1
|
Teng HW, Huang HY, Lin CC, Twu YC, Yang WH, Lin WC, Lan HY, Lin YY, Hwang WL. CT45A1-mediated MLC2 (MYL9) phosphorylation promotes natural killer cell resistance and outer cell fate in a cell-in-cell structure, potentiating the progression of microsatellite instability-high colorectal cancer. Mol Oncol 2024. [PMID: 39322998 DOI: 10.1002/1878-0261.13736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024] Open
Abstract
Patients with microsatellite instability-high (MSI-H) colorectal cancer (CRC) have high tumor mutation burden and tumor immunogenicity, exhibiting a higher response rate to immunotherapy and better survival. However, a portion of MSI-H CRC patients still experience adverse disease outcomes. We aimed to identify the tumor-autonomous regulators determining these heterogeneous clinical outcomes. The Cancer Genome Atlas (TCGA) dataset was used to identify regulators in MSI-H CRC patients with unfavorable outcomes. Stable CRC tumor clones expressing targeted regulators were established to evaluate migratory and stemness properties, immune cell vulnerability, and cell-in-cell (CIC) structure formation. RNA-sequencing (RNA-seq) was used to identify enriched biological pathways in stable CRC tumor clones. Clinicopathological characterization of formalin-fixed paraffin-embedded (FFPE) MSI-H CRC specimens was performed to explore the underlying mechanisms involved. We showed that cancer/testis antigen family 45 member A1 (CT45A1) expression was upregulated in MSI-H CRC patients with poor survival outcomes. CT45A1-expressing microsatellite stable (MSS) CRC cells showed enhanced migratory ability. However, CT45A1-expressing MSI-H CRC cells, but not MSS CRC cells, showed higher resistance to natural killer (NK) cell cytotoxicity and served as outer cells in homotypic CIC structures, preventing exogenous or therapeutic antibody access to inner CRC cells. Inactivating RHO-ROCK/MLCK-MLC2 signaling with small-molecule inhibitors or short-hairpin RNAs (shRNAs) targeting myosin light chain kinase (MYLK) abolished NK cell resistance and reduced the outer cell fate of CT45A1-expressing MSI-H CRC cells. In MSI-H CRC patients, CT45A1-positive tumors exhibited increased MLC2 phosphorylation, increased outer cell fate, and decreased survival. We demonstrated that CT45A1 potentiates the advanced progression of MSI-H CRC, and targeting MLC2 phosphorylation may enhance immunotherapy efficacy in CT45A1-positive MSI-H CRC patients.
Collapse
Affiliation(s)
- Hao-Wei Teng
- Division of Medical Oncology, Department of Oncology, Taipei Veterans General Hospital, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiang-Yueh Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Chi Lin
- Division of Colon and Rectum Surgery, Department of Surgery, Taipei Veterans General Hospital, Taiwan
- Department of Surgery, Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yuh-Ching Twu
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Hao Yang
- Graduate Institute of Biomedical Sciences, Research Center for Cancer Biology and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chun Lin
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsin-Yi Lan
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Yu Lin
- Department of Pathology, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Wei-Lun Hwang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Cancer and Immunology Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Gonzalez-Kozlova E, Huang HH, Jagede OA, Tuballes K, Del Valle DM, Kelly G, Patel M, Xie H, Harris J, Argueta K, Nie K, Barcessat V, Moravec R, Altreuter J, Duose DY, Kahl BS, Ansell SM, Yu J, Cerami E, Lindsay JR, Wistuba II, Kim-Schulze S, Diefenbach CS, Gnjatic S. Tumor-Immune Signatures of Treatment Resistance to Brentuximab Vedotin with Ipilimumab and/or Nivolumab in Hodgkin Lymphoma. CANCER RESEARCH COMMUNICATIONS 2024; 4:1726-1737. [PMID: 38934093 PMCID: PMC11247952 DOI: 10.1158/2767-9764.crc-24-0252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
To investigate the cellular and molecular mechanisms associated with targeting CD30-expressing Hodgkin lymphoma (HL) and immune checkpoint modulation induced by combination therapies of CTLA4 and PD1, we leveraged Phase 1/2 multicenter open-label trial NCT01896999 that enrolled patients with refractory or relapsed HL (R/R HL). Using peripheral blood, we assessed soluble proteins, cell composition, T-cell clonality, and tumor antigen-specific antibodies in 54 patients enrolled in the phase 1 component of the trial. NCT01896999 reported high (>75%) overall objective response rates with brentuximab vedotin (BV) in combination with ipilimumab (I) and/or nivolumab (N) in patients with R/R HL. We observed a durable increase in soluble PD1 and plasmacytoid dendritic cells as well as decreases in plasma CCL17, ANGPT2, MMP12, IL13, and CXCL13 in N-containing regimens (BV + N and BV + I + N) compared with BV + I (P < 0.05). Nonresponders and patients with short progression-free survival showed elevated CXCL9, CXCL13, CD5, CCL17, adenosine-deaminase, and MUC16 at baseline or after one treatment cycle and a higher prevalence of NY-ESO-1-specific autoantibodies (P < 0.05). The results suggest a circulating tumor-immune-derived signature of BV ± I ± N treatment resistance that may be useful for patient stratification in combination checkpoint therapy. SIGNIFICANCE Identification of multi-omic immune markers from peripheral blood may help elucidate resistance mechanisms to checkpoint inhibitor and antibody-drug conjugate combinations with potential implications for treatment decisions in relapsed HL.
Collapse
Affiliation(s)
- Edgar Gonzalez-Kozlova
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Hsin-Hui Huang
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Opeyemi A. Jagede
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kevin Tuballes
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Diane M. Del Valle
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Geoffrey Kelly
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Manishkumar Patel
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Hui Xie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Jocelyn Harris
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kimberly Argueta
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Kai Nie
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Vanessa Barcessat
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Radim Moravec
- Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, NCI, Bethesda, Maryland.
| | - Jennifer Altreuter
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Dzifa Y. Duose
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Brad S. Kahl
- Washington University School of Medicine, New York, New York.
| | | | - Joyce Yu
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ethan Cerami
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - James R. Lindsay
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
- CIMAC-CIDC Network, Pipeline Development and Portal Integration, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Seunghee Kim-Schulze
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| | | | - Sacha Gnjatic
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
3
|
Traynor S, Jakobsen MK, Green TM, Komic H, Palarasah Y, Pedersen CB, Ditzel HJ, Thoren FB, Guldberg P, Gjerstorff MF. Single-cell sequencing unveils extensive intratumoral heterogeneity of cancer/testis antigen expression in melanoma and lung cancer. J Immunother Cancer 2024; 12:e008759. [PMID: 38886115 PMCID: PMC11184195 DOI: 10.1136/jitc-2023-008759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/20/2024] Open
Abstract
Cancer/testis antigens (CTAs) are widely expressed in melanoma and lung cancer, emerging as promising targets for vaccination strategies and T-cell-based therapies in these malignancies. Despite recognizing the essential impact of intratumoral heterogeneity on clinical responses to immunotherapy, our understanding of intratumoral heterogeneity in CTA expression has remained limited. We employed single-cell mRNA sequencing to delineate the CTA expression profiles of cancer cells in clinically derived melanoma and lung cancer samples. Our findings reveal a high degree of intratumoral transcriptional heterogeneity in CTA expression. In melanoma, every cell expressed at least one CTA. However, most individual CTAs, including the widely used therapeutic targets NY-ESO-1 and MAGE, were confined to subpopulations of cells and were uncoordinated in their expression, resulting in mosaics of cancer cells with diverse CTA profiles. Coordinated expression was observed, however, mainly among highly structurally and evolutionarily related CTA genes. Importantly, a minor subset of CTAs, including PRAME and several members of the GAGE and MAGE-A families, were homogenously expressed in melanomas, highlighting their potential as therapeutic targets. Extensive heterogeneity in CTA expression was also observed in lung cancer. However, the frequency of CTA-positive cancer cells was notably lower and homogenously expressed CTAs were only identified in one of five tumors in this cancer type. Our findings underscore the need for careful CTA target selection in immunotherapy development and clinical testing and offer a rational framework for identifying the most promising candidates.
Collapse
Affiliation(s)
- Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tina M Green
- Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Hana Komic
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Yaseelan Palarasah
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Fredrik B Thoren
- TIMM Laboratory at Sahlgrenska Center for Cancer Research, University of Gothenburg, Goteborg, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Goteborg, Sweden
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Danish Cancer Institute, Kobenhavn, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
4
|
The Melanoma-Associated Antigen Family A (MAGE-A): A Promising Target for Cancer Immunotherapy? Cancers (Basel) 2023; 15:cancers15061779. [PMID: 36980665 PMCID: PMC10046478 DOI: 10.3390/cancers15061779] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Early efforts to identify tumor-associated antigens over the last decade have provided unique cancer epitopes for targeted cancer therapy. MAGE-A proteins are a subclass of cancer/testis (CT) antigens that are presented on the cell surface by MHC class I molecules as an immune-privileged site. This is due to their restricted expression to germline cells and a wide range of cancers, where they are associated with resistance to chemotherapy, metastasis, and cancer cells with an increasing potential for survival. This makes them an appealing candidate target for designing an effective and specific immunotherapy, thereby suggesting that targeting oncogenic MAGE-As with cancer vaccination, adoptive T-cell transfer, or a combination of therapies would be promising. In this review, we summarize and discuss previous and ongoing (pre-)clinical studies that target these antigens, while bearing in mind the benefits and drawbacks of various therapeutic strategies, in order to speculate on future directions for MAGE-A-specific immunotherapies.
Collapse
|
5
|
Bai R, Yuan C. Kita-Kyushu Lung Cancer Antigen-1 (KK-LC-1): A Promising Cancer Testis Antigen. Aging Dis 2022; 13:1267-1277. [PMID: 35855340 PMCID: PMC9286905 DOI: 10.14336/ad.2021.1207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer has always been a huge problem in the field of human health, and its early diagnosis and treatment are the key to solving this problem. Cancer testis antigens (CTAs) are a family of multifunctional proteins that are specifically expressed in male spermatozoa and tumor cells but not in healthy somatic cells. Studies have found that CTAs are involved in the occurrence and development of tumors, and some CTAs trigger immunogenicity, which suggests a possibility of tumor immunotherapy. The differential expression and function of CTAs in normal tissues and tumor cells can promote the screening of tumor markers and the development of new immunotherapies. This article introduces the expression of Kita-Kyushu lung cancer antigen-1 (KK-LC-1), a new member of the CTA family, in different types of tumors and its role in immunotherapy.
Collapse
Affiliation(s)
- Rui Bai
- 1Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Cheng Yuan
- 2Department of Gynecological Oncology, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Niu T, Wu Z, Xiao W. Uev1A promotes breast cancer cell migration by up-regulating CT45A expression via the AKT pathway. BMC Cancer 2021; 21:1012. [PMID: 34503444 PMCID: PMC8431945 DOI: 10.1186/s12885-021-08750-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background UEV1A encodes a ubiquitin-E2 variant closely associated with tumorigenesis and metastasis, but its underlying mechanism in promoting metastasis remains to be investigated. Methods In this study, we experimentally manipulated UEV1A and CT45A gene expression and monitored their effects on cancer-related gene expression, cell migration and the signal transduction cascade. Results It was found that UEV1A overexpression induces CT45A family gene expression in breast cancer cells. Indeed, ectopic expression of UEV1A was sufficient to induce CT45A and its downstream genes involved in tumorigenesis, epithelial-mesenchymal transition (EMT), stemness and metastasis, and to promote cell migration and EMT signaling. Consistently, depletion of CT45A abolished the above effects, indicating that CT45A is a critical downstream effector of Uev1A. The Uev1A-induced cell migration and EMT signaling was dependent on AKT but independent of NF-κB, indicating that CT45A acts downstream of the AKT pathway. Conclusions Based on previous reports and observations in this study, we propose that the Ubc13-Uev1A complex activates AKT through K63-linked polyubiquitination, which leads to enhanced CT45A expression, stimulated cell migration and EMT signaling in breast cells. Since similar effects were also observed in a colorectal cancer cell line, the Ubc13/Uev1A-AKT-CT45A axis may also promote tumorigenesis and metastasis in other tissues. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08750-3.
Collapse
Affiliation(s)
- Tong Niu
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Zhaojia Wu
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China.,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Wei Xiao
- Beijing Key Laboratory of DNA Damage Responses and College of Life Sciences, Capital Normal University, Beijing, 100048, China. .,Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
7
|
Yang P, Meng M, Zhou Q. Oncogenic cancer/testis antigens are a hallmarker of cancer and a sensible target for cancer immunotherapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188558. [PMID: 33933558 DOI: 10.1016/j.bbcan.2021.188558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/16/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023]
Abstract
Increasing evidence shows that numerous cancer-testis antigens (CTAs) are uniquely overexpressed in various types of cancer and most CTAs are oncogenic. Overexpression of oncogenic CTAs promotes carcinogenesis, cancer metastasis, and drug resistance. Oncogenic CTAs are generally associated with poor prognosis in cancer patients and are an important hallmark of cancer, making them a crucial target for cancer immunotherapy. CTAs-targeted antibodies, vaccines, and chimeric antigen receptor-modified T cells (CAR-T) have recently been used in cancer treatment and achieved promising outcomes in the preclinical and early clinical trials. However, the efficacy of current CTA-targeted therapeutics is either moderate or low in cancer therapy. CTA-targeted cancer immunotherapy is facing enormous challenges. Several critical scientific problems need to be resolved: (1) the antigen presentation function of MHC-I protein is usually deficient in cancer patients, so that very low amounts of intracellular CTA epitopes are presented to tumor cell membrane surface, leading to weak immune response and subsequent immunity to CTAs; (2) various immunosuppressive cells are rich in tumor tissues leading to diminished tumor immunity; (3) the tumor tissue microenvironment markedly reduces the efficacy of cancer immunotherapy. In the current review paper, the authors propose new strategies and approaches to overcome the barriers of CTAs-targeted immunotherapy and to develop novel potent immune therapeutics against cancer. Finally, we highlight that the oncogenic CTAs have high tumor specificity and immunogenicity, and are sensible targets for cancer immunotherapy. We predict that CTAs-targeted immunotherapy will bring about breakthroughs in cancer therapy in the near future.
Collapse
Affiliation(s)
- Ping Yang
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China
| | - Mei Meng
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China
| | - Quansheng Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China; 2011 Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
8
|
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common aggressive B-cell lymphoma and highly heterogeneous disease. With the standard immunochemotherapy, anti-CD20 antibody rituximab (R-) plus CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) chemotherapy, 30-40% of DLBCLs are refractory to initial immunochemotherapy or experience relapse post-therapy with poor clinical outcomes despite salvage therapies. Mechanisms underlying chemoresistance and relapse are heterogeneous across DLBCL and within individual patients, representing hurdles for targeted therapies targeting a specific oncogenic signaling pathway. In recent years, paradigm-shifting immunotherapies have shown impressive efficacy in various cancer types regardless of underlying oncogenic mechanisms. Vaccines are being developed for DLBCL to build protective immunity against relapse after first complete remission and to promote antitumor immune responses synergizing with immune checkpoint inhibitors to treat refractory/relapsed patients. This article provides a brief review of current progress in vaccine development in DLBCL and discussion on immunologic mechanisms underlying the therapeutic effectiveness and resistance.
Collapse
Affiliation(s)
- Zijun Y Xu-Monette
- Hematopathology Division, Department of Pathology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - Ken H Young
- Hematopathology Division, Department of Pathology, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
9
|
Abstract
The prognosis of patients with classical Hodgkin lymphoma following chemo- and radiotherapy has been excellent during the last 4 decades. However, the development of secondary malignancies is of major concern. Therefore, the reduction of radiotherapy application is a major objective of ongoing clinical trials. De-escalation of treatment may increase the risk of relapses and thus may lead to reappearance of prognostic factors. Prognostic biomarkers might help to identify patients who are at increased risk of relapse. This review summarizes the current knowledge about potential prognostic biomarkers for patients with classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Martin S Staege
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Stefanie Kewitz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Toralf Bernig
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Caspar Kühnöl
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| | - Christine Mauz-Körholz
- a Department of Pediatrics , Martin Luther University Halle-Wittenberg , Halle , Germany
| |
Collapse
|
10
|
Zhang W, Barger CJ, Link PA, Mhawech-Fauceglia P, Miller A, Akers SN, Odunsi K, Karpf AR. DNA hypomethylation-mediated activation of Cancer/Testis Antigen 45 (CT45) genes is associated with disease progression and reduced survival in epithelial ovarian cancer. Epigenetics 2016; 10:736-48. [PMID: 26098711 PMCID: PMC4622579 DOI: 10.1080/15592294.2015.1062206] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly lethal malignancy due to a lack of early detection approaches coupled with poor outcomes for patients with clinically advanced disease. Cancer-testis (CT) or cancer-germline genes encode antigens known to generate spontaneous anti-tumor immunity in cancer patients. CT45 genes are a recently discovered 6-member family of X-linked CT genes with oncogenic function. Here, we determined CT45 expression in EOC and fully defined its epigenetic regulation by DNA methylation. CT45 was silent and hypermethylated in normal control tissues, but a large subset of EOC samples showed increased CT45 expression in conjunction with promoter DNA hypomethylation. In contrast, copy number status did not correlate with CT45 expression in the TCGA database for EOC. CT45 promoter methylation inversely correlated with both CT45 mRNA and protein expression, the latter determined using IHC staining of an EOC TMA. CT45 expression was increased and CT45 promoter methylation was decreased in late-stage and high-grade EOC, and both measures were associated with poor survival. CT45 hypomethylation was directly associated with LINE-1 hypomethylation, and CT45 was frequently co-expressed with other CT antigen genes in EOC. Decitabine treatment induced CT45 mRNA and protein expression in EOC cells, and promoter transgene analyses indicated that DNA methylation directly represses CT45 promoter activity. These data verify CT45 expression and promoter hypomethylation as possible prognostic biomarkers, and suggest CT45 as an immunological or therapeutic target in EOC. Treatment with decitabine or other epigenetic modulators could provide a means for more effective immunological targeting of CT45.
Collapse
Key Words
- CNA, copy number alteration
- CT antigen genes, cancer-testis or cancer-germline antigen genes
- CT45
- DAC, decitabine, 5-Aza-2′-deoxycytidine
- DFS, disease-free survival
- DNA methylation
- DNMT, DNA methyltransferase
- EOC, epithelial ovarian cancer
- FTE, normal fallopian tube epithelia
- HGSOC, high-grade serous ovarian cancer
- IHC, immunohistochemistry
- NO, bulk normal ovary
- OS, overall survival
- OSE, normal ovary surface epithelia
- RLM-RACE, 5′ RNA ligase-mediated rapid amplification of cDNA ends
- RNA-seq, RNA sequencing
- TCGA, The Cancer Genome Atlas
- TMA, tissue microarray
- TSS, transcription start site
- cancer germline genes
- cancer testis antigen genes
- decitabine
- epithelial ovarian cancer
- tumor antigens
Collapse
Affiliation(s)
- Wa Zhang
- a Eppley Institute; University of Nebraska Medical Center ; Omaha , NE USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Cancer/testis antigen NY-SAR-35 enhances cell proliferation, migration, and invasion. Int J Oncol 2015; 48:569-76. [PMID: 26648093 DOI: 10.3892/ijo.2015.3264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 11/06/2015] [Indexed: 11/05/2022] Open
Abstract
The cancer/testis antigen NY-SAR-35 is aberrantly expressed in various cancer tissues and cancer cell lines but not in normal tissues except for the testis. A previous study demonstrated that the expression of NY-SAR-35 is activated by hypomethylation in cancer cells. However, the functions of this antigen remain unexplored. In the present study, we investigated the role of NY-SAR‑35 in human embryonic kidney (HEK) 293 cells using exogenous expression system of the gene. NY-SAR‑35 was predominantly expressed at the cytoplasm and was mainly observed in spermatogonia and spermatocytes. Expression of NY-SAR-35 in stable HEK293 transfectant clones was 2-fold higher than the control cells promoting cell growth and proliferation. NY-SAR-35 overexpression also enhanced cell migration and invasion ~2-fold and 4-fold more than the control, respectively. In contrast, small interfering RNA-mediated knockdown of NY-SAR-35 suppressed cell proliferation, migration, and invasion in HEK293 stable transfectants. We concluded that NY-SAR-35 as a cancer/testis antigen enhanced cell proliferation and invasion.
Collapse
|
12
|
Ghafouri-Fard S, Shamsi R, Seifi-Alan M, Javaheri M, Tabarestani S. Cancer-testis genes as candidates for immunotherapy in breast cancer. Immunotherapy 2014; 6:165-79. [PMID: 24491090 DOI: 10.2217/imt.13.165] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cancer-testis (CT) antigens are tumor-associated antigens attracting immunologists for their possible application in the immunotherapy of cancer. Several clinical trials have assessed their therapeutic potentials in cancer patients. Breast cancers, especially triple-negative cancers are among those with significant expression of CT genes. Identification of CT genes with high expression in cancer patients is the prerequisite for any immunotherapeutic approach. CT genes have gained attention not only for immunotherapy of cancer patients, but also for immunoprevention in high-risk individuals. Many CT genes have proved to be immunogenic in breast cancer patients suggesting the basis for the development of polyvalent vaccines.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | | | | | | | | |
Collapse
|
13
|
Prevalence and Prognostic Significance of Epstein–Barr Virus Infection in Classical Hodgkin's Lymphoma: A Meta-analysis. Arch Med Res 2014; 45:417-31. [DOI: 10.1016/j.arcmed.2014.06.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 06/04/2014] [Indexed: 12/21/2022]
|
14
|
Shang B, Gao A, Pan Y, Zhang G, Tu J, Zhou Y, Yang P, Cao Z, Wei Q, Ding Y, Zhang J, Zhao Y, Zhou Q. CT45A1 acts as a new proto-oncogene to trigger tumorigenesis and cancer metastasis. Cell Death Dis 2014; 5:e1285. [PMID: 24901056 PMCID: PMC4611718 DOI: 10.1038/cddis.2014.244] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023]
Abstract
Cancer/testis antigen (CTA)-45 family (CT45) belongs to a new family of genes in phylogenetics and is absent in normal tissues except for testis, but is aberrantly overexpressed in various cancer types. Whether CT45 and other CTAs act as proto-oncogenes has not been determined. Using breast cancer as a model, we found that CT45A1, a representative CT45 family member, alone had a weak tumorigenic effect. However, its neoplastic potency was greatly enhanced in the presence of growth factors. Overexpression of CT45A1 in breast cancer cells markedly upregulated various oncogenic and metastatic genes, constitutively activated ERK and CREB signaling pathways, promoted epithelial-mesenchymal transition, and increased cell stemness, tumorigenesis, invasion, and metastasis, whereas silencing CT45A1 significantly reduced cancer cell migration and invasion. We propose that CT45A1 functions as a novel proto-oncogene to trigger oncogenesis and metastasis. CT45A1 and other CT45 members are therefore excellent targets for anticancer drug discovery and targeted tumor therapy, and valuable genes in the study of a molecular phylogenetic tree.
Collapse
Affiliation(s)
- B Shang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - A Gao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Pan
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - G Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Tu
- The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - P Yang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Z Cao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Wei
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Ding
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - J Zhang
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Y Zhao
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| | - Q Zhou
- Cyrus Tang Hematology Center, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Key Laboratory of Thrombosis and Hemostasis, Ministry of Health, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Aung PP, Liu YC, Ballester LY, Robbins PF, Rosenberg SA, Lee CCR. Expression of New York esophageal squamous cell carcinoma-1 in primary and metastatic melanoma. Hum Pathol 2013; 45:259-67. [PMID: 24290058 DOI: 10.1016/j.humpath.2013.05.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 05/21/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Abstract
New York esophageal squamous cell carcinoma-1 (NY-ESO-1), a cancer testis antigen, is an ideal target for adoptive cell transfer immunotherapy. Evidence from several clinical trials in melanoma and other malignancies shows the potential value of targeting the NY-ESO-1 antigen in immune-based therapy of metastatic tumors. However, the incidence of NY-ESO-1 expression in metastatic melanoma is unknown, and thus, it is unclear how many patients might benefit from this therapy. In this study, we analyzed NY-ESO-1 expression in 222 melanoma specimens, including 16 primary and 206 metastatic tumors. Our results support previous findings showing higher expression of NY-ESO-1 in metastatic (58/206; 28.2%) versus primary (0/16) tumors. In addition, our results show that the epithelioid subtype of melanoma has the highest incidence of NY-ESO-1 expression. These findings provide evidence of the value of this specific adoptive cell transfer therapy for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Phyu P Aung
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yen-Chun Liu
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Leomar Y Ballester
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul F Robbins
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven A Rosenberg
- Surgery Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chyi-Chia Richard Lee
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
16
|
Abstract
Background Glioblastoma (GBM) confers a dismal prognosis despite advances in current therapy. Cancer-testis antigens (CTA) comprise families of tumor-associated antigens that are immunogenic in different cancers. The aim of this study was to determine the expression profile of a large number of CTA genes in GBM. Methods We selected, from 153 CTA genes, those genes potentially expressed in GBM. The expression pattern of 30 CTA was then evaluated by RT-PCR in a series of 48 GBM and 5 normal brain samples. The presence of CTCFL protein was also evaluated by immunohistochemical staining. Results Among the genes with no expression in normal brain, ACTL8 (57%), OIP5 (54%), XAGE3 (44%) and CTCFL (15%) were frequently expressed in GBM, while over 85% of the tumors expressed at least 1 of these four CTA. Coexpression of two or more CTA occurred in 49% of cases. CTCFL protein expression was detected in 13% of the GBM and was negative in normal brain samples. GBM expressing 3-4 CTA was associated with significantly better overall survival (OS) rates (P = 0.017). By multivariate analysis, mRNA positivity for 3-4 CTA (P = 0.044), radiotherapy (P = 0.010) and chemotherapy (P = 0.001) were independent prognostic factors for OS. Conclusions GBM frequently express ACTL8, OIP5, XAGE3 and CTCFL. A relatively high percentage of tumors expressed at least one of these four CTA, opening the perspective for their utility in antigen-specific immunotherapy. Furthermore, mRNA positivity for 3-4 CTA is an independent predictor of better OS for GBM patients.
Collapse
|
17
|
Koop A, Sellami N, Adam-Klages S, Lettau M, Kabelitz D, Janssen O, Heidebrecht HJ. Down-regulation of the cancer/testis antigen 45 (CT45) is associated with altered tumor cell morphology, adhesion and migration. Cell Commun Signal 2013; 11:41. [PMID: 23758873 PMCID: PMC3689639 DOI: 10.1186/1478-811x-11-41] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 06/04/2013] [Indexed: 11/13/2022] Open
Abstract
Background Due to their restricted expression in male germ cells and certain tumors, cancer/testis (CT) antigens are regarded as promising targets for tumor therapy. CT45 is a recently identified nuclear CT antigen that was associated with a severe disease score in Hodgkin’s lymphoma and poor prognosis in multiple myeloma. As for many CT antigens, the biological function of CT45 in developing germ cells and in tumor cells is largely unknown. Methods CT45 expression was down-regulated in CT45-positive Hodgkin’s lymphoma (L428), fibrosarcoma (HT1080) and myeloma (U266B1) cells using RNA interference. An efficient CT45 knock-down was confirmed by immunofluorescence staining and/or Western blotting. These cellular systems allowed us to analyze the impact of CT45 down-regulation on proliferation, cell cycle progression, morphology, adhesion, migration and invasive capacity of tumor cells. Results Reduced levels of CT45 did not coincide with changes in cell cycle progression or proliferation. However, we observed alterations in cell adherence, morphology and migration/invasion after CT45 down-regulation. Significant changes in the distribution of cytoskeleton-associated proteins were detected by confocal imaging. Changes in cell adherence were recorded in real-time using the xCelligence system with control and siRNA-treated cells. Altered migratory and invasive capacity of CT45 siRNA-treated cells were visualized in 3D migration and invasion assays. Moreover, we found that CT45 down-regulation altered the level of the heterogeneous nuclear ribonucleoprotein syncrip (hnRNP-Q1) which is known to be involved in the control of focal adhesion formation and cell motility. Conclusions Providing first evidence of a cell biological function of CT45, we suggest that this cancer/testis antigen is involved in the modulation of cell morphology, cell adherence and cell motility. Enhanced motility and/or invasiveness of CT45-positive cells could contribute to the more severe disease progression that is correlated to CT45-positivity in several malignancies.
Collapse
Affiliation(s)
- Anja Koop
- Institute for Immunology, University Hospital Schleswig-Holstein Campus Kiel, Arnold-Heller-Str, 3, Bldg 17, Kiel, 24105, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Postow MA, Luke JJ, Bluth MJ, Ramaiya N, Panageas KS, Lawrence DP, Ibrahim N, Flaherty KT, Sullivan RJ, Ott PA, Callahan MK, Harding JJ, D'Angelo SP, Dickson MA, Schwartz GK, Chapman PB, Gnjatic S, Wolchok JD, Hodi FS, Carvajal RD. Ipilimumab for patients with advanced mucosal melanoma. Oncologist 2013; 18:726-32. [PMID: 23716015 DOI: 10.1634/theoncologist.2012-0464] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The outcome of patients with mucosal melanoma treated with ipilimumab is not defined. To assess the efficacy and safety of ipilimumab in this melanoma subset, we performed a multicenter, retrospective analysis of 33 patients with unresectable or metastatic mucosal melanoma treated with ipilimumab. The clinical characteristics, treatments, toxicities, radiographic assessment of disease burden by central radiology review at each site, and mutational profiles of the patients' tumors were recorded. Available peripheral blood samples were used to assess humoral immunity against a panel of cancer-testis antigens and other antigens. By the immune-related response criteria of the 30 patients who underwent radiographic assessment after ipilimumab at approximately week 12, there were 1 immune-related complete response, 1 immune-related partial response, 6 immune-related stable disease, and 22 immune-related progressive disease. By the modified World Health Organization criteria, there were 1 immune-related complete response, 1 immune-related partial response, 5 immune-related stable disease, and 23 immune-related progressive disease. Immune-related adverse events (as graded by Common Terminology Criteria for Adverse Events version 4.0) consisted of six patients with rash (four grade 1, two grade 2), three patients with diarrhea (one grade 1, two grade 3), one patient with grade 1 thyroiditis, one patient with grade 3 hepatitis, and 1 patient with grade 2 hypophysitis. The median overall survival from the time of the first dose of ipilimumab was 6.4 months (range: 1.8-26.7 months). Several patients demonstrated serologic responses to cancer-testis antigens and other antigens. Durable responses to ipilimumab were observed, but the overall response rate was low. Additional investigation is necessary to clarify the role of ipilimumab in patients with mucosal melanoma.
Collapse
Affiliation(s)
- Michael A Postow
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
The novelty of human cancer/testis antigen encoding genes in evolution. Int J Genomics 2013; 2013:105108. [PMID: 23691492 PMCID: PMC3652184 DOI: 10.1155/2013/105108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/16/2013] [Accepted: 02/13/2013] [Indexed: 01/10/2023] Open
Abstract
In order to be inherited in progeny generations, novel genes should originate in germ cells. Here, we suggest that the testes may play a special “catalyst” role in the birth and evolution of new genes. Cancer/testis antigen encoding genes (CT genes) are predominantly expressed both in testes and in a variety of tumors. By the criteria of evolutionary novelty, the CT genes are, indeed, novel genes. We performed homology searches for sequences similar to human CT in various animals and established that most of the CT genes are either found in humans only or are relatively recent in their origin. A majority of all human CT genes originated during or after the origin of Eutheria. These results suggest relatively recent origin of human CT genes and align with the hypothesis of the special role of the testes in the evolution of the gene families.
Collapse
|
20
|
Zhou X, Yang F, Zhang T, Zhuang R, Sun Y, Fang L, Zhang C, Ma Y, Huang G, Ma F, Song C, Jin B. Heterogeneous expression of CT10, CT45 and GAGE7 antigens and their prognostic significance in human breast carcinoma. Jpn J Clin Oncol 2013; 43:243-50. [PMID: 23315387 DOI: 10.1093/jjco/hys236] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The goal of this study was to detect the intertumoral heterogeneity of CT10, CT45 and GAGE7 expression and further to analyze their prognostic value. METHODS The intertumoral heterogeneity of three cancer/testis antigens was examined by immunohistochemistry using 120 samples from patients with infiltrating ductal breast carcinoma. The expression patterns were classified and correlated with the clinicopathologic variables and outcome of the patients. RESULTS CT10 showed punctate, focal and diffuse expression patterns according to the characteristic of its distribution. CT45 showed cytoplasmic, nuclear or combined cytoplasmic and nuclear expression patterns according to its subcellular location. GAGE7 exhibited nuclear, cytoplasmic and nucleolar expression patterns. Three cancer/testis antigens were also observed coordinately expressed in infiltrating ductal breast carcinoma. Patients with tumors with CT10 expression was significantly correlated with nodal metastases (P < 0.001) and advanced clinical stages (P = 0.001). Patients with tumors with cytoplasmic GAGE7 and with the expression of two or more cancer/testis antigens were significantly correlated with advanced clinical stages (P = 0.001 and P = 0.030). No significant difference was identified between the different expression patterns of CT45 and clinicopathologic variables. In addition, Kaplan-Meier analysis revealed that diffuse CT10 expression and coexpression of three cancer/testis antigens were related to the poor prognosis of patients with infiltrating ductal breast carcinoma. CONCLUSIONS Diffuse CT10 expression and the coexpression of three cancer/testis antigens can be used as a biomarker to distinguish patients with a poorer outcome of the breast carcinoma. Our finding may provide useful data for evaluating the prognosis of this disease and improving the effectiveness of therapeutic application based on the three cancer/testis antigens.
Collapse
Affiliation(s)
- Xingchun Zhou
- Fourth Military Medical University, No. 17 Changle West Road, Xi'an, Shaanxi, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Shantha Kumara HMC, Grieco MJ, Caballero OL, Su T, Ahmed A, Ritter E, Gnjatic S, Cekic V, Old LJ, Simpson AJ, Cordon-Cardo C, Whelan RL. MAGE-A3 is highly expressed in a subset of colorectal cancer patients. CANCER IMMUNITY 2012; 12:16. [PMID: 23390371 PMCID: PMC3554221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The expression of Cancer/Testis (CT) antigens in some tumors and restricted expression in normal tissue make CT antigens attractive vaccine targets. We evaluated the expression of MAGE-A3, PLAC1, GAGE, and CTAG2 in a series of colorectal cancers (CRC). CT mRNA expression was determined via quantitative PCR on paired tumors and normal tissue samples from 82 CRC patients. In addition, plasma antibody titers specific to MAGE-A3, PLAC1, GAGE, and CTAG2 were determined via ELISA. Tissue expression of MAGE-A3 was assessed via a standard IHC protocol. The Student's t-test was used for statistical analysis (significance p < 0.05). Tumor expression of MAGE-A3, CTAG2, and GAGE was compared to the levels of expression in testis. The percentage of samples that had a tumor vs. testis expression ratio above 0.1% was: MAGE-A3 (28%) and CTAG2 (17%) but no tumor presented GAGE expression levels above 0.1%. The expression levels of PLAC1 in tumors were compared to the levels in placenta, and in 12.8% of the samples analyzed, these levels were above 0.1%. Sero-reactivity specific for MAGE-A genes and PLAC1 was noted in 2.4% and 2.6% of patients, respectively. MAGE-A3 and PLAC1 may hold promise as vaccine targets for CRC. Further study is warranted.
Collapse
Affiliation(s)
- HMC Shantha Kumara
- Division of Colon and Rectal Surgery, Department of Surgery, St. Luke’s-Roosevelt Hospital Center, New York, NY 10019, USA
| | - Michael J. Grieco
- Division of Colon and Rectal Surgery, Department of Surgery, St. Luke’s-Roosevelt Hospital Center, New York, NY 10019, USA
| | - Otavia L. Caballero
- Ludwig Collaborative Laboratory for Cancer Biology and Therapy, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Tao Su
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Aqeel Ahmed
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Erika Ritter
- Ludwig Institute for Cancer Research, New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Sacha Gnjatic
- Ludwig Institute for Cancer Research, New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Vesna Cekic
- Division of Colon and Rectal Surgery, Department of Surgery, St. Luke’s-Roosevelt Hospital Center, New York, NY 10019, USA
| | - Lloyd J. Old
- Ludwig Institute for Cancer Research, New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Andrew J. Simpson
- Ludwig Institute for Cancer Research, New York Branch of Human Cancer Immunology at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Carlos Cordon-Cardo
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Richard L. Whelan
- Division of Colon and Rectal Surgery, Department of Surgery, St. Luke’s-Roosevelt Hospital Center, New York, NY 10019, USA
- Section of Colon and Rectal Surgery, Department of Surgery, New York-Presbyterian Hospital, Columbia University, New York, NY 10032, USA
| |
Collapse
|
22
|
Inaoka RJ, Jungbluth AA, Gnjatic S, Ritter E, Hanson NC, Frosina D, Tassello J, Etto LY, Bortoluzzo AB, Alves AC, Colleoni GWB. Cancer/testis antigens expression and autologous serological response in a set of Brazilian non-Hodgkin's lymphoma patients. Cancer Immunol Immunother 2012; 61:2207-14. [PMID: 22638551 PMCID: PMC11029624 DOI: 10.1007/s00262-012-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/09/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Based on their tumor-associated expression pattern, cancer/testis antigens (CTAs) are considered potential targets for cancer immunotherapy. We aim to evaluate the expression of CTAs in non-Hodgkin's lymphoma (NHL) samples and the ability of these patients to elicit spontaneous humoral immune response against CTAs. METHODS Expression of MAGE-A family, CT7/MAGE-C1, CT10/MAGE-C2, GAGE and NY-ESO-1 was analyzed by immunohistochemistry in a tissue microarray generated from 106 NHL archival cases. The humoral response against 19 CTAs was tested in 97 untreated NHL serum samples using ELISA technique. RESULTS 11.3 % of NHL tumor samples expressed at least 1 CTA. MAGE-A family (6.6 %), GAGE (5.7 %) and NY-ESO-1(4.7 %) were the most frequently expressed antigens. We found no statistically significant correlation between CTA positivity and clinical parameters such as NHL histological subtype, Ann Arbor stage, international prognostic index score, response to treatment and overall survival. Humoral response against at least 1 CTA was observed in 16.5 % of NHL serum samples. However, overall seroreactivity was low, and strong titers (>1:1000) were observed in only two diffuse large B-cell lymphomas patients against CT45. CONCLUSION Our findings are in agreement with most of published studies in this field to date and suggest an overall low expression of CTAs in NHL patients. However, as many new CTAs have been described recently and some of them are found to be highly expressed in NHL cell lines and tumor samples, further studies exploring the expression of different panels of CTAs are needed to evaluate their role as candidates for immunotherapy in NHL patients.
Collapse
Affiliation(s)
- Riguel J Inaoka
- Departamento de Oncologia Clinica e Experimental, Universidade Federal de Sao Paulo, Rua Botucatu, 740, 3° andar, Hematologia, Vila Clementino, Sao Paulo, SP, 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Winkler C, Steingrube DS, Altermann W, Schlaf G, Max D, Kewitz S, Emmer A, Kornhuber M, Banning-Eichenseer U, Staege MS. Hodgkin's lymphoma RNA-transfected dendritic cells induce cancer/testis antigen-specific immune responses. Cancer Immunol Immunother 2012; 61:1769-79. [PMID: 22419371 PMCID: PMC11029013 DOI: 10.1007/s00262-012-1239-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 02/24/2012] [Indexed: 12/20/2022]
Abstract
Cytotoxic T lymphocytes (CTL) can kill Hodgkin's lymphoma (HL) cells, and CTL have been used for the treatment of Epstein-Barr virus (EBV)-positive HL. For patients with EBV-negative HL, this strategy cannot be employed and alternative target structures have to be defined. In order to establish a system for the stimulation of HL-reactive T cells, we used dendritic cells (DC) as antigen-presenting cells for autologous T cells and transfected these DC with RNA from established HL cell lines. After stimulation of peripheral blood mononuclear cells (PBMC) with RNA-transfected DC, we analyzed the reactivity of primed PBMC by interferon gamma enzyme-linked immunospot. Our results suggest the presence of antigens with expression in HL cell lines and recognition of these antigens in combination with DC-derived human leukocyte antigen molecules. By the analysis of Gene Expression Omnibus microarray data sets from HL cell lines and primary HL samples in comparison with testis and other normal tissues, we identified HL-associated cancer testis antigens (CTA) including the preferentially expressed antigen in melanoma (PRAME). After stimulation of PBMC with RNA-transfected DC, we detected PRAME-reactive T cells. PRAME and other HL-associated CTA might be targets for HL-specific immune therapy or for the monitoring of HL-directed immune responses.
Collapse
MESH Headings
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Cell Line, Tumor
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Enzyme-Linked Immunospot Assay
- Gene Expression Regulation, Neoplastic
- Hodgkin Disease/immunology
- Hodgkin Disease/metabolism
- Humans
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Male
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Sarcoma, Ewing/immunology
- Sarcoma, Ewing/metabolism
- Testis/immunology
- Testis/metabolism
- Transfection
Collapse
Affiliation(s)
- Carolin Winkler
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | | | - Wolfgang Altermann
- HLA-Laboratory, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Gerald Schlaf
- HLA-Laboratory, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Daniela Max
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Stefanie Kewitz
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Alexander Emmer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Malte Kornhuber
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Ursula Banning-Eichenseer
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| | - Martin Sebastian Staege
- Department of Pediatrics, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06097 Halle, Germany
| |
Collapse
|
24
|
Cancer/Testis Antigen MAGE-C1/CT7: new target for multiple myeloma therapy. Clin Dev Immunol 2012; 2012:257695. [PMID: 22481966 PMCID: PMC3310219 DOI: 10.1155/2012/257695] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/28/2011] [Indexed: 12/13/2022]
Abstract
Cancer/Testis Antigens (CTAs) are a promising class of tumor antigens that have a limited expression in somatic tissues (testis, ovary, fetal, and placental cells). Aberrant expression of CTAs in cancer cells may lead to abnormal chromosome segregation and aneuploidy. CTAs are regulated by epigenetic mechanisms (DNA methylation and acetylation of histones) and are attractive targets for immunotherapy in cancer because the gonads are immune privileged organs and anti-CTA immune response can be tumor-specific. Multiple myeloma (MM) is an incurable hematological malignancy, and several CTAs have been detected in many MM cell lines and patients. Among CTAs expressed in MM we must highlight the MAGE-C1/CT7 located on the X chromosome and expressed specificity in the malignant plasma cells. MAGE-C1/CT7 seems to be related to disease progression and functional studies suggests that this CTA might play a role in cell cycle and mainly in survival of malignant plasma cells, protecting myeloma cells against spontaneous as well as drug-induced apoptosis.
Collapse
|
25
|
Lim SH, Zhang Y, Zhang J. Cancer-testis antigens: the current status on antigen regulation and potential clinical use. AMERICAN JOURNAL OF BLOOD RESEARCH 2012; 2:29-35. [PMID: 22432085 PMCID: PMC3301432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/21/2011] [Indexed: 05/31/2023]
Abstract
Immunotherapy is theoretically an attractive therapeutic option for patients with hematological malignancies. Various laboratory studies suggested the importance of the choice of tumor antigen for successful immunotherapy. Cancer-testis antigens (CTAs) are potentially suitable molecules for tumor vaccines of hematological malignancies because of their high immunogenicity in vivo, even in cancer-bearing patients, and their relatively restricted normal tissue distribution. Tumor cell kill using a CTA-based immunotherapy will, therefore, be more specific and associated with less toxicities when compared to chemotherapy. Many CTAs have been identified in various hematologic malignancies. In this review, we will take the readers through the journey of hopes and the disappointments arisen from the discovery of CTAs. We will describe the features of CTAs and their expression in hematologic malignancies. We will also discuss the mechanisms regulating the expression of these CTAs, from a primary regulatory mechanism involving DNA methylation to secondary controls by cytokines. Finally, we will address the potential obstacles that will prevent the successful use of CTAs as targets for tumor immunotherapy.
Collapse
Affiliation(s)
- Seah H Lim
- Amarillo Blood and Marrow Transplant Program, Texas Oncology-Amarillo, Cancer Center TX, USA
| | | | | |
Collapse
|
26
|
Inaoka RJ, Jungbluth AA, Baiocchi OC, Assis MC, Hanson NC, Frosina D, Tassello J, Bortoluzzo AB, Alves AC, Colleoni GW. An overview of cancer/testis antigens expression in classical Hodgkin's lymphoma (cHL) identifies MAGE-A family and MAGE-C1 as the most frequently expressed antigens in a set of Brazilian cHL patients. BMC Cancer 2011; 11:416. [PMID: 21951388 PMCID: PMC3190392 DOI: 10.1186/1471-2407-11-416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/28/2011] [Indexed: 01/13/2023] Open
Abstract
ABSTRACT: BACKGROUND: Cancer/testis antigens are considered potential targets for immunotherapy due to their tumor-associated expression pattern. Although recent studies have demonstrated high expression of CT45 in classical Hodgkin's lymphomas (cHL), less is known about the expression pattern of other families of CTAs in cHL. We aim to evaluate the expression of MAGE-A family, MAGE-C1/CT7, MAGE-C2/CT10, NY-ESO1 and GAGE family in cHL and to correlate their expression with clinical and prognostic factors in cHL. METHODS: Tissue microarray was generated from 38 cHL archival cases from Pathology Department of Universidade Federal de Sao Paulo. Immunohistochemistry (IHC) was done using the following panel of antibodies: MAGE-A family (MA454, M3H67, 57B and 6C1), GAGE (#26), NY-ESO-1 (E978), MAGE-C1/CT7 (CT7-33) and MAGE-C2/CT10 (CT10#5). RESULTS: We found CTA expression in 21.1% of our cHL series. Among the tested CTAs, only MAGE-A family 7/38 (18.4%) and MAGE-C1/CT7 5/38 (13.2%) were positive in our cHL samples. We found higher CTA positivity in advanced stage (28.6%) compared to early stage (11.8%) disease, but this difference was not statistically significant. Analysis of other clinicopathological subgroups of cHL including histological subtypes, EBV status and response to treatment also did not demonstrate statistical significant differences in CTA expression. CONCLUSION: We found CTA expression in 21.1% of cHL samples using our panel. Our preliminary findings suggest that from all CTAs included in this study, MAGE-A family and MAGE-C1/CT7 are the most interesting ones to be explored in further studies.
Collapse
Affiliation(s)
- Riguel J Inaoka
- Departamento de Oncologia Clinica e Experimental, Universidade Federal de Sao Paulo, Rua Botucatu, 740, Vila Clementino, Sao Paulo, SP 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Leonard S, Wei W, Anderton J, Vockerodt M, Rowe M, Murray PG, Woodman CB. Epigenetic and transcriptional changes which follow Epstein-Barr virus infection of germinal center B cells and their relevance to the pathogenesis of Hodgkin's lymphoma. J Virol 2011; 85:9568-77. [PMID: 21752916 PMCID: PMC3165764 DOI: 10.1128/jvi.00468-11] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/22/2011] [Indexed: 12/29/2022] Open
Abstract
Although Epstein-Barr virus (EBV) usually establishes an asymptomatic lifelong infection, it is also implicated in the development of germinal center (GC) B-cell-derived malignancies, including Hodgkin's lymphoma (HL). Following primary infection, EBV remains latent in the memory B-cell population, where host-driven methylation of viral DNA contributes to the repression of viral gene expression. However, it is still unclear how EBV harnesses the cell's methylation machinery in B cells, how this contributes to viral persistence, and what impact this has on the methylation of cellular genes. We show that EBV infection of GC B cells is followed by upregulation of the DNA methyltransferase DNMT3A and downregulation of DNMT3B and DNMT1. We show that the EBV latent membrane protein 1 (LMP1) oncogene downregulates DNMT1 and that DNMT3A binds to the viral promoter Wp. Genome-wide promoter arrays performed with these cells showed that EBV-associated methylation changes in cellular genes were not randomly distributed across the genome but clustered at chromosomal locations, consistent with an instructive pattern of methylation, and were in part determined by promoter CpG content. Both DNMT3B and DNMT1 were downregulated and DNMT3A was upregulated in HL cell lines, recapitulating the pattern of expression observed following EBV infection of GC B cells. We also found, by using gene expression profiling, that genes differentially expressed following EBV infection of GC B cells were significantly enriched for those reported to be differentially expressed in HL. These observations suggest that EBV-infected GC B cells are a useful model for studying virus-associated changes contributing to the pathogenesis of HL.
Collapse
Affiliation(s)
- Sarah Leonard
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Wenbin Wei
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Jennifer Anderton
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martina Vockerodt
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Martin Rowe
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Paul G. Murray
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Ciaran B. Woodman
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
28
|
Cheng YH, Wong EW, Cheng CY. Cancer/testis (CT) antigens, carcinogenesis and spermatogenesis. SPERMATOGENESIS 2011; 1:209-220. [PMID: 22319669 PMCID: PMC3271663 DOI: 10.4161/spmg.1.3.17990] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/01/2011] [Accepted: 09/05/2011] [Indexed: 02/07/2023]
Abstract
During spermatogenesis, spermatogonial stem cells, undifferentiated and differentiated spermatogonia, spermatocytes, spermatids and spermatozoa all express specific antigens, yet the functions of many of these antigens remain unexplored. Studies in the past three decades have shown that many of these transiently expressed genes in developing germ cells are proto-oncogenes and oncogenes, which are expressed only in the testis and various types of cancers in humans and rodents. As such, these antigens are designated cancer/testis antigens (CT antigens). Since the early 1980s, about 70 families of CT antigens have been identified with over 140 members are known to date. Due to their restricted expression in the testis and in various tumors in humans, they have been used as the target of immunotherapy. Multiple clinical trials at different phases are now being conducted with some promising results. Interestingly, in a significant number of cancer patients, antibodies against some of these CT antigens were detected in their sera. However, antibodies against these CT antigens in humans under normal physiological conditions have yet to be reported even though many of these antigens are residing outside of the blood-testis barrier (BTB), such as in the basal compartment of the seminiferous epithelium and in the stem cell niche in the testis. In this review, we summarize latest findings in the field regarding several selected CT antigens which may be intimately related to spermatogenesis due to their unusual restricted expression during different discrete events of spermatogenesis, such as cell cycle progression, meiosis and spermiogenesis. This information should be helpful to investigators in the field to study the roles of these oncogenes in spermatogenesis.
Collapse
Affiliation(s)
- Yan-Ho Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
- Richmond University Medical Center; Staten Island, NY USA
| | - Elissa Wp Wong
- Center for Biomedical Research; The Population Council; New York, NY USA
| | - C Yan Cheng
- Center for Biomedical Research; The Population Council; New York, NY USA
| |
Collapse
|
29
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from October 2009 to January 2010. J Hematop 2011; 3:47-58. [PMID: 21633487 DOI: 10.1007/s12308-010-0060-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- J Han van Krieken
- Department of Pathology, Radboud University Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
30
|
Multiple cancer/testis antigens are preferentially expressed in hormone-receptor negative and high-grade breast cancers. PLoS One 2011; 6:e17876. [PMID: 21437249 PMCID: PMC3060908 DOI: 10.1371/journal.pone.0017876] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 02/12/2011] [Indexed: 12/02/2022] Open
Abstract
Background Cancer/testis (CT) antigens are protein antigens normally expressed only in germ cells of testis, and yet are expressed in a proportion of a wide variety of human cancers. CT antigens can elicit spontaneous immune responses in cancer patients with CT-positive cancers, and CT antigen-based therapeutic cancer vaccine trials are ongoing for “CT-rich” tumors. Although some previous studies found breast cancer to be “CT-poor”, our recent analysis identified increased CT mRNA transcripts in the ER-negative subset of breast cancer. Methodology/Principal Findings In this study, we performed a comprehensive immunohistochemical study to investigate the protein expression of eight CT genes in 454 invasive ductal carcinomas, including 225 ER/PR/HER2-negative (triple-negative) carcinomas. We found significantly more frequent expression of all eight CT antigens in ER-negative cancers, and five of them—MAGEA, CT7, NY-ESO-1, CT10 and CT45, were expressed in 12–24% of ER-negative cancers, versus 2–6% of ER-positive cancers (p<0.001 to 0.003). In comparison, GAGE, SAGE1 and NXF2 were only expressed in 3–5% of ER-negative and 0–2% of ER-positive cancers. ER-negative cancers were also more likely to simultaneously co-express multiple CT antigens, with 27% (34/125) of ER-negative, CT-positive tumors expressing three or more CT antigens. HER2 status had no consistent effect on CT expression, and triple-negative carcinomas showed similar frequencies of MAGEA and NY-ESO-1 expression as ER-negative/HER2-positive carcinomas. More frequent CT expression was also found in tumors with higher nuclear grade (p<0.001 to p = 0.01) and larger in size (>2 cm). Conclusions/Significance CT antigens are preferentially expressed in hormone receptor-negative and high-grade breast cancer. Considering the limited treatment options for ER/PR/HER2 triple-negative breast cancer, the potential of CT-based immunotherapy should be explored.
Collapse
|
31
|
Metzeler KH, Maharry K, Radmacher MD, Mrózek K, Margeson D, Becker H, Curfman J, Holland KB, Schwind S, Whitman SP, Wu YZ, Blum W, Powell BL, Carter TH, Wetzler M, Moore JO, Kolitz JE, Baer MR, Carroll AJ, Larson RA, Caligiuri MA, Marcucci G, Bloomfield CD. TET2 mutations improve the new European LeukemiaNet risk classification of acute myeloid leukemia: a Cancer and Leukemia Group B study. J Clin Oncol 2011; 29:1373-81. [PMID: 21343549 DOI: 10.1200/jco.2010.32.7742] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To determine the frequency of TET2 mutations, their associations with clinical and molecular characteristics and outcome, and the associated gene- and microRNA-expression signatures in patients with primary cytogenetically normal acute myeloid leukemia (CN-AML). PATIENTS AND METHODS Four-hundred twenty-seven patients with CN-AML were analyzed for TET2 mutations by polymerase chain reaction and direct sequencing and for established prognostic gene mutations. Gene- and microRNA-expression profiles were derived using microarrays. RESULTS TET2 mutations, found in 23% of patients, were associated with older age (P < .001) and higher pretreatment WBC (P = .04) compared with wild-type TET2 (TET2-wt). In the European LeukemiaNet (ELN) favorable-risk group (patients with CN-AML who have mutated CEBPA and/or mutated NPM1 without FLT3 internal tandem duplication [FLT3-ITD]), TET2-mutated patients had shorter event-free survival (EFS; P < .001) because of a lower complete remission (CR) rate (P = .007), and shorter disease-free survival (DFS; P = .003), and also had shorter overall survival (P = .001) compared with TET2-wt patients. TET2 mutations were not associated with outcomes in the ELN intermediate-I-risk group (CN-AML with wild-type CEBPA and wild-type NPM1 and/or FLT3-ITD). In multivariable models, TET2 mutations were associated with shorter EFS (P = .004), lower CR rate (P = .03), and shorter DFS (P = .05) only among favorable-risk CN-AML patients. We identified a TET2 mutation-associated gene-expression signature in favorable-risk but not in intermediate-I-risk patients and found distinct mutation-associated microRNA signatures in both ELN groups. CONCLUSION TET2 mutations improve the ELN molecular-risk classification in primary CN-AML because of their adverse prognostic impact in an otherwise favorable-risk patient subset. Our data suggest that these patients may be candidates for alternative therapies.
Collapse
Affiliation(s)
- Klaus H Metzeler
- The Ohio State University Comprehensive Cancer Center, 1216 James Cancer Hospital, 300 West 10th Ave, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huda A, Bowen NJ, Conley AB, Jordan IK. Epigenetic regulation of transposable element derived human gene promoters. Gene 2011; 475:39-48. [PMID: 21215797 DOI: 10.1016/j.gene.2010.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023]
Abstract
It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.
Collapse
Affiliation(s)
- Ahsan Huda
- School of Biology, Georgia Institute of Technology, 310 Ferst Drive, Atlanta, GA 30332, USA.
| | | | | | | |
Collapse
|