1
|
Fukuda Y, Lintuluoto M, Kurihara K, Hasegawa K, Inoue T, Tamada T. Overlooked Hydrogen Bond in a Blue Copper Protein Uncovered by Neutron and Sub-Ångström Resolution X-ray Crystallography. Biochemistry 2024; 63:339-347. [PMID: 38232298 DOI: 10.1021/acs.biochem.3c00517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Metalloproteins play fundamental roles in organisms and are utilized as starting points for the directed evolution of artificial enzymes. Knowing the strategies of metalloproteins, by which they exquisitely tune their activities, will not only lead to an understanding of biochemical phenomena but also contribute to various applications. The blue copper protein (BCP) has been a renowned model system to understand the biology, chemistry, and physics of metalloproteins. Pseudoazurin (Paz), a blue copper protein, mediates electron transfer in the bacterial anaerobic respiratory chain. Its redox potential is finely tuned by hydrogen (H) bond networks; however, difficulty in visualizing H atom positions in the protein hinders the detailed understanding of the protein's structure-function relationship. We here used neutron and sub-ångström resolution X-ray crystallography to directly observe H atoms in Paz. The 0.86-Å-resolution X-ray structure shows that the peptide bond between Pro80 and the His81 Cu ligand deviates from the ideal planar structure. The 1.9-Å-resolution neutron structure confirms a long-overlooked H bond formed by the amide of His81 and the S atom of another Cu ligand Cys78. Quantum mechanics/molecular mechanics calculations show that this H bond increases the redox potential of the Cu site and explains the experimental results well. Our study demonstrates the potential of neutron and sub-ångström resolution X-ray crystallography to understand the chemistry of metalloproteins at atomic and quantum levels.
Collapse
Affiliation(s)
- Yohta Fukuda
- Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita 565-0871, Osaka, Japan
| | - Masami Lintuluoto
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Kurihara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Tokai 319-1106, Ibaraki, Japan
| | - Kazuya Hasegawa
- Structural Biology Division, Japan Synchrotron Radiation Research Institute, Sayo 679-5198, Hyogo, Japan
| | - Tsuyoshi Inoue
- Graduate School of Pharmaceutical Science, Osaka University, Suita 565-0871, Osaka, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Chiba, Japan
- Graduate School of Science and Engineering, Chiba University, Chiba 263-8552, Chiba, Japan
| |
Collapse
|
2
|
Hanazono Y, Hirano Y, Tamada T, Miki K. Description of peptide bond planarity from high-resolution neutron crystallography. Biophys Physicobiol 2023; 20:e200035. [PMID: 38124796 PMCID: PMC10728621 DOI: 10.2142/biophysico.bppb-v20.0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 12/23/2023] Open
Abstract
Neutron crystallography is a highly effective method for visualizing hydrogen atoms in proteins. In our recent study, we successfully determined the high-resolution (1.2 Å) neutron structure of high-potential iron-sulfur protein, refining the coordinates of some amide protons without any geometric restraints. Interestingly, we observed that amide protons are deviated from the peptide plane due to electrostatic interactions. Moreover, the difference in the position of the amide proton of Cys75 between reduced and oxidized states is possibly attributed to the electron storage capacity of the iron-sulfur cluster. Additionally, we have discussed about the rigidity of the iron-sulfur cluster based on the results of the hydrogen-deuterium exchange. Our research underscores the significance of neutron crystallography in protein structure elucidation, enriching our understanding of protein functions at an atomic resolution.
Collapse
Affiliation(s)
- Yuya Hanazono
- Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Taro Tamada
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology, Inage-ku, Chiba 263-8555, Japan
- Department of Quantum Life Science, Graduate School of Science, Chiba University, Inage-ku, Chiba 263-8522, Japan
| | - Kunio Miki
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
3
|
Artificial intelligence-based HDX (AI-HDX) prediction reveals fundamental characteristics to protein dynamics: Mechanisms on SARS-CoV-2 immune escape. iScience 2023; 26:106282. [PMID: 36910327 PMCID: PMC9968663 DOI: 10.1016/j.isci.2023.106282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Three-dimensional structure and dynamics are essential for protein function. Advancements in hydrogen-deuterium exchange (HDX) techniques enable probing protein dynamic information in physiologically relevant conditions. HDX-coupled mass spectrometry (HDX-MS) has been broadly applied in pharmaceutical industries. However, it is challenging to obtain dynamics information at the single amino acid resolution and time consuming to perform the experiments and process the data. Here, we demonstrate the first deep learning model, artificial intelligence-based HDX (AI-HDX), that predicts intrinsic protein dynamics based on the protein sequence. It uncovers the protein structural dynamics by combining deep learning, experimental HDX, sequence alignment, and protein structure prediction. AI-HDX can be broadly applied to drug discovery, protein engineering, and biomedical studies. As a demonstration, we elucidated receptor-binding domain structural dynamics as a potential mechanism of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibody efficacy and immune escape. AI-HDX fundamentally differs from the current AI tools for protein analysis and may transform protein design for various applications.
Collapse
|
4
|
Pastore AJ, Ficaretta E, Chatterjee A, Davidson VL. Substitution of the sole tryptophan of the cupredoxin, amicyanin, with 5-hydroxytryptophan alters fluorescence properties and energy transfer to the type 1 copper site. J Inorg Biochem 2022; 234:111895. [PMID: 35696758 PMCID: PMC9753554 DOI: 10.1016/j.jinorgbio.2022.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 12/01/2022]
Abstract
Amicyanin is a type 1 copper protein with a single tryptophan residue. Using genetic code expansion, the tryptophan was selectively replaced with the unnatural amino acid, 5-hydroxytryptophan (5-HTP). The 5-HTP substituted amicyanin exhibited absorbance at 300-320 nm, characteristic of 5-HTP and not seen in native amicyanin. The fluorescence emission maximum in 5-HTP substituted amicyanin is redshifted from 318 nm in native amicyanin to 331 nm and to 348 nm in the unfolded protein. The fluorescence quantum yield of 5-HTP substituted amicyanin mutant was much less than that of native amicyanin. Differences in intrinsic fluorescence are explained by differences in the excited states of tryptophan versus 5-HTP and the intraprotein environment. The substitution of tryptophan with 5-HTP did not affect the visible absorbance and redox potential of the copper, which is 10 Å away. In amicyanin and other cupredoxins, an unexplained quenching of the intrinsic fluorescence by the bound copper is observed. However, the fluorescence of 5-HTP substituted amicyanin is not quenched by the copper. It is shown that the mechanism of quenching in native amicyanin is Förster, or fluorescence, resonance energy transfer (FRET). This does not occur in 5-HTP substituted amicyanin because the fluorescence quantum yield is significantly lower and the red-shift of fluorescence emission maximum decreases overlap with the near UV absorbance of copper. Characterization of the distinct fluorescence properties of 5-HTP relative to tryptophan in amicyanin provides a basis for spectroscopic interrogation of the protein microenvironment using 5-HTP, and long-distance interactions with transition metals.
Collapse
Affiliation(s)
- Anthony J Pastore
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Elise Ficaretta
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
5
|
Kita A, Morimoto Y. Hydrogen/Deuterium Exchange Behavior During Denaturing/Refolding Processes Determined in Tetragonal Hen Egg-White Lysozyme Crystals. Mol Biotechnol 2022; 64:590-597. [PMID: 35028904 DOI: 10.1007/s12033-022-00447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/03/2022] [Indexed: 10/19/2022]
Abstract
The hydrogen/deuterium (H/D) exchange of main-chain amide hydrogens in the protein that denatured and refolded in deuterated solvent is considered to contain the traces of hydrogen bond cleavages or the exposure to solvent of the buried part of the protein during the denaturing and refolding (denaturing/refolding) processes. Here, we report the H/D exchange behaviors in hen egg-white lysozymes denatured under acidic conditions, basic conditions, and thermal conditions and then refolded in deuterated solvents, using crystallographic methods. The results indicate that the space containing the Trp28 side chain was hardly exposed to the solvent in acidic conditions, but exposed under basic or heated conditions. Moreover, the β-bridges between Tyr53 and Ile58 in strands β2 and β3, which are in a highly conserved region, show some tolerance to changes in pD. The results indicate that crystallographic method is one of the powerful tools to analyze the denaturing/refolding processes of proteins.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka, 590-0494, Japan
| | - Yukio Morimoto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka, 590-0494, Japan.
| |
Collapse
|
6
|
Schröder GC, Meilleur F. Metalloprotein catalysis: structural and mechanistic insights into oxidoreductases from neutron protein crystallography. Acta Crystallogr D Struct Biol 2021; 77:1251-1269. [PMID: 34605429 PMCID: PMC8489226 DOI: 10.1107/s2059798321009025] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/31/2021] [Indexed: 11/11/2022] Open
Abstract
Metalloproteins catalyze a range of reactions, with enhanced chemical functionality due to their metal cofactor. The reaction mechanisms of metalloproteins have been experimentally characterized by spectroscopy, macromolecular crystallography and cryo-electron microscopy. An important caveat in structural studies of metalloproteins remains the artefacts that can be introduced by radiation damage. Photoreduction, radiolysis and ionization deriving from the electromagnetic beam used to probe the structure complicate structural and mechanistic interpretation. Neutron protein diffraction remains the only structural probe that leaves protein samples devoid of radiation damage, even when data are collected at room temperature. Additionally, neutron protein crystallography provides information on the positions of light atoms such as hydrogen and deuterium, allowing the characterization of protonation states and hydrogen-bonding networks. Neutron protein crystallography has further been used in conjunction with experimental and computational techniques to gain insight into the structures and reaction mechanisms of several transition-state metal oxidoreductases with iron, copper and manganese cofactors. Here, the contribution of neutron protein crystallography towards elucidating the reaction mechanism of metalloproteins is reviewed.
Collapse
Affiliation(s)
- Gabriela C. Schröder
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
7
|
Kita A, Morimoto Y. Hydrogen/deuterium exchange behavior in tetragonal hen egg-white lysozyme crystals affected by solution state. J Appl Crystallogr 2020; 53:837-840. [PMID: 32684898 DOI: 10.1107/s1600576720005488] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 04/20/2020] [Indexed: 11/11/2022] Open
Abstract
Neutron diffraction studies of hydrogen/deuterium-exchanged hen egg-white lysozyme were performed by a joint X-ray and neutron refinement to elucidate the hydrogen/deuterium exchange behavior. Large crystals for neutron work, consisting of molecules that were exchanged before crystallization, were obtained by repeatedly adding protein solution to the crystal batch using deuterated precipitant reagent. There are differences in hydrogen/deuterium exchange behavior compared with previous crystallographic or NMR studies, which could be due to intermolecular interactions in the crystal or to different lengths of exchange period.
Collapse
Affiliation(s)
- Akiko Kita
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka 590-0494, Japan
| | - Yukio Morimoto
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sen-nan, Osaka 590-0494, Japan
| |
Collapse
|
8
|
High-resolution neutron crystallography visualizes an OH-bound resting state of a copper-containing nitrite reductase. Proc Natl Acad Sci U S A 2020; 117:4071-4077. [PMID: 32041886 PMCID: PMC7049163 DOI: 10.1073/pnas.1918125117] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
X-ray crystallography often fails to determine the positions of hydrogen atoms, which play crucial roles in enzymatic reactions. Despite many X-ray crystallographic studies, the reaction mechanism of copper-containing nitrite reductases (CuNIRs), which reduce nitrite using two protons, has been controversial. The high-resolution neutron structure of a CuNIR reveals the protonation states of catalytic residues and key water molecules, thus providing insights into the catalytic mechanism. The catalytic Cu is shown to be coordinated by a hydroxide ion and not water. Furthermore, the hydrogen-deuterium exchange ratio suggests that intramolecular electron transfer is involved in a hydrogen-bond jump. These observations are consistent with previous computational chemistry; therefore, our study forms a bridge between the structural biology and quantum chemistry of CuNIRs. Copper-containing nitrite reductases (CuNIRs) transform nitrite to gaseous nitric oxide, which is a key process in the global nitrogen cycle. The catalytic mechanism has been extensively studied to ultimately achieve rational control of this important geobiochemical reaction. However, accumulated structural biology data show discrepancies with spectroscopic and computational studies; hence, the reaction mechanism is still controversial. In particular, the details of the proton transfer involved in it are largely unknown. This situation arises from the failure of determining positions of hydrogen atoms and protons, which play essential roles at the catalytic site of CuNIRs, even with atomic resolution X-ray crystallography. Here, we determined the 1.50 Å resolution neutron structure of a CuNIR from Geobacillus thermodenitrificans (trimer molecular mass of ∼106 kDa) in its resting state at low pH. Our neutron structure reveals the protonation states of catalytic residues (deprotonated aspartate and protonated histidine), thus providing insights into the catalytic mechanism. We found that a hydroxide ion can exist as a ligand to the catalytic Cu atom in the resting state even at a low pH. This OH-bound Cu site is unexpected from previously given X-ray structures but consistent with a reaction intermediate suggested by computational chemistry. Furthermore, the hydrogen-deuterium exchange ratio in our neutron structure suggests that the intramolecular electron transfer pathway has a hydrogen-bond jump, which is proposed by quantum chemistry. Our study can seamlessly link the structural biology to the computational chemistry of CuNIRs, boosting our understanding of the enzymes at the atomic and electronic levels.
Collapse
|
9
|
Kozak JJ, Gray HB, Wittung-Stafshede P. Geometrical Description of Protein Structural Motifs. J Phys Chem B 2018; 122:11289-11294. [PMID: 30141936 DOI: 10.1021/acs.jpcb.8b07130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
We present a geometrical method that can identify secondary structural motifs in proteins via angular correlations. The method uses crystal structure coordinates to calculate angular and radial signatures of each residue relative to an external reference point as the number of nearest-neighbor residues increases. We apply our approach to the blue copper protein amicyanin using the copper cofactor as the external reference point. We define a signature termed Δβ which describes the change in angular correlation as the span of nearest neighbor residues increases. We find that three turn regions of amicyanin harbor residues with Δβ near zero, while residues in other secondary structures have Δβ greater than zero: for β-strands, Δβ changes gradually residue by residue along the strand. Extension of our analysis to other blue copper proteins demonstrated that the noted structural trends are general. Importantly, our geometrical description of the folded protein accounts for all forces holding the structure together. Through this analysis, we identified some of the turns in amicyanin as symmetrical anchor points.
Collapse
Affiliation(s)
- John J Kozak
- Department of Chemistry , DePaul University , Chicago , Illinois 60604-6116 , United States
| | - Harry B Gray
- Beckman Institute , California Institute of Technology , Pasadena , California 91125 , United States
| | - Pernilla Wittung-Stafshede
- Department of Biology and Biological Engineering , Chalmers University of Technology , 41296 Gothenburg , Sweden
| |
Collapse
|
10
|
Sukumar N, Liu S, Li W, Mathews FS, Mitra B, Kandavelu P. Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2 Å resolution. Biochimie 2018; 154:45-54. [PMID: 30071260 DOI: 10.1016/j.biochi.2018.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/27/2018] [Indexed: 10/28/2022]
Abstract
The x-ray structure of the monotopic membrane protein (S)-mandelate dehydrogenase (MDH) from Pseudomonas putida reveals an inherent flexibility of its membrane binding segment that might be important for its biological activity. The surface of MDH exhibits a concentration of the positive charges on one side and the negative charges on the other side. The putative membrane binding surface of MDH has a concentric circular ridge, formed by positively charged residues, which projects away from the protein surface by ∼4 Å; this is an unique structural feature and not observed in other monotopic membrane proteins to our knowledge. There are three α-helixes in the membrane binding region. Based on the structure of MDH, it is possible to propose that the interaction of MDH with the membrane is stabilized by coplanar electrostatic interactions, between the positively charged concentric circular ridge and the negatively charged head-groups of the phospholipid bilayer, along with three α-helixes that provide additional stability by inserting into the membrane. The structure reveals the possible orientation of these helixes along with possible roles for the individual residues which form those helixes. These α-helixes may play a role in the enzyme's mobility. A detergent molecule, N-Dodecyl-β-maltoside, is inserted between the membrane binding region and rest of the molecule and may provide structural stability to intra-protein regions by forming hydrogen bonds and close contacts. From the average B-factor of the MDH structure, it is likely that MDH is highly mobile, which might be essential for its interaction in membrane and non-membrane environments, as its substrate (S)-mandelate, is from the cytoplasm, while its electron acceptor is a component of the membrane electron transport chain.
Collapse
Affiliation(s)
- N Sukumar
- NE-CAT, Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, USA.
| | - S Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - W Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - F S Mathews
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - B Mitra
- Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | - P Kandavelu
- SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Neutron macromolecular crystallography. Emerg Top Life Sci 2018; 2:39-55. [DOI: 10.1042/etls20170083] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023]
Abstract
Neutron diffraction techniques permit direct determination of the hydrogen (H) and deuterium (D) positions in crystal structures of biological macromolecules at resolutions of ∼1.5 and 2.5 Å, respectively. In addition, neutron diffraction data can be collected from a single crystal at room temperature without radiation damage issues. By locating the positions of H/D-atoms, protonation states and water molecule orientations can be determined, leading to a more complete understanding of many biological processes and drug-binding. In the last ca. 5 years, new beamlines have come online at reactor neutron sources, such as BIODIFF at Heinz Maier-Leibnitz Zentrum and IMAGINE at Oak Ridge National Laboratory (ORNL), and at spallation neutron sources, such as MaNDi at ORNL and iBIX at the Japan Proton Accelerator Research Complex. In addition, significant improvements have been made to existing beamlines, such as LADI-III at the Institut Laue-Langevin. The new and improved instrumentations are allowing sub-mm3 crystals to be regularly used for data collection and permitting the study of larger systems (unit-cell edges >100 Å). Owing to this increase in capacity and capability, many more studies have been performed and for a wider range of macromolecules, including enzymes, signalling proteins, transport proteins, sugar-binding proteins, fluorescent proteins, hormones and oligonucleotides; of the 126 structures deposited in the Protein Data Bank, more than half have been released since 2013 (65/126, 52%). Although the overall number is still relatively small, there are a growing number of examples for which neutron macromolecular crystallography has provided the answers to questions that otherwise remained elusive.
Collapse
|
12
|
Kozak JJ, Gray HB, Garza-López RA. Relaxation of structural constraints during Amicyanin unfolding. J Inorg Biochem 2018; 179:135-145. [PMID: 29222970 PMCID: PMC7222854 DOI: 10.1016/j.jinorgbio.2017.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/28/2017] [Accepted: 11/17/2017] [Indexed: 11/21/2022]
Abstract
We study the thermal unfolding of amicyanin by quantifying the resiliency of the native state to structural perturbations. Three signatures characterizing stages of unfolding are identified. The first signature, lateral extension of the polypeptide chain, is calculated directly from the reported crystallographic data. Two other signatures, the radial displacement of each residue from Cu(II) and the angular spread in the chain as the protein unfolds, are calculated using crystallographic data in concert with a geometrical model we introduced previously (J.J. Kozak, H. B. Gray, R. A. Garza-López, J. Inorg. Biochem. 155(2016) 44-55). Particular attention is paid to the resiliency of the two beta sheets in amicyanin. The resiliency of residues in the near neighborhood of the Cu center to destabilization provides information on the persistence of the entatic state. Similarly, examining the resiliency of residues intercalated between structured regions (beta sheets, the alpha helix) provides a basis for identifying a "hydrophobic core." A principal focus of our study is to compare results obtained using our geometrical model with the experimental results (C. La Rosa, D. Milardi, D. M. Grasso, M. P. Verbeet, G. W. Canters, L. Sportelli, R. Guzzi, Eur. Biophy. J.30(8),(2002) 559-570) on the denaturation of amicyanin, and we show that our results support a classical model proposed by these authors.
Collapse
Affiliation(s)
- John J Kozak
- DePaul University, 243 South Wabash Ave., Chicago, IL 60604-6116, United States
| | - Harry B Gray
- Beckman Institute, California Institute of Technology, Pasadena, CA 91125, United States
| | - Roberto A Garza-López
- Department of Chemistry, Seaver Chemistry Laboratory, Pomona College, Claremont, CA 91711, United States.
| |
Collapse
|
13
|
Gnanasekaran R. Computational study to understand the energy transfer pathways within amicyanin. J Mol Graph Model 2017; 78:88-95. [PMID: 29054098 DOI: 10.1016/j.jmgm.2017.09.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/28/2017] [Accepted: 09/30/2017] [Indexed: 11/27/2022]
Abstract
Vibrational energy diffusivities between the residues present in Amicyanin copper protein are calculated and presented in form of communication map. From those results energy flow pathways from the copper metal ion to the inter protein residue Glu31 are identified. Our finding suggests many different pathways are possible and copper metal ion in oxidized and reduced state switches the pathways. Our finding also suggests the cooperative nature of surrounding residues and water molecules towards selecting the pathways. The major transport channels in the oxidised state are, Cu2+---> MET28---> LYS29---> TYR30---> GLU31 and Cu2+---> MET98---> TYR30--- > GLU31. And in the reduced state Cu+---> CYS9---> TYR30---> GLU31 and Cu+---> MET28---> LYS2---> TYR30---> GLU31. We studied further the interaction energies between the copper ion and neighbouring residues using B3LYP/QZVP method. Both the methods complement each other in predicting the energy flow pathways and the cooperative nature of residues.
Collapse
|
14
|
Chen JCH, Unkefer CJ. Fifteen years of the Protein Crystallography Station: the coming of age of macromolecular neutron crystallography. IUCRJ 2017; 4:72-86. [PMID: 28250943 PMCID: PMC5331467 DOI: 10.1107/s205225251601664x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/17/2016] [Indexed: 06/06/2023]
Abstract
The Protein Crystallography Station (PCS), located at the Los Alamos Neutron Scattering Center (LANSCE), was the first macromolecular crystallography beamline to be built at a spallation neutron source. Following testing and commissioning, the PCS user program was funded by the Biology and Environmental Research program of the Department of Energy Office of Science (DOE-OBER) for 13 years (2002-2014). The PCS remained the only dedicated macromolecular neutron crystallography station in North America until the construction and commissioning of the MaNDi and IMAGINE instruments at Oak Ridge National Laboratory, which started in 2012. The instrument produced a number of research and technical outcomes that have contributed to the field, clearly demonstrating the power of neutron crystallo-graphy in helping scientists to understand enzyme reaction mechanisms, hydrogen bonding and visualization of H-atom positions, which are critical to nearly all chemical reactions. During this period, neutron crystallography became a technique that increasingly gained traction, and became more integrated into macromolecular crystallography through software developments led by investigators at the PCS. This review highlights the contributions of the PCS to macromolecular neutron crystallography, and gives an overview of the history of neutron crystallography and the development of macromolecular neutron crystallography from the 1960s to the 1990s and onwards through the 2000s.
Collapse
Affiliation(s)
- Julian C.-H. Chen
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Clifford J. Unkefer
- Bioscience Division, Protein Crystallography Station, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
15
|
|
16
|
Katsyuba SA, Vener MV, Zvereva EE, Fei Z, Scopelliti R, Brandenburg JG, Siankevich S, Dyson PJ. Quantification of Conventional and Nonconventional Charge-Assisted Hydrogen Bonds in the Condensed and Gas Phases. J Phys Chem Lett 2015; 6:4431-4436. [PMID: 26496074 DOI: 10.1021/acs.jpclett.5b02175] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Charge-assisted hydrogen bonds (CAHBs) play critical roles in many systems from biology through to materials. In none of these areas has the role and function of CAHBs been explored satisfactorily because of the lack of data on the energy of CAHBs in the condensed phases. We have, for the first time, quantified three types of CAHBs in both the condensed and gas phases for 1-(2'-hydroxylethyl)-3-methylimidazolium acetate ([C2OHmim][OAc]). The energy of conventional OH···[OAc](-) CAHBs is ∼10 kcal·mol(-1), whereas nonconventional C(sp2)H···[OAc](-) and C(sp3)H···[OAc](-) CAHBs are weaker by ∼5-7 kcal·mol(-1). In the gas phase, the strength of the nonconventional CAHBs is doubled, whereas the conventional CAHBs are strengthened by <20%. The influence of cooperativity effects on the ability of the [OAc](-) anion to deprotonate the imidazolium cation is evaluated. The ability to quantify CAHBs in the condensed phase on the basis of easier accessible gas-phase estimates is highlighted.
Collapse
Affiliation(s)
- Sergey A Katsyuba
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences , Arbuzov Street 8, 420088 Kazan, Russia
| | - Mikhail V Vener
- Department of Quantum Chemistry, Mendeleev University of Chemical Technology , Miusskaya Square 9, 125047 Moscow, Russia
| | - Elena E Zvereva
- A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Centre of the Russian Academy of Sciences , Arbuzov Street 8, 420088 Kazan, Russia
- Institut de Nanosciences et Cryogénie, SP2M/L_sim, CEA , 17 Rue des Martyrs, 38054 Grenoble, France
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL - BCH , CH-1015 Lausanne, Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL - BCH , CH-1015 Lausanne, Switzerland
| | - Jan Gerit Brandenburg
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie der Universität Bonn , Beringstrasse 4, 53115 Bonn, Germany
| | - Sviatlana Siankevich
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL - BCH , CH-1015 Lausanne, Switzerland
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL) EPFL - BCH , CH-1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Williamson HR, Dow BA, Davidson VL. Mechanisms for control of biological electron transfer reactions. Bioorg Chem 2014; 57:213-221. [PMID: 25085775 PMCID: PMC4285783 DOI: 10.1016/j.bioorg.2014.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 10/25/2022]
Abstract
Electron transfer (ET) through and between proteins is a fundamental biological process. The rates and mechanisms of these ET reactions are controlled by the proteins in which the redox centers that donate and accept electrons reside. The protein influences the magnitudes of the ET parameters, the electronic coupling and reorganization energy that are associated with the ET reaction. The protein can regulate the rates of the ET reaction by requiring reaction steps to optimize the system for ET, leading to kinetic mechanisms of gated or coupled ET. Amino acid residues in the segment of the protein through which long range ET occurs can also modulate the ET rate by serving as staging points for hopping mechanisms of ET. Specific examples are presented to illustrate these mechanisms by which proteins control rates of ET reactions.
Collapse
Affiliation(s)
- Heather R Williamson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
18
|
Nepal B, Scheiner S. Anionic CH⋅⋅⋅X−Hydrogen Bonds: Origin of Their Strength, Geometry, and Other Properties. Chemistry 2014; 21:1474-81. [DOI: 10.1002/chem.201404970] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Indexed: 11/12/2022]
|
19
|
Wan Q, Kovalevsky AY, Wilson MA, Bennett BC, Langan P, Dealwis C. Preliminary joint X-ray and neutron protein crystallographic studies of ecDHFR complexed with folate and NADP+. Acta Crystallogr F Struct Biol Commun 2014; 70:814-8. [PMID: 24915100 PMCID: PMC4051544 DOI: 10.1107/s2053230x1400942x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 04/26/2014] [Indexed: 11/10/2022] Open
Abstract
A crystal of Escherichia coli dihydrofolate reductase (ecDHFR) complexed with folate and NADP+ of 4×1.3×0.7 mm (3.6 mm3) in size was obtained by sequential application of microseeding and macroseeding. A neutron diffraction data set was collected to 2.0 Å resolution using the IMAGINE diffractometer at the High Flux Isotope Reactor within Oak Ridge National Laboratory. A 1.6 Å resolution X-ray data set was also collected from a smaller crystal at room temperature. The neutron and X-ray data were used together for joint refinement of the ecDHFR-folate-NADP+ ternary-complex structure in order to examine the protonation state, protein dynamics and solvent structure of the complex, furthering understanding of the catalytic mechanism.
Collapse
Affiliation(s)
- Qun Wan
- Department of Biochemistry, College of Medicine, Yangzhou University, 11 HuaiHai Road, Yangzhou 225001, People’s Republic of China
| | - Andrey Y. Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Mark A. Wilson
- Department of Biochemistry/Redox Biology Center, University of Nebraska, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Brad C. Bennett
- Department of Molecular Physiology and Biological Physics, University of Virginia, PO Box 800793, Charlottesville, VA 22908, USA
| | - Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831, USA
| | - Chris Dealwis
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
20
|
Dow BA, Sukumar N, Matos JO, Choi M, Schulte A, Tatulian SA, Davidson VL. The sole tryptophan of amicyanin enhances its thermal stability but does not influence the electronic properties of the type 1 copper site. Arch Biochem Biophys 2014; 550-551:20-7. [PMID: 24704124 DOI: 10.1016/j.abb.2014.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
The cupredoxin amicyanin possesses a single tryptophan residue, Trp45. Its fluorescence is quenched when copper is bound even though it is separated by 10.1Å. Mutation of Trp45 to Ala, Phe, Leu and Lys resulted in undetectable protein expression. A W45Y amicyanin variant was isolated. The W45Y mutation did not alter the spectroscopic properties or intrinsic redox potential of amicyanin, but increased the pKa value for the pH-dependent redox potential by 0.5 units. This is due to a hydrogen-bond involving the His95 copper ligand which is present in reduced W45Y amicyanin but not in native amicyanin. The W45Y mutation significantly decreased the thermal stability of amicyanin, as determined by changes in the visible absorbance of oxidized amicyanin and in the circular dichroism spectra for oxidized, reduced and apo forms of amicyanin. Comparison of the crystal structures suggests that the decreased stability of W45Y amicyanin may be attributed to the loss of a strong interior hydrogen bond between Trp45 and Tyr90 in native amicyanin which links two of the β-sheets that comprise the overall structure of amicyanin. Thus, Trp45 is critical for stabilizing the structure of amicyanin but it does not influence the electronic properties of the copper which quenches its fluorescence.
Collapse
Affiliation(s)
- Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States
| | - Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, United States.
| | - Jason O Matos
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States; Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Moonsung Choi
- Seoul National University of Science and Technology, College of Energy and Biotechnology, Department of Optometry, Seoul 139-743, Republic of Korea
| | - Alfons Schulte
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Suren A Tatulian
- Department of Physics, University of Central Florida, Orlando, FL 32816, United States
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, United States.
| |
Collapse
|
21
|
Golden EA, Vrielink A. Looking for Hydrogen Atoms: Neutron Crystallography Provides Novel Insights Into Protein Structure and Function. Aust J Chem 2014. [DOI: 10.1071/ch14337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neutron crystallography allows direct localization of hydrogen positions in biological macromolecules. Within enzymes, hydrogen atoms play a pivotal role in catalysis. Recent advances in instrumentation and sample preparation have helped to overcome the difficulties of performing neutron diffraction experiments on protein crystals. The application of neutron macromolecular crystallography to a growing number of proteins has yielded novel structural insights. The ability to accurately position water molecules, hydronium ions, and hydrogen atoms within protein structures has helped in the study of low-barrier hydrogen bonds and hydrogen-bonding networks. The determination of protonation states of protein side chains, substrates, and inhibitors in the context of the macromolecule has provided important insights into enzyme chemistry and ligand binding affinities, which can assist in the design of potent therapeutic agents. In this review, we give an overview of the method and highlight advances in knowledge attained through the application of neutron protein crystallography.
Collapse
|
22
|
Adhikari U, Scheiner S. Magnitude and Mechanism of Charge Enhancement of CH··O Hydrogen Bonds. J Phys Chem A 2013; 117:10551-62. [DOI: 10.1021/jp4081788] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Upendra Adhikari
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| | - Steve Scheiner
- Department
of Chemistry and
Biochemistry, Utah State University, Logan, Utah 84322-0300, United States
| |
Collapse
|
23
|
Abstract
New developments in macromolecular neutron crystallography have led to an increasing number of structures published over the last decade. Hydrogen atoms, normally invisible in most X-ray crystal structures, become visible with neutrons. Using X-rays allows one to see structure, while neutrons allow one to reveal the chemistry inherent in these macromolecular structures. A number of surprising and sometimes controversial results have emerged; because it is difficult to see or predict hydrogen atoms in X-ray structures, when they are seen by neutrons they can be in unexpected locations with important chemical and biological consequences. Here we describe examples of chemistry seen with neutrons for the first time in biological macromolecules over the past few years.
Collapse
Affiliation(s)
- Paul Langan
- Biology and Soft Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | |
Collapse
|
24
|
Sukumar N. Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes. Biochimie 2013; 95:976-88. [PMID: 23395752 DOI: 10.1016/j.biochi.2013.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 01/28/2013] [Indexed: 01/22/2023]
Abstract
The X-ray crystal structures of several important vitamin B12 binding proteins that have been solved in recent years have enhanced our current understanding in the vitamin B12 field. These structurally diverse groups of B12 binding proteins perform various important biological activities, both by transporting B12 as well as catalyzing various biological reactions. An in-depth comparative analysis of these structures was carried out using PDB coordinates of a carefully chosen database of B12 binding proteins to correlate the overall folding of the molecule with phylogeny, the B12 interactions, and with their biological function. The structures of these proteins are discussed in the context of this comparative analysis.
Collapse
Affiliation(s)
- Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Building 436E, Argonne National Laboratory, Argonne, IL 60439, USA.
| |
Collapse
|
25
|
Abstract
Carbon-oxygen (CH···O) hydrogen bonding represents an unusual category of molecular interactions first documented in biological structures over 4 decades ago. Although CH···O hydrogen bonding has remained generally underappreciated in the biochemical literature, studies over the last 15 years have begun to yield direct evidence of these interactions in biological systems. In this minireview, we provide a historical context of biological CH···O hydrogen bonding and summarize some major advancements from experimental studies over the past several years that have elucidated the importance, prevalence, and functions of these interactions. In particular, we examine the impact of CH···O bonds on protein and nucleic acid structure, molecular recognition, and enzyme catalysis and conclude by exploring overarching themes and unresolved questions regarding unconventional interactions in biomolecular structure.
Collapse
|
26
|
Sukumar N, Choi M, Davidson VL. Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper. J Inorg Biochem 2011; 105:1638-44. [PMID: 22071089 DOI: 10.1016/j.jinorgbio.2011.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/12/2011] [Accepted: 08/04/2011] [Indexed: 10/17/2022]
Abstract
The mutation of the axial ligand of the type I copper protein amicyanin from Met to Lys results in a protein that is spectroscopically invisible and redox inactive. M98K amicyanin acts as a competitive inhibitor in the reaction of native amicyanin with methylamine dehydrogenase indicating that the M98K mutation has not affected the affinity for its natural electron donor. The crystal structure of M98K amicyanin reveals that its overall structure is very similar to native amicyanin but that the type I binding site is occupied by zinc. Anomalous difference Fourier maps calculated using the data collected around the absorption edges of copper and zinc confirm the presence of Zn(2+) at the type I site. The Lys98 NZ donates a hydrogen bond to a well-ordered water molecule at the type I site which enhances the ability of Lys98 to provide a ligand for Zn(2+). Attempts to reconstitute M98K apoamicyanin with copper resulted in precipitation of the protein. The fact that the M98K mutation generated such a selective zinc-binding protein was surprising as ligation of zinc by Lys is rare and this ligand set is unique for zinc.
Collapse
Affiliation(s)
- Narayanasami Sukumar
- NE-CAT and Department of Chemistry and Chemical Biology, Cornell University, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | |
Collapse
|
27
|
Horowitz S, Yesselman JD, Al-Hashimi HM, Trievel RC. Direct evidence for methyl group coordination by carbon-oxygen hydrogen bonds in the lysine methyltransferase SET7/9. J Biol Chem 2011; 286:18658-63. [PMID: 21454678 PMCID: PMC3099682 DOI: 10.1074/jbc.m111.232876] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/17/2011] [Indexed: 12/27/2022] Open
Abstract
SET domain lysine methyltransferases (KMTs) are S-adenosylmethionine (AdoMet)-dependent enzymes that catalyze the site-specific methylation of lysyl residues in histone and non-histone proteins. Based on crystallographic and cofactor binding studies, carbon-oxygen (CH · · · O) hydrogen bonds have been proposed to coordinate the methyl groups of AdoMet and methyllysine within the SET domain active site. However, the presence of these hydrogen bonds has only been inferred due to the uncertainty of hydrogen atom positions in x-ray crystal structures. To experimentally resolve the positions of the methyl hydrogen atoms, we used NMR (1)H chemical shift coupled with quantum mechanics calculations to examine the interactions of the AdoMet methyl group in the active site of the human KMT SET7/9. Our results indicated that at least two of the three hydrogens in the AdoMet methyl group engage in CH · · · O hydrogen bonding. These findings represent direct, quantitative evidence of CH · · · O hydrogen bond formation in the SET domain active site and suggest a role for these interactions in catalysis. Furthermore, thermodynamic analysis of AdoMet binding indicated that these interactions are important for cofactor binding across SET domain enzymes.
Collapse
Affiliation(s)
- Scott Horowitz
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | - Joseph D. Yesselman
- Chemistry, and Biophysics, University of Michigan, Ann Arbor, Michigan 48109
| | | | | |
Collapse
|
28
|
Kovalevsky A, Fisher Z, Johnson H, Mustyakimov M, Waltman MJ, Langan P. Macromolecular neutron crystallography at the Protein Crystallography Station (PCS). ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1206-12. [PMID: 21041938 PMCID: PMC2967422 DOI: 10.1107/s0907444910027198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/08/2010] [Indexed: 11/10/2022]
Abstract
The Protein Crystallography Station (PCS) at Los Alamos Neutron Science Center is a high-performance beamline that forms the core of a capability for neutron macromolecular structure and function determination. Neutron diffraction is a powerful technique for locating H atoms and can therefore provide unique information about how biological macromolecules function and interact with each other and smaller molecules. Users of the PCS have access to neutron beam time, deuteration facilities, the expression of proteins and the synthesis of substrates with stable isotopes and also support for data reduction and structure analysis. The beamline exploits the pulsed nature of spallation neutrons and a large electronic detector in order to collect wavelength-resolved Laue patterns using all available neutrons in the white beam. The PCS user facility is described and highlights from the user program are presented.
Collapse
Affiliation(s)
- Andrey Kovalevsky
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Afonine PV, Mustyakimov M, Grosse-Kunstleve RW, Moriarty NW, Langan P, Adams PD. Joint X-ray and neutron refinement with phenix.refine. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2010; 66:1153-63. [PMID: 21041930 PMCID: PMC2967420 DOI: 10.1107/s0907444910026582] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 07/05/2010] [Indexed: 11/10/2022]
Abstract
Approximately 85% of the structures deposited in the Protein Data Bank have been solved using X-ray crystallography, making it the leading method for three-dimensional structure determination of macromolecules. One of the limitations of the method is that the typical data quality (resolution) does not allow the direct determination of H-atom positions. Most hydrogen positions can be inferred from the positions of other atoms and therefore can be readily included into the structure model as a priori knowledge. However, this may not be the case in biologically active sites of macromolecules, where the presence and position of hydrogen is crucial to the enzymatic mechanism. This makes the application of neutron crystallography in biology particularly important, as H atoms can be clearly located in experimental neutron scattering density maps. Without exception, when a neutron structure is determined the corresponding X-ray structure is also known, making it possible to derive the complete structure using both data sets. Here, the implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.
Collapse
Affiliation(s)
- Pavel V Afonine
- Lawrence Berkeley National Laboratory, Physical Biosciences Division, MS 64R0121, CA 94720, USA.
| | | | | | | | | | | |
Collapse
|