1
|
Durairajan SSK, Selvarasu K, Singh AK, Patnaik S, Iyaswamy A, Jaiswal Y, Williams LL, Huang JD. Unraveling the interplay of kinesin-1, tau, and microtubules in neurodegeneration associated with Alzheimer's disease. Front Cell Neurosci 2024; 18:1432002. [PMID: 39507380 PMCID: PMC11537874 DOI: 10.3389/fncel.2024.1432002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Alzheimer's disease (AD) is marked by the gradual and age-related deterioration of nerve cells in the central nervous system. The histopathological features observed in the brain affected by AD are the aberrant buildup of extracellular and intracellular amyloid-β and the formation of neurofibrillary tangles consisting of hyperphosphorylated tau protein. Axonal transport is a fundamental process for cargo movement along axons and relies on molecular motors like kinesins and dyneins. Kinesin's responsibility for transporting crucial cargo within neurons implicates its dysfunction in the impaired axonal transport observed in AD. Impaired axonal transport and dysfunction of molecular motor proteins, along with dysregulated signaling pathways, contribute significantly to synaptic impairment and cognitive decline in AD. Dysregulation in tau, a microtubule-associated protein, emerges as a central player, destabilizing microtubules and disrupting the transport of kinesin-1. Kinesin-1 superfamily members, including kinesin family members 5A, 5B, and 5C, and the kinesin light chain, are intricately linked to AD pathology. However, inconsistencies in the abundance of kinesin family members in AD patients underline the necessity for further exploration into the mechanistic impact of these motor proteins on neurodegeneration and axonal transport disruptions across a spectrum of neurological conditions. This review underscores the significance of kinesin-1's anterograde transport in AD. It emphasizes the need for investigations into the underlying mechanisms of the impact of motor protein across various neurological conditions. Despite current limitations in scientific literature, our study advocates for targeting kinesin and autophagy dysfunctions as promising avenues for novel therapeutic interventions and diagnostics in AD.
Collapse
Affiliation(s)
- Siva Sundara Kumar Durairajan
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Karthikeyan Selvarasu
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Abhay Kumar Singh
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Supriti Patnaik
- Molecular Mycology and Neurodegenerative Disease Research Laboratory, Department of Microbiology, Central University of Tamil Nadu, Thiruvarur, India
| | - Ashok Iyaswamy
- Mr. & Mrs. Ko Chi-Ming Centre for Parkinson’s Disease Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - Yogini Jaiswal
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, The North Carolina Research Campus, Kannapolis, NC, United States
| | - Jian-Dong Huang
- Li Ka Shing Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
2
|
Tan Z, Yue Y, Leprevost F, Haynes S, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. eLife 2023; 12:RP86776. [PMID: 37910016 PMCID: PMC10619981 DOI: 10.7554/elife.86776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine crosslinking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer (kinesin-1 heavy chain [KHC]) and kinesin-1 heterotetramer (KHC bound to kinesin light chain 1 [KLC1]). Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled-coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of MichiganAnn ArborUnited States
- Life Sciences Institute, University of MichiganAnn ArborUnited States
| | - Yang Yue
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Felipe Leprevost
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Sarah Haynes
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Venkatesha Basrur
- Department of Pathology, University of MichiganAnn ArborUnited States
| | - Alexey I Nesvizhskii
- Department of Pathology, University of MichiganAnn ArborUnited States
- Department of Computational Medicine and Bioinformatics, University of MichiganAnn ArborUnited States
| | - Kristen J Verhey
- Department of Cell & Developmental Biology, University of MichiganAnn ArborUnited States
| | - Michael A Cianfrocco
- Life Sciences Institute, University of MichiganAnn ArborUnited States
- Department of Biological Chemistry, University of MichiganAnn ArborUnited States
| |
Collapse
|
3
|
Tan Z, Yue Y, da Veiga Leprevost F, Haynes SE, Basrur V, Nesvizhskii AI, Verhey KJ, Cianfrocco MA. Autoinhibited kinesin-1 adopts a hierarchical folding pattern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525761. [PMID: 36747757 PMCID: PMC9901034 DOI: 10.1101/2023.01.26.525761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conventional kinesin-1 is the primary anterograde motor in cells for transporting cellular cargo. While there is a consensus that the C-terminal tail of kinesin-1 inhibits motility, the molecular architecture of a full-length autoinhibited kinesin-1 remains unknown. Here, we combine cross-linking mass spectrometry (XL-MS), electron microscopy (EM), and AlphaFold structure prediction to determine the architecture of the full-length autoinhibited kinesin-1 homodimer [kinesin-1 heavy chain (KHC)] and kinesin-1 heterotetramer [KHC bound to kinesin light chain 1 (KLC1)]. Our integrative analysis shows that kinesin-1 forms a compact, bent conformation through a break in coiled coil 3. Moreover, our XL-MS analysis demonstrates that kinesin light chains stabilize the folded inhibited state rather than inducing a new structural state. Using our structural model, we show that disruption of multiple interactions between the motor, stalk, and tail domains is required to activate the full-length kinesin-1. Our work offers a conceptual framework for understanding how cargo adaptors and microtubule-associated proteins relieve autoinhibition to promote activation.
Collapse
Affiliation(s)
- Zhenyu Tan
- Department of Biophysics, University of Michigan
- Life Sciences Institute, University of Michigan
| | - Yang Yue
- Department of Cell & Developmental Biology, University of Michigan
| | | | | | | | - Alexey I. Nesvizhskii
- Department of Pathology, University of Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan
| | | | - Michael A. Cianfrocco
- Life Sciences Institute, University of Michigan
- Department of Biological Chemistry, University of Michigan
| |
Collapse
|
4
|
Smith G, Sweeney ST, O’Kane CJ, Prokop A. How neurons maintain their axons long-term: an integrated view of axon biology and pathology. Front Neurosci 2023; 17:1236815. [PMID: 37564364 PMCID: PMC10410161 DOI: 10.3389/fnins.2023.1236815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/06/2023] [Indexed: 08/12/2023] Open
Abstract
Axons are processes of neurons, up to a metre long, that form the essential biological cables wiring nervous systems. They must survive, often far away from their cell bodies and up to a century in humans. This requires self-sufficient cell biology including structural proteins, organelles, and membrane trafficking, metabolic, signalling, translational, chaperone, and degradation machinery-all maintaining the homeostasis of energy, lipids, proteins, and signalling networks including reactive oxygen species and calcium. Axon maintenance also involves specialised cytoskeleton including the cortical actin-spectrin corset, and bundles of microtubules that provide the highways for motor-driven transport of components and organelles for virtually all the above-mentioned processes. Here, we aim to provide a conceptual overview of key aspects of axon biology and physiology, and the homeostatic networks they form. This homeostasis can be derailed, causing axonopathies through processes of ageing, trauma, poisoning, inflammation or genetic mutations. To illustrate which malfunctions of organelles or cell biological processes can lead to axonopathies, we focus on axonopathy-linked subcellular defects caused by genetic mutations. Based on these descriptions and backed up by our comprehensive data mining of genes linked to neural disorders, we describe the 'dependency cycle of local axon homeostasis' as an integrative model to explain why very different causes can trigger very similar axonopathies, providing new ideas that can drive the quest for strategies able to battle these devastating diseases.
Collapse
Affiliation(s)
- Gaynor Smith
- Cardiff University, School of Medicine, College of Biomedical and Life Sciences, Cardiff, United Kingdom
| | - Sean T. Sweeney
- Department of Biology, University of York and York Biomedical Research Institute, York, United Kingdom
| | - Cahir J. O’Kane
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Andreas Prokop
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, School of Biology, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
5
|
Banerjee R, Gunawardena S. Glycogen synthase kinase 3β (GSK3β) and presenilin (PS) are key regulators of kinesin-1-mediated cargo motility within axons. Front Cell Dev Biol 2023; 11:1202307. [PMID: 37363727 PMCID: PMC10288942 DOI: 10.3389/fcell.2023.1202307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
It has been a quarter century since the discovery that molecular motors are phosphorylated, but fundamental questions still remain as to how specific kinases contribute to particular motor functions, particularly in vivo, and to what extent these processes have been evolutionarily conserved. Such questions remain largely unanswered because there is no cohesive strategy to unravel the likely complex spatial and temporal mechanisms that control motility in vivo. Since diverse cargoes are transported simultaneously within cells and along narrow long neurons to maintain intracellular processes and cell viability, and disruptions in these processes can lead to cancer and neurodegeneration, there is a critical need to better understand how kinases regulate molecular motors. Here, we review our current understanding of how phosphorylation can control kinesin-1 motility and provide evidence for a novel regulatory mechanism that is governed by a specific kinase, glycogen synthase kinase 3β (GSK3β), and a scaffolding protein presenilin (PS).
Collapse
Affiliation(s)
- Rupkatha Banerjee
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Shermali Gunawardena
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, NY, United States
| |
Collapse
|
6
|
Baron DM, Fenton AR, Saez-Atienzar S, Giampetruzzi A, Sreeram A, Shankaracharya, Keagle PJ, Doocy VR, Smith NJ, Danielson EW, Andresano M, McCormack MC, Garcia J, Bercier V, Van Den Bosch L, Brent JR, Fallini C, Traynor BJ, Holzbaur ELF, Landers JE. ALS-associated KIF5A mutations abolish autoinhibition resulting in a toxic gain of function. Cell Rep 2022; 39:110598. [PMID: 35385738 PMCID: PMC9134378 DOI: 10.1016/j.celrep.2022.110598] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Understanding the pathogenic mechanisms of disease mutations is critical to advancing treatments. ALS-associated mutations in the gene encoding the microtubule motor KIF5A result in skipping of exon 27 (KIF5AΔExon27) and the encoding of a protein with a novel 39 amino acid residue C-terminal sequence. Here, we report that expression of ALS-linked mutant KIF5A results in dysregulated motor activity, cellular mislocalization, altered axonal transport, and decreased neuronal survival. Single-molecule analysis revealed that the altered C terminus of mutant KIF5A results in a constitutively active state. Furthermore, mutant KIF5A possesses altered protein and RNA interactions and its expression results in altered gene expression/splicing. Taken together, our data support the hypothesis that causative ALS mutations result in a toxic gain of function in the intracellular motor KIF5A that disrupts intracellular trafficking and neuronal homeostasis.
Collapse
Affiliation(s)
- Desiree M Baron
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Adam R Fenton
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sara Saez-Atienzar
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA
| | - Anthony Giampetruzzi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aparna Sreeram
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Shankaracharya
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Pamela J Keagle
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Victoria R Doocy
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Nathan J Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Eric W Danielson
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Megan Andresano
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Mary C McCormack
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jaqueline Garcia
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Valérie Bercier
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ludo Van Den Bosch
- KU Leuven-University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Jonathan R Brent
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Claudia Fallini
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA; George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI 02881, USA; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD 21287, USA; Therapeutic Development Branch, National Center for Advancing Translational Sciences, NIH, Rockville, MD 20850, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
7
|
Haynes EM, Burnett KH, He J, Jean-Pierre MW, Jarzyna M, Eliceiri KW, Huisken J, Halloran MC. KLC4 shapes axon arbors during development and mediates adult behavior. eLife 2022; 11:74270. [PMID: 36222498 PMCID: PMC9596160 DOI: 10.7554/elife.74270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
Development of elaborate and polarized neuronal morphology requires precisely regulated transport of cellular cargos by motor proteins such as kinesin-1. Kinesin-1 has numerous cellular cargos which must be delivered to unique neuronal compartments. The process by which this motor selectively transports and delivers cargo to regulate neuronal morphogenesis is poorly understood, although the cargo-binding kinesin light chain (KLC) subunits contribute to specificity. Our work implicates one such subunit, KLC4, as an essential regulator of axon branching and arborization pattern of sensory neurons during development. Using live imaging approaches in klc4 mutant zebrafish, we show that KLC4 is required for stabilization of nascent axon branches, proper microtubule (MT) dynamics, and endosomal transport. Furthermore, KLC4 is required for proper tiling of peripheral axon arbors: in klc4 mutants, peripheral axons showed abnormal fasciculation, a behavior characteristic of central axons. This result suggests that KLC4 patterns axonal compartments and helps establish molecular differences between central and peripheral axons. Finally, we find that klc4 mutant larva are hypersensitive to touch and adults show anxiety-like behavior in a novel tank test, implicating klc4 as a new gene involved in stress response circuits.
Collapse
Affiliation(s)
- Elizabeth M Haynes
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Korri H Burnett
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Jiaye He
- Morgridge Institute for ResearchMadisonUnited States,National Innovation Center for Advanced Medical DevicesShenzenChina
| | - Marcel W Jean-Pierre
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Martin Jarzyna
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| | - Kevin W Eliceiri
- Center for Quantitative Cell Imaging, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States
| | - Jan Huisken
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Morgridge Institute for ResearchMadisonUnited States,Department of Biology and Psychology, Georg-August-UniversityGöttingenGermany
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-MadisonMadisonUnited States,Department of Neuroscience, University of Wisconsin-MadisonMadisonUnited States
| |
Collapse
|
8
|
Ganguly A, Zhu C, Chen W, Dixit R. FRA1 Kinesin Modulates the Lateral Stability of Cortical Microtubules through Cellulose Synthase-Microtubule Uncoupling Proteins. THE PLANT CELL 2020; 32:2508-2524. [PMID: 32487563 PMCID: PMC7401024 DOI: 10.1105/tpc.19.00700] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 05/18/2020] [Accepted: 05/29/2020] [Indexed: 05/03/2023]
Abstract
Cell wall assembly requires harmonized deposition of cellulose and matrix polysaccharides. Cortical microtubules orient the deposition of cellulose by guiding the trajectory of cellulose synthase complexes. Vesicles containing matrix polysaccharides are thought to be transported by the FRAGILE FIBER1 (FRA1) kinesin to facilitate their secretion along cortical microtubules. The cortical microtubule cytoskeleton thus may provide a platform to coordinate the delivery of cellulose and matrix polysaccharides, but the underlying molecular mechanisms remain unknown. Here, we show that the tail region of the Arabidopsis (Arabidopsis thaliana) FRA1 kinesin physically interacts with cellulose synthase-microtubule uncoupling (CMU) proteins that are important for the microtubule-dependent guidance of cellulose synthase complexes. Interaction with CMUs did not affect microtubule binding or motility of the FRA1 kinesin but differentially affected the protein levels and microtubule localization of CMU1 and CMU2, thus regulating the lateral stability of cortical microtubules. Phosphorylation of the FRA1 tail region inhibited binding to CMUs and consequently reversed the extent of cortical microtubule decoration by CMU1 and CMU2. Genetic experiments demonstrated the significance of this interaction to the growth and reproduction of Arabidopsis plants. We propose that modulation of CMU protein levels and microtubule localization by FRA1 provides a mechanism that stabilizes the sites of deposition of both cellulose and matrix polysaccharides.
Collapse
Affiliation(s)
- Anindya Ganguly
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Chuanmei Zhu
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Weizu Chen
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, Missouri 63130
| |
Collapse
|
9
|
Structural basis for power stroke vs. Brownian ratchet mechanisms of motor proteins. Proc Natl Acad Sci U S A 2019; 116:19777-19785. [PMID: 31506355 DOI: 10.1073/pnas.1818589116] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two mechanisms have been proposed for the function of motor proteins: The power stroke and the Brownian ratchet. The former refers to generation of a large downhill free energy gradient over which the motor protein moves nearly irreversibly in making a step, whereas the latter refers to biasing or rectifying the diffusive motion of the motor. Both mechanisms require input of free energy, which generally involves the processing of an ATP (adenosine 5'-triphosphate) molecule. Recent advances in experiments that reveal the details of the stepping motion of motor proteins, together with computer simulations of atomistic structures, have provided greater insights into the mechanisms. Here, we compare the various models of the power stroke and the Brownian ratchet that have been proposed. The 2 mechanisms are not mutually exclusive, and various motor proteins employ them to different extents to perform their biological function. As examples, we discuss linear motor proteins Kinesin-1 and myosin-V, and the rotary motor F1-ATPase, all of which involve a power stroke as the essential element of their stepping mechanism.
Collapse
|
10
|
Walton ZE, Brooks RC, Dang CV. mTOR Senses Intracellular pH through Lysosome Dispersion from RHEB. Bioessays 2019; 41:e1800265. [PMID: 31157925 PMCID: PMC6730656 DOI: 10.1002/bies.201800265] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/18/2019] [Indexed: 02/04/2023]
Abstract
Acidity, generated in hypoxia or hypermetabolic states, perturbs homeostasis and is a feature of solid tumors. That acid peripherally disperses lysosomes is a three-decade-old observation, yet one little understood or appreciated. However, recent work has recognized the inhibitory impact this spatial redistribution has on mechanistic target of rapamycin complex 1 (mTORC1), a key regulator of metabolism. This finding argues for a paradigm shift in localization of mTORC1 activator Ras homolog enriched in brain (RHEB), a conclusion several others have now independently reached. Thus, mTORC1, known to sense amino acids, mitogens, and energy to restrict biosynthesis to times of adequate resources, also senses pH and, via dampened mTOR-governed synthesis of clock proteins, regulates the circadian clock to achieve concerted responses to metabolic stress. While this may allow cancer to endure metabolic deprivation, immune cell mTOR signaling likewise exhibits pH sensitivity, suggesting that suppression of antitumor immune function by solid tumor acidity may additionally fuel cancers, an obstacle potentially reversible through therapeutic pH manipulation.
Collapse
Affiliation(s)
| | | | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017
- The Wistar Institute, Philadelphia, PA 19104
| |
Collapse
|
11
|
Lin R, Duan Z, Sun H, Fung ML, Chen H, Wang J, Lau CF, Yang D, Liu Y, Ni Y, Wang Z, Cui J, Wu W, Yung WH, Chan YS, Lo ACY, Xia J, Shen J, Huang JD. Kinesin-1 Regulates Extrasynaptic Targeting of NMDARs and Neuronal Vulnerability Toward Excitotoxicity. iScience 2019; 13:82-97. [PMID: 30826728 PMCID: PMC6402234 DOI: 10.1016/j.isci.2019.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 12/20/2022] Open
Abstract
N-methyl-D-aspartate (NMDA) receptor (NMDAR) is highly compartmentalized in neurons, and its dysfunction has been implicated in various neuropsychiatric and neurodegenerative disorders. Recent failure to exploit NMDAR antagonization as a potential therapeutic target has driven the need to identify molecular mechanisms that regulate NMDAR compartmentalization. Here, we report that the reduction of Kif5b, the heavy chain of kinesin-1, protected neurons against NMDA-induced excitotoxicity and ischemia-provoked neurodegeneration. Direct binding of kinesin-1 to the GluN2B cytoplasmic tails regulated the levels of NMDAR at extrasynaptic sites and the subsequent influx of calcium mediated by extrasynaptic NMDAR by regulating the insertion of NMDARs into neuronal surface. Transient increase of Kif5b restored the surface levels of NMDAR and the decreased neuronal susceptibility to NMDA-induced excitotoxicity. The expression of Kif5b was repressed in cerebral ischemia preconditioning. Our findings reveal that kinesin-1 regulates extrasynaptic NMDAR targeting and signaling, and the reduction of kinesin-1 could be exploited to defer neurodegeneration. Kif5b directly binds with GluN2B-containing NMDAR Kinesin-1 mediates extrasynaptic NMDAR targeting and function Reduction of kinesin-1 protects neurons against NMDAR-elicited excitotoxicity Reduction of kinesin-1 protects brain against ischemia-elicited neurodegeneration
Collapse
Affiliation(s)
- Raozhou Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Zhigang Duan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Haitao Sun
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Man-Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jing Wang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Chi-Fai Lau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Di Yang
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yu Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Yanxiang Ni
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Ju Cui
- Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Wutian Wu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying-Shing Chan
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jun Xia
- Division of Life Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | - Jiangang Shen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Jian-Dong Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, China; Shenzhen Institute of Advanced Technologies, Shenzhen, China.
| |
Collapse
|
12
|
Badmi R, Payyavula RS, Bali G, Guo HB, Jawdy SS, Gunter LE, Yang X, Winkeler KA, Collins C, Rottmann WH, Yee K, Rodriguez M, Sykes RW, Decker SR, Davis MF, Ragauskas AJ, Tuskan GA, Kalluri UC. A New Calmodulin-Binding Protein Expresses in the Context of Secondary Cell Wall Biosynthesis and Impacts Biomass Properties in Populus. FRONTIERS IN PLANT SCIENCE 2018; 9:1669. [PMID: 30568662 PMCID: PMC6290091 DOI: 10.3389/fpls.2018.01669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 05/21/2023]
Abstract
A greater understanding of biosynthesis, signaling and regulatory pathways involved in determining stem growth and secondary cell wall chemistry is important for enabling pathway engineering and genetic optimization of biomass properties. The present study describes a new functional role of PdIQD10, a Populus gene belonging to the IQ67-Domain1 family of IQD genes, in impacting biomass formation and chemistry. Expression studies showed that PdIQD10 has enhanced expression in developing xylem and tension-stressed tissues in Populus deltoides. Molecular dynamics simulation and yeast two-hybrid interaction experiments suggest interactions with two calmodulin proteins, CaM247 and CaM014, supporting the sequence-predicted functional role of the PdIQD10 as a calmodulin-binding protein. PdIQD10 was found to interact with specific Populus isoforms of the Kinesin Light Chain protein family, shown previously to function as microtubule-guided, cargo binding and delivery proteins in Arabidopsis. Subcellular localization studies showed that PdIQD10 localizes in the nucleus and plasma membrane regions. Promoter-binding assays suggest that a known master transcriptional regulator of secondary cell wall biosynthesis (PdWND1B) may be upstream of an HD-ZIP III gene that is in turn upstream of PdIQD10 gene in the transcriptional network. RNAi-mediated downregulation of PdIQD10 expression resulted in plants with altered biomass properties including higher cellulose, wall glucose content and greater biomass quantity. These results present evidence in support of a new functional role for an IQD gene family member, PdIQD10, in secondary cell wall biosynthesis and biomass formation in Populus.
Collapse
Affiliation(s)
- Raghuram Badmi
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Raja S. Payyavula
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Garima Bali
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Georgia Institute of Technology, Atlanta, GA, United States
| | - Hao-Bo Guo
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Sara S. Jawdy
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Lee E. Gunter
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Xiaohan Yang
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | | | | | | | - Kelsey Yee
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Miguel Rodriguez
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Robert W. Sykes
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Stephen R. Decker
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Mark F. Davis
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| | - Arthur J. Ragauskas
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Gerald A. Tuskan
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Udaya C. Kalluri
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
13
|
Cockburn JJB, Hesketh SJ, Mulhair P, Thomsen M, O'Connell MJ, Way M. Insights into Kinesin-1 Activation from the Crystal Structure of KLC2 Bound to JIP3. Structure 2018; 26:1486-1498.e6. [PMID: 30197037 PMCID: PMC6224480 DOI: 10.1016/j.str.2018.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/03/2018] [Accepted: 07/25/2018] [Indexed: 12/11/2022]
Abstract
Kinesin-1 transports numerous cellular cargoes along microtubules. The kinesin-1 light chain (KLC) mediates cargo binding and regulates kinesin-1 motility. To investigate the molecular basis for kinesin-1 recruitment and activation by cargoes, we solved the crystal structure of the KLC2 tetratricopeptide repeat (TPR) domain bound to the cargo JIP3. This, combined with biophysical and molecular evolutionary analyses, reveals a kinesin-1 cargo binding site, located on KLC TPR1, which is conserved in homologs from sponges to humans. In the complex, JIP3 crosslinks two KLC2 TPR domains via their TPR1s. We show that TPR1 forms a dimer interface that mimics JIP3 binding in all crystal structures of the unbound KLC TPR domain. We propose that cargo-induced dimerization of the KLC TPR domains via TPR1 is a general mechanism for activating kinesin-1. We relate this to activation by tryptophan-acidic cargoes, explaining how different cargoes activate kinesin-1 through related molecular mechanisms.
Collapse
Affiliation(s)
- Joseph J B Cockburn
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Sophie J Hesketh
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Peter Mulhair
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Maren Thomsen
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Mary J O'Connell
- Computational and Molecular Evolutionary Biology Research Group, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Michael Way
- Cellular Signalling and Cytoskeletal Function Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
14
|
A small-molecule activator of kinesin-1 drives remodeling of the microtubule network. Proc Natl Acad Sci U S A 2017; 114:13738-13743. [PMID: 29229862 DOI: 10.1073/pnas.1715115115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The microtubule motor kinesin-1 interacts via its cargo-binding domain with both microtubules and organelles, and hence plays an important role in controlling organelle transport and microtubule dynamics. In the absence of cargo, kinesin-1 is found in an autoinhibited conformation. The molecular basis of how cargo engagement affects the balance between kinesin-1's active and inactive conformations and roles in microtubule dynamics and organelle transport is not well understood. Here we describe the discovery of kinesore, a small molecule that in vitro inhibits kinesin-1 interactions with short linear peptide motifs found in organelle-specific cargo adaptors, yet activates kinesin-1's function of controlling microtubule dynamics in cells, demonstrating that these functions are mechanistically coupled. We establish a proof-of-concept that a microtubule motor-cargo interface and associated autoregulatory mechanism can be manipulated using a small molecule, and define a target for the modulation of microtubule dynamics.
Collapse
|
15
|
Chen LJ, Wang YJ, Tseng GF. Cortical compression rapidly trimmed transcallosal projections and altered axonal anterograde transport machinery. Neuroscience 2017; 362:79-94. [PMID: 28827177 DOI: 10.1016/j.neuroscience.2017.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/02/2017] [Accepted: 08/09/2017] [Indexed: 11/26/2022]
Abstract
Trauma and tumor compressing the brain distort underlying cortical neurons. Compressed cortical neurons remodel their dendrites instantly. The effects on axons however remain unclear. Using a rat epidural bead implantation model, we studied the effects of unilateral somatosensory cortical compression on its transcallosal projection and the reversibility of the changes following decompression. Compression reduced the density, branching profuseness and boutons of the projection axons in the contralateral homotopic cortex 1week and 1month post-compression. Projection fiber density was higher 1-month than 1-week post-compression, suggesting adaptive temporal changes. Compression reduced contralateral cortical synaptophysin, vesicular glutamate transporter 1 (VGLUT1) and postsynaptic density protein-95 (PSD95) expressions in a week and the first two marker proteins further by 1month. βIII-tubulin and kinesin light chain (KLC) expressions in the corpus callosum (CC) where transcallosal axons traveled were also decreased. Kinesin heavy chain (KHC) level in CC was temporarily increased 1week after compression. Decompression increased transcallosal axon density and branching profuseness to higher than sham while bouton density returned to sham levels. This was accompanied by restoration of synaptophysin, VGLUT1 and PSD95 expressions in the contralateral cortex of the 1-week, but not the 1-month, compression rats. Decompression restored βIII-tubulin, but not KLC and KHC expressions in CC. However, KLC and KHC expressions in the cell bodies of the layer II/III pyramidal neurons partially recovered. Our results show cerebral compression compromised cortical axonal outputs and reduced transcallosal projection. Some of these changes did not recover in long-term decompression.
Collapse
Affiliation(s)
- Li-Jin Chen
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| | - Yueh-Jan Wang
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| | - Guo-Fang Tseng
- Department of Anatomy, College of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
16
|
Li Q, King SJ, Xu J. Native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules in vitro. Cytoskeleton (Hoboken) 2017; 74:356-366. [PMID: 28699205 DOI: 10.1002/cm.21386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 06/27/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022]
Abstract
Molecular motors such as kinesin-1 work in small teams to actively shuttle cargos in cells, for example in polarized transport in axons. Here, we examined the potential regulatory role of the nucleotide state of tubulin on the run length of cargos carried by multiple kinesin motors, using an optical trapping-based in vitro assay. Based on a previous report that kinesin binds preferentially to GTP-tubulin-rich microtubules, we anticipated that multiple-kinesin cargos would run substantially greater distances along GMPCPP microtubules than along GDP microtubules. Surprisingly, we did not uncover any significant differences in run length between microtubule types. A combination of single-molecule experiments, comparison with previous theory, and classic microtubule affinity pulldown assays revealed that native kinesin-1 does not bind preferentially to GTP-tubulin-rich microtubules. The apparent discrepancy between our observations and the previous report likely reflects differences in post-translational modifications between the native motors used here and the recombinant motors examined previously. Future investigations will help shed light on the interplay between the motor's post-translational modification and the microtubule's nucleotide-binding state for transport regulation in vivo.
Collapse
Affiliation(s)
- Qiaochu Li
- Department of Physics, University of California, Merced, California
| | - Stephen J King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Jing Xu
- Department of Physics, University of California, Merced, California
| |
Collapse
|
17
|
Lee TJ, Lee JW, Haynes EM, Eliceiri KW, Halloran MC. The Kinesin Adaptor Calsyntenin-1 Organizes Microtubule Polarity and Regulates Dynamics during Sensory Axon Arbor Development. Front Cell Neurosci 2017; 11:107. [PMID: 28473757 PMCID: PMC5397401 DOI: 10.3389/fncel.2017.00107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022] Open
Abstract
Axon growth and branching, and development of neuronal polarity are critically dependent on proper organization and dynamics of the microtubule (MT) cytoskeleton. MTs must organize with correct polarity for delivery of diverse cargos to appropriate subcellular locations, yet the molecular mechanisms regulating MT polarity remain poorly understood. Moreover, how an actively branching axon reorganizes MTs to direct their plus ends distally at branch points is unknown. We used high-speed, in vivo imaging of polymerizing MT plus ends to characterize MT dynamics in developing sensory axon arbors in zebrafish embryos. We find that axonal MTs are highly dynamic throughout development, and that the peripheral and central axons of sensory neurons show differences in MT behaviors. Furthermore, we show that Calsyntenin-1 (Clstn-1), a kinesin adaptor required for sensory axon branching, also regulates MT polarity in developing axon arbors. In wild type neurons the vast majority of MTs are directed in the correct plus-end-distal orientation from early stages of development. Loss of Clstn-1 causes an increase in MTs polymerizing in the retrograde direction. These misoriented MTs most often are found near growth cones and branch points, suggesting Clstn-1 is particularly important for organizing MT polarity at these locations. Together, our results suggest that Clstn-1, in addition to regulating kinesin-mediated cargo transport, also organizes the underlying MT highway during axon arbor development.
Collapse
Affiliation(s)
- Tristan J Lee
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA.,Department of Neuroscience, University of Wisconsin-MadisonMadison, WI, USA.,Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, USA
| | - Jacob W Lee
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA.,Department of Neuroscience, University of Wisconsin-MadisonMadison, WI, USA
| | - Elizabeth M Haynes
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA.,Department of Neuroscience, University of Wisconsin-MadisonMadison, WI, USA.,Laboratory for Optical and Computational Instrumentation, University of Wisconsin-MadisonMadison, WI, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-MadisonMadison, WI, USA
| | - Mary C Halloran
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA.,Department of Neuroscience, University of Wisconsin-MadisonMadison, WI, USA.,Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
18
|
Sanger A, Yip YY, Randall TS, Pernigo S, Steiner RA, Dodding MP. SKIP controls lysosome positioning using a composite kinesin-1 heavy and light chain-binding domain. J Cell Sci 2017; 130:1637-1651. [PMID: 28302907 PMCID: PMC5450233 DOI: 10.1242/jcs.198267] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
The molecular interplay between cargo recognition and regulation of the activity of the kinesin-1 microtubule motor is not well understood. Using the lysosome adaptor SKIP (also known as PLEKHM2) as model cargo, we show that the kinesin heavy chains (KHCs), in addition to the kinesin light chains (KLCs), can recognize tryptophan-acidic-binding determinants on the cargo when presented in the context of an extended KHC-interacting domain. Mutational separation of KHC and KLC binding shows that both interactions are important for SKIP–kinesin-1 interaction in vitro and that KHC binding is important for lysosome transport in vivo. However, in the absence of KLCs, SKIP can only bind to KHC when autoinhibition is relieved, suggesting that the KLCs gate access to the KHCs. We propose a model whereby tryptophan-acidic cargo is first recognized by KLCs, resulting in destabilization of KHC autoinhibition. This primary event then makes accessible a second SKIP-binding site on the KHC C-terminal tail that is adjacent to the autoinhibitory IAK region. Thus, cargo recognition and concurrent activation of kinesin-1 proceed in hierarchical stepwise fashion driven by a dynamic network of inter- and intra-molecular interactions. Summary: The lysosomal kinesin-1 cargo adaptor SKIP is shown to interact with kinesin-1 via both its heavy and light chains. A new stepwise hierarchical model for kinesin-1 activation is proposed.
Collapse
Affiliation(s)
- Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Thomas S Randall
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Stefano Pernigo
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Roberto A Steiner
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, SE1 1UL, UK
| |
Collapse
|
19
|
Role of kinesin-1-based microtubule sliding in Drosophila nervous system development. Proc Natl Acad Sci U S A 2016; 113:E4985-94. [PMID: 27512046 DOI: 10.1073/pnas.1522416113] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The plus-end microtubule (MT) motor kinesin-1 is essential for normal development, with key roles in the nervous system. Kinesin-1 drives axonal transport of membrane cargoes to fulfill the metabolic needs of neurons and maintain synapses. We have previously demonstrated that kinesin-1, in addition to its well-established role in organelle transport, can drive MT-MT sliding by transporting "cargo" MTs along "track" MTs, resulting in dramatic cell shape changes. The mechanism and physiological relevance of this MT sliding are unclear. In addition to its motor domain, kinesin-1 contains a second MT-binding site, located at the C terminus of the heavy chain. Here, we mutated this C-terminal MT-binding site such that the ability of kinesin-1 to slide MTs is significantly compromised, whereas cargo transport is unaffected. We introduced this mutation into the genomic locus of kinesin-1 heavy chain (KHC), generating the Khc(mutA) allele. Khc(mutA) neurons displayed significant MT sliding defects while maintaining normal transport of many cargoes. Using this mutant, we demonstrated that MT sliding is required for axon and dendrite outgrowth in vivo. Consistent with these results, Khc(mutA) flies displayed severe locomotion and viability defects. To test the role of MT sliding further, we engineered a chimeric motor that actively slides MTs but cannot transport organelles. Activation of MT sliding in Khc(mutA) neurons using this chimeric motor rescued axon outgrowth in cultured neurons and in vivo, firmly establishing the role of sliding in axon outgrowth. These results demonstrate that MT sliding by kinesin-1 is an essential biological phenomenon required for neuronal morphogenesis and normal nervous system development.
Collapse
|
20
|
Chowdary PD, Che DL, Zhang K, Cui B. Retrograde NGF axonal transport--motor coordination in the unidirectional motility regime. Biophys J 2016; 108:2691-703. [PMID: 26039170 DOI: 10.1016/j.bpj.2015.04.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/26/2015] [Accepted: 04/29/2015] [Indexed: 10/23/2022] Open
Abstract
We present a detailed motion analysis of retrograde nerve growth factor (NGF) endosomes in axons to show that mechanical tugs-of-war and intracellular motor regulation are complimentary features of the near-unidirectional endosome directionality. We used quantum dots to fluorescently label NGF and acquired trajectories of retrograde quantum-dot-NGF-endosomes with <20-nm accuracy at 32 Hz in microfluidic neuron cultures. Using a combination of transient motion analysis and Bayesian parsing, we partitioned the trajectories into sustained periods of retrograde (dynein-driven) motion, constrained pauses, and brief anterograde (kinesin-driven) reversals. The data shows many aspects of mechanical tugs-of-war and multiple-motor mechanics in NGF-endosome transport. However, we found that stochastic mechanical models based on in vitro parameters cannot simulate the experimental data, unless the microtubule-binding affinity of kinesins on the endosome is tuned down by 10 times. Specifically, the simulations suggest that the NGF-endosomes are driven on average by 5-6 active dyneins and 1-2 downregulated kinesins. This is also supported by the dynamics of endosomes detaching under load in axons, showcasing the cooperativity of multiple dyneins and the subdued activity of kinesins. We discuss the possible motor coordination mechanism consistent with motor regulation and tugs-of-war for future investigations.
Collapse
Affiliation(s)
| | - Daphne L Che
- Department of Chemistry, Stanford University, Stanford, California
| | - Kai Zhang
- Department of Chemistry, Stanford University, Stanford, California
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
21
|
Abstract
The light chains (KLCs) of the microtubule motor kinesin-1 bind cargoes and regulate its activity. Through their tetratricopeptide repeat domain (KLC(TPR)), they can recognize short linear peptide motifs found in many cargo proteins characterized by a central tryptophan flanked by aspartic/glutamic acid residues (W-acidic). Using a fluorescence resonance energy transfer biosensor in combination with X-ray crystallographic, biochemical, and biophysical approaches, we describe how an intramolecular interaction between the KLC2(TPR) domain and a conserved peptide motif within an unstructured region of the molecule, partly occludes the W-acidic binding site on the TPR domain. Cargo binding displaces this interaction, effecting a global conformational change in KLCs resulting in a more extended conformation. Thus, like the motor-bearing kinesin heavy chains, KLCs exist in a dynamic conformational state that is regulated by self-interaction and cargo binding. We propose a model by which, via this molecular switch, W-acidic cargo binding regulates the activity of the holoenzyme.
Collapse
|
22
|
Watt D, Dixit R, Cavalli V. JIP3 Activates Kinesin-1 Motility to Promote Axon Elongation. J Biol Chem 2015; 290:15512-15525. [PMID: 25944905 DOI: 10.1074/jbc.m115.651885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Indexed: 11/06/2022] Open
Abstract
Kinesin-1 is a molecular motor responsible for cargo transport along microtubules and plays critical roles in polarized cells, such as neurons. Kinesin-1 can function as a dimer of two kinesin heavy chains (KHC), which harbor the motor domain, or as a tetramer in combination with two accessory light chains (KLC). To ensure proper cargo distribution, kinesin-1 activity is precisely regulated. Both KLC and KHC subunits bind cargoes or regulatory proteins to engage the motor for movement along microtubules. We previously showed that the scaffolding protein JIP3 interacts directly with KHC in addition to its interaction with KLC and positively regulates dimeric KHC motility. Here we determined the stoichiometry of JIP3-KHC complexes and observed approximately four JIP3 molecules binding per KHC dimer. We then determined whether JIP3 activates tetrameric kinesin-1 motility. Using an in vitro motility assay, we show that JIP3 binding to KLC engages kinesin-1 with microtubules and that JIP3 binding to KHC promotes kinesin-1 motility along microtubules. We tested the in vivo relevance of these findings using axon elongation as a model for kinesin-1-dependent cellular function. We demonstrate that JIP3 binding to KHC, but not KLC, is essential for axon elongation in hippocampal neurons as well as axon regeneration in sensory neurons. These findings reveal that JIP3 regulation of kinesin-1 motility is critical for axon elongation and regeneration.
Collapse
Affiliation(s)
- Dana Watt
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110
| | - Ram Dixit
- Department of Biology, Washington University, St. Louis, Missouri 63110
| | - Valeria Cavalli
- Department of Anatomy and Neurobiology, School of Medicine, Washington University, St. Louis, Missouri 63110.
| |
Collapse
|
23
|
Gan KJ, Morihara T, Silverman MA. Atlas stumbled: Kinesin light chain-1 variant E triggers a vicious cycle of axonal transport disruption and amyloid-β generation in Alzheimer's disease. Bioessays 2014; 37:131-41. [DOI: 10.1002/bies.201400131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Kathlyn J. Gan
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
| | - Takashi Morihara
- Department of Psychiatry; Graduate School of Medicine; Osaka University; Osaka Japan
| | - Michael A. Silverman
- Department of Molecular Biology and Biochemistry; Simon Fraser University; Burnaby BC Canada
- Department of Biological Sciences; Simon Fraser University; Burnaby BC Canada
- Brain Research Centre; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
24
|
Vitre B, Gudimchuk N, Borda R, Kim Y, Heuser JE, Cleveland DW, Grishchuk EL. Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Mol Biol Cell 2014; 25:2272-81. [PMID: 24920822 PMCID: PMC4116301 DOI: 10.1091/mbc.e14-01-0698] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Centromere protein E (CENP-E) is a highly elongated kinesin that transports pole-proximal chromosomes during congression in prometaphase. During metaphase, it facilitates kinetochore-microtubule end-on attachment required to achieve and maintain chromosome alignment. In vitro CENP-E can walk processively along microtubule tracks and follow both growing and shrinking microtubule plus ends. Neither the CENP-E-dependent transport along microtubules nor its tip-tracking activity requires the unusually long coiled-coil stalk of CENP-E. The biological role for the CENP-E stalk has now been identified through creation of "Bonsai" CENP-E with significantly shortened stalk but wild-type motor and tail domains. We demonstrate that Bonsai CENP-E fails to bind microtubules in vitro unless a cargo is contemporaneously bound via its C-terminal tail. In contrast, both full-length and truncated CENP-E that has no stalk and tail exhibit robust motility with and without cargo binding, highlighting the importance of CENP-E stalk for its activity. Correspondingly, kinetochore attachment to microtubule ends is shown to be disrupted in cells whose CENP-E has a shortened stalk, thereby producing chromosome misalignment in metaphase and lagging chromosomes during anaphase. Together these findings establish an unexpected role of CENP-E elongated stalk in ensuring stability of kinetochore-microtubule attachments during chromosome congression and segregation.
Collapse
Affiliation(s)
- Benjamin Vitre
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Nikita Gudimchuk
- Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Ranier Borda
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Yumi Kim
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - John E Heuser
- Department of Cell Biology, Washington University in Saint Louis, St Louis, MO 63110WPI Institute for Cell and Material Sciences, Kyoto University, Kyoto 606-8501, Japan
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093
| | - Ekaterina L Grishchuk
- Physiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
25
|
Aoki T, Tomishige M, Ariga T. Single molecule FRET observation of kinesin-1's head-tail interaction on microtubule. Biophysics (Nagoya-shi) 2013; 9:149-59. [PMID: 27493553 PMCID: PMC4629677 DOI: 10.2142/biophysics.9.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/17/2013] [Indexed: 01/03/2023] Open
Abstract
Kinesin-1 (conventional kinesin) is a molecular motor that transports various cargo such as endoplasmic reticulum and mitochondria in cells. Its two head domains walk along microtubule by hydrolyzing ATP, while the tail domains at the end of the long stalk bind to the cargo. When a kinesin is not carrying cargo, its motility and ATPase activity is inhibited by direct interactions between the tail and head. However, the mechanism of this tail regulation is not well understood. Here, we apply single molecule fluorescence resonance energy transfer (smFRET) to observe this interaction in stalk-truncated kinesin. We found that kinesin with two tails forms a folding conformation and dissociates from microtubules, whereas kinesin with one tail remains bound to the micro-tubule and is immobile even in the presence of ATP. We further investigated the head-tail interaction as well as head-head coordination on the microtubule at various nucleotide conditions. From these results, we propose a two-step inhibition model for kinesin motility.
Collapse
Affiliation(s)
- Takahiro Aoki
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| | - Michio Tomishige
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| | - Takayuki Ariga
- Department of Applied Physics, School of Engineering, the University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
26
|
Single-molecule inhibition of human kinesin by adociasulfate-13 and -14 from the sponge Cladocroce aculeata. Proc Natl Acad Sci U S A 2013; 110:18880-5. [PMID: 24191039 DOI: 10.1073/pnas.1314132110] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two merotriterpenoid hydroquinone sulfates designated adociasulfate-13 (1) and adociasulfate-14 (2) were purified from Cladocroce aculeata (Chalinidae) along with adociasulfate-8. All three compounds were found to inhibit microtubule-stimulated ATPase activity of kinesin at 15 µM by blocking both the binding of microtubules and the processive motion of kinesin along microtubules. These findings directly show that substitution of the 5'-sulfate in 1 for a glycolic acid moiety in 2 maintains kinesin inhibition. Nomarski imaging and bead diffusion assays in the presence of adociasulfates showed no signs of either free-floating or bead-bound adociasulfate aggregates. Single-molecule biophysical experiments also suggest that inhibition of kinesin activity does not involve adociasulfate aggregation. Furthermore, both mitotic and nonmitotic kinesins are inhibited by adociasulfates to a significantly different extent. We also report evidence that microtubule binding of nonkinesin microtubule binding domains may be affected by adociasulfates.
Collapse
|
27
|
Hu JR, Liu M, Wang DH, Hu YJ, Tan FQ, Yang WX. Molecular characterization and expression analysis of a KIFC1-like kinesin gene in the testis of Eumeces chinensis. Mol Biol Rep 2013; 40:6645-6655. [PMID: 24078165 DOI: 10.1007/s11033-013-2779-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/14/2013] [Indexed: 11/26/2022]
Abstract
The member of the kinesin-14 subfamily, KIFC1, is a carboxyl-terminal motor protein that plays an important role in the elongation of nucleus and acrosome biogenesis during the spermiogenesis of mammals. Here, we had cloned and sequenced the cDNA of a mammalian KIFC1 homologue (termed ec-KIFC1) from the total RNA of the testis of the reptile Eumeces chinensis. The full-length sequence was 2,339 bp that contained a 216 bp 5'-untranslated region (5'UTR), a 194 bp 3'-untranslated region (3'UTR) and a 1,929 bp open reading frame that encoded a special protein of 643 amino acids (aa). The calculated molecular weight of the putative ec-KIFC1 was 71 kDa and its estimated isoelectric point was 9.47. The putative ec-KIFC1 protein owns a tail domain from 1 to 116 aa, a stalk domain from 117 to 291 aa and a conserved carboxyl motor domain from 292 to 642 aa. Protein alignment demonstrated that ec-KIFC1 had 45.6, 42.8, 44.6, 36.9, 43.7, 46.4, 45.1, 55.6 and 49.8 % identity with its homologues in Mus musculus, Salmo salar, Danio rerio, Eriocheir sinensis, Rattus norvegicus, Homo sapiens, Bos taurus, Gallus gallus and Xenopus laevis, respectively. Tissue expression analysis showed the presence of ovary, heart, liver, intestine, oviduct, testis and muscle. The phylogenetic tree revealed that ec-KIFC1 was more closely related to vertebrate KIFC1 than to invertebrate KIFC1. In situ hybridization showed that the ec-KIFC1 mRNA was localized in the periphery of the nuclear membrane and the center of the nucleus in early spermatids. In mid spermatids, the ec-KIFC1 had abundant expression in the center of nucleus, and was expressed in the tail and the anterior part of spermatids. In the late spermatid, the nucleus gradually became elongated, and the ec-KIFC1 mRNA signal was still centralized in the nucleus. In mature spermatids, the signal of the ec-KIFC1 gradually became weak, and was mainly located at the tail of spermatids. Therefore, the ec-KIFC1 probably plays a critical role in the spermatogenesis of E. chinensis.
Collapse
Affiliation(s)
- Jian-Rao Hu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, People's Republic of China
| | | | | | | | | | | |
Collapse
|
28
|
Applewhite DA, Grode KD, Duncan MC, Rogers SL. The actin-microtubule cross-linking activity of Drosophila Short stop is regulated by intramolecular inhibition. Mol Biol Cell 2013; 24:2885-93. [PMID: 23885120 PMCID: PMC3771950 DOI: 10.1091/mbc.e12-11-0798] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The authors investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot) and found that Shot undergoes an intramolecular conformational change that regulates its cross-linking activity. This intramolecular interaction depends on Shot's NH2-terminal actin-binding domain and EF-hand-GAS2 domain. Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex.
Collapse
Affiliation(s)
- Derek A Applewhite
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280 Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3280
| | | | | | | |
Collapse
|
29
|
Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 2013; 20:1001-7. [PMID: 23872990 DOI: 10.1038/nsmb.2624] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 06/03/2013] [Indexed: 02/01/2023]
Abstract
The typical function of kinesins is to transport cargo along microtubules. Binding of ATP to microtubule-attached motile kinesins leads to cargo displacement. To better understand the nature of the conformational changes that lead to the power stroke that moves a kinesin's load along a microtubule, we determined the X-ray structure of human kinesin-1 bound to αβ-tubulin. The structure defines the mechanism of microtubule-stimulated ATP hydrolysis, which releases the kinesin motor domain from microtubules. It also reveals the structural linkages that connect the ATP nucleotide to the kinesin neck linker, a 15-amino acid segment C terminal to the catalytic core of the motor domain, to result in the power stroke. ATP binding to the microtubule-bound kinesin favors neck-linker docking. This biases the attachment of kinesin's second head in the direction of the movement, thus initiating each of the steps taken.
Collapse
|
30
|
Barry J, Xu M, Gu Y, Dangel AW, Jukkola P, Shrestha C, Gu C. Activation of conventional kinesin motors in clusters by Shaw voltage-gated K+ channels. J Cell Sci 2013; 126:2027-41. [PMID: 23487040 DOI: 10.1242/jcs.122234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The conventional kinesin motor transports many different cargos to specific locations in neurons. How cargos regulate motor function remains unclear. Here we focus on KIF5, the heavy chain of conventional kinesin, and report that the Kv3 (Shaw) voltage-gated K(+) channel, the only known tetrameric KIF5-binding protein, clusters and activates KIF5 motors during axonal transport. Endogenous KIF5 often forms clusters along axons, suggesting a potential role of KIF5-binding proteins. Our biochemical assays reveal that the high-affinity multimeric binding between the Kv3.1 T1 domain and KIF5B requires three basic residues in the KIF5B tail. Kv3.1 T1 competes with the motor domain and microtubules, but not with kinesin light chain 1 (KLC1), for binding to the KIF5B tail. Live-cell imaging assays show that four KIF5-binding proteins, Kv3.1, KLC1 and two synaptic proteins SNAP25 and VAMP2, differ in how they regulate KIF5B distribution. Only Kv3.1 markedly increases the frequency and number of KIF5B-YFP anterograde puncta. Deletion of Kv3.1 channels reduces KIF5 clusters in mouse cerebellar neurons. Therefore, clustering and activation of KIF5 motors by Kv3 regulate the motor number in carrier vesicles containing the channel proteins, contributing not only to the specificity of Kv3 channel transport, but also to the cargo-mediated regulation of motor function.
Collapse
Affiliation(s)
- Joshua Barry
- Molecular, Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Kawaguchi K. Role of kinesin-1 in the pathogenesis of SPG10, a rare form of hereditary spastic paraplegia. Neuroscientist 2012; 19:336-44. [PMID: 22785106 DOI: 10.1177/1073858412451655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Molecular protein motors play key roles in processes such as intracellular cargo transport and brain wiring, and failure of function can give rise to serious diseases. Kinesin-1, a member of the kinesin superfamily (also known as KIFs) is a two-headed motor protein that uses energy derived from ATP hydrolysis to transport diverse types of intracellular cargo toward the plus-ends of microtubules within axons. Recent studies at the level of a single molecule have provided extensive knowledge on how kinesin-1 moves along microtubules. Further elucidation of kinesin-1 movement may shed light on its influence on axon generation, thereby leading to therapies for diseases such as spastic paraplegia type 10 (SPG10), the subject of this review. SPG10 is an autosomal dominant form of hereditary spastic paraplegia caused by mutations in KIF5A, which encodes one of the isoforms of kinesin-1 (KIF5A, KIF5B, and KIF5C). Although little is known about the cargo of KIF5A, a recent study revealed an axonal transport defect of mitochondria in a KIF5A (-/-) mouse model. This review discusses the consensus moving model of kinesin-1 and the pathogenicity of SPG10 caused by defective KIF5A function.
Collapse
Affiliation(s)
- Kenji Kawaguchi
- Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
32
|
Wong-Riley MTT, Besharse JC. The kinesin superfamily protein KIF17: one protein with many functions. Biomol Concepts 2012; 3:267-282. [PMID: 23762210 DOI: 10.1515/bmc-2011-0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Kinesins are ATP-dependent molecular motors that carry cargos along microtubules, generally in an anterograde direction. They are classified into 14 distinct families with varying structural and functional characteristics. KIF17 is a member of the kinesin-2 family that is plus end-directed. It is a homodimer with a pair of head motor domains that bind microtubules, a coiled-coil stalk, and a tail domain that binds cargos. In neurons, KIF17 transports N-methyl-D-aspartate receptor NR2B subunit, kainate receptor GluR5, and potassium Kv4.2 channels from cell bodies exclusively to dendrites. These cargos are necessary for synaptic transmission, learning, memory, and other functions. KIF17's interaction with NXF2 enables the transport of mRNA bidirectionally in dendrites. KIF17 or its homolog OSM-3 also mediates intraflagellar transport of cargos to the distal tips of flagella or cilia, thereby aiding in ciliogenesis. In many invertebrate and vertebrate sensory cells, KIF17 delivers cargos that contribute to chemosensory perception and signal transduction. In vertebrate photoreceptors, KIF17 is necessary for outer segment development and disc morphogenesis. In the testis, KIF17 (KIF17b) mediates microtubule-independent delivery of ACT from the nucleus to the cytoplasm and microtubule-dependent transport of Spatial-ε, both are presumably involved in spermatogenesis. KIF17 is also implicated in epithelial polarity and morphogenesis, placental transport and development, and the development of specific brain regions. The transcriptional regulation of KIF17 has recently been found to be mediated by nuclear respiratory factor 1 (NRF-1), which also regulates NR2B as well as energy metabolism in neurons. Dysfunctions of KIF17 are linked to a number of pathologies.
Collapse
Affiliation(s)
- Margaret T T Wong-Riley
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
33
|
Zhuravlev PI, Papoian GA. Protein fluxes along the filopodium as a framework for understanding the growth-retraction dynamics: the interplay between diffusion and active transport. Cell Adh Migr 2012; 5:448-56. [PMID: 21975554 DOI: 10.4161/cam.5.5.17868] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We present a picture of filopodial growth and retraction from physics perspective, where we emphasize the significance of the role played by protein fluxes due to spatially extended nature of the filopodium. We review a series of works, which used stochastic simulations and mean field analytical modeling to find the concentration profile of G-actin inside a filopodium, which, in turn, determines the stationary filopodial length. In addition to extensively reviewing the prior works, we also report some new results on the role of active transport in regulating the length of filopodia. We model a filopodium where delivery of actin monomers towards the tip can occur both through passive diffusion and active transport by myosin motors. We found that the concentration profile of G-actin along the filopodium is rather non-trivial, containing a narrow minimum near the base followed by a broad maximum. For efficient enough actin transport, this non-monotonous shape is expected to occur under a broad set of conditions. We also raise the issue of slow approach to the stationary length and the possibility of multiple steady state solutions.
Collapse
Affiliation(s)
- Pavel I Zhuravlev
- Department of Chemistry and Institute for Physical Science and Technology, University of Maryland, College Park, MD USA
| | | |
Collapse
|
34
|
Abstract
Long-distance transport in eukaryotic cells is driven by molecular motors that move along microtubule tracks. Molecular motors of the kinesin superfamily contain a kinesin motor domain attached to family-specific sequences for cargo binding, regulation, and oligomerization. The biochemical and biophysical properties of the kinesin motor domain have been widely studied, yet little is known about how kinesin motors work in the complex cellular environment. We discuss recent studies on the three major families involved in intracellular transport (kinesin-1, kinesin-2, and kinesin-3) that have begun to bridge the gap in knowledge between the in vitro and in vivo behaviors of kinesin motors. These studies have increased our understanding of how kinesin subunits assemble to produce a functional motor, how kinesin motors are affected by biochemical cues and obstacles present on cellular microtubules, and how multiple motors on a cargo surface can work collectively for increased force production and travel distance.
Collapse
Affiliation(s)
- Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
35
|
Kaan HYK, Hackney DD, Kozielski F. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 2011; 333:883-5. [PMID: 21836017 PMCID: PMC3339660 DOI: 10.1126/science.1204824] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
When not transporting cargo, kinesin-1 is autoinhibited by binding of a tail region to the motor domains, but the mechanism of inhibition is unclear. We report the crystal structure of a motor domain dimer in complex with its tail domain at 2.2 angstroms and compare it with a structure of the motor domain alone at 2.7 angstroms. These structures indicate that neither an induced conformational change nor steric blocking is the cause of inhibition. Instead, the tail cross-links the motor domains at a second position, in addition to the coiled coil. This "double lockdown," by cross-linking at two positions, prevents the movement of the motor domains that is needed to undock the neck linker and release adenosine diphosphate. This autoinhibition mechanism could extend to some other kinesins.
Collapse
Affiliation(s)
- Hung Yi Kristal Kaan
- The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| | - David D. Hackney
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Frank Kozielski
- The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, Scotland, UK
| |
Collapse
|