1
|
Igamberdiev AU. Reflexive neural circuits and the origin of language and music codes. Biosystems 2024; 246:105346. [PMID: 39349135 DOI: 10.1016/j.biosystems.2024.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Conscious activity is grounded in the reflexive self-awareness in sense perception, through which the codes signifying sensual perceptive events operate and constrain human behavior. These codes grow via the creative generation of hypertextual statements. We apply the model of Vladimir Lefebvre (Lefebvre, V.A., 1987, J. Soc. Biol. Struct. 10, 129-175) to reveal the underlying structures on which the perception and creative development of language and music codes are based. According to this model, the reflexive structure of conscious subject is grounded in three thermodynamic cycles united by the control of the basic functional cycle by the second one, and resulting in the internal action that it turn is perceived by the third cycle evaluating this action. In this arrangement, the generative language structures are formed and the frequencies of sounds that form musical phrases and patterns are selected. We discuss the participation of certain neural brain structures and the establishment of reflexive neural circuits in the ad hoc transformation of perceptive signals, and show the similarities between the processes of perception and of biological self-maintenance and morphogenesis. We trace the peculiarities of the temporal encoding of emotions in music and musical creativity, as well as the principles of sharing musical information between the performing and the perceiving individuals.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada.
| |
Collapse
|
2
|
Bickel B, Giraud AL, Zuberbühler K, van Schaik CP. Language follows a distinct mode of extra-genomic evolution. Phys Life Rev 2024; 50:211-225. [PMID: 39153248 DOI: 10.1016/j.plrev.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
As one of the most specific, yet most diverse of human behaviors, language is shaped by both genomic and extra-genomic evolution. Sharing methods and models between these modes of evolution has significantly advanced our understanding of language and inspired generalized theories of its evolution. Progress is hampered, however, by the fact that the extra-genomic evolution of languages, i.e. linguistic evolution, maps only partially to other forms of evolution. Contrasting it with the biological evolution of eukaryotes and the cultural evolution of technology as the best understood models, we show that linguistic evolution is special by yielding a stationary dynamic rather than stable solutions, and that this dynamic allows the use of language change for social differentiation while maintaining its global adaptiveness. Linguistic evolution furthermore differs from technological evolution by requiring vertical transmission, allowing the reconstruction of phylogenies; and it differs from eukaryotic biological evolution by foregoing a genotype vs phenotype distinction, allowing deliberate and biased change. Recognising these differences will improve our empirical tools and open new avenues for analyzing how linguistic, cultural, and biological evolution interacted with each other when language emerged in the hominin lineage. Importantly, our framework will help to cope with unprecedented scientific and ethical challenges that presently arise from how rapid cultural evolution impacts language, most urgently from interventional clinical tools for language disorders, potential epigenetic effects of technology on language, artificial intelligence and linguistic communicators, and global losses of linguistic diversity and identity. Beyond language, the distinctions made here allow identifying variation in other forms of biological and cultural evolution, developing new perspectives for empirical research.
Collapse
Affiliation(s)
- Balthasar Bickel
- Department of Comparative Language Science, University of Zurich, Switzerland; Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland.
| | - Anne-Lise Giraud
- Department of Basic Neurosciences, University of Geneva, Switzerland; Institut de l'Audition, Institut Pasteur, INSERM, Université Paris Cité, France
| | - Klaus Zuberbühler
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Institute of Biology, University of Neuchâtel, Switzerland; School of Psychology and Neuroscience, University of St Andrews, United Kingdom
| | - Carel P van Schaik
- Center for the Interdisciplinary Study of Language Evolution (ISLE), University of Zurich, Switzerland; Department of Evolutionary Biology and Environmental Science, University of Zurich, Switzerland; Max Planck Institute for Animal Behavior, Konstanz, Germany
| |
Collapse
|
3
|
Tonna M, Lucarini V, Borrelli DF, Parmigiani S, Marchesi C. Disembodiment and Language in Schizophrenia: An Integrated Psychopathological and Evolutionary Perspective. Schizophr Bull 2023; 49:161-171. [PMID: 36264669 PMCID: PMC9810023 DOI: 10.1093/schbul/sbac146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Different hypotheses have flourished to explain the evolutionary paradox of schizophrenia. In this contribution, we sought to illustrate how, in the schizophrenia spectrum, the concept of embodiment may underpin the phylogenetic and developmental pathways linking sensorimotor processes, the origin of human language, and the construction of a basic sense of the self. In particular, according to an embodied model of language, we suggest that the reuse of basic sensorimotor loops for language, while enabling the development of fully symbolic thought, has pushed the human brain close to the threshold of a severe disruption of self-embodiment processes, which are at the core of schizophrenia psychopathology. We adopted an inter-disciplinary approach (psychopathology, neuroscience, developmental biology) within an evolutionary framework, to gain an integrated, multi-perspectival model on the origin of schizophrenia vulnerability. A maladaptive over-expression of evolutionary-developmental trajectories toward language at the expense of embodiment processes would have led to the evolutionary "trade-off" of a hyper-symbolic activity to the detriment of a disembodied self. Therefore, schizophrenia psychopathology might be the cost of long-term co-evolutive interactions between brain and language.
Collapse
Affiliation(s)
- Matteo Tonna
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
- Department of Mental Health, Local Health Service, Parma, Italy
| | - Valeria Lucarini
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Paris, France
| | | | - Stefano Parmigiani
- Department of Department of Chemistry, Life Sciences and Environmental Sustainability, Unit of Behavioral Biology, University of Parma, Parma, Italy
| | - Carlo Marchesi
- Department of Medicine and Surgery, Psychiatric Unit, University of Parma, Parma, Italy
- Department of Mental Health, Local Health Service, Parma, Italy
| |
Collapse
|
4
|
Welch D, Reybrouck M, Podlipniak P. Meaning in Music Is Intentional, but in Soundscape It Is Not-A Naturalistic Approach to the Qualia of Sounds. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 20:269. [PMID: 36612591 PMCID: PMC9819651 DOI: 10.3390/ijerph20010269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The sound environment and music intersect in several ways and the same holds true for the soundscape and our internal response to listening to music. Music may be part of a sound environment or take on some aspects of environmental sound, and therefore some of the soundscape response may be experienced alongside the response to the music. At a deeper level, coping with music, spoken language, and the sound environment may all have influenced our evolution, and the cognitive-emotional structures and responses evoked by all three sources of acoustic information may be, to some extent, the same. This paper distinguishes and defines the extent of our understanding about the interplay of external sound and our internal response to it in both musical and real-world environments. It takes a naturalistic approach to music/sound and music-listening/soundscapes to describe in objective terms some mechanisms of sense-making and interactions with the sounds. It starts from a definition of sound as vibrational and transferable energy that impinges on our body and our senses, with a dynamic tension between lower-level coping mechanisms and higher-level affective and cognitive functioning. In this way, we establish both commonalities and differences between musical responses and soundscapes. Future research will allow this understanding to grow and be refined further.
Collapse
Affiliation(s)
- David Welch
- Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| | - Mark Reybrouck
- Faculty of Arts, University of Leuven, 3000 Leuven, Belgium
- Department of Art History, Musicology and Theater Studies, IPEM Institute for Psychoacoustics and Electronic Music, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznan, Poland
| |
Collapse
|
5
|
Deacon TW. A degenerative process underlying hierarchic transitions in evolution. Biosystems 2022; 222:104770. [PMID: 36075549 DOI: 10.1016/j.biosystems.2022.104770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022]
Abstract
This paper describes an evolutionary process likely involved in hierarchic transitions in biological evolution at many levels, from genetics to social organization. It is related to the evolutionary process described as contingent neutral evolution (CNE). It involves a sequence of stages initiated by the spontaneous appearance of functional redundancy. This redundancy can be the result of gene duplication, symbiosis, cell-cell interactions, environmental supports, etc. The availability of redundant sources of biological functionality relaxes purifying selection and allows degenerative changes to accumulate in one or more of the duplicates, potentially degrading or otherwise fractionating its function. This degeneration will be effectively neutral so long as another maintains functional integrity. Sexual recombination can potentially sample different combinations of these sub functional alternatives, with the result that favorable synergistic interactions between independently degenerate duplicates will have a non-negligible probability of being uncovered. The expression of such a synergistic combinatorial effect will result in the irreversible degradation of any remaining autonomous functionality, thereby initiating selection to prevent breakup of co-dependency. This becomes relevant to the evolution of hierarchic transitions when two or more organisms reciprocally duplicate functions that each other requires. If the resulting relaxation of selection reliably persists for an extended evolutionary period it will tend to produce complementary degenerative effects in each organism, leading to their irreversible codependency and purifying selection to avoid loss of integrity of their higher order functional unity. This provides a partial inversion of Darwinian logic that explains how the potential costs of the loss of organism autonomy can be mitigated, enabling the incremental transition to a synergistic higher order unit of evolution.
Collapse
|
6
|
Rayner JG, Sturiale SL, Bailey NW. The persistence and evolutionary consequences of vestigial behaviours. Biol Rev Camb Philos Soc 2022; 97:1389-1407. [PMID: 35218283 PMCID: PMC9540461 DOI: 10.1111/brv.12847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/23/2022]
Abstract
Behavioural traits are often noted to persist after relaxation or removal of associated selection pressure, whereas it has been observed that morphological traits under similar conditions appear to decay more rapidly. Despite this, persistent non‐adaptive, ‘vestigial’ behavioural variation has received little research scrutiny. Here we review published examples of vestigial behavioural traits, highlighting their surprising prevalence, and argue that their further study can reveal insights about the widely debated role of behaviour in evolution. Some vestigial behaviours incur fitness costs, so may act as a drag on adaptive evolution when that adaptation occurs via trait loss or reversal. In other cases, vestigial behaviours can contribute to future evolutionary trajectories, for example by preserving genetic and phenotypic variation which is later co‐opted by selection during adaptive evolution or diversification, or through re‐emergence after ancestral selection pressures are restored. We explore why vestigial behaviours appear prone to persistence. Behavioural lag may be a general phenomenon arising from relatively high levels of non‐genetic variation in behavioural expression, and pleiotropic constraint. Long‐term persistence of non‐adaptive behavioural traits could also result when their expression is associated with morphological features which might be more rapidly lost or reduced. We propose that vestigial behaviours could provide a substrate for co‐option by novel selective forces, and advocate further study of the fate of behavioural traits following relaxed and reversed selection. Vestigial behaviours have been relatively well studied in the context of antipredator behaviours, but they are far from restricted to this ecological context, and so deserve broader consideration. They also have practical importance, with mixed evidence, for example, as to whether predator/parasite‐avoidance behaviours are rapidly lost in wildlife refuges and captivity. We identify important areas for future research to help determine whether vestigial behaviours essentially represent a form of evolutionary lag, or whether they have more meaningful evolutionary consequences distinct from those of other vestigial and behavioural traits.
Collapse
Affiliation(s)
- Jack G Rayner
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| | - Samantha L Sturiale
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| | - Nathan W Bailey
- Centre for Biological Diversity, Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, U.K
| |
Collapse
|
7
|
Czégel D, Giaffar H, Tenenbaum JB, Szathmáry E. Bayes and Darwin: How replicator populations implement Bayesian computations. Bioessays 2022; 44:e2100255. [PMID: 35212408 DOI: 10.1002/bies.202100255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/07/2022]
Abstract
Bayesian learning theory and evolutionary theory both formalize adaptive competition dynamics in possibly high-dimensional, varying, and noisy environments. What do they have in common and how do they differ? In this paper, we discuss structural and dynamical analogies and their limits, both at a computational and an algorithmic-mechanical level. We point out mathematical equivalences between their basic dynamical equations, generalizing the isomorphism between Bayesian update and replicator dynamics. We discuss how these mechanisms provide analogous answers to the challenge of adapting to stochastically changing environments at multiple timescales. We elucidate an algorithmic equivalence between a sampling approximation, particle filters, and the Wright-Fisher model of population genetics. These equivalences suggest that the frequency distribution of types in replicator populations optimally encodes regularities of a stochastic environment to predict future environments, without invoking the known mechanisms of multilevel selection and evolvability. A unified view of the theories of learning and evolution comes in sight.
Collapse
Affiliation(s)
- Dániel Czégel
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary.,Parmenides Foundation, Center for the Conceptual Foundations of Science, Pullach, Germany.,Doctoral School of Biology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary.,Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, USA
| | - Hamza Giaffar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Joshua B Tenenbaum
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Eörs Szathmáry
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary.,Parmenides Foundation, Center for the Conceptual Foundations of Science, Pullach, Germany.,Department of Plant Systematics, Ecology and Theoretical Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
8
|
Navarro-Torres CA, Beatty-Martínez AL, Kroll JF, Green DW. Research on bilingualism as discovery science. BRAIN AND LANGUAGE 2021; 222:105014. [PMID: 34530360 PMCID: PMC8978084 DOI: 10.1016/j.bandl.2021.105014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
An important aim of research on bilingualism is to understand how the brain adapts to the demands of using more than one language.In this paper, we argue that pursuing such an aim entails valuing our research as a discovery process that acts on variety.Prescriptions about sample size and methodology, rightly aimed at establishing a sound basis for generalization, should be understood as being in the service of science as a discovery process. We propose and illustrate by drawing from previous and contemporary examples within brain and cognitive sciences, that this necessitates exploring the neural bases of bilingual phenotypes:the adaptive variety induced through the interplay of biology and culture. We identify the conceptual and methodological prerequisites for such exploration and briefly allude to the publication practices that afford it as a community practice and to the risk of allowing methodological prescriptions, rather than discovery, to dominate the research endeavor.
Collapse
Affiliation(s)
| | | | - Judith F Kroll
- School of Education, University of California, Irvine, United States
| | - David W Green
- Department of Experimental Psychology, University College London, United Kingdom
| |
Collapse
|
9
|
Podlipniak P. The Role of Canalization and Plasticity in the Evolution of Musical Creativity. Front Neurosci 2021; 15:607887. [PMID: 33796005 PMCID: PMC8007929 DOI: 10.3389/fnins.2021.607887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/24/2021] [Indexed: 11/29/2022] Open
Abstract
Creativity is defined as the ability to generate something new and valuable. From a biological point of view this can be seen as an adaptation in response to environmental challenges. Although music is such a diverse phenomenon, all people possess a set of abilities that are claimed to be the products of biological evolution, which allow us to produce and listen to music according to both universal and culture-specific rules. On the one hand, musical creativity is restricted by the tacit rules that reflect the developmental interplay between genetic, epigenetic and cultural information. On the other hand, musical innovations seem to be desirable elements present in every musical culture which suggests some biological importance. If our musical activity is driven by biological needs, then it is important for us to understand the function of musical creativity in satisfying those needs, and also how human beings have become so creative in the domain of music. The aim of this paper is to propose that musical creativity has become an indispensable part of the gene-culture coevolution of our musicality. It is suggested that the two main forces of canalization and plasticity have been crucial in this process. Canalization is an evolutionary process in which phenotypes take relatively constant forms regardless of environmental and genetic perturbations. Plasticity is defined as the ability of a phenotype to generate an adaptive response to environmental challenges. It is proposed that human musicality is composed of evolutionary innovations generated by the gradual canalization of developmental pathways leading to musical behavior. Within this process, the unstable cultural environment serves as the selective pressure for musical creativity. It is hypothesized that the connections between cortical and subcortical areas, which constitute cortico-subcortical circuits involved in music processing, are the products of canalization, whereas plasticity is achieved by the means of neurological variability. This variability is present both at the level of an individual structure's enlargement in response to practicing (e.g., the planum temporale) and within the involvement of neurological structures that are not music-specific (e.g., the default mode network) in music processing.
Collapse
Affiliation(s)
- Piotr Podlipniak
- Department of Musicology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
10
|
Kagawa H, Kato Y, Suzuki K, Kato M, Okanoya K. Variation in auditory neural activation in response to strain-specific songs in wild and domesticated female Bengalese finches. Behav Brain Res 2020; 395:112840. [DOI: 10.1016/j.bbr.2020.112840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 07/25/2020] [Accepted: 07/26/2020] [Indexed: 12/27/2022]
|
11
|
Heyes C, Chater N, Dwyer DM. Sinking In: The Peripheral Baldwinisation of Human Cognition. Trends Cogn Sci 2020; 24:884-899. [PMID: 32981845 DOI: 10.1016/j.tics.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/13/2020] [Accepted: 08/27/2020] [Indexed: 01/25/2023]
Abstract
The Baldwin effect is a hypothetical process in which a learned response to environmental change evolves a genetic basis. Modelling has shown that the Baldwin effect offers a plausible and elegant explanation for the emergence of complex behavioural traits, but there is little direct empirical evidence for its occurrence. We highlight experimental evidence of the Baldwin effect and argue that it acts preferentially on peripheral rather than on central cognitive processes. Careful scrutiny of research on taste-aversion and fear learning, language, and imitation indicates that their efficiency depends on adaptively specialised input and output processes: analogues of scanner and printer interfaces that feed information to core inference processes and structure their behavioural expression.
Collapse
Affiliation(s)
- Cecilia Heyes
- All Souls College and Department of Experimental Psychology, University of Oxford, Oxford OX1 4AL, UK.
| | - Nick Chater
- Warwick Business School, University of Warwick, Coventry CV4 7AL, UK
| | | |
Collapse
|
12
|
|
13
|
Smith K. How Culture and Biology Interact to Shape Language and the Language Faculty. Top Cogn Sci 2020; 12:690-712. [PMID: 30182526 PMCID: PMC7379493 DOI: 10.1111/tops.12377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Abstract
Recent work suggests that linguistic structure develops through cultural evolution, as a consequence of the repeated cycle of learning and use by which languages persist. This work has important implications for our understanding of the evolution of the cognitive basis for language; in particular, human language and the cognitive capacities underpinning it are likely to have been shaped by co-evolutionary processes, where the cultural evolution of linguistic systems is shaped by and in turn shapes the biological evolution of the capacities underpinning language learning. I review several models of this co-evolutionary process, which suggest that the precise relationship between evolved biases in individuals and the structure of linguistic systems depends on the extent to which cultural evolution masks or unmasks individual-level cognitive biases from selection. I finish by discussing how these co-evolutionary models might be extended to cases where the biases involved in learning are themselves shaped by experience, as is the case for language.
Collapse
Affiliation(s)
- Kenny Smith
- Centre for Language EvolutionUniversity of Edinburgh
| |
Collapse
|
14
|
Langley MC, Benítez‐Burraco A, Kempe V. Playing with language, creating complexity: Has play contributed to the evolution of complex language? Evol Anthropol 2019; 29:29-40. [DOI: 10.1002/evan.21810] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Michelle C. Langley
- Australian Research Centre for Human Evolution, Environmental Futures Research InstituteGriffith University Brisbane Queensland Australia
| | - Antonio Benítez‐Burraco
- Department of Spanish, Linguistics, and Theory of Literature (Linguistics), Faculty of PhilologyUniversity of Seville Seville Spain
| | - Vera Kempe
- Division of Psychology, School of Applied SciencesAbertay University Dundee UK
| |
Collapse
|
15
|
Aamodt CM, Farias-Virgens M, White SA. Birdsong as a window into language origins and evolutionary neuroscience. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190060. [PMID: 31735151 DOI: 10.1098/rstb.2019.0060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Humans and songbirds share the key trait of vocal learning, manifested in speech and song, respectively. Striking analogies between these behaviours include that both are acquired during developmental critical periods when the brain's ability for vocal learning peaks. Both behaviours show similarities in the overall architecture of their underlying brain areas, characterized by cortico-striato-thalamic loops and direct projections from cortical neurons onto brainstem motor neurons that control the vocal organs. These neural analogies extend to the molecular level, with certain song control regions sharing convergent transcriptional profiles with speech-related regions in the human brain. This evolutionary convergence offers an unprecedented opportunity to decipher the shared neurogenetic underpinnings of vocal learning. A key strength of the songbird model is that it allows for the delineation of activity-dependent transcriptional changes in the brain that are driven by learned vocal behaviour. To capitalize on this advantage, we used previously published datasets from our laboratory that correlate gene co-expression networks to features of learned vocalization within and after critical period closure to probe the functional relevance of genes implicated in language. We interrogate specific genes and cellular processes through converging lines of evidence: human-specific evolutionary changes, intelligence-related phenotypes and relevance to vocal learning gene co-expression in songbirds. This article is part of the theme issue 'What can animal communication teach us about human language?'
Collapse
Affiliation(s)
- Caitlin M Aamodt
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Madza Farias-Virgens
- Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA
| | - Stephanie A White
- Neuroscience Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Molecular, Cellular and Integrative Physiology Interdepartmental Program, University of California Los Angeles, CA 90095-7239, USA.,Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095-7239, USA
| |
Collapse
|
16
|
Farran LK, Yoo H, Lee CC, Bowman DD, Oller DK. Temporal Coordination in Mother-Infant Vocal Interaction: A Cross-Cultural Comparison. Front Psychol 2019; 10:2374. [PMID: 31780979 PMCID: PMC6856762 DOI: 10.3389/fpsyg.2019.02374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 10/04/2019] [Indexed: 01/17/2023] Open
Abstract
Temporal coordination of vocal exchanges between mothers and their infants emerges from a developmental process that relies on the ability of communication partners to co-coordinate and predict each other's turns. Consequently, the partners engage in communicative niche construction that forms a foundation for language in human infancy. While robust universals in vocal turn-taking have been found, differences in the timing of maternal and infant vocalizations have also been reported across cultures. In this study, we examine the temporal structure of vocal interactions in 38 mother-infant dyads in the first two years across two cultures-American and Lebanese-by studying observed and randomized distributions of vocalizations, focusing on both gaps and overlaps in naturalistic 10-min vocal interactions. We conducted a series of simulations using Kolmogorov-Smirnov (K-S) tests to examine whether the observed responsivity patterns differed from randomly generated simulations of responsivity patterns in both Arabic and English for mothers responding to infants and for infants responding to mothers. Results revealed that both mothers and infants engaged in conversational alternation, with mothers acting similarly across cultures. By contrast, significant differences were observed in the timing of infant responses to maternal utterances, with the Lebanese infants' tendency to cluster their responses in the first half-second after the offset of the Lebanese mothers' utterances to a greater extent than their American counterparts. We speculate that the results may be due to potential phonotactic differences between Arabic and English and/or to differing child-rearing practices across Lebanese and American cultures. The findings may have implications for early identification of developmental disorders such as autism spectrum disorders within and across cultures.
Collapse
Affiliation(s)
- Lama K. Farran
- Communication Sciences and Disorders, University of West Georgia, Carrollton, GA, United States
| | - Hyunjoo Yoo
- Department of Communicative Disorders, College of Arts and Sciences, University of Alabama, Tuscaloosa, AL, United States
| | - Chia-Cheng Lee
- Department of Speech and Hearing Sciences, Portland State University, Portland, OR, United States
| | - Dale D. Bowman
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
| | - D. Kimbrough Oller
- School of Communication Sciences and Disorders, University of Memphis, Memphis, TN, United States
| |
Collapse
|
17
|
Gering E, Incorvaia D, Henriksen R, Wright D, Getty T. Maladaptation in feral and domesticated animals. Evol Appl 2019; 12:1274-1286. [PMID: 31417614 PMCID: PMC6691326 DOI: 10.1111/eva.12784] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/10/2019] [Accepted: 02/07/2019] [Indexed: 12/14/2022] Open
Abstract
Selection regimes and population structures can be powerfully changed by domestication and feralization, and these changes can modulate animal fitness in both captive and natural environments. In this review, we synthesize recent studies of these two processes and consider their impacts on organismal and population fitness. Domestication and feralization offer multiple windows into the forms and mechanisms of maladaptation. Firstly, domestic and feral organisms that exhibit suboptimal traits or fitness allow us to identify their underlying causes within tractable research systems. This has facilitated significant progress in our general understandings of genotype-phenotype relationships, fitness trade-offs, and the roles of population structure and artificial selection in shaping domestic and formerly domestic organisms. Additionally, feralization of artificially selected gene variants and organisms can reveal or produce maladaptation in other inhabitants of an invaded biotic community. In these instances, feral animals often show similar fitness advantages to other invasive species, but they are also unique in their capacities to modify natural ecosystems through introductions of artificially selected traits. We conclude with a brief consideration of how emerging technologies such as genome editing could change the tempos, trajectories, and ecological consequences of both domestication and feralization. In addition to providing basic evolutionary insights, our growing understanding of mechanisms through which artificial selection can modulate fitness has diverse and important applications-from enhancing the welfare, sustainability, and efficiency of agroindustry, to mitigating biotic invasions.
Collapse
Affiliation(s)
- Eben Gering
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| | - Darren Incorvaia
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| | - Rie Henriksen
- IIFM Biology and AVIAN Behavioural Genomics and Physiology GroupLinköping UniversitySweden
| | - Dominic Wright
- IIFM Biology and AVIAN Behavioural Genomics and Physiology GroupLinköping UniversitySweden
| | - Thomas Getty
- Department of Integrative Biology and Ecology, Evolutionary Biology, and Behavior ProgramMichigan State UniversityEast LansingMichigan
| |
Collapse
|
18
|
Nadal M, Chatterjee A. Neuroaesthetics and art's diversity and universality. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 10:e1487. [DOI: 10.1002/wcs.1487] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/19/2018] [Accepted: 10/23/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Marcos Nadal
- Department of Psychology University of the Balearic Islands Palma de Mallorca Spain
| | - Anjan Chatterjee
- Department of Neurology University of Pennsylvania Philadelphia Pennsylvania
| |
Collapse
|
19
|
Hage SR. Dual neural network model of speech and language evolution: new insights on flexibility of vocal production systems and involvement of frontal cortex. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.02.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Gultekin YB, Hage SR. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. SCIENCE ADVANCES 2018; 4:eaar4012. [PMID: 29651461 PMCID: PMC5895450 DOI: 10.1126/sciadv.aar4012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/30/2023]
Abstract
Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development.
Collapse
|
21
|
Thomas J, Kirby S. Self domestication and the evolution of language. BIOLOGY & PHILOSOPHY 2018; 33:9. [PMID: 29606782 PMCID: PMC5871649 DOI: 10.1007/s10539-018-9612-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 03/13/2018] [Indexed: 05/09/2023]
Abstract
We set out an account of how self-domestication plays a crucial role in the evolution of language. In doing so, we focus on the growing body of work that treats language structure as emerging from the process of cultural transmission. We argue that a full recognition of the importance of cultural transmission fundamentally changes the kind of questions we should be asking regarding the biological basis of language structure. If we think of language structure as reflecting an accumulated set of changes in our genome, then we might ask something like, "What are the genetic bases of language structure and why were they selected?" However, if cultural evolution can account for language structure, then this question no longer applies. Instead, we face the task of accounting for the origin of the traits that enabled that process of structure-creating cultural evolution to get started in the first place. In light of work on cultural evolution, then, the new question for biological evolution becomes, "How did those precursor traits evolve?" We identify two key precursor traits: (1) the transmission of the communication system through learning; and (2) the ability to infer the communicative intent associated with a signal or action. We then describe two comparative case studies-the Bengalese finch and the domestic dog-in which parallel traits can be seen emerging following domestication. Finally, we turn to the role of domestication in human evolution. We argue that the cultural evolution of language structure has its origin in an earlier process of self-domestication.
Collapse
Affiliation(s)
- James Thomas
- Centre for Language Evolution, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD UK
| | - Simon Kirby
- Centre for Language Evolution, University of Edinburgh, 3 Charles Street, Edinburgh, EH8 9AD UK
| |
Collapse
|
22
|
Podlipniak P. The Role of the Baldwin Effect in the Evolution of Human Musicality. Front Neurosci 2017; 11:542. [PMID: 29056895 PMCID: PMC5635050 DOI: 10.3389/fnins.2017.00542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
From the biological perspective human musicality is the term referred to as a set of abilities which enable the recognition and production of music. Since music is a complex phenomenon which consists of features that represent different stages of the evolution of human auditory abilities, the question concerning the evolutionary origin of music must focus mainly on music specific properties and their possible biological function or functions. What usually differentiates music from other forms of human sound expressions is a syntactically organized structure based on pitch classes and rhythmic units measured in reference to musical pulse. This structure is an auditory (not acoustical) phenomenon, meaning that it is a human-specific interpretation of sounds achieved thanks to certain characteristics of the nervous system. There is historical and cross-cultural diversity of this structure which indicates that learning is an important part of the development of human musicality. However, the fact that there is no culture without music, the syntax of which is implicitly learned and easily recognizable, suggests that human musicality may be an adaptive phenomenon. If the use of syntactically organized structure as a communicative phenomenon were adaptive it would be only in circumstances in which this structure is recognizable by more than one individual. Therefore, there is a problem to explain the adaptive value of an ability to recognize a syntactically organized structure that appeared accidentally as the result of mutation or recombination in an environment without a syntactically organized structure. The possible solution could be explained by the Baldwin effect in which a culturally invented trait is transformed into an instinctive trait by the means of natural selection. It is proposed that in the beginning musical structure was invented and learned thanks to neural plasticity. Because structurally organized music appeared adaptive (phenotypic adaptation) e.g., as a tool of social consolidation, our predecessors started to spend a lot of time and energy on music. In such circumstances, accidentally one individual was born with the genetically controlled development of new neural circuitry which allowed him or her to learn music faster and with less energy use.
Collapse
Affiliation(s)
- Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, Poznań, Poland
| |
Collapse
|
23
|
Hage SR, Gavrilov N, Nieder A. Developmental changes of cognitive vocal control in monkeys. ACTA ACUST UNITED AC 2017; 219:1744-9. [PMID: 27252457 DOI: 10.1242/jeb.137653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/15/2016] [Indexed: 02/02/2023]
Abstract
The evolutionary origins of human language are obscured by the scarcity of essential linguistic characteristics in non-human primate communication systems. Volitional control of vocal utterances is one such indispensable feature of language. We investigated the ability of two monkeys to volitionally utter species-specific calls over many years. Both monkeys reliably vocalized on command during juvenile periods, but discontinued this controlled vocal behavior in adulthood. This emerging disability was confined to volitional vocal production, as the monkeys continued to vocalize spontaneously. In addition, they continued to use hand movements as instructed responses during adulthood. This greater vocal flexibility of monkeys early in ontogeny supports the neoteny hypothesis in human evolution. This suggests that linguistic capabilities were enabled via an expansion of the juvenile period during the development of humans.
Collapse
Affiliation(s)
- Steffen R Hage
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Natalja Gavrilov
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
24
|
Abstract
Language is systematically structured at all levels of description, arguably setting it apart from all other instances of communication in nature. In this article, I survey work over the last 20 years that emphasises the contributions of individual learning, cultural transmission, and biological evolution to explaining the structural design features of language. These 3 complex adaptive systems exist in a network of interactions: individual learning biases shape the dynamics of cultural evolution; universal features of linguistic structure arise from this cultural process and form the ultimate linguistic phenotype; the nature of this phenotype affects the fitness landscape for the biological evolution of the language faculty; and in turn this determines individuals' learning bias. Using a combination of computational simulation, laboratory experiments, and comparison with real-world cases of language emergence, I show that linguistic structure emerges as a natural outcome of cultural evolution once certain minimal biological requirements are in place.
Collapse
Affiliation(s)
- Simon Kirby
- Centre for Language Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
25
|
Sexual communication and domestication may give rise to the signal complexity necessary for the emergence of language: An indication from songbird studies. Psychon Bull Rev 2017; 24:106-110. [DOI: 10.3758/s13423-016-1165-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
26
|
Limiting parental feedback disrupts vocal development in marmoset monkeys. Nat Commun 2017; 8:14046. [PMID: 28090084 PMCID: PMC5241798 DOI: 10.1038/ncomms14046] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 11/23/2016] [Indexed: 11/09/2022] Open
Abstract
Vocalizations of human infants undergo dramatic changes across the first year by becoming increasingly mature and speech-like. Human vocal development is partially dependent on learning by imitation through social feedback between infants and caregivers. Recent studies revealed similar developmental processes being influenced by parental feedback in marmoset monkeys for apparently innate vocalizations. Marmosets produce infant-specific vocalizations that disappear after the first postnatal months. However, it is yet unclear whether parental feedback is an obligate requirement for proper vocal development. Using quantitative measures to compare call parameters and vocal sequence structure we show that, in contrast to normally raised marmosets, marmosets that were separated from parents after the third postnatal month still produced infant-specific vocal behaviour at subadult stages. These findings suggest a significant role of social feedback on primate vocal development until the subadult stages and further show that marmoset monkeys are a compelling model system for early human vocal development.
Collapse
|
27
|
Badets A, Osiurak F. The ideomotor recycling theory for tool use, language, and foresight. Exp Brain Res 2016; 235:365-377. [PMID: 27815576 DOI: 10.1007/s00221-016-4812-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022]
Abstract
The present theoretical framework highlights a common action-perception mechanism for tool use, spoken language, and foresight capacity. On the one hand, it has been suggested that human language and the capacity to envision the future (i.e. foresight) have, from an evolutionary viewpoint, developed mutually along with the pressure of tool use. This co-evolution has afforded humans an evident survival advantage in the animal kingdom because language can help to refine the representation of future scenarios, which in turn can help to encourage or discourage engagement in appropriate and efficient behaviours. On the other hand, recent assumptions regarding the evolution of the brain have capitalized on the concept of "neuronal recycling". In the domain of cognitive neuroscience, neuronal recycling means that during evolution, some neuronal areas and cognitive functions have been recycled to manage new environmental and social constraints. In the present article, we propose that the co-evolution of tool use, language, and foresight represents a suitable example of such functional recycling throughout a well-defined common action-perception mechanism, i.e. the ideomotor mechanism. This ideomotor account is discussed in light of different future ontogenetic and phylogenetic perspectives.
Collapse
Affiliation(s)
- Arnaud Badets
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine (UMR 5287), Université de Bordeaux, Bât. 2A- 2ème étage, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France.
| | - François Osiurak
- Laboratoire d'Etude des Mécanismes Cognitifs (EA 3082), Université de Lyon, Lyon, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Glancy J, Stone JV, Wilson SP. How self-organization can guide evolution. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160553. [PMID: 28018644 PMCID: PMC5180142 DOI: 10.1098/rsos.160553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
Self-organization and natural selection are fundamental forces that shape the natural world. Substantial progress in understanding how these forces interact has been made through the study of abstract models. Further progress may be made by identifying a model system in which the interaction between self-organization and selection can be investigated empirically. To this end, we investigate how the self-organizing thermoregulatory huddling behaviours displayed by many species of mammals might influence natural selection of the genetic components of metabolism. By applying a simple evolutionary algorithm to a well-established model of the interactions between environmental, morphological, physiological and behavioural components of thermoregulation, we arrive at a clear, but counterintuitive, prediction: rodents that are able to huddle together in cold environments should evolve a lower thermal conductance at a faster rate than animals reared in isolation. The model therefore explains how evolution can be accelerated as a consequence of relaxed selection, and it predicts how the effect may be exaggerated by an increase in the litter size, i.e. by an increase in the capacity to use huddling behaviours for thermoregulation. Confirmation of these predictions in future experiments with rodents would constitute strong evidence of a mechanism by which self-organization can guide natural selection.
Collapse
Affiliation(s)
- Jonathan Glancy
- Department of Psychology, The University of Sheffield, Sheffield, UK
- Sheffield Robotics, The University of Sheffield, Sheffield, UK
| | - James V. Stone
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Stuart P. Wilson
- Department of Psychology, The University of Sheffield, Sheffield, UK
- Sheffield Robotics, The University of Sheffield, Sheffield, UK
| |
Collapse
|
29
|
Abstract
A central debate in cognitive science concerns the nativist hypothesis, the proposal that universal features of behavior reflect a biologically determined cognitive substrate: For example, linguistic nativism proposes a domain-specific faculty of language that strongly constrains which languages can be learned. An evolutionary stance appears to provide support for linguistic nativism, because coordinated constraints on variation may facilitate communication and therefore be adaptive. However, language, like many other human behaviors, is underpinned by social learning and cultural transmission alongside biological evolution. We set out two models of these interactions, which show how culture can facilitate rapid biological adaptation yet rule out strong nativization. The amplifying effects of culture can allow weak cognitive biases to have significant population-level consequences, radically increasing the evolvability of weak, defeasible inductive biases; however, the emergence of a strong cultural universal does not imply, nor lead to, nor require, strong innate constraints. From this we must conclude, on evolutionary grounds, that the strong nativist hypothesis for language is false. More generally, because such reciprocal interactions between cultural and biological evolution are not limited to language, nativist explanations for many behaviors should be reconsidered: Evolutionary reasoning shows how we can have cognitively driven behavioral universals and yet extreme plasticity at the level of the individual-if, and only if, we account for the human capacity to transmit knowledge culturally. Wherever culture is involved, weak cognitive biases rather than strong innate constraints should be the default assumption.
Collapse
|
30
|
Tamariz M, Kirby S. The cultural evolution of language. Curr Opin Psychol 2016; 8:37-43. [DOI: 10.1016/j.copsyc.2015.09.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/28/2015] [Accepted: 09/06/2015] [Indexed: 11/24/2022]
|
31
|
Farran LK, Lee CC, Yoo H, Oller DK. Cross-Cultural Register Differences in Infant-Directed Speech: An Initial Study. PLoS One 2016; 11:e0151518. [PMID: 26981626 PMCID: PMC4794163 DOI: 10.1371/journal.pone.0151518] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 02/29/2016] [Indexed: 11/19/2022] Open
Abstract
Infant-directed speech (IDS) provides an environment that appears to play a significant role in the origins of language in the human infant. Differences have been reported in the use of IDS across cultures, suggesting different styles of infant language-learning. Importantly, both cross-cultural and intra-cultural research suggest there may be a positive relationship between the use of IDS and rates of language development, underscoring the need to investigate cultural differences more deeply. The majority of studies, however, have conceptualized IDS monolithically, granting little attention to a potentially key distinction in how IDS manifests across cultures during the first two years. This study examines and quantifies for the first time differences within IDS in the use of baby register (IDS/BR), an acoustically identifiable type of IDS that includes features such as high pitch, long duration, and smooth intonation (the register that is usually assumed to occur in IDS), and adult register (IDS/AR), the type of IDS that does not include such features and thus sounds as if it could have been addressed to an adult. We studied IDS across 19 American and 19 Lebanese mother-infant dyads, with particular focus on the differential use of registers within IDS as mothers interacted with their infants ages 0-24 months. Our results showed considerable usage of IDS/AR (>30% of utterances) and a tendency for Lebanese mothers to use more IDS than American mothers. Implications for future research on IDS and its role in elucidating how language evolves across cultures are explored.
Collapse
Affiliation(s)
- Lama K. Farran
- Communication Sciences & Disorders, University of West Georgia, Carrolton, Georgia, United States of America
| | - Chia-Cheng Lee
- Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America
| | - Hyunjoo Yoo
- Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America
| | - D. Kimbrough Oller
- Communication Sciences & Disorders, University of Memphis, Memphis, Tennessee, United States of America
- Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| |
Collapse
|
32
|
Gong T, Shuai L. Modeling Coevolution between Language and Memory Capacity during Language Origin. PLoS One 2015; 10:e0142281. [PMID: 26544876 PMCID: PMC4636343 DOI: 10.1371/journal.pone.0142281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/20/2015] [Indexed: 01/06/2023] Open
Abstract
Memory is essential to many cognitive tasks including language. Apart from empirical studies of memory effects on language acquisition and use, there lack sufficient evolutionary explorations on whether a high level of memory capacity is prerequisite for language and whether language origin could influence memory capacity. In line with evolutionary theories that natural selection refined language-related cognitive abilities, we advocated a coevolution scenario between language and memory capacity, which incorporated the genetic transmission of individual memory capacity, cultural transmission of idiolects, and natural and cultural selections on individual reproduction and language teaching. To illustrate the coevolution dynamics, we adopted a multi-agent computational model simulating the emergence of lexical items and simple syntax through iterated communications. Simulations showed that: along with the origin of a communal language, an initially-low memory capacity for acquired linguistic knowledge was boosted; and such coherent increase in linguistic understandability and memory capacities reflected a language-memory coevolution; and such coevolution stopped till memory capacities became sufficient for language communications. Statistical analyses revealed that the coevolution was realized mainly by natural selection based on individual communicative success in cultural transmissions. This work elaborated the biology-culture parallelism of language evolution, demonstrated the driving force of culturally-constituted factors for natural selection of individual cognitive abilities, and suggested that the degree difference in language-related cognitive abilities between humans and nonhuman animals could result from a coevolution with language.
Collapse
Affiliation(s)
- Tao Gong
- Haskins Laboratories, New Haven, Connecticut, United States of America
| | - Lan Shuai
- Haskins Laboratories, New Haven, Connecticut, United States of America
| |
Collapse
|
33
|
Chatterjee A. Scientific aesthetics: three steps forward. Br J Psychol 2015; 105:465-7. [PMID: 25280119 DOI: 10.1111/bjop.12086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 07/22/2014] [Indexed: 11/26/2022]
Abstract
Leder and Nadal (2014, this issue) examine the current state of scientific aesthetics through the lens of a prescient psychological model proposed 10 years ago. These retrospective points to several future directions of which I touch on three: the nature of aesthetic emotions, the time course of emotions in aesthetic episodes, and the relationship of art and evolution.
Collapse
Affiliation(s)
- Anjan Chatterjee
- Department of Neurology, Pennsylvania Hospital, Penn Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
|
35
|
Behavioral and neural trade-offs between song complexity and stress reaction in a wild and a domesticated finch strain. Neurosci Biobehav Rev 2014; 46 Pt 4:547-56. [DOI: 10.1016/j.neubiorev.2014.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
|
36
|
Boeckx C, Benítez-Burraco A. The shape of the human language-ready brain. Front Psychol 2014; 5:282. [PMID: 24772099 PMCID: PMC3983487 DOI: 10.3389/fpsyg.2014.00282] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 03/17/2014] [Indexed: 12/14/2022] Open
Abstract
Our core hypothesis is that the emergence of our species-specific language-ready brain ought to be understood in light of the developmental changes expressed at the levels of brain morphology and neural connectivity that occurred in our species after the split from Neanderthals–Denisovans and that gave us a more globular braincase configuration. In addition to changes at the cortical level, we hypothesize that the anatomical shift that led to globularity also entailed significant changes at the subcortical level. We claim that the functional consequences of such changes must also be taken into account to gain a fuller understanding of our linguistic capacity. Here we focus on the thalamus, which we argue is central to language and human cognition, as it modulates fronto-parietal activity. With this new neurobiological perspective in place, we examine its possible molecular basis. We construct a candidate gene set whose members are involved in the development and connectivity of the thalamus, in the evolution of the human head, and are known to give rise to language-associated cognitive disorders. We submit that the new gene candidate set opens up new windows into our understanding of the genetic basis of our linguistic capacity. Thus, our hypothesis aims at generating new testing grounds concerning core aspects of language ontogeny and phylogeny.
Collapse
Affiliation(s)
- Cedric Boeckx
- Catalan Institute for Advanced Studies and Research (ICREA) Barcelona, Spain ; Department of Linguistics, Universitat de Barcelona Barcelona, Spain
| | | |
Collapse
|
37
|
Single neurons in monkey prefrontal cortex encode volitional initiation of vocalizations. Nat Commun 2014; 4:2409. [PMID: 24008252 DOI: 10.1038/ncomms3409] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 08/06/2013] [Indexed: 11/08/2022] Open
Abstract
Broca's area in the ventrolateral prefrontal cortex (vlPFC) has a crucial role in human volitional speech production; damage to this area causes severe impairment of speech production. Lesions in PFC of monkeys, however, have only mild effects on spontaneous vocal behaviour. Non-human primate vocalizations are thus believed to constitute affective utterances processed by a subcortical network. Here in contrast to this assumption, we show that rhesus monkeys can control their vocalizations in a goal-directed way. During single-cell recordings in the vlPFC of monkeys trained to vocalize in response to visual cues, we find call-related neurons that specifically predict the preparation of instructed vocalizations. The activity of many call-related neurons before vocal output correlates with call parameters of instructed vocalizations. These findings suggest a cardinal role of the monkey homologue of Broca's area in vocal planning and call initiation, a putative phylogenetic precursor in non-human primates for speech control in linguistic humans.
Collapse
|
38
|
Goodwyn E. Recurrent motifs as resonant attractor states in the narrative field: a testable model of archetype. THE JOURNAL OF ANALYTICAL PSYCHOLOGY 2014; 58:387-408. [PMID: 23750942 DOI: 10.1111/1468-5922.12020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
At the most basic level, archetypes represented Jung's attempt to explain the phenomenon of recurrent myths and folktale motifs (Jung 1956, 1959, para. 99). But the archetype remains controversial as an explanation of recurrent motifs, as the existence of recurrent motifs does not prove that archetypes exist. Thus, the challenge for contemporary archetype theory is not merely to demonstrate that recurrent motifs exist, since that is not disputed, but to demonstrate that archetypes exist and cause recurrent motifs. The present paper proposes a new model which is unlike others in that it postulates how the archetype creates resonant motifs. This model necessarily clarifies and adapts some of Jung's seminal ideas on archetype in order to provide a working framework grounded in contemporary practice and methodologies. For the first time, a model of archetype is proposed that can be validated on empirical, rather than theoretical grounds. This is achieved by linking the archetype to the hard data of recurrent motifs rather than academic trends in other fields.
Collapse
|
39
|
Abstract
Researchers in the field of epigenomics are developing more nuanced understandings of biological complexity, and exploring the multiple pathways that lead to phenotypic expression. The concept of degeneracy-referring to the multiple pathways that a system recruits to achieve functional plasticity-is an important conceptual accompaniment to the growing body of knowledge in epigenomics. Distinct from degradation, redundancy and dilapidation; degeneracy refers to the plasticity of traits whose function overlaps in some environments, but diverges in others. While a redundant system is composed of repeated identical elements performing the same function, a degenerate system is composed of different elements performing similar or overlapping functions. Here, we describe the degenerate structure of gene regulatory systems from the basic genetic code to flexible epigenomic modifications, and discuss how these structural features have contributed to organism complexity, robustness, plasticity and evolvability.
Collapse
|
40
|
Rühli FJ, Henneberg M. New perspectives on evolutionary medicine: the relevance of microevolution for human health and disease. BMC Med 2013; 11:115. [PMID: 23627943 PMCID: PMC3639037 DOI: 10.1186/1741-7015-11-115] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/07/2013] [Indexed: 11/10/2022] Open
Abstract
Evolutionary medicine (EM) is a growing field focusing on the evolutionary basis of human diseases and their changes through time. To date, the majority of EM studies have used pure theories of hominin macroevolution to explain the present-day state of human health. Here, we propose a different approach by addressing more empirical and health-oriented research concerning past, current and future microevolutionary changes of human structure, functions and pathologies. Studying generation-to-generation changes of human morphology that occurred in historical times, and still occur in present-day populations under the forces of evolution, helps to explain medical conditions and warns clinicians that their current practices may influence future humans. Also, analyzing historic tissue specimens such as mummies is crucial in order to address the molecular evolution of pathogens, of the human genome, and their coadaptations.
Collapse
Affiliation(s)
- Frank Jakobus Rühli
- Centre for Evolutionary Medicine, Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland.
| | | |
Collapse
|
41
|
Scharff C, Petri J. Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language. Philos Trans R Soc Lond B Biol Sci 2011; 366:2124-40. [PMID: 21690130 PMCID: PMC3130369 DOI: 10.1098/rstb.2011.0001] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.
Collapse
Affiliation(s)
- Constance Scharff
- Department of Animal Behavior, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany.
| | | |
Collapse
|
42
|
Cowgill L. One Year in Biological Anthropology: Species, Integration, and Boundaries in 2010. AMERICAN ANTHROPOLOGIST 2011. [DOI: 10.1111/j.1548-1433.2011.01325.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
43
|
Flaherty AW. Brain illness and creativity: mechanisms and treatment risks. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2011; 56:132-43. [PMID: 21443820 DOI: 10.1177/070674371105600303] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brain diseases and their treatment may help or hurt creativity in ways that shape quality of life. Increased creative drive is associated with bipolar disorder, depression, psychosis, temporal lobe epilepsy, frontotemporal dementia, Parkinson disease treatments, and autism. Creativity depends on goal-driven approach motivation from midbrain dopaminergic systems. Fear-driven avoidance motivation is of less aid to creativity. When serotonin and norepinephrine lower motivation and flexible behaviour, they can inhibit creativity. Hemispheric lateralization and frontotemporal connections must interact to create new ideas and conceptual schemes. The right brain and temporal lobe contribute skill in novelty detection, while the left brain and frontal lobe foster approach motivation and more easily generate new patterns of action from the novel perceptions. Genes and phenotypes that increase plasticity and creativity in tolerant environments with relaxed selection pressure may confer risk in rigorous environments. Few papers substantively address this important but fraught topic. Antidepressants (ADs) that inhibit fear-driven motivation, such as selective serotonin reuptake inhibitors, sometimes inhibit goal-oriented motivation as well. ADs that boost goal-directed motivation, such as bupropion, may remediate this effect. Benzodiazepines and alcohol may be counterproductive. Although dopaminergic agonists sometimes stimulate creativity, their doing so may inappropriately disinhibit behaviour. Dopamine antagonists may suppress creative motivation; lithium and anticonvulsant mood stabilizers may do so less. Physical exercise and REM sleep may help creativity. Art therapy and psychotherapy are not well studied. Preserving creative motivation can help creativity and other aspects of well-being in all patients, not just artists or researchers.
Collapse
Affiliation(s)
- Alice W Flaherty
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
44
|
Cui J, Pan YH, Zhang Y, Jones G, Zhang S. Progressive pseudogenization: vitamin C synthesis and its loss in bats. Mol Biol Evol 2010; 28:1025-31. [PMID: 21037206 DOI: 10.1093/molbev/msq286] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
For the past 50 years, it was believed that all bats, like humans and guinea pigs, did not synthesize vitamin C (Vc) because they lacked activity of L-gulonolactone oxidase (GULO) in their livers. Humans and guinea pigs lack the activity due to pseudogenization of GULO in their genomes, but there is no genetic evidence to show whether such loss in bats is caused by pseudogenization. Unexpectedly, our successful molecular cloning in one frugivorous bat (Rousettus leschenaultii) and one insectivorous bat (Hipposideros armiger) ascertains that no pseudogenization occurs in these species. Furthermore, we find normal GULO protein expression using bat-specific anti-GULO polyclonal antibodies in bats, evaluated by Western blotting. Most surprisingly, GULO activity assays reveal that these two bat species have retained the ability to synthesize Vc, but at low levels compared with the mouse. It is known that bats in the genus Pteropus have lost GULO activity. We then found that functional constraints acting on the GULO of Pteropus vampyrus (which lost its function) are relaxed. These results imply that the ability to synthesize Vc in bats has not been lost completely in species as previously thought. We also suggest that the evolution of bat GULO genes can be a good model to study genetic processes associated with loss-of-function.
Collapse
Affiliation(s)
- Jie Cui
- Institute of Molecular Ecology and Evolution, Institutes for Advanced Interdisciplinary Research, East China Normal University, Shanghai 200062, China
| | | | | | | | | |
Collapse
|
45
|
Colloquium paper: in the light of evolution IV: the human condition. Proc Natl Acad Sci U S A 2010; 107 Suppl 2:8897-901. [PMID: 20460311 DOI: 10.1073/pnas.1003214107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Yamauchi H, Hashimoto T. Relaxation of selection, niche construction, and the Baldwin effect in language evolution. ARTIFICIAL LIFE 2010; 16:271-287. [PMID: 20662598 DOI: 10.1162/artl_a_00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Deacon has suggested that one of the key factors of language evolution is not characterized by an increase in genetic contribution, often known as the Baldwin effect, but rather by a decrease. This process effectively increases linguistic learning capability by organizing a novel synergy of multiple lower-order functions previously irrelevant to the process of language acquisition. Deacon posits that this transition is not caused by natural selection. Rather, it is due to the relaxation of natural selection. While there are some cases in which relaxation caused by some external factors indeed induces the transition, we do not know what kind of relaxation has worked in language evolution. In this article, a genetic-algorithm-based computer simulation is used to investigate how the niche-constructing aspect of linguistic behavior may trigger the degradation of genetic predisposition related to language learning. The results show that agents initially increase their genetic predisposition for language learning—the Baldwin effect. They create a highly uniform sociolinguistic environment—a linguistic niche construction. This means that later generations constantly receive very similar inputs from adult agents, and subsequently the selective pressure to retain the genetic predisposition is relaxed.
Collapse
Affiliation(s)
- Hajime Yamauchi
- Japan Advanced Institute of Science and Technology and Laboratory for Biolinguistics RIKEN Brain Science Institute, School of Knowledge Science, Ishikawa, Japan.
| | | |
Collapse
|