1
|
Heyne K, Haacke S, Miller RJD. Watching atomically resolved structural dynamics-Blinded by the light. Structure 2024; 32:650-651. [PMID: 38848681 DOI: 10.1016/j.str.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 06/09/2024]
Abstract
In a recent issue of Nature, Barends et al.1 studied the photodissociation of carboxymyoglobin with ultrafast laser pump-probe serial femtosecond crystallography experiments. They observed significant differences in heme protein structural dynamics for biologically relevant 1-photon excitation relative to high excitation leading to the absorption of several photons per heme.
Collapse
Affiliation(s)
- Karsten Heyne
- Department of Physics, Free University, Berlin, 14195 Berlin, Germany
| | - Stefan Haacke
- Université de Strasbourg-CNRS, IPCMS, 67034 Strasbourg, France
| | - R J Dwayne Miller
- Departments of Chemistry and Physics, University of Toronto, Toronto, ON M5S 3H6, Canada.
| |
Collapse
|
2
|
Abstract
This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
Collapse
|
3
|
Huang BC, Yang LW. Molecular dynamics simulations and linear response theories jointly describe biphasic responses of myoglobin relaxation and reveal evolutionarily conserved frequent communicators. Biophys Physicobiol 2020; 16:473-484. [PMID: 31984199 PMCID: PMC6975898 DOI: 10.2142/biophysico.16.0_473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/20/2019] [Indexed: 12/01/2022] Open
Abstract
In this study, we provide a time-dependent mechanical model, taking advantage of molecular dynamics simulations, quasiharmonic analysis of molecular dynamics trajectories, and time-dependent linear response theories to describe vibrational energy redistribution within the protein matrix. The theoretical description explained the observed biphasic responses of specific residues in myoglobin to CO-photolysis and photoexcitation on heme. The fast responses were found to be triggered by impulsive forces and propagated mainly by principal modes <40 cm−1. The predicted fast responses for individual atoms were then used to study signal propagation within the protein matrix and signals were found to propagate ~8 times faster across helices (4076 m/s) than within the helices, suggesting the importance of tertiary packing in the sensitivity of proteins to external perturbations. We further developed a method to integrate multiple intramolecular signal pathways and discover frequent “communicators”. These communicators were found to be evolutionarily conserved including those distant from the heme.
Collapse
Affiliation(s)
- Bang-Chieh Huang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Lee-Wei Yang
- Institute of Bioinformatics and Structural Biology, National Tsing-Hua University, Hsinchu 30013, Taiwan.,Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan.,Physics Division, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Abstract
Direct visualization of electronic and molecular events during biochemical reactions is essential to mechanistic insights. This Letter presents an in-depth analysis of the serial crystallographic data sets collected by Barends and Schlichting et al. ( Science 2015 , 350 , 445 ) that probe the ligand photodissociation in carbonmonoxy myoglobin. This analysis reveals electron density changes caused by the formation of high-spin 3d atomic orbitals of the heme iron upon photolysis and their dynamic behaviors within the first few picoseconds. The heme iron is found popping out of and recoiling back into the heme plane in succession. These findings provide long-awaited visual validations for previous works using ultrafast spectroscopy and molecular dynamics simulations. Electron density variations are also found largely in the solvent during the first period of a low-frequency oscillation. This work demonstrates the importance of the analytical methods in detecting and isolating weak, transient signals of electronic changes arising from chemical reactions.
Collapse
|
5
|
Miller RJD. Ultrafast imaging of photochemical dynamics: roadmap to a new conceptual basis for chemistry. Faraday Discuss 2018; 194:777-828. [PMID: 27991637 DOI: 10.1039/c6fd00241b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- R J Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, Luruper Chausse 149, Hamburg 22607, Germany. and Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, Toronto, Ontario L5G 3J6, Canada
| |
Collapse
|
6
|
Charkhesht A, Regmi CK, Mitchell-Koch KR, Cheng S, Vinh NQ. High-Precision Megahertz-to-Terahertz Dielectric Spectroscopy of Protein Collective Motions and Hydration Dynamics. J Phys Chem B 2018; 122:6341-6350. [PMID: 29791154 DOI: 10.1021/acs.jpcb.8b02872] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The low-frequency collective vibrational modes in proteins as well as the protein-water interface have been suggested as dominant factors controlling the efficiency of biochemical reactions and biological energy transport. It is thus crucial to uncover the mystery of the hydration structure and dynamics as well as their coupling to collective motions of proteins in aqueous solutions. Here, we report dielectric properties of aqueous bovine serum albumin protein solutions as a model system using an extremely sensitive dielectric spectrometer with frequencies spanning from megahertz to terahertz. The dielectric relaxation spectra reveal several polarization mechanisms at the molecular level with different time constants and dielectric strengths, reflecting the complexity of protein-water interactions. Combining the effective-medium approximation and molecular dynamics simulations, we have determined collective vibrational modes at terahertz frequencies and the number of water molecules in the tightly bound and loosely bound hydration layers. High-precision measurements of the number of hydration water molecules indicate that the dynamical influence of proteins extends beyond the first solvation layer, to around 7 Å distance from the protein surface, with the largest slowdown arising from water molecules directly hydrogen-bonded to the protein. Our results reveal critical information of protein dynamics and protein-water interfaces, which determine biochemical functions and reactivity of proteins.
Collapse
Affiliation(s)
| | | | - Katie R Mitchell-Koch
- Department of Chemistry , Wichita State University , Wichita , Kansas 67260 , United States
| | | | | |
Collapse
|
7
|
Ischenko AA, Weber PM, Miller RJD. Capturing Chemistry in Action with Electrons: Realization of Atomically Resolved Reaction Dynamics. Chem Rev 2017; 117:11066-11124. [DOI: 10.1021/acs.chemrev.6b00770] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anatoly A. Ischenko
- Institute
of Fine Chemical Technologies, Moscow Technological University, Vernadskogo
86, 119571 Moscow, Russia
| | - Peter M. Weber
- Department
of Chemistry, Brown University, 324 Brook Street, 02912 Providence, Rhode Island, United States
| | - R. J. Dwayne Miller
- The Max Planck Institute for the Structure and Dynamics of Matter, Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
- Departments
of Chemistry and Physics, University of Toronto, 80 St. George, M5S 3H6 Toronto, Canada
| |
Collapse
|
8
|
Haddadian EJ, Zhang H, Freed KF, Douglas JF. Comparative Study of the Collective Dynamics of Proteins and Inorganic Nanoparticles. Sci Rep 2017; 7:41671. [PMID: 28176808 PMCID: PMC5296861 DOI: 10.1038/srep41671] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 12/14/2016] [Indexed: 12/16/2022] Open
Abstract
Molecular dynamics simulations of ubiquitin in water/glycerol solutions are used to test the suggestion by Karplus and coworkers that proteins in their biologically active state should exhibit a dynamics similar to 'surface-melted' inorganic nanoparticles (NPs). Motivated by recent studies indicating that surface-melted inorganic NPs are in a 'glassy' state that is an intermediate dynamical state between a solid and liquid, we probe the validity and significance of this proposed analogy. In particular, atomistic simulations of ubiquitin in solution based on CHARMM36 force field and pre-melted Ni NPs (Voter-Chen Embedded Atom Method potential) indicate a common dynamic heterogeneity, along with other features of glass-forming (GF) liquids such as collective atomic motion in the form of string-like atomic displacements, potential energy fluctuations and particle displacements with long range correlations ('colored' or 'pink' noise), and particle displacement events having a power law scaling in magnitude, as found in earthquakes. On the other hand, we find the dynamics of ubiquitin to be even more like a polycrystalline material in which the α-helix and β-sheet regions of the protein are similar to crystal grains so that the string-like collective atomic motion is concentrated in regions between the α-helix and β-sheet domains.
Collapse
Affiliation(s)
- Esmael J Haddadian
- Biological Sciences Collegiate Division, University of Chicago, Chicago, IL 60637, USA
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Alberta, T6G 1H9 Canada
| | - Karl F Freed
- Department of Chemistry, James Franck Institute, and Computation Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jack F Douglas
- Materials Science and Engineering Division, Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
9
|
Ferrante C, Pontecorvo E, Cerullo G, Vos MH, Scopigno T. Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin. Nat Chem 2016; 8:1137-1143. [PMID: 27874865 DOI: 10.1038/nchem.2569] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/09/2016] [Indexed: 11/10/2022]
Abstract
Determining the initial pathway for ultrafast energy redistribution within biomolecules is a challenge, and haem proteins, for which energy can be deposited locally in the haem moiety using short light pulses, are suitable model systems to address this issue. However, data acquired using existing experimental techniques that fail to combine sufficient structural sensitivity with adequate time resolution have resulted in alternative hypotheses concerning the interplay between energy flow among highly excited vibrational levels and potential concomitant electronic processes. By developing a femtosecond-stimulated Raman set-up, endowed with the necessary tunability to take advantage of different resonance conditions, here we visualize the temporal evolution of energy redistribution over different vibrational modes in myoglobin. We establish that the vibrational energy initially stored in the highly excited Franck-Condon manifold is transferred with different timescales into low- and high-frequency modes, prior to slow dissipation through the protein. These findings demonstrate that a newly proposed mechanism involving the population dynamics of specific vibrational modes settles the controversy on the existence of transient electronic intermediates.
Collapse
Affiliation(s)
- C Ferrante
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy
| | - E Pontecorvo
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy
| | - G Cerullo
- Istituto di Fotonica e Nanotecnologie (IFN-CNR), Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
| | - M H Vos
- LOB, Ecole Polytechnique, CNRS, INSERM, Université Paris-Saclay, 91128 Palaiseau Cedex, France
| | - T Scopigno
- Dipartimento di Fisica, Università di Roma, La Sapienza, I-00185 Roma, Italy.,Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy
| |
Collapse
|
10
|
Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A, Botha S, Doak RB, Falahati K, Hartmann E, Hilpert M, Heinz M, Hoffmann MC, Köfinger J, Koglin JE, Kovacsova G, Liang M, Milathianaki D, Lemke HT, Reinstein J, Roome CM, Shoeman RL, Williams GJ, Burghardt I, Hummer G, Boutet S, Schlichting I. Direct observation of ultrafast collective motions in CO myoglobin upon ligand dissociation. Science 2015; 350:445-50. [PMID: 26359336 DOI: 10.1126/science.aac5492] [Citation(s) in RCA: 269] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/26/2015] [Indexed: 11/02/2022]
Abstract
The hemoprotein myoglobin is a model system for the study of protein dynamics. We used time-resolved serial femtosecond crystallography at an x-ray free-electron laser to resolve the ultrafast structural changes in the carbonmonoxy myoglobin complex upon photolysis of the Fe-CO bond. Structural changes appear throughout the protein within 500 femtoseconds, with the C, F, and H helices moving away from the heme cofactor and the E and A helices moving toward it. These collective movements are predicted by hybrid quantum mechanics/molecular mechanics simulations. Together with the observed oscillations of residues contacting the heme, our calculations support the prediction that an immediate collective response of the protein occurs upon ligand dissociation, as a result of heme vibrational modes coupling to global modes of the protein.
Collapse
Affiliation(s)
- Thomas R M Barends
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| | - Lutz Foucar
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Albert Ardevol
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Karol Nass
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Andrew Aquila
- European XFEL GmbH, Albert-Einstein-Ring 19, 22761 Hamburg, Germany
| | - Sabine Botha
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - R Bruce Doak
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Konstantin Falahati
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Elisabeth Hartmann
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mario Hilpert
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcel Heinz
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany. Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Matthias C Hoffmann
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jürgen Köfinger
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Jason E Koglin
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gabriela Kovacsova
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mengning Liang
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Despina Milathianaki
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Henrik T Lemke
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Jochen Reinstein
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Christopher M Roome
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Robert L Shoeman
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Garth J Williams
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Irene Burghardt
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438 Frankfurt am Main, Germany
| | - Gerhard Hummer
- Max-Planck-Institut für Biophysik, Max-von-Laue-Straße 3, 60438 Frankfurt am Main, Germany
| | - Sébastien Boutet
- Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ilme Schlichting
- Max-Planck-Institut für Medizinische Forschung, Jahnstraße 29, 69120 Heidelberg, Germany.
| |
Collapse
|
11
|
Maiuri M, Delfino I, Cerullo G, Manzoni C, Pelmenschikov V, Guo Y, Wang H, Gee LB, Dapper CH, Newton WE, Cramer SP. Low frequency dynamics of the nitrogenase MoFe protein via femtosecond pump probe spectroscopy - Observation of a candidate promoting vibration. J Inorg Biochem 2015; 153:128-135. [PMID: 26343576 DOI: 10.1016/j.jinorgbio.2015.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/18/2015] [Accepted: 07/09/2015] [Indexed: 11/28/2022]
Abstract
We have used femtosecond pump-probe spectroscopy (FPPS) to study the FeMo-cofactor within the nitrogenase (N2ase) MoFe protein from Azotobacter vinelandii. A sub-20-fs visible laser pulse was used to pump the sample to an excited electronic state, and a second sub-10-fs pulse was used to probe changes in transmission as a function of probe wavelength and delay time. The excited protein relaxes to the ground state with a ~1.2ps time constant. With the short laser pulse we coherently excited the vibrational modes associated with the FeMo-cofactor active site, which are then observed in the time domain. Superimposed on the relaxation dynamics, we distinguished a variety of oscillation frequencies with the strongest band peaks at ~84, 116, 189, and 226cm(-1). Comparison with data from nuclear resonance vibrational spectroscopy (NRVS) shows that the latter pair of signals comes predominantly from the FeMo-cofactor. The frequencies obtained from the FPPS experiment were interpreted with normal mode calculations using both an empirical force field (EFF) and density functional theory (DFT). The FPPS data were also compared with the first reported resonance Raman (RR) spectrum of the N2ase MoFe protein. This approach allows us to outline and assign vibrational modes having relevance to the catalytic activity of N2ase. In particular, the 226cm(-1) band is assigned as a potential 'promoting vibration' in the H-atom transfer (or proton-coupled electron transfer) processes that are an essential feature of N2ase catalysis. The results demonstrate that high-quality room-temperature solution data can be obtained on the MoFe protein by the FPPS technique and that these data provide added insight to the motions and possible operation of this protein and its catalytic prosthetic group.
Collapse
Affiliation(s)
- Margherita Maiuri
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Ines Delfino
- Dipartimento di Scienze Ecologiche e Biologiche, Università della Tuscia, Largo dell'Università, I-01100 Viterbo, Italy
| | - Giulio Cerullo
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Cristian Manzoni
- IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Vladimir Pelmenschikov
- Institut für Chemie, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, United States
| | - Hongxin Wang
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Leland B Gee
- Department of Chemistry, University of California, Davis, CA 95616, United States
| | - Christie H Dapper
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, United States
| | - William E Newton
- Department of Biochemistry, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, United States
| | - Stephen P Cramer
- Department of Chemistry, University of California, Davis, CA 95616, United States; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States.
| |
Collapse
|
12
|
Tyagi A, Arya U, Vidhani B, Prasad V. Pulse train induced rotational excitation and orientation of a polar molecule. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:193-200. [PMID: 24747844 DOI: 10.1016/j.saa.2014.03.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/27/2014] [Accepted: 03/15/2014] [Indexed: 06/03/2023]
Abstract
We investigate theoretically the rotational excitation and field free molecular orientation of polar HBr molecule, interacting with train of ultrashort laser pulses. By adjusting the number of pulses, pulse period and the intensity of the pulse, one can suppress a population while simultaneously enhancing the desired population in particular rotational state. We have used train of laser pulses of different shaped pulse envelopes. The dynamics and orientation of molecules in the presence of pulse train of different shapes is studied and explained.
Collapse
Affiliation(s)
- Ashish Tyagi
- Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, India.
| | - Urvashi Arya
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India.
| | - Bhavna Vidhani
- Department of Physics, Hansraj College, University of Delhi, Delhi 110007, India.
| | - Vinod Prasad
- Department of Physics, Swami Shraddhanand College, University of Delhi, Delhi 110036, India.
| |
Collapse
|
13
|
Terahertz underdamped vibrational motion governs protein-ligand binding in solution. Nat Commun 2014; 5:3999. [PMID: 24893252 DOI: 10.1038/ncomms4999] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 04/29/2014] [Indexed: 11/08/2022] Open
Abstract
Low-frequency collective vibrational modes in proteins have been proposed as being responsible for efficiently directing biochemical reactions and biological energy transport. However, evidence of the existence of delocalized vibrational modes is scarce and proof of their involvement in biological function absent. Here we apply extremely sensitive femtosecond optical Kerr-effect spectroscopy to study the depolarized Raman spectra of lysozyme and its complex with the inhibitor triacetylchitotriose in solution. Underdamped delocalized vibrational modes in the terahertz frequency domain are identified and shown to blue-shift and strengthen upon inhibitor binding. This demonstrates that the ligand-binding coordinate in proteins is underdamped and not simply solvent-controlled as previously assumed. The presence of such underdamped delocalized modes in proteins may have significant implications for the understanding of the efficiency of ligand binding and protein-molecule interactions, and has wider implications for biochemical reactivity and biological function.
Collapse
|
14
|
Miller RJD. Femtosecond crystallography with ultrabright electrons and x-rays: capturing chemistry in action. Science 2014; 343:1108-16. [PMID: 24604195 DOI: 10.1126/science.1248488] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the recent advances in ultrabright electron and x-ray sources, it is now possible to extend crystallography to the femtosecond time domain to literally light up atomic motions involved in the primary processes governing structural transitions. This review chronicles the development of brighter and brighter electron and x-ray sources that have enabled atomic resolution to structural dynamics for increasingly complex systems. The primary focus is on achieving sufficient brightness using pump-probe protocols to resolve the far-from-equilibrium motions directing chemical processes that in general lead to irreversible changes in samples. Given the central importance of structural transitions to conceptualizing chemistry, this emerging field has the potential to significantly improve our understanding of chemistry and its connection to driving biological processes.
Collapse
Affiliation(s)
- R J Dwayne Miller
- Atomically Resolved Dynamics Division, The Max Planck Institute for the Structure and Dynamics of Matter, The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| |
Collapse
|
15
|
Miller RJD. Mapping atomic motions with ultrabright electrons: the chemists' gedanken experiment enters the lab frame. Annu Rev Phys Chem 2014; 65:583-604. [PMID: 24423377 DOI: 10.1146/annurev-physchem-040412-110117] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review documents the development of high-bunch charge electron pulses with sufficient combined spatiotemporal resolution and intensity to literally light up atomic motions. This development holds promise in coming to a first-principles understanding of diverse problems, ranging from molecular reaction dynamics and structure-function correlations in biology to cooperativity in strongly correlated electron-lattice systems. It is now possible to directly observe the key modes involved in propagating structural changes and the enormous reduction in dimensionality that occurs in barrier crossing regions, which is central to chemistry and makes reaction mechanisms transferrable concepts. This information will help direct theoretical advances that will undoubtedly lead to generalized principles with respect to scaling relations in structural dynamics that will bridge chemistry to biology. In this quest, the limitations and future directions for further development are discussed to give an overview of the present status of the field.
Collapse
Affiliation(s)
- R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg 22761, Germany, and Departments of Chemistry and Physics, University of Toronto, Toronto, Ontario M5S 3H6, Canada;
| |
Collapse
|
16
|
|
17
|
Picosecond primary structural transition of the heme is retarded after nitric oxide binding to heme proteins. Proc Natl Acad Sci U S A 2010; 107:13678-83. [PMID: 20643970 DOI: 10.1073/pnas.0912938107] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We investigated the ultrafast structural transitions of the heme induced by nitric oxide (NO) binding for several heme proteins by subpicosecond time-resolved resonance Raman and femtosecond transient absorption spectroscopy. We probed the heme iron motion by the evolution of the iron-histidine Raman band intensity after NO photolysis. Unexpectedly, we found that the heme response and iron motion do not follow the kinetics of NO rebinding. Whereas NO dissociation induces quasi-instantaneous iron motion and heme doming (<0.6 ps), the reverse process results in a much slower picosecond movement of the iron toward the planar heme configuration after NO binding. The time constant for this primary domed-to-planar heme transition varies among proteins (approximately 30 ps for myoglobin and its H64V mutant, approximately 15 ps for hemoglobin, approximately 7 ps for dehaloperoxidase, and approximately 6 ps for cytochrome c) and depends upon constraints exerted by the protein structure on the heme cofactor. This observed phenomenon constitutes the primary structural transition in heme proteins induced by NO binding.
Collapse
|
18
|
Zang C, Stevens JA, Link JJ, Guo L, Wang L, Zhong D. Ultrafast proteinquake dynamics in cytochrome c. J Am Chem Soc 2010; 131:2846-52. [PMID: 19203189 DOI: 10.1021/ja8057293] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report here our systematic studies of the heme dynamics and induced protein conformational relaxations in two redox states of ferric and ferrous cytochrome c upon femtosecond excitation. With a wide range of probing wavelengths from the visible to the UV and a site-directed mutation we unambiguously determined that the protein dynamics in the two states are drastically different. For the ferrous state the heme transforms from 6-fold to 5-fold coordination with ultrafast ligand dissociation in less than 100 fs, followed by vibrational cooling within several picoseconds, but then recombining back to its original 6-fold coordination in 7 ps. Such impulsive bond breaking and late rebinding generate proteinquakes and strongly perturb the local heme site and shake global protein conformation, which were found to completely recover in 13 and 42 ps, respectively. For the ferric state the heme however maintains its 6-fold coordination. The dynamics mainly occur at the local site, including ultrafast internal conversion in hundreds of femtoseconds, vibrational cooling on the similar picosecond time scale, and complete ground-state recovery in 10 ps, and no global conformation relaxation was observed.
Collapse
Affiliation(s)
- Chen Zang
- Department of Physics, Program of Biophysics, The Ohio State University, 191 West Woodruff Avenue, Columbus, Ohio, 43210, USA
| | | | | | | | | | | |
Collapse
|
19
|
Karunakaran V, Benabbas A, Sun Y, Zhang Z, Singh S, Banerjee R, Champion PM. Investigations of low-frequency vibrational dynamics and ligand binding kinetics of cystathionine beta-synthase. J Phys Chem B 2010; 114:3294-306. [PMID: 20155941 DOI: 10.1021/jp909700r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Vibrational coherence spectroscopy is used to study the low frequency dynamics of the truncated dimer of human cystathionine beta-synthase (CBS). CBS is a pyridoxal-5'-phosphate-dependent heme enzyme with cysteine and histidine axial ligands that catalyzes the condensation of serine and homocysteine to form cystathionine. A strong correlation between the "detuned" coherence spectrum (which probes higher frequencies) and the Raman spectrum is demonstrated, and a rich pattern of modes below 200 cm(-1) is revealed. Normal coordinate structural decomposition (NSD) of the ferric CBS crystal structure predicts the enhancement of normal modes with significant heme "doming", "ruffling", and "saddling" content, and they are observed in the coherence spectra near approximately 40, approximately 60, and approximately 90 cm(-1). When pH is varied, the relative intensities and frequencies of the low frequency heme modes indicate the presence of a unique protein-induced heme structural perturbation near pH 7 that differs from what is observed at higher or lower pH. For ferric CBS, we observe a new mode near approximately 25 cm(-1), possibly involving the response of the protein, which exhibits a phase jump of approximately pi for excitation on the blue and red side of the Soret band maximum. The low frequency vibrational coherence spectrum of ferrous CBS is also presented, along with our efforts to probe its NO-bound complex. The CO geminate rebinding kinetics of CBS are similar to the CO-bound form of the gene activator protein CooA, but with the appearance of a significant additional kinetic inhomogeneity. Analysis of this inhomogeneity suggests that it arises from the two subunits of CBS and leads to a factor of approximately 20 for the ratio of the average CO geminate rebinding rates of the two subunits.
Collapse
Affiliation(s)
- Venugopal Karunakaran
- Department of Physics and Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Miller RJD, Ernstorfer R, Harb M, Gao M, Hebeisen CT, Jean-Ruel H, Lu C, Moriena G, Sciaini G. `Making the molecular movie': first frames. Acta Crystallogr A 2010; 66:137-56. [DOI: 10.1107/s0108767309053926] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
Recent advances in high-intensity electron and X-ray pulsed sources now make it possible to directly observe atomic motions as they occur in barrier-crossing processes. These rare events require the structural dynamics to be triggered by femtosecond excitation pulses that prepare the system above the barrier or access new potential energy surfaces that drive the structural changes. In general, the sampling process modifies the system such that the structural probes should ideally have sufficient intensity to fully resolve structures near the single-shot limit for a given time point. New developments in both source intensity and temporal characterization of the pulsed sampling mode have made it possible to make so-called `molecular movies',i.e.measure relative atomic motions faster than collisions can blur information on correlations. Strongly driven phase transitions from thermally propagated melting to optically modified potential energy surfaces leading to ballistic phase transitions and bond stiffening are given as examples of the new insights that can be gained from an atomic level perspective of structural dynamics. The most important impact will likely be made in the fields of chemistry and biology where the central unifying concept of the transition state will come under direct observation and enable a reduction of high-dimensional complex reaction surfaces to the key reactive modes, as long mastered by Mother Nature.
Collapse
|
21
|
Zhang Z, Benabbas A, Ye X, Yu A, Champion PM. Measurements of heme relaxation and ligand recombination in strong magnetic fields. J Phys Chem B 2009; 113:10923-33. [PMID: 19588986 DOI: 10.1021/jp9031805] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Heme cooling signals and diatomic ligand recombination kinetics are measured in strong magnetic fields (up to 10 T). We examined diatomic ligand recombination to heme model compounds (NO and CO), myoglobin (NO and O(2)), and horseradish peroxidase (NO). No magnetic field induced rate changes in any of the samples were observed within the experimental detection limit. However, in the case of CO binding to heme in glycerol and O(2) binding to myoglobin, we observe a small magnetic field dependent change in the early time amplitude of the optical response that is assigned to heme cooling. One possibility, consistent with this observation, is that there is a weak magnetic field dependence of the nonradiative branching ratio into the vibrationally hot electronic ground state during CO photolysis. Ancillary studies of the "spin-forbidden" CO binding reaction in a variety of heme compounds in the absence of magnetic field demonstrate a surprisingly wide range for the Arrhenius prefactor. We conclude that CO binding to heme is not always retarded by unfavorable spin selection rules involving a double spin-flip superexchange mechanism. In fact, it appears that the small prefactor ( approximately 10(9) s(-1)) found for CO rebinding to Mb may be anomalous, rather than the general rule for heme-CO rebinding. These results point to unresolved fundamental issues that underlie the theory of heme-ligand photolysis and rebinding.
Collapse
Affiliation(s)
- Zhenyu Zhang
- Department of Physics and Center for interdisciplinary Research on Complex Systems, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Miller RJD, Paarmann A, Prokhorenko VI. Diffractive optics based four-wave, six-wave, ..., nu-wave nonlinear spectroscopy. Acc Chem Res 2009; 42:1442-51. [PMID: 19469495 DOI: 10.1021/ar900040f] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A detailed understanding of chemical processes requires information about both structure and dynamics. By definition, a reaction involves nonstationary states and is a dynamic process. Structure describes the atomic positions at global minima in the nuclear potential energy surface. Dynamics are related to the anharmonicities in this potential that couple different minima and lead to changes in atomic positions (reactions) and correlations. Studies of molecular dynamics can be configured to directly access information on the anharmonic interactions that lead to chemical reactions and are as central to chemistry as structural information. In this regard, nonlinear spectroscopies have distinct advantages over more conventional linear spectroscopies. Because of this potential, nonlinear spectroscopies could eventually attain a comparable level of importance for studying dynamics on the relevant time scales to barrier crossings and reactive processes as NMR has for determining structure. Despite this potential, nonlinear spectroscopy has not attained the same degree of utility as linear spectroscopy largely because nonlinear studies are more technically challenging. For example, unlike the linear spectrometers that exist in almost all chemistry departments, there are no "black box" four-wave mixing spectrometers. This Account describes recent advances in the application of diffractive optics (DOs) to nonlinear spectroscopy, which reduces the complexity level of this technology to be closer to that of linear spectroscopy. The combination of recent advances in femtosecond laser technology and this single optic approach could bring this form of spectroscopy out of the exclusive realm of specialists and into the general user community. However, the real driving force for this research is the pursuit of higher sensitivity limits, which would enable new forms of nonlinear spectroscopy. This Account chronicles the research that has now extended nonlinear spectroscopy to six-wave processes and to a completely generalized "nu-wave" mixing form to fully control state preparation and coherences. For example, direct observation of global protein motions and energetics has led to the collective mode coupling model to understand structure-function correlations in biological systems. Direct studies of the hydrogen bond network of liquid H(2)O have recently shown that both intramolecular and intermolecular degrees of freedom are strongly coupled so that the primary excitations of water have an excitonic-like character. This fundamentally different view of liquid water has now resolved a 100-year-old problem of homogeneous versus inhomogeneous broadening of the vibrational line shapes. By adding programmable pulse shaping, we can access new information about the many-body interactions directly relevant to chemical reaction dynamics. We can also steer the course of the reaction along multidimensional surfaces to provide information about fluctuations far from the equilibrium, which are most relevant to chemical reactivity.
Collapse
Affiliation(s)
- R. J. Dwayne Miller
- Departments of Chemistry and Physics, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Alexander Paarmann
- Departments of Chemistry and Physics, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Valentyn I. Prokhorenko
- Departments of Chemistry and Physics, 80 St. George Street, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
23
|
Zhang Y, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. III. The nu(4) and nu(7) modes of nonplanar nickel porphyrin models. J Chem Phys 2009; 130:215101. [PMID: 19508100 DOI: 10.1063/1.3147704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The time scales and pathways of vibrational energy relaxation (VER) of the nu(4) and nu(7) modes of three nickel porphyrin models, nickel porphine (NiP), nickel protoporphyrin IX (Ni-heme), and nickel octaethylporphyrin (NiOEP), were studied using a non-Markovian time-dependent perturbation theory at the B3LYP/6-31G(d) level. When NiP is calculated with D(4h) symmetry, it has the planar structure and the same VER properties as ferrous iron porphine (FeP). The porphine cores of both Ni-heme and NiOEP were distorted from a planar geometry, assuming a nonplanar structure, similar to that of the heme structure in cytochrome c. The VER time scales of Ni-heme are found to be similar to those predicted for a planar iron heme, but the derived pathways have distinctly different features. In particular, the strong coupling between the nu(7) mode and the overtone of the approximately 350 cm(-1) gamma(7) mode, observed for planar porphyrins, is absent in both nonplanar nickel porphyrins. Direct energy exchange between the nu(4) and nu(7) modes is not observed in NiOEP, but is found to play an essential role in the VER of the nu(4) mode in Ni-heme. The Ni-heme isopropionate groups are involved in the dominant VER pathways of both the nu(4) and nu(7) modes of Ni-heme. However, in contrast with VER pathways derived in planar iron heme, the isopropionate groups are not observed to play an essential role relative to other side chains in spatially directing the vibrational energy flow.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
24
|
Zhang Y, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. II. The ν4 and ν7 modes of iron-protoporphyrin IX and iron porphine. J Chem Phys 2009; 130:095102. [DOI: 10.1063/1.3086080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Zhang Y, Fujisaki H, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. I. Five-coordinate ferrous iron porphyrin model. J Chem Phys 2009; 130:025102. [DOI: 10.1063/1.3055277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
26
|
Tan ML, Bizzarri AR, Xiao Y, Cannistraro S, Ichiye T, Manzoni C, Cerullo G, Adams MWW, Jenney FE, Cramer SP. Observation of terahertz vibrations in Pyrococcus furiosus rubredoxin via impulsive coherent vibrational spectroscopy and nuclear resonance vibrational spectroscopy – interpretation by molecular mechanics. J Inorg Biochem 2007; 101:375-84. [PMID: 17204331 DOI: 10.1016/j.jinorgbio.2006.09.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/28/2006] [Accepted: 09/29/2006] [Indexed: 10/24/2022]
Abstract
We have used impulsive coherent vibrational spectroscopy (ICVS) to study the Fe(S-Cys)(4) site in oxidized rubredoxin (Rd) from Pyrococcus furiosus (Pf). In this experiment, a 15 fs visible laser pulse is used to coherently pump the sample to an excited electronic state, and a second <10 fs pulse is used to probe the change in transmission as a function of the time delay. PfRd was observed to relax to the ground state by a single exponential decay with time constants of approximately 255-275 fs. Superimposed on this relaxation are oscillations caused by coherent excitation of vibrational modes in both excited and ground electronic states. Fourier transformation reveals the frequencies of these modes. The strongest ICV mode with 570 nm excitation is the symmetric Fe-S stretching mode near 310 cm(-1), compared to 313 cm(-1) in the low temperature resonance Raman. If the rubredoxin is pumped at 520 nm, a set of strong bands occurs between 20 and 110 cm(-1). Finally, there is a mode at approximately 500 cm(-1) which is similar to features near 508 cm(-1) in blue Cu proteins that have been attributed to excited state vibrations. Normal mode analysis using 488 protein atoms and 558 waters gave calculated spectra that are in good agreement with previous nuclear resonance vibrational spectra (NRVS) results. The lowest frequency normal modes are identified as collective motions of the entire protein or large segments of polypeptide. Motion in these modes may affect the polar environment of the redox site and thus tune the electron transfer functions in rubredoxins.
Collapse
Affiliation(s)
- Ming-Liang Tan
- Department of Applied Science, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Adams KL, Tsoi S, Yan J, Durbin SM, Ramdas AK, Cramer WA, Sturhahn W, Alp EE, Schulz C. Fe vibrational spectroscopy of myoglobin and cytochrome f. J Phys Chem B 2006; 110:530-6. [PMID: 16471565 DOI: 10.1021/jp053440r] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Fe vibrational density of states (VDOS) has been determined for the heme proteins deoxymyoglobin, metmyoglobin, and cytochrome f in the oxidized and reduced states, using nuclear resonance vibrational spectroscopy (NRVS). For cytochrome f in particular, the NRVS spectrum is compared with multiwavelength resonance Raman spectra to identify those Raman modes with significant Fe displacement. Modes not seen by Raman due to optical selection rules appear in the NRVS spectrum. The mean Fe force constant extracted from the VDOS illustrates how Fe dynamics varies among these four monoheme proteins, and is correlated with oxidation and spin state trends seen in model heme compounds. The protein's contribution to Fe motion is dominant at low frequencies, where coupling to the backbone tightly constrains Fe displacements in cytochrome f, in contrast to enhanced heme flexibility in myoglobin.
Collapse
Affiliation(s)
- Kristl L Adams
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Dwyer JR, Hebeisen CT, Ernstorfer R, Harb M, Deyirmenjian VB, Jordan RE, Miller RJD. Femtosecond electron diffraction: 'making the molecular movie'. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2006; 364:741-78. [PMID: 16483961 DOI: 10.1098/rsta.2005.1735] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Femtosecond electron diffraction (FED) has the potential to directly observe transition state processes. The relevant motions for this barrier-crossing event occur on the hundred femtosecond time-scale. Recent advances in the development of high-flux electron pulse sources with the required time resolution and sensitivity to capture barrier-crossing processes are described in the context of attaining atomic level details of such structural dynamics-seeing chemical events as they occur. Initial work focused on the ordered-to-disordered phase transition of Al under strong driving conditions for which melting takes on nm or molecular scale dimensions. This work has been extended to Au, which clearly shows a separation in time-scales for lattice heating and melting. It also demonstrates that superheated face-centred cubic (FCC) metals melt through thermal mechanisms involving homogeneous nucleation to propagate the disordering process. A new concept exploiting electron-electron correlation is introduced for pulse characterization and determination of t=0 to within 100fs as well as for spatial manipulation of the electron beam. Laser-based methods are shown to provide further improvements in time resolution with respect to pulse characterization, absolute t=0 determination, and the potential for electron acceleration to energies optimal for time-resolved diffraction.
Collapse
Affiliation(s)
- Jason R Dwyer
- University of Toronto Institute for Optical Sciences and Departments of Chemistry and Physics Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | | | |
Collapse
|
30
|
Walther M, Raicu V, Ogilvie JP, Phillips R, Kluger R, Miller RJD. Determination of the Fe−CO Bond Energy in Myoglobin Using Heterodyne-Detected Transient Thermal Phase Grating Spectroscopy. J Phys Chem B 2005; 109:20605-11. [PMID: 16853667 DOI: 10.1021/jp052344n] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bond energies at active sites of proteins are intimately coupled to the structure-function relationship in biological systems. Due to the unknown nature of the protein relaxation along a reaction coordinate, it has not been possible to directly determine bond energies relevant to protein function. By embedding proteins in trehalose glasses, it is possible to freeze out protein relaxation on short time scales and determine the bond energies of photolabile ligands using photothermal spectroscopies. As a prototypical example, the photodissociation dynamics and energetics of carboxy-myoglobin (MbCO) in a trehalose glass matrix at room temperature were studied by transient absorption (or pump-probe) and transient thermal phase grating spectroscopy to determine the CO recombination dynamics and associated energetics, respectively. Both the initial energetics of the bond breaking and the energy released upon bond reformation could be used, on a time scale faster than significant protein relaxation, to determine the Fe-CO bond energy as 34 +/- 4 kcal/mol. This bond energy is significantly larger than that typically cited (25 kcal/mol) on the basis of indirect measurements but is in good agreement with recent theoretical predictions (35 kcal/mol) (Rovira, C.; Parrinello, M. Int. J. Quantum Chem. 2000, 80, 1172). This result in combination with the theoretical study suggests that protein structure plays a significant role in the bond energies at active sites which in turn provides a tuning element of the effective barrier heights independent to the transition state region.
Collapse
Affiliation(s)
- Markus Walther
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | | | | | | | | | | |
Collapse
|
31
|
Nagy AM, Raicu V, Miller RJD. Nonlinear optical studies of heme protein dynamics: Implications for proteins as hybrid states of matter. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1749:148-72. [PMID: 15927874 DOI: 10.1016/j.bbapap.2005.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2004] [Revised: 02/03/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022]
Abstract
Protein structure is fundamentally related to function. However, static structures alone are insufficient to understand how a protein works. Dynamics play an equally important role. Given that proteins are highly associated aperiodic systems, it may be expected that protein dynamics would follow glass-like dynamics. However, protein functions occur on time scales orders of magnitude faster than the time scales typically associated with glassy systems. It is becoming clear that the reaction forces driving functions do not sample entirely the large number of configurations available to a protein but are highly directed along an optimized pathway. Could there be any correlation between specific topological features in protein structures and dynamics that leads to strongly correlated atomic displacements in the dynamical response to a perturbation? This review will try to provide an answer by focusing upon recent nonlinear optical studies with the aim of directly observing functionally important protein motions over the entire dynamic range of the protein response function. The specific system chosen is photoinduced dynamics of ligand dissociation at the active site in heme proteins, with myoglobin serving as the simplest model system. The energetics and nuclear motions from the very earliest events involved in bond breaking on the femtosecond time scale all the way out to ligand escape and bimolecular rebinding on the microsecond and millisecond time scale have been mapped out. The picture that is emerging is that the system consists of strongly coupled motions from the very instant the bond breaks at the active site that cascade into low frequency collective modes specific to the protein structure. It is this coupling that imparts the ability of a protein to function on time scales more commensurate with liquids while simultaneously conserving structural integrity akin to solids.
Collapse
Affiliation(s)
- A M Nagy
- Department of Chemistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
32
|
Polack T, Ogilvie JP, Franzen S, Vos MH, Joffre M, Martin JL, Alexandrou A. CO vibration as a probe of ligand dissociation and transfer in myoglobin. PHYSICAL REVIEW LETTERS 2004; 93:018102. [PMID: 15324023 DOI: 10.1103/physrevlett.93.018102] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Indexed: 05/24/2023]
Abstract
We report femtosecond visible pump, midinfrared probe, spectrally integrated experiments resolving the dynamics of CO in myoglobin upon photodissociation. Our results show a progressive change in absorption strength of the CO vibrational transition during its transfer from the heme to the docking site, whereas the vibrational frequency change is faster than our time resolution. A phenomenological model gives good qualitative agreement with our data for a time constant of 400 fs for the change in oscillator strength. Density-functional calculations demonstrate that indeed vibrational frequency and absorption strength are not linearly coupled and that the absorption strength varies in a slower manner due to charge transfer from the heme iron to CO.
Collapse
Affiliation(s)
- T Polack
- Laboratoire d'Optique et Biosciences, UMR CNRS 7645, INSERM U451, Ecole Polytechnique, ENSTA, F-91128 Palaiseau, France
| | | | | | | | | | | | | |
Collapse
|
33
|
Siwick BJ, Dwyer JR, Jordan RE, Miller R. Femtosecond electron diffraction studies of strongly driven structural phase transitions. Chem Phys 2004. [DOI: 10.1016/j.chemphys.2003.11.040] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|