1
|
Katsu Y, Zhang J, Baker ME. Lysine-Cysteine-Serine-Tryptophan inserted into the DNA-binding domain of human mineralocorticoid receptor increases transcriptional activation by aldosterone. J Steroid Biochem Mol Biol 2024; 243:106548. [PMID: 38821293 DOI: 10.1016/j.jsbmb.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/02/2024]
Abstract
Due to alternative splicing in an ancestral DNA-binding domain (DBD) of the mineralocorticoid receptor (MR), humans contain two almost identical MR transcripts with either 984 amino acids (MR-984) or 988 amino acids (MR-988), in which their DBDs differ by only four amino acids, Lys,Cys,Ser,Trp (KCSW). Human MRs also contain mutations at two sites, codons 180 and 241, in the amino terminal domain (NTD). Together, there are five distinct full-length human MR genes in GenBank. Human MR-984, which was cloned in 1987, has been extensively studied. Human MR-988, cloned in 1995, contains KCSW in its DBD. Neither this human MR-988 nor the other human MR-988 genes have been studied for their response to aldosterone and other corticosteroids. Here, we report that transcriptional activation of human MR-988 by aldosterone is increased by about 50 % compared to activation of human MR-984 in HEK293 cells transfected with the TAT3 promoter, while the half-maximal response (EC50) is similar for aldosterone activation of MR-984 and MR-988. Transcriptional activation of human MR also depends on the amino acids at codons 180 and 241. Interestingly, in HEK293 cells transfected with the MMTV promoter, transcriptional activation by aldosterone of human MR-988 is similar to activation of human MR-984, indicating that the promoter has a role in the regulation of the response of human MR-988 to aldosterone. The physiological responses to aldosterone and other corticosteroids in humans with MR genes containing KCSW and with differences at codons 180 and 241 in the NTD warrant investigation.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Faculty of Science, Hokkaido University, Sapporo, Japan; Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jiawen Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA; Center for Academic Research and Training in Anthropogeny (CARTA) University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
2
|
Posani SH, Gillis NE, Lange CA. Glucocorticoid receptors orchestrate a convergence of host and cellular stress signals in triple negative breast cancer. J Steroid Biochem Mol Biol 2024; 243:106575. [PMID: 38950871 PMCID: PMC11344665 DOI: 10.1016/j.jsbmb.2024.106575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks expression of the nuclear steroid receptors that bind estrogens (ER) and progestogens (PRs) and does not exhibit HER2 (Human epidermal growth factor 2) receptor overexpression. Even in the face of initially effective chemotherapies, TNBC patients often relapse. One primary cause for therapy-resistant tumor progression is the activation of cellular stress signaling pathways. The glucocorticoid receptor (GR), a corticosteroid-activated transcription factor most closely related to PR, is a mediator of both endocrine/host stress and local tumor microenvironment (TME)-derived and cellular stress responses. Interestingly, GR expression is associated with a good prognosis in ER+ breast cancer but predicts poor prognosis in TNBC. Classically, GR's transcriptional activity is regulated by circulating glucocorticoids. Additionally, GR is regulated by ligand-independent signaling events. Notably, the stress-activated protein kinase, p38 MAP kinase, phosphorylates GR at serine 134 (Ser134) in response to TME-derived growth factors and cytokines, including HGF and TGFβ1. Phospho-Ser134-GR (p-Ser134-GR) associates with cytoplasmic and nuclear signaling molecules, including 14-3-3ζ, aryl hydrocarbon receptors (AhR), and hypoxia-inducible factors (HIFs). Phospho-GR/HIF-containing transcriptional complexes upregulate gene sets whose protein products include the components of inducible oncogenic signaling pathways (PTK6) that further promote cancer cell survival, chemoresistance, altered metabolism, and migratory/invasive behavior in TNBC. Recent studies have implicated liganded p-Ser134-GR (p-GR) in dexamethasone-mediated upregulation of genes related to TNBC cell motility and dysregulated metabolism. Herein, we review the tumor-promoting roles of GR and discuss how both ligand-dependent and ligand-independent/stress signaling-driven inputs to p-GR converge to orchestrate metastatic TNBC progression.
Collapse
Affiliation(s)
- Sai Harshita Posani
- Molecular Pharmacology and Therapeutics Program, University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States
| | - Noelle E Gillis
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis 55455, United States; Department of Medicine (Division of Hematology, Oncology, and Transplantation), University of Minnesota, Minneapolis 55455, United States; Department of Pharmacology, University of Minnesota, Minneapolis 55455, United States.
| |
Collapse
|
3
|
Quintana DS, Glaser BD, Kang H, Kildal ESM, Audunsdottir K, Sartorius AM, Barth C. The interplay of oxytocin and sex hormones. Neurosci Biobehav Rev 2024; 163:105765. [PMID: 38885888 DOI: 10.1016/j.neubiorev.2024.105765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/31/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
The neuropeptide oxytocin has historically been associated with reproduction and maternal behavior. However, more recent research has uncovered that oxytocin has a much wider range of roles in physiology and behavior. Despite the excitement surrounding potential therapeutical applications of intranasally administered oxytocin, the results of these intervention studies have been inconsistent. Various reasons for these mixed results have been proposed, which tend to focus on methodological issues, such as study design. While methodological issues are certainly important, emerging evidence suggests that the interaction between oxytocin and sex hormones may also account for these varied findings. To better understand the purpose and function of the interaction of oxytocin with sex hormones, with a focus on estrogens, progesterone, and testosterone, we conducted a comprehensive thematic review via four perspectives: evolutionary, developmental, mechanistic, and survival. Altogether, this synergistic approach highlights the critical function of sex hormone activity for accomplishing the diverse roles of oxytocin via the modulation of oxytocin release and oxytocin receptor activity, which is also likely to contribute to the heterogeneity of outcomes after oxytocin administration.
Collapse
Affiliation(s)
- Daniel S Quintana
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; NevSom, Department of Rare Disorders, Oslo University Hospital, Oslo, Norway.
| | - Bernt D Glaser
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Heemin Kang
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Emilie S M Kildal
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Psychiatry, Lovisenberg Diakonale Sykehus, Oslo, Norway
| | - Kristin Audunsdottir
- Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
4
|
Shimmin BA, Haines LG, Shaw IC. In silico studies on the molecular interactions of steroid hormones and steroid hormone mimicking drugs in the androgen receptor binding cleft - Implications for prostate cancer treatment. Steroids 2024; 208:109456. [PMID: 38889811 DOI: 10.1016/j.steroids.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Occupancy of prostate cancer (PCa) cell androgen receptors (AR) signals proliferation, therefore testosterone biosynthesis inhibitors and AR antagonists are important PCa treatments. Conversely, androgen mimics (e.g., prednisone) used in management of PCa might cause proliferation. The balance between PCa proliferation and inhibition predicts treatment success. We used in silico molecular modelling to explore interactions between ARs, androgens (testosterone, dihydrotestosterone (DHT)) and drugs used to treat (bicalutamide) and manage (dexamethasone, prednisone, hydrocortisone) PCa. We found that hydrogen (H-) bonds between testosterone, DHT and Arg752, Asn705 and Thr877 followed by ligand binding cleft hydrophobic interactions signal proliferation, whereas bicalutamide antagonism is via Phe764 interactions. Hydrocortisone, dexamethasone and prednisone H-bond Asn705 and Thr877, but not Arg752 in the absence of a water molecule. Studies with a bicalutamide agonist AR mutation showed different amino acid interactions, indicating testosterone and DHT would not promote proliferation as effectively as via the native receptor. However, hydrocortisone and bicalutamide form Arg752 and Asn705 H-bonds indicating agonism. Our results suggest that as PCa progresses the resulting mutations will change the proliferative response to androgens and their drug mimics, which have implications for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Bridget A Shimmin
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand.
| | - Lydell G Haines
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| | - Ian C Shaw
- Human Toxicology Research Group, School of Physical and Chemical Sciences, University of Canterbury, Private Bag 4800, Christchurch 8041, New Zealand
| |
Collapse
|
5
|
Toso A, Garoche C, Balaguer P. Human and fish differences in steroid receptors activation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174889. [PMID: 39047839 DOI: 10.1016/j.scitotenv.2024.174889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
Steroid receptors (SRs) are transcription factors activated by steroid hormones (SHs) that belong to the nuclear receptors (NRs) superfamily. Several studies have shown that SRs are targets of endocrine disrupting chemicals (EDCs), widespread substances in the environment capable of interfering with the endogenous hormonal pathways and causing adverse health effects in living organisms and/or their progeny. Cell lines with SRs reporter gene are currently used for in vitro screening of large quantities of chemicals with suspected endocrine-disrupting activities. However, most of these cell lines express human SRs and therefore the toxicological data obtained are also extrapolated to non-mammalian species. In parallel, in vivo tests have recently been developed on fish species whose data are also extrapolated to mammalian species. As some species-specific differences in SRs activation by natural and synthetic chemicals have been recently reported, the aim of this review is to summarize those between human and fish SRs, as representatives of mammalian and non-mammalian toxicology, respectively. Overall, this literature study aims to improve inter-species extrapolation of toxicological data on EDCs and to understand which reporter gene cell lines expressing human SRs are relevant for the assessment of effects in fish and whether in vivo tests on fish can be properly used in the assessment of adverse effects on human health.
Collapse
Affiliation(s)
- Anna Toso
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France; Department Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600 Dübendorf, Switzerland.
| | - Clémentine Garoche
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194, Université Montpellier, Institut régional du Cancer de Montpellier (ICM), 34090 Montpellier, France
| |
Collapse
|
6
|
Huang J, Sun C, Huang Z, Zhu Y, Chen SX. Upregulation of coagulation factor V by glucocorticoid in the preovulatory follicles of zebrafish. J Steroid Biochem Mol Biol 2024; 241:106521. [PMID: 38631601 PMCID: PMC11140551 DOI: 10.1016/j.jsbmb.2024.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/06/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11β-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20β-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Chao Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhuo Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Zhu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; Department of Biology, East Carolina University, 101 E. 10th Street, Greenville, NC 27858, USA
| | - Shi Xi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
7
|
Katsu Y, Zhang J, Baker ME. Novel Evolution of Mineralocorticoid Receptor in Humans Compared to Chimpanzees, Gorillas, and Orangutans. Genes (Basel) 2024; 15:767. [PMID: 38927703 PMCID: PMC11203319 DOI: 10.3390/genes15060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/27/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
We identified five distinct full-length human mineralocorticoid receptor (MR) genes containing either 984 amino acids (MR-984) or 988 amino acids (MR-988), which can be distinguished by the presence or absence of Lys, Cys, Ser, and Trp (KCSW) in their DNA-binding domain (DBD) and mutations at codons 180 and 241 in their amino-terminal domain (NTD). Two human MR-KCSW genes contain either (Val-180, Val-241) or (Ile-180, Val-241) in their NTD, and three human MR-984 genes contain either (Ile-180, Ala-241), (Val-180, Val-241), or (Ile-180, Val-241). Human MR-KCSW with (Ile-180, Ala-241) has not been cloned. In contrast, chimpanzees contain four MRs: two MR-988s with KCSW in their DBD, or two MR-984s without KCSW in their DBD. Chimpanzee MRs only contain (Ile180, Val-241) in their NTD. A chimpanzee MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Gorillas and orangutans each contain one MR-988 with KCSW in the DBD and one MR-984 without KCSW, and these MRs only contain (Ile-180, Val-241) in their NTD. A gorilla MR or orangutan MR with either (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD has not been cloned. Together, these data suggest that human MRs with (Val-180, Val-241) or (Ile-180, Ala-241) in the NTD evolved after humans and chimpanzees diverged from their common ancestor. Considering the multiple functions in human development of the MR in kidney, brain, heart, skin, and lungs, as well as MR activity in interaction with the glucocorticoid receptor, we suggest that the evolution of human MRs that are absent in chimpanzees may have been important in the evolution of humans from chimpanzees. Investigation of the physiological responses to corticosteroids mediated by the MR in humans, chimpanzees, gorillas, and orangutans may provide insights into the evolution of humans and their closest relatives.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan;
| | - Jiawen Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Japan;
| | - Michael E. Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093, USA
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
8
|
Pavlicev M, Wagner GP. Reading the palimpsest of cell interactions: What questions may we ask of the data? iScience 2024; 27:109670. [PMID: 38665209 PMCID: PMC11043885 DOI: 10.1016/j.isci.2024.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Biological function depends on the composition and structure of the organism, the latter describing the organization of interactions between parts. While cells in multicellular organisms are capable of a remarkable degree of autonomy, most functions do require cell communication: the coordination of functions (growth, differentiation, and apoptosis), the compartmentalization of cellular processes, and the integration of cells into higher levels of structural organization. A wealth of data on putative cell interactions has become available, yet its biological interpretation depends on our expectations about the structure of interaction networks. Here, we attempt to formulate basic questions to ask when interpreting cell interaction data. We build on the understanding that cells fulfill two general functions: the integrity-maintaining and the organismal service function. We derive the expected patterns of cell interactions considering two intertwined aspects: the functional and the evolutionary. Based on these, we propose guidelines for analysis and interpretation of transcriptional cell-interactome data.
Collapse
Affiliation(s)
- Mihaela Pavlicev
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Complexity Science Hub, Vienna 1090, Austria
| | - Günter P. Wagner
- Unit for Theoretical Biology, Department for Evolutionary Biology, University of Vienna, Vienna 1030, Austria
- Yale University, New Haven, CT 06520, USA
- Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
9
|
Peng J, Svetec N, Molina H, Zhao L. The Origin and Evolution of Sex Peptide and Sex Peptide Receptor Interactions. Mol Biol Evol 2024; 41:msae065. [PMID: 38518286 PMCID: PMC11017328 DOI: 10.1093/molbev/msae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024] Open
Abstract
Post-mating responses play a vital role in successful reproduction across diverse species. In fruit flies, sex peptide binds to the sex peptide receptor, triggering a series of post-mating responses. However, the origin of sex peptide receptor predates the emergence of sex peptide. The evolutionary origins of the interactions between sex peptide and sex peptide receptor and the mechanisms by which they interact remain enigmatic. In this study, we used ancestral sequence reconstruction, AlphaFold2 predictions, and molecular dynamics simulations to study sex peptide-sex peptide receptor interactions and their origination. Using AlphaFold2 and long-time molecular dynamics simulations, we predicted the structure and dynamics of sex peptide-sex peptide receptor interactions. We show that sex peptide potentially binds to the ancestral states of Diptera sex peptide receptor. Notably, we found that only a few amino acid changes in sex peptide receptor are sufficient for the formation of sex peptide-sex peptide receptor interactions. Ancestral sequence reconstruction and molecular dynamics simulations further reveal that sex peptide receptor interacts with sex peptide through residues that are mostly involved in the interaction interface of an ancestral ligand, myoinhibitory peptides. We propose a potential mechanism whereby sex peptide-sex peptide receptor interactions arise from the preexisting myoinhibitory peptides-sex peptide receptor interface as well as early chance events both inside and outside the preexisting interface that created novel sex peptide-specific sex peptide-sex peptide receptor interactions. Our findings provide new insights into the origin and evolution of sex peptide-sex peptide receptor interactions and their relationship with myoinhibitory peptides-sex peptide receptor interactions.
Collapse
Affiliation(s)
- Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Nicolas Svetec
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
10
|
Munley KM, Hoadley AP, Alward BA. A phylogenetics-based nomenclature system for steroid receptors in teleost fishes. Gen Comp Endocrinol 2024; 347:114436. [PMID: 38141859 DOI: 10.1016/j.ygcen.2023.114436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Teleost fishes have emerged as tractable models for studying the neuroendocrine regulation of social behavior via molecular genetic techniques, such as CRISPR/Cas9 gene editing. Moreover, teleosts provide an opportunity to investigate the evolution of steroid receptors and their functions, as species within this lineage possess novel steroid receptor paralogs that resulted from a teleost-specific whole genome duplication. Although teleost fishes have grown in popularity as models for behavioral neuroendocrinology, there is not a consistent nomenclature system for steroid receptors and their genes, which may impede a clear understanding of steroid receptor paralogs and their functions. Here, we used a phylogenetic approach to assess the relatedness of protein sequences encoding steroid receptor paralogs in 18 species from 12 different orders of the Infraclass Teleostei. While most similarly named sequences grouped based on the established phylogeny of the teleost lineage, our analysis revealed several inconsistencies in the nomenclature of steroid receptor paralogs, particularly for sequences encoding estrogen receptor beta (ERβ). Based on our results, we propose a nomenclature system for teleosts in which Greek symbols refer to proteins and numbers refer to genes encoding different subtypes of steroid receptors within the five major groups of this nuclear receptor subfamily. Collectively, our results bridge a critical gap by providing a cohesive naming system for steroid receptors in teleost fishes, which will serve to improve communication, promote collaboration, and enhance our understanding of the evolution and function of steroid receptors across vertebrates.
Collapse
Affiliation(s)
| | - Andrew P Hoadley
- Department of Psychology, University of Houston, Houston, TX, USA
| | - Beau A Alward
- Department of Psychology, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA.
| |
Collapse
|
11
|
Ryu T, Okamoto K, Ansai S, Nakao M, Kumar A, Iguchi T, Ogino Y. Gene Duplication of Androgen Receptor As An Evolutionary Driving Force Underlying the Diversity of Sexual Characteristics in Teleost Fishes. Zoolog Sci 2024; 41:68-76. [PMID: 38587519 DOI: 10.2108/zs230098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organization, CSIRO Environment, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan,
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Proffitt MR, Liu X, Ortlund EA, Smith GT. Evolution of androgen receptors contributes to species variation in androgenic regulation of communication signals in electric fishes. Mol Cell Endocrinol 2023; 578:112068. [PMID: 37714403 PMCID: PMC10695101 DOI: 10.1016/j.mce.2023.112068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Hormones and receptors coevolve to generate species diversity in hormone action. We compared the structure and function of androgen receptors (ARs) across fishes, with a focus on ARs in ghost knifefishes (Apteronotidae). Apteronotids, like many other teleosts, have two ARs (ARα and ARβ). ARβ is largely conserved, whereas ARα sequences vary considerably across species. The ARα ligand binding domain (LBD) has evolved under positive selection, and differences in the LBD across apteronotid species are associated with diversity in androgenic regulation of behavior. The Apteronotus leptorhynchus ARα LBD differs substantially from that of the Apteronotus albifrons ARα or the ancestral AR. Structural modeling and transactivation assays demonstrated that A. leptorhynchus ARα cannot bind androgens. We propose a model whereby relative expression of ARα versus ARβ in the brain, coupled with loss of androgen binding by ARα in A. leptorhynchus might explain reversals in androgenic regulation and sex differences in electrocommunication behavior.
Collapse
Affiliation(s)
- Melissa Renee Proffitt
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA
| | - Xu Liu
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - Eric A Ortlund
- Department of Biochemistry, Emory University, Atlanta, GA, USA
| | - G Troy Smith
- Department of Biology and Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
13
|
Kroon J, Gentenaar M, Moll TJA, Hunt H, Meijer OC. Glucocorticoid receptor modulator CORT125385 alleviates diet-induced hepatosteatosis in male and female mice. Eur J Pharmacol 2023; 957:176012. [PMID: 37634839 DOI: 10.1016/j.ejphar.2023.176012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common condition that can progress to the more severe conditions like non-alcoholic steatohepatitis (NASH) for which limited effective therapeutic options are available. In this study, we set out to evaluate the novel glucocorticoid receptor modulator CORT125385, an analogue of the previously studied miricorilant but without mineralocorticoid receptor binding activity. Male and female mice that received high-fat diet and fructose water were treated with either vehicle, CORT125385 or mifepristone. We found that CORT125385 significantly lowered hepatic triglyceride levels in male mice, and hepatic triglyceride and cholesterol levels in female mice. Mifepristone treatment had no effect in male mice, but significantly lowered hepatic triglyceride and cholesterol levels in female mice. In reporter assays in vitro, CORT125385 showed weak partial agonism on the progesterone receptor (PR) at high doses, as well as PR antagonism at a potency 1000-fold lower than mifepristone. In vivo, CORT125385 treatment did not influence PR-responsive gene expression in the oviduct, while mifepristone treatment strongly influenced these genes in the oviduct, thus excluding in vivo PR cross-reactivity of CORT125385 at a therapeutically active dose. We conclude that CORT125385 is a promising glucocorticoid receptor modulator that effectively reduces liver steatosis in male and female mice without affecting other steroid receptors at doses that lower hepatic lipid content.
Collapse
Affiliation(s)
- Jan Kroon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands; Corcept Therapeutics, Menlo Park, CA, USA.
| | - Max Gentenaar
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Tijmen J A Moll
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hazel Hunt
- Corcept Therapeutics, Menlo Park, CA, USA
| | - Onno C Meijer
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Miziak P, Baran M, Błaszczak E, Przybyszewska-Podstawka A, Kałafut J, Smok-Kalwat J, Dmoszyńska-Graniczka M, Kiełbus M, Stepulak A. Estrogen Receptor Signaling in Breast Cancer. Cancers (Basel) 2023; 15:4689. [PMID: 37835383 PMCID: PMC10572081 DOI: 10.3390/cancers15194689] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogen receptor (ER) signaling is a critical regulator of cell proliferation, differentiation, and survival in breast cancer (BC) and other hormone-sensitive cancers. In this review, we explore the mechanism of ER-dependent downstream signaling in BC and the role of estrogens as growth factors necessary for cancer invasion and dissemination. The significance of the clinical implications of ER signaling in BC, including the potential of endocrine therapies that target estrogens' synthesis and ER-dependent signal transmission, such as aromatase inhibitors or selective estrogen receptor modulators, is discussed. As a consequence, the challenges associated with the resistance to these therapies resulting from acquired ER mutations and potential strategies to overcome them are the critical point for the new treatment strategies' development.
Collapse
Affiliation(s)
- Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Marzena Baran
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Jolanta Smok-Kalwat
- Department of Clinical Oncology, Holy Cross Cancer Centre, 3 Artwinskiego Street, 25-734 Kielce, Poland;
| | - Magdalena Dmoszyńska-Graniczka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Michał Kiełbus
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.B.); (E.B.); (A.P.-P.); (J.K.); (M.D.-G.)
| |
Collapse
|
15
|
Katsu Y, Zhang J, Baker ME. Reduced steroid activation of elephant shark GR and MR after inserting four amino acids from the DNA-binding domain of lamprey corticoid receptor-1. PLoS One 2023; 18:e0290159. [PMID: 37611044 PMCID: PMC10446182 DOI: 10.1371/journal.pone.0290159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023] Open
Abstract
Atlantic sea lamprey contains two corticoid receptors (CRs), CR1 and CR2, that have identical amino acid sequences, except for a four amino acid insert (Thr-Arg-Gln-Gly) in the CR1 DNA-binding domain (DBD). Steroids are stronger transcriptional activators of CR2 than of CR1 suggesting that the insert reduces the transcriptional response of lamprey CR1 to steroids. The DBD in elephant shark mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), which are descended from a CR, lack these four amino acids, suggesting that a CR2 is their common ancestor. To determine if, similar to lamprey CR1, the presence of this insert in elephant shark MR and GR decreases transcriptional activation by corticosteroids, we inserted these four CR1-specific residues into the DBD of elephant shark MR and GR. Compared to steroid activation of wild-type elephant shark MR and GR, cortisol, corticosterone, aldosterone, 11-deoxycorticosterone and 11-deoxycortisol had lower transcriptional activation of these mutant MR and GR receptors, indicating that the absence of this four-residue segment in the DBD in wild-type elephant shark MR and GR increases transcriptional activation by corticosteroids.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Jiawen Zhang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Michael E. Baker
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Nicolaides NC, Chrousos GP. The human glucocorticoid receptor. VITAMINS AND HORMONES 2023; 123:417-438. [PMID: 37717993 DOI: 10.1016/bs.vh.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Glucocorticoids are members of steroid hormones that are biosynthesized in the intermediate cellular zone of the adrenal cortex (zona fasciculata) and released into the peripheral blood as final products of the hypothalamic-pituitary-adrenal (HPA) axis, as well as under the control of the circadian biologic system. These molecules regulate every physiologic function of the organism as they bind to an almost ubiquitous hormone-activated transcription factor, the glucocorticoid receptor (GR), which influences the rate of transcription of a huge number of target genes amounting to up to 20% of the mammalian genome. The evolving progress of cellular, molecular and computational-structural biology and the implication of epigenetics in every-day clinical practice have enabled us a deeper and ever-increasing understanding of how target tissues respond to natural and synthetic glucocorticoids. In this chapter, we summarize the current knowledge on the structure, expression, function and signaling of the human glucocorticoid receptor in normal and pathologic conditions.
Collapse
Affiliation(s)
- Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - George P Chrousos
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, 'Aghia Sophia' Children's Hospital, Athens, Greece; Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; University Research Institute of Maternal and Child Health and Precision Medicine and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
17
|
Maiti S, Nazmeen A, Banerjee A. Significant impact of redox regulation of estrogen-metabolizing proteins on cellular stress responses. Cell Biochem Funct 2023. [PMID: 37139830 DOI: 10.1002/cbf.3796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
The ultimate driving force, stress, promotes adaptability/evolution in proliferating organisms, transforming tumorigenic growth. Estradiol (E2) regulates both phenomena. In this study, bioinformatics-tools, site-directed-mutagenesis (human estrogen-sulfotransferase/hSULT1E1), HepG2 cells tested with N-acetyl-cysteine (NAC/thiol-inducer) or buthionine-sulfoxamine (BSO/thiol-depletory) were evaluated for hSULT1E1 (estradiol-sulphating/inactivating) functions. Reciprocal redox regulation of steroid sulfatase (STS, E2-desulfating/activating) results in the Cys-formylglycine transition by the formylglycine-forming enzyme (FGE). The enzyme sequences and structures were examined across the phylogeny. Motif/domain and the catalytic conserve sequences and protein-surface-topography (CASTp) were investigated. The E2 binding to SULT1E1 suggests that the conserved-catalytic-domain in this enzyme has critical Cysteine 83 at position. This is strongly supported by site-directed mutagenesis/HepG2-cell research. Molecular-docking and superimposition studies of E2 with the SULT1E1 of representative species and to STS reinforce this hypothesis. SULT1E1-STS are reciprocally activated in response to the cellular-redox-environment by the critical Cys of these two enzymes. The importance of E2 in organism/species proliferation and tissue tumorigenesis is highlighted.
Collapse
Affiliation(s)
- Smarajit Maiti
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Aarifa Nazmeen
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| | - Amrita Banerjee
- Department of Biochemistry, Cell & Molecular Therapeutics Lab, Oriental Institute of Science & Technology, Midnapore, India
| |
Collapse
|
18
|
Ankley GT, Santana-Rodriguez K, Jensen KM, Miller DH, Villeneuve DL. AOP Report: Adverse Outcome Pathways for Aromatase Inhibition or Androgen Receptor Agonism Leading to Male-Biased Sex Ratio and Population Decline in Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:747-756. [PMID: 36848318 PMCID: PMC10772967 DOI: 10.1002/etc.5581] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Screening and testing of potential endocrine-disrupting chemicals for ecological effects are examples of risk assessment/regulatory activities that can employ adverse outcome pathways (AOPs) to establish linkages between readily measured alterations in endocrine function and whole organism- and population-level responses. Of particular concern are processes controlled by the hypothalamic-pituitary-gonadal/thyroidal (HPG/T) axes. However, the availability of AOPs suitable to meet this need is currently limited in terms of species and life-stage representation relative to the diversity of endpoints influenced by HPG/T function. In our report we describe two novel AOPs that comprise a simple AOP network focused on the effects of chemicals on sex differentiation during early development in fish. The first AOP (346) documents events starting with inhibition of cytochrome P450 aromatase (CYP19), resulting in decreased availability of 17β-estradiol during gonad differentiation, which increases the occurrence of testis formation, resulting in a male-biased sex ratio and consequent population-level declines. The second AOP (376) is initiated by activation of the androgen receptor (AR), also during sexual differentiation, again resulting in a male-biased sex ratio and population-level effects. Both AOPs are strongly supported by existing physiological and toxicological evidence, including numerous fish studies with model CYP19 inhibitors and AR agonists. Accordingly, AOPs 346 and 376 provide a basis for more focused screening and testing of chemicals with the potential to affect HPG function in fish during early development. Environ Toxicol Chem 2023;42:747-756. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T. Ankley
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kelvin Santana-Rodriguez
- Oak Ridge Institute for Science and Education, Research Participant at U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - David H. Miller
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Ann Arbor, MI, USA
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| |
Collapse
|
19
|
Katsu Y, Lin X, Ji R, Chen Z, Kamisaka Y, Bamba K, Baker ME. N-terminal domain influences steroid activation of the Atlantic sea lamprey corticoid receptor. J Steroid Biochem Mol Biol 2023; 228:106249. [PMID: 36646152 DOI: 10.1016/j.jsbmb.2023.106249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Lampreys are jawless fish that evolved about 550 million years ago at the base of the vertebrate line. Modern lampreys contain a corticoid receptor (CR), the common ancestor of the glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), which first appear in cartilaginous fish, such as sharks. Until recently, 344 amino acids at the amino terminus of adult lamprey CR were not present in the lamprey CR sequence in GenBank. A search of the recently sequenced lamprey germline genome identified two CR sequences, CR1 and CR2, containing the 344 previously un-identified amino acids. CR1 also contains a novel four amino acid insertion in the DNA-binding domain (DBD). We studied corticosteroid and progesterone activation of CR1 and CR2 and found their strongest response was to 11-deoxycorticosterone and 11-deoxycortisol, the two circulating corticosteroids in lamprey. Based on steroid specificity, both CRs are close to elephant shark MR and distant from elephant shark GR. HEK293 cells that were transfected with full-length CR1 or CR2 and the MMTV promoter have about 3-fold higher steroid-mediated activation compared to HEK293 cells transfected with these CRs and the TAT3 promoter. Deletion of the amino-terminal domain (NTD) of lamprey CR1 and CR2 to form truncated CRs decreased transcriptional activation by about 70% in HEK293 cells that were transfected with MMTV, but increased transcription by about 6-fold in cells transfected with TAT3. This indicated that the promoter has an important effect on NTD regulation of transcriptional activation of the CR by steroids. Our results also indicate that the entire lamprey CR sequence is needed for an accurate determination of steroid-mediated transcription.
Collapse
Affiliation(s)
| | - Xiaozhi Lin
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ruigeng Ji
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Ze Chen
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Yui Kamisaka
- Graduate School of Life Science Hokkaido University Sapporo, Japan
| | - Koto Bamba
- Faculty of Science Hokkaido University Sapporo, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension Department of Medicine, 0693 University of California, San Diego 9500 Gilman Drive La Jolla, CA 92093-0693, USA; Center for Academic Research and Training in Anthropogeny (CARTA) University of California, San Diego La Jolla, CA 92093, USA.
| |
Collapse
|
20
|
King SB, Singh M. Primate protein-ligand interfaces exhibit significant conservation and unveil human-specific evolutionary drivers. PLoS Comput Biol 2023; 19:e1010966. [PMID: 36952575 PMCID: PMC10035887 DOI: 10.1371/journal.pcbi.1010966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/22/2023] [Indexed: 03/25/2023] Open
Abstract
Despite the vast phenotypic differences observed across primates, their protein products are largely similar to each other at the sequence level. We hypothesized that, since proteins accomplish all their functions via interactions with other molecules, alterations in the sites that participate in these interactions may be of critical importance. To uncover the extent to which these sites evolve across primates, we built a structurally-derived dataset of ~4,200 one-to-one orthologous sequence groups across 18 primate species, consisting of ~68,000 ligand-binding sites that interact with DNA, RNA, small molecules, ions, or peptides. Using this dataset, we identify functionally important patterns of conservation and variation within the amino acid residues that facilitate protein-ligand interactions across the primate phylogeny. We uncover that interaction sites are significantly more conserved than other sites, and that sites binding DNA and RNA further exhibit the lowest levels of variation. We also show that the subset of ligand-binding sites that do vary are enriched in components of gene regulatory pathways and uncover several instances of human-specific ligand-binding site changes within transcription factors. Altogether, our results suggest that ligand-binding sites have experienced selective pressure in primates and propose that variation in these sites may have an outsized effect on phenotypic variation in primates through pleiotropic effects on gene regulation.
Collapse
Affiliation(s)
- Sean B. King
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Mona Singh
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Department of Computer Science, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
21
|
Dube N, Khan SH, Sasse R, Okafor CD. Identification of an Evolutionarily Conserved Allosteric Network in Steroid Receptors. J Chem Inf Model 2023; 63:571-582. [PMID: 36594606 PMCID: PMC9875803 DOI: 10.1021/acs.jcim.2c01096] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Indexed: 01/04/2023]
Abstract
Allosteric pathways in proteins describe networks comprising amino acid residues which may facilitate the propagation of signals between distant sites. Through inter-residue interactions, dynamic and conformational changes can be transmitted from the site of perturbation to an allosteric site. While sophisticated computational methods have been developed to characterize such allosteric pathways linking specific sites on proteins, few attempts have been made to apply these approaches toward identifying new allosteric sites. Here, we use molecular dynamics simulations and suboptimal path analysis to discover new allosteric networks in steroid receptors with a focus on evolutionarily conserved pathways. Using modern receptors and a reconstructed ancestral receptor, we identify networks connecting several sites to the activation function surface 2 (AF-2), the site of coregulator recruitment. One of these networks is conserved across the entire family, connecting a predicted allosteric site located between helices 9 and 10 of the ligand-binding domain. We investigate the basis of this conserved network as well as the importance of this site, discovering that the site lies in a region of the ligand-binding domain characterized by conserved inter-residue contacts. This study suggests an evolutionarily importance of the helix 9-helix 10 site in steroid receptors and identifies an approach that may be applied to discover previously unknown allosteric sites in proteins.
Collapse
Affiliation(s)
- Namita Dube
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Sabab Hasan Khan
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
| | - Riley Sasse
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - C. Denise Okafor
- Department
of Biochemistry and Molecular Biology, Pennsylvania
State University, University Park, State College, Pennsylvania 16802, United States
- Department
of Chemistry, Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Takahashi T, Ogiwara K. cAMP signaling in ovarian physiology in teleosts: A review. Cell Signal 2023; 101:110499. [PMID: 36273754 DOI: 10.1016/j.cellsig.2022.110499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/15/2022] [Indexed: 11/30/2022]
Abstract
Ovarian function in teleosts, like in other vertebrates, is regulated by two distinct gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin effects are mediated by membrane-bound G protein-coupled receptors localized on the surface of follicle cells. Gonadotropin receptor activation results in increased intracellular cAMP, the most important second cellular signaling molecule. FSH stimulation induces the production of 17β-estradiol in the cells of growing follicles to promote vitellogenesis in oocytes. In contrast, in response to LH, fully grown post-vitellogenic follicles gain the ability to synthesize maturation-inducing steroids, which induce meiotic resumption and ovulation. All these events were induced downstream of cAMP. In this review, we summarize studies addressing the role of the cAMP pathway in gonadotropin-induced processes in teleost ovarian follicles. Furthermore, we discuss future problems concerning cAMP signaling in relation to teleost ovarian function and the differences and similarities in the gonadotropin-induced cAMP signaling pathways between mammals and teleosts.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
23
|
Rosvall KA. Evolutionary endocrinology and the problem of Darwin's tangled bank. Horm Behav 2022; 146:105246. [PMID: 36029721 DOI: 10.1016/j.yhbeh.2022.105246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/20/2022] [Accepted: 08/10/2022] [Indexed: 11/04/2022]
Abstract
Like Darwin's tangled bank of biodiversity, the endocrine mechanisms that give rise to phenotypic diversity also exhibit nearly endless forms. This tangled bank of mechanistic diversity can prove problematic as we seek general principles on the role of endocrine mechanisms in phenotypic evolution. A key unresolved question is therefore: to what degree are specific endocrine mechanisms re-used to bring about replicated phenotypic evolution? Related areas of inquiry are booming in molecular ecology, but behavioral traits are underrepresented in this literature. Here, I leverage the rich comparative tradition in evolutionary endocrinology to evaluate whether and how certain mechanisms may be repeated hotspots of behavioral evolutionary change. At one extreme, mechanisms may be parallel, such that evolution repeatedly uses the same gene or pathway to arrive at multiple independent (or, convergent) origins of a particular behavioral trait. At the other extreme, the building blocks of behavior may be unique, such that outwardly similar phenotypes are generated via lineage-specific mechanisms. This review synthesizes existing case studies, phylogenetic analyses, and experimental evolutionary research on mechanistic parallelism in animal behavior. These examples show that the endocrine building blocks of behavior have some elements of parallelism across replicated evolutionary events. However, support for parallelism is variable among studies, at least some of which relates to the level of complexity at which we consider sameness (i.e. pathway vs. gene level). Moving forward, we need continued experimentation and better testing of neutral models to understand whether, how - and critically, why - mechanism A is used in one lineage and mechanism B is used in another. We also need continued growth of large-scale comparative analyses, especially those that can evaluate which endocrine parameters are more or less likely to undergo parallel evolution alongside specific behavioral traits. These efforts will ultimately deepen understanding of how and why hormone-mediated behaviors are constructed the way that they are.
Collapse
Affiliation(s)
- Kimberly A Rosvall
- Indiana University, Bloomington, USA; Department of Biology, USA; Center for the Integrative Study of Animal Behavior, USA.
| |
Collapse
|
24
|
Ozyurt R, Ozpolat B. Molecular Mechanisms of Anti-Estrogen Therapy Resistance and Novel Targeted Therapies. Cancers (Basel) 2022; 14:5206. [PMID: 36358625 PMCID: PMC9655708 DOI: 10.3390/cancers14215206] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/05/2022] [Accepted: 10/20/2022] [Indexed: 07/29/2023] Open
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer in women, constituting one-third of all cancers in women, and it is the second leading cause of cancer-related deaths in the United States. Anti-estrogen therapies, such as selective estrogen receptor modulators, significantly improve survival in estrogen receptor-positive (ER+) BC patients, which represents about 70% of cases. However, about 60% of patients inevitably experience intrinsic or acquired resistance to anti-estrogen therapies, representing a major clinical problem that leads to relapse, metastasis, and patient deaths. The resistance mechanisms involve mutations of the direct targets of anti-estrogen therapies, compensatory survival pathways, as well as alterations in the expression of non-coding RNAs (e.g., microRNA) that regulate the activity of survival and signaling pathways. Although cyclin-dependent kinase 4/6 and phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) inhibitors have significantly improved survival, the efficacy of these therapies alone and in combination with anti-estrogen therapy for advanced ER+ BC, are not curative in advanced and metastatic disease. Therefore, understanding the molecular mechanisms causing treatment resistance is critical for developing highly effective therapies and improving patient survival. This review focuses on the key mechanisms that contribute to anti-estrogen therapy resistance and potential new treatment strategies alone and in combination with anti-estrogen drugs to improve the survival of BC patients.
Collapse
Affiliation(s)
- Rumeysa Ozyurt
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Houston Methodist Research Institute, Department of Nanomedicine, 6670 Bertner Ave, Houston, TX 77030, USA
| |
Collapse
|
25
|
Shaia KL, Harris BS, Selter JH, Price TM. Reproductive Functions of the Mitochondrial Progesterone Receptor (PR-M). Reprod Sci 2022; 30:1443-1452. [PMID: 36255658 DOI: 10.1007/s43032-022-01092-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/16/2022] [Indexed: 10/24/2022]
Abstract
Classic transcriptional regulation by progesterone via the nuclear progesterone receptors A and B (PR-A, PR-B) has been recognized for decades. Less attention has been given to a mitochondrial progesterone receptor (PR-M) responsible for non-nuclear activities. PR-M is derived from the progesterone receptor (PR) gene from an alternate promoter with the cDNA encoding a unique 5' membrane binding domain followed by the same hinge and hormone-binding domain of the nPR. The protein binds to the mitochondrial outer membrane and functions to increase cellular respiration via increased beta-oxidation and oxidative phosphorylation with resulting adenosine triphosphate (ATP) production. Physiologic activities of PR-M have been studied in cardiac function, spermatozoa activation, and myometrial growth, all known to respond to progesterone. Progesterone via PR-M increases cardiomyocyte cellular respiration to meet the metabolic demands of pregnancy with increased contractility. Consequential gene changes associated with PR-M activation include production of proteins for sarcomere development and for fatty acid oxidation. Regarding spermatozoa function, progesterone via PR-M increases cellular energy production necessary for progesterone-dependent hyperactivation. A role of progesterone in myometrial and leiomyomata growth may also be explained by the increase in necessary cellular energy for proliferation. Lastly, the multi-organ increase in cellular respiration may contribute to the progesterone-dependent increase in metabolic rate reflected by an increase in body temperature through compensatory non-shivering thermogenesis. An evolutionary comparison shows PR-M expressed in humans, apes, and Old World monkeys, but the necessary gene sequence is absent in New World monkeys and lower species. The evolutionary advantage to PR-M remains to be defined, but its presence may enhance catabolism to support the extended gestation and brain development found in these primates.
Collapse
Affiliation(s)
- Kathryn L Shaia
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Benjamin S Harris
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Jessica H Selter
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Thomas M Price
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
26
|
Kalyvianaki K, Panagiotopoulos AA, Patentalaki M, Castanas E, Kampa M. Importins involved in the nuclear transportation of steroid hormone receptors: In silico and in vitro data. Front Endocrinol (Lausanne) 2022; 13:954629. [PMID: 36147566 PMCID: PMC9487861 DOI: 10.3389/fendo.2022.954629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
The nuclear receptor superfamily (NRS) consists of 48 receptors for lipophilic substances and is divided into 7 different subfamilies, with subfamily 3 comprising steroid hormone receptors. Several nuclear receptors usually bind their cognate ligands in the cytosol and the complex (mono- or dimerized) is transported to the nucleus, where it acts as a transcription initiating factor for a number of genes. The general structure of nuclear receptors consists of an N-terminal activating domain (A/B), important for the binding of activating or inhibitory co-factors, the DNA-binding domain (C), responsible for the association of the receptor-ligand-co-factor complex to the nucleus, the ligand-AF2 domain (E/F), where ligand binding occurs as well as that of ligand-dependent activating/inhibiting factors, and a flexible/non-structured domain (D), linking the DBD and LBD, called hinge region, on which a significant number of post-translational modifications occur. This hinge domain, for the sub-class of steroid receptors, is a non-structured domain and was reported as mainly responsible for the nuclear transport of steroid receptors, since it contains a specific amino acid sequence (Nuclear Localization Signal-NLS), recognized by importin α. In addition to the importin α/β complex, a number of other importins have been discovered and reported to be responsible for the nuclear transport of a number of significant proteins; however, the corresponding recognition sequences for these importins have not been identified. Recently, we have reported the identification of the NLS sequences for importins 4, 5 and 7. In this work, we provide in silico data, followed by experimental in vitro validation, showing that these alternative importins are responsible for the nuclear transportation of steroid hormone receptors such as ERα, AR and PR, and therefore they may consist of alternative targets for the pharmacological manipulation of steroid hormone actions. Moreover, we provide additional in silico data for the hinge region of steroid hormone receptors which is highly enriched with NLS sequences for importins 4, 5 and 7, in addition to the recognition NLS for importin α/β.
Collapse
Affiliation(s)
| | | | | | - Elias Castanas
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| | - Marilena Kampa
- Laboratory of Experimental Endocrinology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
27
|
Katsu Y, Oana S, Lin X, Hyodo S, Bianchetti L, Baker ME. Cloning of nine glucocorticoid receptor isoforms from the slender African lungfish (Protopterus dolloi). PLoS One 2022; 17:e0272219. [PMID: 35913912 PMCID: PMC9342798 DOI: 10.1371/journal.pone.0272219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/15/2022] [Indexed: 11/22/2022] Open
Abstract
We wanted to clone the glucocorticoid receptor (GR) from slender African lungfish (Protopterus dolloi) for comparison to the P. dolloi mineralocorticoid receptor (MR), which we had cloned and were characterizing, as well as for comparison to the GRs from humans, elephant shark and zebrafish. However, although sequencing of the genome of the Australian lungfish (Neoceratodus forsteri), as well as, that of the West African lungfish (Protopterus annectens) were reported in the first three months of 2021, we could not retrieve a GR sequence with a BLAST search of GenBank, when we submitted our research for publication in July 2021. Moreover, we were unsuccessful in cloning the GR from slender African lungfish using a cDNA from the ovary of P. dolloi and PCR primers that had successfully cloned a GR from elephant shark, Xenopus and gar GRs. On October 21, 2021 the nucleotide sequence of West African lungfish (P. annectens) GR was deposited in GenBank. We used this GR sequence to construct PCR primers that successfully cloned the GR from the slender spotted lungfish. Here, we report the sequences of nine P. dolloi GR isoforms and explain the basis for the previous failure to clone a GR from slender African lungfish using PCR primers that cloned the GR from elephant shark, Xenopus and gar. Studies are underway to determine corticosteroid activation of these slender African lungfish GRs.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
- * E-mail: (YK); (MEB)
| | - Shin Oana
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Xiaozhi Lin
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Laurent Bianchetti
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), CNRS UMR 7104—Inserm U1258, Université de Strasbourg, Illkirch, France
| | - Michael E. Baker
- Division of Nephrology-Hypertension, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, California, United States of America
- * E-mail: (YK); (MEB)
| |
Collapse
|
28
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
29
|
Sakellakis M. Orphan receptors in prostate cancer. Prostate 2022; 82:1016-1024. [PMID: 35538397 DOI: 10.1002/pros.24370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 04/22/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The identification of new cellular receptors has been increasing rapidly. A receptor is called "orphan" if an endogenous ligand has not been identified yet. METHODS Here we review receptors that contribute to prostate cancer and are considered orphan or partially orphan. This means that the full spectrum of their endogenous ligands remains unknown. RESULTS The orphan receptors are divided into two major families. The first group includes G protein-coupled receptors. Most are orphan olfactory receptors. OR51E1 inhibits cell proliferation and induces senescence in prostate cancer. OR51E2 inhibits prostate cancer growth, but promotes invasiveness and metastasis. GPR158, GPR110, and GPCR-X play significant roles in prostate cancer development and progression. However, GPR160 induces cell cycle arrest and apoptosis. The other major subset of orphan receptors are nuclear receptors. Receptor-related orphan receptor α (RORα) inhibits tumor growth, but RORγ stimulates androgen receptor signaling. PXR contributes to metabolic deactivation of androgens and inhibits cell proliferation. TLX has protumorigenic effects in prostate cancer, while its knockdown triggers cellular senescence and growth arrest. Estrogen-related receptor ERRγ can inhibit tumor growth but ERRα is protumorigenic. Dax1 and short heterodimeric partner are also inhibitory in prostate cancer. CONCLUSION There is a "zoo" of relatively underappreciated orphan receptors that play key roles in prostate cancer.
Collapse
Affiliation(s)
- Minas Sakellakis
- Fourth Oncology Department and Comprehensive Clinical Trials Center, Metropolitan Hospital, Athens, Greece
| |
Collapse
|
30
|
Takahashi T, Ogiwara K. Signal pathway of LH-induced expression of nuclear progestin receptor in vertebrate ovulation. Gen Comp Endocrinol 2022; 321-322:114025. [PMID: 35292264 DOI: 10.1016/j.ygcen.2022.114025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/18/2022] [Accepted: 03/10/2022] [Indexed: 11/19/2022]
Abstract
Nuclear progestin receptor (PGR), which is induced in the follicles destined to undergo ovulation, is believed to be obligatory for rupture of the follicles during ovulation in vertebrates. Studies in some mammals and teleost medaka have revealed the outline of the central signaling pathway that leads to the PGR expression in the preovulatory follicles at ovulation. In this review, we summarize the current knowledge on what signaling mediators are involved in the LH-induced follicular expression of PGR at ovulation in these animals. LH-inducibility of follicular PGR expression is conserved. In both group of animals, activation of the LH receptor on the granulosa cell surface with LH commonly results in the increase of intracellular cAMP levels, while the downstream signaling cascades activated by high level of cAMP are totally different between mice and medaka. PGR is currently presumed to be induced via PKA/CREB-mediated transactivation and ERK1/2-dependent signaling in mice, but the receptor is induced via EPAC/RAP and AKT/CREB pathways in the teleost medaka. The differences and similarities in the signaling pathways for PGR expression between them is discussed from comparative and evolutionary aspects. We also discussed questions concerning PGR expression and its regulation needed to be investigated in future.
Collapse
Affiliation(s)
- Takayuki Takahashi
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| | - Katsueki Ogiwara
- Laboratory of Reproductive and Developmental Biology, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
31
|
Petty HJ, Barrett JE, Kosmowski EG, Amos DS, Ryan SM, Jones LD, Lassiter CS. Spironolactone affects cardiovascular and craniofacial development in zebrafish embryos (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103848. [PMID: 35288337 DOI: 10.1016/j.etap.2022.103848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Spironolactone, a potassium-sparing diuretic and aldosterone antagonist, is a mineralocorticoid hormone commonly prescribed to patients suffering from heart failure, hirsutism, dermatological afflictions, and hypertension. Interestingly, relatively little work has been done on the development of vertebrate embryos after exposure to this compound. Here, we treat zebrafish embryos with spironolactone at 10-6 M, 10-7 M, or 10-8 M, and observe them after three to seven days of exposure. While no effect was observed in mortality, we did detect differences in cardiovascular development at 3 dpf and craniofacial development at 5 dpf. At 10-6 M, smaller atria, ventricles, and blood vessels were observed. The highest concentrations also caused a longer ceratohyal/Meckel's distance, longer palatoquadrate, and smaller angles between the palatoquadrate and both the ceratohyal and Meckel's. Further research of spironolactone's effects on embryonic development could lead to a better understanding of the compound resulting in improved public and environmental health.
Collapse
Affiliation(s)
- Hannah J Petty
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Jacob E Barrett
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Erin G Kosmowski
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Dandre S Amos
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Sean M Ryan
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | - Lucas D Jones
- Department of Biology, Roanoke College, 221 College Lane, Salem, VA 24153, USA
| | | |
Collapse
|
32
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
33
|
Hamilton CM, Winter MJ, Margiotta-Casaluci L, Owen SF, Tyler CR. Are synthetic glucocorticoids in the aquatic environment a risk to fish? ENVIRONMENT INTERNATIONAL 2022; 162:107163. [PMID: 35240385 DOI: 10.1016/j.envint.2022.107163] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 05/27/2023]
Abstract
The glucocorticosteroid, or glucocorticoid (GC), system is largely conserved across vertebrates and plays a central role in numerous vital physiological processes including bone development, immunomodulation, and modification of glucose metabolism and the induction of stress-related behaviours. As a result of their wide-ranging actions, synthetic GCs are widely prescribed for numerous human and veterinary therapeutic purposes and consequently have been detected extensively within the aquatic environment. Synthetic GCs designed for humans are pharmacologically active in non-mammalian vertebrates, including fish, however they are generally detected in surface waters at low (ng/L) concentrations. In this review, we assess the potential environmental risk of synthetic GCs to fish by comparing available experimental data and effect levels in fish with those in mammals. We found the majority of compounds were predicted to have insignificant risk to fish, however some compounds were predicted to be of moderate and high risk to fish, although the dataset of compounds used for this analysis was small. Given the common mode of action and high level of inter-species target conservation exhibited amongst the GCs, we also give due consideration to the potential for mixture effects, which may be particularly significant when considering the potential for environmental impact from this class of pharmaceuticals. Finally, we also provide recommendations for further research to more fully understand the potential environmental impact of this relatively understudied group of commonly prescribed human and veterinary drugs.
Collapse
Affiliation(s)
- Charles M Hamilton
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Matthew J Winter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK
| | - Luigi Margiotta-Casaluci
- Department of Analytical, Environmental & Forensic Sciences, School of Cancer & Pharmaceutical Sciences, King's College London, London SE1 9NH, UK
| | - Stewart F Owen
- AstraZeneca, Global Environment, Macclesfield, Cheshire SK10 2NA, UK
| | - Charles R Tyler
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, Devon EX4 4QD, UK.
| |
Collapse
|
34
|
Divergent Evolution of Progesterone and Mineralocorticoid Receptors in Terrestrial Vertebrates and Fish Influences Endocrine Disruption. Biochem Pharmacol 2022; 198:114951. [PMID: 35149051 DOI: 10.1016/j.bcp.2022.114951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/20/2022]
Abstract
There is much concern about disruption of endocrine physiology regulated by steroid hormones in humans, other terrestrial vertebrates and fish by industrial chemicals, such as bisphenol A, and pesticides, such as DDT. These endocrine-disrupting chemicals influence steroid-mediated physiology in humans and other vertebrates by competing with steroids for receptor binding sites, disrupting diverse responses involved in reproduction, development and differentiation. Here I discuss that due to evolution of the progesterone receptor (PR) and mineralocorticoid receptor (MR) after ray-finned fish and terrestrial vertebrates diverged from a common ancestor, each receptor evolved to respond to different steroids in ray-finned fish and terrestrial vertebrates. In elephant shark, a cartilaginous fish that diverged before the separation between ray-finned fish and terrestrial vertebrates, both progesterone and 17,20β-dihydroxy-progesterone activate the PR. During the evolution of ray-finned fish and terrestrial vertebrates, the PR in terrestrial vertebrates continued responding to progesterone and evolved to weakly respond to 17,20β-dihydroxy-progesterone. In contrast, the physiological progestin for the PR in zebrafish and other ray-finned fish is 17,20β-dihydroxy-progesterone, and ray-finned fish PR responds weakly to progesterone. The MR in fish and terrestrial vertebrates also diverged to have different responses to progesterone. Progesterone is a potent agonist for elephant shark MR, zebrafish MR and other fish MRs, in contrast to progesterone's opposite activity as an antagonist for aldosterone, the physiological mineralocorticoid for human MR. These different physiological ligands for fish and terrestrial vertebrate PR and MR need to be considered in applying data for their disruption by chemicals in fish and terrestrial vertebrates to each other.
Collapse
|
35
|
|
36
|
Sivalingam M, Ogawa S, Trudeau VL, Parhar IS. Conserved functions of hypothalamic kisspeptin in vertebrates. Gen Comp Endocrinol 2022; 317:113973. [PMID: 34971635 DOI: 10.1016/j.ygcen.2021.113973] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/12/2022]
Abstract
Hypothalamic kisspeptin encoded by KISS1/Kiss1 gene emerged as a regulator of the reproductive axis in mammals following the discovery of the kisspeptin receptor (Kissr) and its role in reproduction. Kisspeptin-Kissr systems have been investigated in various vertebrates, and a conserved sequence of kisspeptin-Kissr has been identified in most vertebrate species except in the avian linage. In addition, multiple paralogs of kisspeptin sequences have been identified in the non-mammalian vertebrates. The allegedly conserved role of kisspeptin-Kissr in reproduction became debatable when kiss/kissr genes-deficient zebrafish and medaka showed no apparent effect on the onset of puberty, sexual development, maturation and reproductive capacity. Therefore, it is questionable whether the role of kisspeptin in reproduction is conserved among vertebrate species. Here we discuss from a comparative and evolutional aspect the diverse functions of kisspeptin and its receptor in vertebrates. Primarily this review focuses on the role of hypothalamic kisspeptin in reproductive and non-reproductive functions that are conserved in vertebrate species.
Collapse
Affiliation(s)
- Mageswary Sivalingam
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Ishwar S Parhar
- Brain Research Institute, Jeffery Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Petaling Jaya, Selangor, Malaysia.
| |
Collapse
|
37
|
Wang X, Meng W, Qi X, Li Y, Li J, Lyu L, Li J, Yao Y, Yan S, Zuo C, Xie S, Wen H. Molecular characterization and expression patterns of glucocorticoid receptors in the viviparous black rockfish Sebastes schlegelii. Gen Comp Endocrinol 2022; 316:113947. [PMID: 34848189 DOI: 10.1016/j.ygcen.2021.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Glucocorticoid receptors (GRs) are ligand-activated transcription factors associated with anti-inflammation, stress, metabolism and gonadal development. In this study, two gr genes (gr1 and gr2) were cloned and analyzed from a viviparous teleost, black rockfish (Sebastes schlegelii). The phylogenetic analysis of GRs showed that GR1 and GR2 clustered into teleost GR1 and GR2 separately and differed from the GRs of tetrapods or basal ray-finned fishes. Black rockfish GRs possess four modular domains of the nuclear receptor superfamily: an N-terminal domain (NTD), a DNA-binding domain (DBD), a hinge region (HR) and a ligand-binding domain (LBD). Nine conserved amino acid inserts were found in the GR1 DBD, and the ligand cavity-related amino acids of GR1 and GR2 LBD were slightly different. Tissue distribution analysis revealed that grs was widely expressed in various tissues, while cyp11b was mainly expressed in the testis and head kidney. The cyp11b transcripts were localized in the interrenal glands of the head kidney, the main source of cortisol; grs transcripts were detected in oocytes, the follicle layer and the ovarian wall. Histologically, significant blood vessel dilation was observed in the fetal membrane during or after parturition of black rockfish. The highest levels of serum cortisol and ovarian cyp11b mRNA were detected in parturition. In addition, the relative expression level of gr1 was upregulated significantly after delivery, while the levels of gr2 showed no significant change. In addition, in vitro GC treatment inhibited the expression of il1b but significantly upregulated the transcription of il1r1. These data provide evidence that GRs are likely to work as anti-inflammatory factors by inhibiting the functions of pro-inflammatory factors in the parturition of black rockfish.
Collapse
Affiliation(s)
- Xiaojie Wang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Wei Meng
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Xin Qi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yun Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jifang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Likang Lyu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Jianshuang Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Yijia Yao
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Shaojing Yan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Chenpeng Zuo
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Songyang Xie
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China
| | - Haishen Wen
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, Ocean University of China, Qingdao 266003, PR China.
| |
Collapse
|
38
|
Katsu Y, Oana S, Lin X, Hyodo S, Baker ME. Aldosterone and dexamethasone activate African lungfish mineralocorticoid receptor: Increased activation after removal of the amino-terminal domain. J Steroid Biochem Mol Biol 2022; 215:106024. [PMID: 34774724 DOI: 10.1016/j.jsbmb.2021.106024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/18/2022]
Abstract
Aldosterone, the main physiological mineralocorticoid in humans and other terrestrial vertebrates, first appears in lungfish, which are lobe-finned fish that are forerunners of terrestrial vertebrates. Aldosterone activation of the MR regulates internal homeostasis of water, sodium and potassium, which was critical in the conquest of land by vertebrates. We studied transcriptional activation of the slender African lungfish MR by aldosterone, other corticosteroids and progesterone and find that aldosterone, 11-deoxycorticosterone, 11-deoxycortisol and progesterone have half-maximal responses (EC50 s) below 1 nM and are potential physiological mineralocorticoids. In contrast, EC50 s for corticosterone and cortisol were 23 nM and 66 nM, respectively. Unexpectedly, truncated lungfish MR, consisting of the DNA-binding, hinge and steroid-binding domains, had a stronger response to corticosteroids and progesterone than full-length lungfish MR, indicating that the N-terminal domain represses steroid activation of lungfish MR, unlike human MR in which the N-terminal domain contains an activation function. BLAST searches of GenBank did not retrieve a GR ortholog, leading us to test dexamethasone and triamcinolone for activation of lungfish MR. At 10 nM, both synthetic glucocorticoids are about 4-fold stronger than 10 nM aldosterone in activating full-length lungfish MR, leading us to propose that lungfish MR also functions as a GR.
Collapse
Affiliation(s)
- Yoshinao Katsu
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan; Faculty of Sciences, Hokkaido University, Sapporo, Japan.
| | - Shin Oana
- Faculty of Sciences, Hokkaido University, Sapporo, Japan
| | - Xiaozhi Lin
- Faculty of Sciences, Hokkaido University, Sapporo, Japan
| | - Susumu Hyodo
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, University of Tokyo, Chiba, Japan
| | - Michael E Baker
- Division of Nephrology-Hypertension, Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0693, United States; Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA, 92093, United States.
| |
Collapse
|
39
|
Kuan KKW, Saunders PTK. Female Reproductive Systems: Hormone Dependence and Receptor Expression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:21-39. [PMID: 36107311 DOI: 10.1007/978-3-031-11836-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
The female reproductive system which consists of the ovaries, uterus (myometrium, endometrium), Fallopian tubes, cervix and vagina is exquisitely sensitive to the actions of steroid hormones. The ovaries play a key role in the synthesis of bioactive steroids (oestrogens, androgens, progestins) that act both within the tissue (intracrine/paracrine) as well as on other reproductive organs following release into the blood stream (endocrine action). Sex steroid receptors encoded by the oestrogen (ESR1, ESR2), progesterone (PR) and androgen (AR) receptor genes, which are members of the superfamily of ligand activated transcription factors are widely expressed within these tissues. These receptors play critical role(s) in regulation of cell proliferation, ovulation, endometrial receptivity, myometrial cell function and inflammatory cell infiltration. Our understanding of their importance has been informed by studies on human tissues and cells, which have employed immunohistochemistry as well as a wide range of molecular and genetic methods to identify which processes are dependent steroid ligand activation. The development of mice with targeted deletions of each of these receptors has provided complementary data that has extended our appreciation of cell-cell interactions in the fine tuning of reproductive tissue function. This large body of work has formed the basis of new and improved therapeutics to treat conditions such as infertility.
Collapse
Affiliation(s)
- Kevin K W Kuan
- Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
40
|
O’Connell LA, Crews D. Evolutionary insights into sexual behavior from whiptail lizards. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:88-98. [PMID: 33929097 PMCID: PMC8556411 DOI: 10.1002/jez.2467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 01/03/2023]
Abstract
Is the brain bipotential or is sex-typical behavior determined during development? Thirty years of research in whiptail lizards transformed the field of behavioral neuroscience to show the brain is indeed bipotential, producing behaviors along a spectrum of male-typical and female-typical behavior via a parliamentary system of neural networks and not a predetermined program of constrained behavioral output. The unusual clade of whiptail lizards gave these insights as there are several parthenogenetic all-female species that display both male-typical and female-typical sexual behavior. These descendant species exist alongside their ancestors, allowing a unique perspective into how brain-behavior relationships evolve. In this review, we celebrate the over 40-year career of David Crews, beginning with the story of how he established whiptails as a model system through serendipitous behavioral observations and ending with advice to young scientists formulating their own questions. In between these personal notes, we discuss the discoveries that integrated hormones, neural activity, and gene expression to provide transformative insights into how brains function and reshaped our understanding of sexuality.
Collapse
Affiliation(s)
| | - David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
41
|
Fodor I, Pirger Z. From Dark to Light - An Overview of Over 70 Years of Endocrine Disruption Research on Marine Mollusks. Front Endocrinol (Lausanne) 2022; 13:903575. [PMID: 35872980 PMCID: PMC9301197 DOI: 10.3389/fendo.2022.903575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
|
42
|
Crews D. Unfinished business. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:99-102. [PMID: 34570420 DOI: 10.1002/jez.2543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
At the time of my retirement there were two topics that I considered unfinished business. The first is the Evolution of Sex Differences and the second, the she-male controversy in the Canadian red-sided snake (Thamnophis sirtalis parietalis). These questions are developed in this perspective.
Collapse
Affiliation(s)
- David Crews
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
43
|
Mukherjee R, Pandya P, Baxi D, Ramachandran AV. Endocrine Disruptors-'Food' for Thought. PROCEEDINGS OF THE ZOOLOGICAL SOCIETY 2021; 74:432-442. [PMID: 34866764 PMCID: PMC8632730 DOI: 10.1007/s12595-021-00414-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/15/2022]
Abstract
Green vegetables, fruits, cereals, and pulses are all rich sources of antioxidants. Retinoic acid, ascorbate, proanthocyanidins, tannins, saponins, melatonin, curcumin, allicin, and alpha-lipoic acid stand documented in plants as bioactive compounds. The international dietary committee advocates a specific quantum of these natural antioxidants through diet. Interestingly, environmental pollution has indeed affected most of these farm products. The use of chemical fertilizers, pesticides and heavy metals in soil has a cumulative effect on human health. Enough evidence is available for the presence of phytoestrogen, xenoestrogen, and a host of other endocrine disruptors in the food. These plant-based nutrients can mimic or enhance the natural hormone's health effects. While endocrine disruptors are found in many everyday products, this review aims to address endocrine disruptors from food in the Asian subcontinent. 'Food for thought' justifies the paradigm shift towards good endocrine health by swaying away from the conventional daily dietary recommendations.
Collapse
Affiliation(s)
- Raktim Mukherjee
- Shree P.M. Patel Institute of PG Studies and Research in Science, Affiliated to Sardar Patel University, Anand, Gujarat India
| | - Parth Pandya
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - Darshee Baxi
- Department of Biomedical and Life Sciences, School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| | - A. V. Ramachandran
- School of Science, Navrachana University, Vadodara, 391410 Gujarat India
| |
Collapse
|
44
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
45
|
Burgos-Aceves MA, Abo-Al-Ela HG, Faggio C. Impact of phthalates and bisphenols plasticizers on haemocyte immune function of aquatic invertebrates: A review on physiological, biochemical, and genomic aspects. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126426. [PMID: 34166954 DOI: 10.1016/j.jhazmat.2021.126426] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
The invertebrate innate immunity is a crucial characteristic that represents a valuable basis for studying common biological responses to environmental pollutants. Cell defence mechanisms are key players in protecting the organism from infections and foreign materials. Many haemocyte-associated immunological parameters have been reported to be immunologically sensitive to aquatic toxins (natural or artificial). Environmental plastic pollution poses a global threat to ecosystems and human health due to plastic vast and extensive use as additives in various consumer products. In recent years, studies have been done to evaluate the effects of plasticizers on humans and the environment, and their transmission and presence in water, air, and indoor dust, and so forth. Hence, the development of biomarkers that evaluate biological responses to different pollutants are essential to obtain important information on plasticizers' sublethal effects. This review analyses the current advances in the adverse effects of plasticizers (as emerging contaminants), such as immunological response disruption. The review also shows a critical analysis of the effects of the most widely used plasticizers on haemocytes. The advantages of an integrative approach that uses chemical, genetic, and immunomarker assays to monitor toxicity are highlighted. All these factors are imperative to ponder when designing toxicity studies to recognize the potential effects of plasticizers like bisphenol A and phthalates.
Collapse
Affiliation(s)
- Mario Alberto Burgos-Aceves
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy
| | - Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, Suez 43518, Egypt
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| |
Collapse
|
46
|
Herrboldt MA, Steffen MA, McGouran CN, Bonett RM. Pheromone Gene Diversification and the Evolution of Courtship Glands in Plethodontid Salamanders. J Mol Evol 2021; 89:576-587. [PMID: 34392385 DOI: 10.1007/s00239-021-10026-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Proteinaceous pheromones that diversify through gene duplication can result in shifts in courtship cocktails that may serve as a mechanism for reproductive isolation. The molecular evolution of pheromones has been extensively studied in salamanders, but how these genes and associated novel courtship glands have codiversified has not been evaluated. In this study we used transcriptional analyses to examine the relationship between pheromone diversification and gland type in three divergent lineages of plethodontid salamanders. Our results revealed that plethodontid salamanders express up to eight divergent Sodefrin Precursor-like Factor genes (spf, representing both alpha and beta subfamilies) along with Plethodontid Modulating Factor (pmf) and Plethodontid Receptivity Factor (prf). Expression of pheromone genes is tissue specific with pmf, prf, and some spf genes restricted to the mental gland. In contrast, the caudal gland shows strong expression of the other spf genes. We found evidence for punctuated changes in pheromone cocktail composition related to the loss of metamorphosis, and subsequent extreme reduction of the mental gland, in a paedomorphic lineage. Our study provides insight into how pheromone diversification can be partitioned into unique glands, which may lead to cocktail specificity in behavioral modules during courtship.
Collapse
Affiliation(s)
- Madison A Herrboldt
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA.
| | - Michael A Steffen
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Carissa N McGouran
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| | - Ronald M Bonett
- Department of Biological Science, University of Tulsa, Tulsa, OK, 74104, USA
| |
Collapse
|
47
|
Fodor I, Koene JM, Pirger Z. Neuronal Transcriptome Analysis of a Widely Recognised Molluscan Model Organism Highlights the Absence of Key Proteins Involved in the De Novo Synthesis and Receptor-Mediation of Sex Steroids in Vertebrates. MALACOLOGIA 2021. [DOI: 10.4002/040.064.0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- István Fodor
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Joris M. Koene
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam, the Netherlands
| | - Zsolt Pirger
- NAP Adaptive Neuroethology, Balaton Limnological Research Institute, Eötvös Loránd Research Network (ELKH), Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| |
Collapse
|
48
|
Lakshmanan Mangalath D, Hassan Mohammed SA. Ligand Binding Domain of Estrogen Receptor Alpha Preserve a Conserved Structural Architecture Similar to Bacterial Taxis Receptors. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
It remains a mystery why estrogen hormone receptors (ERs), which are highly specific toward its endogenous hormones, are responsive to chemically distinct exogenous agents. Does it indicate that ERs are environmentally regulated? Here, we speculate that ERs would have some common structural features with prokaryotic taxis receptor responsive toward environmental signals. This study addresses the low specificity and high responsiveness of ERs toward chemically distinct exogenous substances, from an evolutionary point of view. Here, we compared the ligand binding domain (LBD) of ER alpha (α) with the LBDs of prokaryotic taxis receptors to check if LBDs share any structural similarity. Interestingly, a high degree of similarity in the domain structural fold architecture of ERα and bacterial taxis receptors was observed. The pharmacophore modeling focused on ligand molecules of both receptors suggest that these ligands share common pharmacophore features. The molecular docking studies suggest that the natural ligands of bacterial chemotaxis receptors exhibit strong interaction with human ER as well. Although phylogenetic analysis proved that these proteins are unrelated, they would have evolved independently, suggesting a possibility of convergent molecular evolution. Nevertheless, a remarkable sequence divergence was seen between these proteins even when they shared common domain structural folds and common ligand-based pharmacophore features, suggesting that the protein architecture remains conserved within the structure for a specific function irrespective of sequence identity.
Collapse
|
49
|
Ancient fishes and the functional evolution of the corticosteroid stress response in vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2021; 260:111024. [PMID: 34237466 DOI: 10.1016/j.cbpa.2021.111024] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/13/2022]
Abstract
The neuroendocrine mechanism underlying stress responses in vertebrates is hypothesized to be highly conserved and evolutionarily ancient. Indeed, elements of this mechanism, from the brain to steroidogenic tissue, are present in all vertebrate groups; yet, evidence of the function and even identity of some elements of the hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is equivocal among the most basal vertebrates. The purpose of this review is to discuss the functional evolution of the HPA/I axis in vertebrates with a focus on our understanding of this neuroendocrine mechanism in the most ancient vertebrates: the agnathan (i.e., hagfish and lamprey) and chondrichthyan fishes (i.e., sharks, rays, and chimeras). A review of the current literature presents evidence of a conserved HPA/I axis in jawed vertebrates (i.e., gnathostomes); yet, available data in jawless (i.e., agnathan) and chondrichthyan fishes are limited. Neuroendocrine regulation of corticosteroidogenesis in agnathans and chondrichthyans appears to function through similar pathways as in bony fishes and tetrapods; however, key elements have yet to be identified and the involvement of melanotropins and gonadotropin-releasing hormone in the stress axis in these ancient fishes warrants further investigation. Further, the identities of physiological glucocorticoids are uncertain in hagfishes, chondrichthyans, and even coelacanths. Resolving these and other knowledge gaps in the stress response of ancient fishes will be significant for advancing knowledge of the evolutionary origins of the vertebrate stress response.
Collapse
|
50
|
Shimon-Hophy M, Avtalion RR. Influence of chronic stress on the mechanism of the cytotoxic system in common carp (Cyprinus carpio). Immunology 2021; 164:211-222. [PMID: 33930181 PMCID: PMC8442244 DOI: 10.1111/imm.13345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022] Open
Abstract
Aquaculture conditions expose fish to internal and environmental stressors that increase their susceptibility to morbidity and mortality. The brain accumulates stress signals and processes them according to the intensity, frequency duration and type of stress, recruiting several brain functions to activate the autonomic or limbic system. Triggering the autonomic system causes the rapid release of catecholamines, such as adrenaline and noradrenaline, into circulation from chromaffin cells in the head kidney. Catecholamines trigger blood cells to release proinflammatory and regulatory cytokines to cope with acute stress. Activation of the limbic axis stimulates the dorsolateral and dorsomedial pallium to process emotions, memory, behaviour and the activation of preoptic nucleus‐pituitary gland‐interrenal cells in the head kidney, releasing glucocorticoids, such as cortisol to the bloodstream. Glucocorticoids cause downregulation of various immune system functions depending on the duration, intensity and type of chronic stress. As stress persists, most immune functions, with the exception of cytotoxic functions, overcome these effects and return to homeostasis. The deterioration of cytotoxic functions during chronic stress appears to be responsible for increased morbidity and mortality.
Collapse
Affiliation(s)
- Mazal Shimon-Hophy
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ramy R Avtalion
- Laboratory of Comparative Immunology and Genetics, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|