in multiple melanoma mouse models. Therefore, this study provides novel insights into the mechanism of action of PAK4 inhibition and provides the foundation for a new treatment strategy that aims to overcome resistance to PD-1 blockade by combining anti-PD-1 with a small molecule PAK4 kinase inhibitor.
Collapse
Affiliation(s)
- Gabriel Abril-Rodriguez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Davis Y. Torrejon
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Daniel Karin
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
| | - Katie M. Campbell
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Egmidio Medina
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Justin D. Saco
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Mildred Galvez
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Ameya S. Champhekar
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Ivan Perez-Garcilazo
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Ignacio Baselga-Carretero
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
| | - Jas Singh
- Arcus Biosciences, Inc., Hayward, California
| | - Begoña Comin-Anduix
- Department of Surgery, Division of Surgical Oncology, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
| | - Cristina Puig-Saus
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California, Los Angeles (UCLA), Los Angeles, California
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California
- Department of Surgery, Division of Surgical Oncology, UCLA, Los Angeles, California
- Jonsson Comprehensive Cancer Center, Los Angeles, California
- Parker Institute for Cancer Immunotherapy, San Francisco, California
| |
Collapse
|
36
|
Wei Y, Xiang H, Zhang W. Review of various NAMPT inhibitors for the treatment of cancer. Front Pharmacol 2022; 13:970553. [PMID: 36160449 PMCID: PMC9490061 DOI: 10.3389/fphar.2022.970553] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate-limiting enzyme in the NAD salvage pathway of mammalian cells and is overexpressed in numerous types of cancers. These include breast cancer, ovarian cancer, prostate cancer, gastric cancer, colorectal cancer, glioma, and b-cell lymphoma. NAMPT is also known to impact the NAD and NADPH pool. Research has demonstrated that NAMPT can be inhibited. NAMPT inhibitors are diverse anticancer medicines with significant anti-tumor efficacy in ex vivo tumor models. A few notable NAMPT specific inhibitors which have been produced include FK866, CHS828, and OT-82. Despite encouraging preclinical evidence of the potential utility of NAMPT inhibitors in cancer models, early clinical trials have yielded only modest results, necessitating the adaptation of additional tactics to boost efficacy. This paper examines a number of cancer treatment methods which target NAMPT, including the usage of individual inhibitors, pharmacological combinations, dual inhibitors, and ADCs, all of which have demonstrated promising experimental or clinical results. We intend to contribute further ideas regarding the usage and development of NAMPT inhibitors in clinical therapy to advance the field of research on this intriguing target.
Collapse
Affiliation(s)
- Yichen Wei
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Xiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Wenqiu Zhang,
| |
Collapse
|
37
|
Li Y, Lu Q, Xie C, Yu Y, Zhang A. Recent advances on development of p21-activated kinase 4 inhibitors as anti-tumor agents. Front Pharmacol 2022; 13:956220. [PMID: 36105226 PMCID: PMC9465411 DOI: 10.3389/fphar.2022.956220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/20/2022] [Indexed: 12/05/2022] Open
Abstract
The p21-activated kinase 4 (PAK4) is a member of the PAKs family. It is overexpressed in multiple tumor tissues. Pharmacological inhibition of PAK4 attenuates proliferation, migration, and invasion of cancer cells. Recent studies revealed that inhibition of PAK4 sensitizes immunotherapy which has been extensively exploited as a new strategy to treat cancer. In the past few years, a large number of PAK4 inhibitors have been reported. Of note, the allosteric inhibitor KPT-9274 has been tested in phase Ⅰ clinic trials. Herein, we provide an update on recent research progress on the PAK4 mediated signaling pathway and highlight the development of the PAK4 small molecular inhibitors in recent 5 years. Meanwhile, challenges, limitations, and future developmental directions will be discussed as well.
Collapse
Affiliation(s)
- Yang Li
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Chenghu Xie
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Yu
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Ao Zhang
- Pharm-X Center, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Ao Zhang,
| |
Collapse
|
38
|
Mao Y, Han CY, Hao L, Lee Y, Son JB, Choi H, Lee MR, Yang JD, Hong SK, Suh KS, Yu HC, Kim ND, Bae EJ, Park BH. p21-activated kinase 4 inhibition protects against liver ischemia/reperfusion injury: Role of nuclear factor erythroid 2-related factor 2 phosphorylation. Hepatology 2022; 76:345-356. [PMID: 35108418 DOI: 10.1002/hep.32384] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND AIMS p21-activated kinase 4 (PAK4), an oncogenic protein, has emerged as a promising target for anticancer drug development. Its role in oxidative stress conditions, however, remains elusive. We investigated the effects of PAK4 signaling on hepatic ischemia/reperfusion (I/R) injury. APPROACH AND RESULTS Hepatocyte- and myeloid-specific Pak4 knockout (KO) mice and their littermate controls were subjected to a partial hepatic I/R (HIR) injury. We manipulated the catalytic activity of PAK4, either through genetic engineering (gene knockout, overexpression of wild-type [WT] or dominant-negative kinase) or pharmacological inhibitor, coupled with a readout of nuclear factor erythroid 2-related factor 2 (Nrf2) activity, to test the potential function of PAK4 on HIR injury. PAK4 expression was markedly up-regulated in liver during HIR injury in mice and humans. Deletion of PAK4 in hepatocytes, but not in myeloid cells, ameliorated liver damages, as demonstrated in the decrease in hepatocellular necrosis and inflammatory responses. Conversely, the forced expression of WT PAK4 aggravated the pathological changes. PAK4 directly phosphorylated Nrf2 at T369, and it led to its nuclear export and proteasomal degradation, all of which impaired antioxidant responses in hepatocytes. Nrf2 silencing in liver abolished the protective effects of PAK4 deficiency. A PAK4 inhibitor protected mice from HIR injury. CONCLUSIONS PAK4 phosphorylates Nrf2 and suppresses its transcriptional activity. Genetic or pharmacological suppression of PAK4 alleviates HIR injury. Thus, PAK4 inhibition may represent a promising intervention against I/R-induced liver injury.
Collapse
Affiliation(s)
- Yuancheng Mao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Chang Yeob Han
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Lihua Hao
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | | - Mi Rin Lee
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Jae Do Yang
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suk Kyun Hong
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Chul Yu
- Department of Surgery, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | | | - Eun Ju Bae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| |
Collapse
|
39
|
Blankenstein LJ, Cordes N, Kunz-Schughart LA, Vehlow A. Targeting of p21-Activated Kinase 4 Radiosensitizes Glioblastoma Cells via Impaired DNA Repair. Cells 2022; 11:cells11142133. [PMID: 35883575 PMCID: PMC9316146 DOI: 10.3390/cells11142133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma is a devastating malignant disease with poor patient overall survival. Strong invasiveness and resistance to radiochemotherapy have challenged the identification of molecular targets that can finally improve treatment outcomes. This study evaluates the influence of all six known p21-activated kinase (PAK) protein family members on the invasion capacity and radio-response of glioblastoma cells by employing a siRNA-based screen. In a panel of human glioblastoma cell models, we identified PAK4 as the main PAK isoform regulating invasion and clonogenic survival upon irradiation and demonstrated the radiosensitizing potential of PAK4 inhibition. Mechanistically, we show that PAK4 depletion and pharmacological inhibition enhanced the number of irradiation-induced DNA double-strand breaks and reduced the expression levels of various DNA repair proteins. In conclusion, our data suggest PAK4 as a putative target for radiosensitization and impairing DNA repair in glioblastoma, deserving further scrutiny in extended combinatorial treatment testing.
Collapse
Affiliation(s)
- Leon J. Blankenstein
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nils Cordes
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Leoni A. Kunz-Schughart
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Anne Vehlow
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany; (L.J.B.); (N.C.); (L.A.K.-S.)
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
- Correspondence:
| |
Collapse
|
40
|
Schiavi-Ehrenhaus LJ, Romarowski A, Jabloñski M, Krapf D, Luque GM, Buffone MG. The early molecular events leading to COFILIN phosphorylation during mouse sperm capacitation are essential for acrosomal exocytosis. J Biol Chem 2022; 298:101988. [PMID: 35487245 PMCID: PMC9142561 DOI: 10.1016/j.jbc.2022.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022] Open
Abstract
The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.
Collapse
Affiliation(s)
- Liza J Schiavi-Ehrenhaus
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Ana Romarowski
- Department of Veterinary and Animal Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Martina Jabloñski
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina
| | - Darío Krapf
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Guillermina M Luque
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| | - Mariano G Buffone
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (IBYME-CONICET), Buenos Aires, Argentina.
| |
Collapse
|
41
|
Best M, Gale ME, Wells CM. PAK-dependent regulation of actin dynamics in breast cancer cells. Int J Biochem Cell Biol 2022; 146:106207. [PMID: 35385780 PMCID: PMC9941713 DOI: 10.1016/j.biocel.2022.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/24/2022]
Abstract
Metastatic Breast Cancer has a poor 25% survival rate and currently there are no clinical therapeutics which target metastasis. 'Migrastatics' are a new drug class which target migration pathway effector proteins in order to inhibit cancer cell invasion and metastasis. The p21-activated kinases (PAKs) are essential drivers of breast cancer cell migration and invasion through their regulation of actin cytoskeletal dynamics. Therefore, the PAKs present as attractive migrastatic candidates. Here we review how PAKs regulate distinct aspects of breast cancer actin dynamics focussing on cytoskeletal reorganisation, cell:matrix adhesion, actomyosin contractility and degradative invasion. Lastly, we discuss the introduction of PAK migrastatics into the well-honed breast cancer clinical pipeline.
Collapse
Affiliation(s)
- Marianne Best
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK.
| | - Madeline E. Gale
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,North West Thames Regional Genetics Service, Northwick Park Hospital, London UK
| | - Claire M. Wells
- School of Cancer and Pharmaceutical Sciences, Kings College London, London UK,Corresponding author.
| |
Collapse
|
42
|
Wang C, Xia J, Lei Y, Lu R, Zhang M, Lv H, Hong Q, Lu T, Chen Y, Li H. Synthesis and biological evaluation of 7H-pyrrolo [2,3-d] pyrimidine derivatives as potential p21-activated kinase 4 (PAK4) inhibitors. Bioorg Med Chem 2022; 60:116700. [PMID: 35272236 DOI: 10.1016/j.bmc.2022.116700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 11/02/2022]
Abstract
PAK4 has been validated as a crucial effector of various signal pathways and play an important role in driving tumor progression. Here, we developed a series of 7H-pyrrolo [2,3-d] pyrimidine derivatives as PAK4 inhibitors. Compounds 5n and 5o showed higher enzymatic inhibitory activities (IC50 = 2.7 and 20.2 nM, respectively) and potent activity (IC50 = 7.8 and 38.3 nM, respectively) against MV4-11 cell line. Further flow cytometry assay revealed that the compound 5n can arrest MV4-11 cells at G0/G1 phase and induce cell apoptosis. Molecular mechanism study indicated that compound 5n regulated the phosphorylation of PAK4 in vitro. The docking study supported that compound 5n binds to PAK4 through various hydrogen bonding interactions and hydrophobic interactions. Thus, compound 5n represents a promising lead for the discovery of PAK4 directed therapeutic agents and may be considered for further drug development.
Collapse
Affiliation(s)
- Cong Wang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Jiawei Xia
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Yan Lei
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Rui Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Mingliang Zhang
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - He Lv
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Qianqian Hong
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hongmei Li
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
43
|
Deng H, Xiao B, Huang Y, Weng K, Chen J, Li K, Wu H, Luo S, Hao W. The Combined Use of Orf Virus and PAK4 Inhibitor Exerts Anti-tumor Effect in Breast Cancer. Front Microbiol 2022; 13:845259. [PMID: 35401439 PMCID: PMC8984157 DOI: 10.3389/fmicb.2022.845259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The parapoxvirus Orf virus (ORFV) has long been recognized as one of the valuable vectors in researches of oncolytic virus. In order to develop a potential therapeutic strategy for breast cancer based on the oncolytic virotherapy via ORFV, firstly we explore the oncolytic effects of ORFV. Our research showed that ORFV exerts anti-tumor effects in vitro by inducing breast cancer cell G2/M phase arrest and cell apoptosis. In vivo experiments were carried out, in which we treated 4T1 tumor-bearing BALB/C mice via intratumoral injection of ORFV. ORFV can exert anti-tumor activity by regulating tumor microenvironment (TME) and inducing a host immune response plus directly oncolytic effect. The CRISPR-Cas9 knockout library targeting 507 kinases was used to screen out PAK4, which is beneficial to the anti-tumor effect of ORFV on breast cancer cells. PF-3758309 is a potent PAK4-targeted inhibitor. Co-using of ORFV and PF-3758309 as a combination treatment produces its anti-tumor effects through inhibition of cell viability, induction of apoptosis and suppression of cell migration and invasion in vitro. The results of in vivo experiments showed that the tumor growth of mice in the combination treatment group was significantly inhibited, which proved that the combination treatment exerts an effective anti-tumor effect in vivo. In summary, we have clarified the oncolytic effect of ORFV on breast cancer, and found that the combination of ORFV and PAK4 inhibitor can effectively improve the oncolytic effect of ORFV. We hope our research could provide a new idea for the development of new treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Hao Deng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Bin Xiao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Qingyuan, China
| | - Yinger Huang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Kongyan Weng
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
- Department of Transfusion Medicine, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jialing Chen
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Hongfeng Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
| | - Shuhong Luo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Department of Laboratory Medicine, School of Medicine, Foshan University, Foshan, China
- *Correspondence: Shuhong Luo,
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Key Laboratory of Antibody Engineering of Guangdong Higher Education Institutes, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China
- Wenbo Hao,
| |
Collapse
|
44
|
Yoon HR, Chai CC, Kim CH, Kang NS. A Study on the Effect of the Substituent against PAK4 Inhibition Using In Silico Methods. Int J Mol Sci 2022; 23:ijms23063337. [PMID: 35328758 PMCID: PMC8953563 DOI: 10.3390/ijms23063337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
The intrinsic inductive properties of atoms or functional groups depend on the chemical properties of either electron-withdrawing groups (EWGs) or electron-donating groups (EDGs). This study aimed to evaluate in silico methods to determine whether changes in chemical properties of the compound by single atomic substitution affect the biological activity of target proteins and whether the results depend on the properties of the functional groups. We found an imidazo[4,5-b]pyridine-based PAK4 inhibitor, compound 1, as an initial hit compound with the well-defined binding mode for PAK4. In this study, we used both experimental and in silico methods to investigate the effect of atomic substitution on biological activity to optimize the initial hit compound. In biological assays, in the case of EWG, as the size of the halogen atom became smaller and the electronegativity increased, the biological activity IC50 value ranged from 5150 nM to inactive; in the case of EDG, biological activity was inactive. Furthermore, we analyzed the interactions of PAK4 with compounds, focusing on the hinge region residues, L398 and E399, and gatekeeper residues, M395 and K350, of the PAK4 protein using molecular docking studies and fragment molecular orbital (FMO) methods to determine the differences between the effect of EWG and EDG on the activity of target proteins. These results of the docking score and binding energy did not explain the differences in biological activity. However, the pair-interaction energy obtained from the results of the FMO method indicated that there was a difference in the interaction energy between the EWG and EDG in the hinge region residues, L398 and E399, as well as in M395 and K350. The two groups with different properties exhibited opposite electrostatic energy and charge transfer energy between L398 and E399. Additionally, we investigated the electron distribution of the parts interacting with the hinge region by visualizing the molecular electrostatic potential (MEP) surface of the compounds. In conclusion, we described the properties of functional groups that affect biological activity using an in silico method, FMO.
Collapse
Affiliation(s)
- Hye Ree Yoon
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
| | - Chong Chul Chai
- Pharos iBio Co., Ltd. #1408, 38 Heungan-daero 427, Dongan-gu, Anyang-si 14059, Korea; (C.C.C.); (C.H.K.)
| | - Cheol Hee Kim
- Pharos iBio Co., Ltd. #1408, 38 Heungan-daero 427, Dongan-gu, Anyang-si 14059, Korea; (C.C.C.); (C.H.K.)
| | - Nam Sook Kang
- Graduate School of New Drug Discovery and Development, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea;
- Correspondence: ; Tel.: +82-42-821-8626
| |
Collapse
|
45
|
Cogo S, Ho FY, Tosoni E, Tomkins JE, Tessari I, Iannotta L, Montine TJ, Manzoni C, Lewis PA, Bubacco L, Chartier Harlin MC, Taymans JM, Kortholt A, Nichols J, Cendron L, Civiero L, Greggio E. The Roc domain of LRRK2 as a hub for protein-protein interactions: a focus on PAK6 and its impact on RAB phosphorylation. Brain Res 2022; 1778:147781. [PMID: 35016853 DOI: 10.1016/j.brainres.2022.147781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 12/21/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has taken center stage in Parkinson's disease (PD) research as mutations cause familial PD and more common variants increase lifetime risk for disease. One unique feature in LRRK2 is the coexistence of GTPase/Roc (Ras of complex) and kinase catalytic functions, bridged by a COR (C-terminal Of Roc) platform for dimerization. Multiple PD mutations are located within the Roc/GTPase domain and concomitantly lead to defective GTPase activity and augmented kinase activity in cells, supporting a crosstalk between GTPase and kinase domains. In addition, biochemical and structural data highlight the importance of Roc as a molecular switch modulating LRRK2 monomer-to-dimer equilibrium and building the interface for interaction with binding partners. Here we review the effects of PD Roc mutations on LRRK2 function and discuss the importance of Roc as a hub for multiple molecular interactions relevant for the regulation of cytoskeletal dynamics and intracellular trafficking pathways. Among the well-characterized Roc interactors, we focused on the cytoskeletal-related kinase p21-activated kinase 6 (PAK6). We report the affinity between LRRK2-Roc and PAK6 measured by microscale thermophoresis (MST). We further show that PAK6 can modulate LRRK2-mediated phosphorylation of RAB substrates in the presence of LRRK2 wild-type (WT) or the PD G2019S kinase mutant but not when the PD Roc mutation R1441G is expressed. These findings support a mechanism whereby mutations in Roc might affect LRRK2 activity through impaired protein-protein interaction in the cell.
Collapse
Affiliation(s)
- Susanna Cogo
- Department of Biology, University of Padova, Italy.
| | - Franz Y Ho
- Department of Cell Biochemistry, University of Groningen, The Netherlands
| | - Elena Tosoni
- Department of Biology, University of Padova, Italy
| | | | | | | | - Thomas J Montine
- Department of Pathology, Stanford University School of Medicine, USA
| | - Claudia Manzoni
- Department of Pharmacology, University College London School of Pharmacy, UK
| | - Patrick A Lewis
- Royal Veterinary College, London, UK; Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Luigi Bubacco
- Department of Biology, University of Padova, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy
| | | | - Jean-Marc Taymans
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - LilNCog - Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, The Netherlands
| | - Jeremy Nichols
- Department of Pathology, Stanford University School of Medicine, USA
| | | | - Laura Civiero
- Department of Biology, University of Padova, Italy; IRCCS San Camillo Hospital, Venice, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy
| | - Elisa Greggio
- Department of Biology, University of Padova, Italy; Centro Studi per la Neurodegenerazione CESNE, University of Padova, Italy.
| |
Collapse
|
46
|
Song P, Zhao F, Li D, Qu J, Yao M, Su Y, Wang H, Zhou M, Wang Y, Gao Y, Li F, Zhao D, Zhang F, Rao Y, Xia M, Li H, Wang J, Cheng M. Synthesis of selective PAK4 inhibitors for lung metastasis of lung cancer and melanoma cells. Acta Pharm Sin B 2022; 12:2905-2922. [PMID: 35755272 PMCID: PMC9214071 DOI: 10.1016/j.apsb.2022.02.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/26/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The p21 activated kinase 4 (PAK4) is serine/threonine protein kinase that is critical for cancer progression. Guided by X-ray crystallography and structure-based optimization, we report a novel subseries of C-3-substituted 6-ethynyl-1H-indole derivatives that display high potential and specificity towards group II PAKs. Among these inhibitors, compound 55 exhibited excellent inhibitory activity and kinase selectivity, displayed superior anti-migratory and anti-invasive properties against the lung cancer cell line A549 and the melanoma cell line B16. Compound 55 exhibited potent in vivo antitumor metastatic efficacy, with over 80% and 90% inhibition of lung metastasis in A549 or B16-BL6 lung metastasis models, respectively. Further mechanistic studies demonstrated that compound 55 mitigated TGF-β1-induced epithelial-mesenchymal transition (EMT).
Collapse
|
47
|
p21-Activated kinases as promising therapeutic targets in hematological malignancies. Leukemia 2022; 36:315-326. [PMID: 34697424 DOI: 10.1038/s41375-021-01451-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 01/12/2023]
Abstract
The p21-Activated Kinases (PAKs) are a family of six serine/threonine kinases that were originally identified as downstream effectors of the Rho GTPases Cdc42 and Rac. Since the first PAK was discovered in 1994, studies have revealed their fundamental and biological importance in the development of physiological systems. Within the cell, PAKs also play significant roles in regulating essential cellular processes such as cytoskeletal dynamics, gene expression, cell survival, and cell cycle progression. These processes are often deregulated in numerous cancers when different PAKs are overexpressed or amplified at the chromosomal level. Furthermore, PAKs modulate multiple oncogenic signaling pathways which facilitate apoptosis escape, uncontrolled proliferation, and drug resistance. There is growing insight into the critical roles of PAKs in regulating steady-state hematopoiesis, including the properties of hematopoietic stem cells (HSC), and the initiation and progression of hematological malignancies. This review will focus on the most recent studies that provide experimental evidence showing how specific PAKs regulate the properties of leukemic stem cells (LSCs) and drug-resistant cells to initiate and maintain hematological malignancies. The current understanding of the molecular and cellular mechanisms by which the PAKs operate in specific human leukemia or lymphomas will be discussed. From a translational point of view, PAKs have been suggested to be critical therapeutic targets and potential prognosis markers; thus, this review will also discuss current therapeutic strategies against hematological malignancies using existing small-molecule PAK inhibitors, as well as promising combination treatments, to sensitize drug-resistant cells to conventional therapies. The challenges of toxicity and non-specific targeting associated with some PAK inhibitors, as well as how future approaches for PAK inhibition to overcome these limitations, will also be addressed.
Collapse
|
48
|
CDK15 promotes colorectal cancer progression via phosphorylating PAK4 and regulating β-catenin/ MEK-ERK signaling pathway. Cell Death Differ 2022; 29:14-27. [PMID: 34262144 PMCID: PMC8738751 DOI: 10.1038/s41418-021-00828-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 06/23/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed cancer and the second leading cause of cancer-related deaths. However, there are few effective therapeutic targets for CRC patients. Here, we found that CDK15 was highly expressed in human CRC and negatively correlated with patient prognosis and overall survival in tissue microarray. Knockdown of CDK15 suppressed cell proliferation and anchorage-independent growth of CRC cells and inhibited tumor growth in cell line-derived xenograft (CDX) model. Importantly, knockout of CDK15 in mice retarded AOM/DSS-induced tumorigenesis and CDK15 silencing by lentivirus significantly suppressed tumor progression in patient-derived xenograft (PDX) model. Mechanistically, CDK15 could bind PAK4 and phosphorylate PAK4 at S291 site. Phosphorylation of PAK4 at the S291 residue promoted cell proliferation and anchorage-independent growth through β-catenin/c-Myc, MEK/ERK signaling pathway in CRC. Moreover, inhibition of PAK4 reversed the tumorigenic function of CDK15 in CRC cells and pharmacological targeting PAK4 suppressed tumor growth in PDX models. Thus, our data reveal the pivotal role of CDK15 in CRC progression and demonstrate CDK15 promotes CRC tumorigenesis by phosphorylating PAK4. Hence, the CDK15-PAK4 axis may serve as a novel therapeutic target for CRC.
Collapse
|
49
|
PAK4 and NAMPT as Novel Therapeutic Targets in Diffuse Large B-Cell Lymphoma, Follicular Lymphoma, and Mantle Cell Lymphoma. Cancers (Basel) 2021; 14:cancers14010160. [PMID: 35008323 PMCID: PMC8750170 DOI: 10.3390/cancers14010160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Non-Hodgkin’s lymphomas (NHL) are cancers of the white blood cells. While some NHL subtypes, such as Diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), grow and spread aggressively, others, like follicular lymphoma (FL), are indolent in nature. Irrespective of how fast they grow, all NHL subtypes can spread to other organs in the body if not treated. In this study, we have demonstrated that the targeted inhibition of p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) in different NHL subtypes by a novel, orally bioavailable, dual inhibitor KPT-9274 can lead to energy depletion, inhibition of cell proliferation, and ultimately apoptosis. KPT-9274 treatment shows potent anti-tumor effects in DLBCL and MCL subcutaneous xenograft models and enhances mice survival in a systemic FL model. Therefore, this study demonstrates the potential of targeting PAK4 and NAMPT by a small molecule inhibitor KPT-9274 for NHL therapy. Abstract Diffuse large B-cell lymphoma (DLBCL), grade 3b follicular lymphoma (FL), and mantle cell lymphoma (MCL) are aggressive non-Hodgkin’s lymphomas (NHL). Cure rates are suboptimal and novel treatment strategies are needed to improve outcomes. Here, we show that p21-activated kinase 4 (PAK4) and nicotinamide phosphoribosyl transferase (NAMPT) is critical for lymphoma subsistence. Dual targeting of PAK4-NAMPT by the Phase I small molecule KPT-9274 suppressed cell proliferation in DLBCL, FL, and MCL. Growth inhibition was concurrent with apoptosis induction alongside activation of pro-apoptotic proteins and reduced pro-survival markers. We observed NAD suppression, ATP reduction, and consequent cellular metabolic collapse in lymphoma cells due to KPT-9274 treatment. KPT-9274 in combination with standard-of-care chemotherapeutics led to superior inhibition of cell proliferation. In vivo, KPT-9274 could markedly suppress the growth of WSU-DLCL2 (DLBCL), Z-138, and JeKo-1 (MCL) sub-cutaneous xenografts, and a remarkable increase in host life span was shown, with a 50% cure of a systemic WSU-FSCCL (FL) model. Residual tumor analysis confirmed a reduction in total and phosphorylated PAK4 and activation of the pro-apoptotic cascade. This study, using various preclinical experimental models, demonstrates the therapeutic potential of targeting PAK4-NAMPT in DLBCL, FL, and MCL. The orally bioavailable, safe, and efficacious PAK4-NAMPT dual inhibitor KPT-9274 warrants further clinical investigation.
Collapse
|
50
|
Synthetic Heterocyclic Derivatives as Kinase Inhibitors Tested for the Treatment of Neuroblastoma. Molecules 2021; 26:molecules26237069. [PMID: 34885651 PMCID: PMC8658969 DOI: 10.3390/molecules26237069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/21/2022] Open
Abstract
In the last few years, small molecules endowed with different heterocyclic scaffolds have been developed as kinase inhibitors. Some of them are being tested at preclinical or clinical levels for the potential treatment of neuroblastoma (NB). This disease is the most common extracranial solid tumor in childhood and is responsible for 10% to 15% of pediatric cancer deaths. Despite the availability of some treatments, including the use of very toxic cytotoxic chemotherapeutic agents, high-risk (HR)-NB patients still have a poor prognosis and a survival rate below 50%. For these reasons, new pharmacological options are urgently needed. This review focuses on synthetic heterocyclic compounds published in the last five years, which showed at least some activity on this severe disease and act as kinase inhibitors. The specific mechanism of action, selectivity, and biological activity of these drug candidates are described, when established. Moreover, the most remarkable clinical trials are reported. Importantly, kinase inhibitors approved for other diseases have shown to be active and endowed with lower toxicity compared to conventional cytotoxic agents. The data collected in this article can be particularly useful for the researchers working in this area.
Collapse
|